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ABSTRACT

This paper proposes a marked point process approach for cluster detec-
tion in spatial data. The cluster pattern is supposed made of random
interacting disks. The proposed model has two components. The first
component is related to the location of the disks in the data field, and
it is defined as an inhomogeneous Poisson process. The second one is
related to the interaction between disks and it is constructed by the su-
perposition of an area-interaction and a pairwise interaction processes.
The model is tested on spatial data coming from animal epidemiology.
Statistical descriptors of the cluster are given. These descriptors are the
sufficient statistics of the proposed model.
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1 Introduction

Pattern detection in digital images using the marked point processes ap-
proach is based on two key ideas [2, 10, 18, 27, 31, 32, 33]. First, a pattern
is a finite random set y = {y1,¥2,...yn} with its elements beeing simple
interacting objects. Second, the objects forming the pattern are driven by
a marked point process.

Let p(y|@) be the probability density of such a process, with 6 the model
parameters. Under these assumptions, the pattern to be detected y is esti-
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mated by the configuration of objects maximizing this probability density :
y = arg max 0
y = argmax{p(y|f)}

The probability density can be written as follows

p(y]0) oc exp [~U(y,0]) = exp [~ (Ua(y,0) + Ui(y,0))] - (1)

U(y, ) is the Gibbs energy of the system. The term Uq(y,0) is called
the data energy and is related to the position of the objects in the image
domain, whereas U;(y, 6) represents the interaction energy, and is related to
the interaction between the objects in the configuration y.

The strong point of this approach is that it considers the image as a col-
lection of objects instead of numerical values. This leads to robust methods
in terms of noise and detection. In remote sensed image analysis, patterns
with a complex geometry such as road networks or aligned structures of
buildings, were detected using marked point processes manipulating inter-
acting random segments or rectangles [5, 14, 26, 35].

Nevertheless when using such methods, there is an obvious dependence
between the model parameters and the obtained result. This fact leads to
some natural questions. Are the objects detected, because they realy exist
or because we are “insisting” in finding them ? Is their presence detected
because of some random effects exhibited by the data 7

The aim of this paper is to apply this approach to cluster detection in
spatial data and to bring particular attention to these questions. Similarly
with the problems in image analysis, the cluster pattern is considered made
of simple interacting objects. These objects are disks with random center
and random radius. These disks are driven by a marked point process with
probability density having the form (1). The proposed approach is tested
on spatial data coming from animal epidemiology.

Spatial data is the generic name for data sets with elements having two
components, one related to the location of the element, the second one de-
signing their characteristics. Clearly, digital images are spatial data. In
several situations, the location of the elements contained in the data is not
always distributed on a regular grid : for instance, the positions of earth-
quakes in a geographical region, together with their corresponding magni-
tudes.

Cluster detection is of great importance when analysing spatial data,
since it may reveal un-normal behaviour of the monitored phenomenon.
Generally, a cluster is considered as a geographically bounded group of oc-
curences of sufficient size and concentration to be unlikely to have occured
by chance [6].



The cluster detection problem received a lot of attention when the data
consist of point - or event - locations only [1, 4, 13, 17, 20, 24]. The case of
spatial data as defined previously was tackled via the construction of spatial
interpolators, so to obtain a smooth “map” of the studied phenomenon.
Peakedness in this “map”, it is often considered as an indicator of cluster
presence. Still, the difference between clustering effects and extra variances
in the observed process, cannot be easily stated [16, 17, 39].

The structure of the paper is as follows. First, some modelling tools
based on marked point processes theory are given. The available data is
then presented, together with some exploratory analysis. This data comes
from animal epidemiology, hence the presence of clusters may reveal an un-
normally high concentration of the disease in a special region. The next
section is dedicated to the construction of a marked point process model
able to detect cluster patterns in the presented data. The results obtained
are shown and interpreted in the fifth section. Finally, conclusions and
perspectives are depicted.

2 Modelling framework based on marked point
processes

2.1 Definitions. General facts.

Let K be a compact subset of strictly positive measure 0 < v(K) < oo in the
Lebesgue measure space (R2, B,v). Different characteristics or marks may
be attached to points in K. Let (M, M,vys) be the probability measure
space of these marks.

A marked point process with locations in K and marks in M is a mea-
surable mapping from some probability space into (£2, F). A marked point
process is usually called an object point process if the marks represent the
geometrical parameters of an object. Here Q2 = U2° =, is the configuration
space, with Z,, the set of all unordered configurations y = {(k;, m;)}?_; con-
sisting of not necessarily distinct marked points y; = (k;, m;) € K x M. =g
is the empty configuration. F is the o—algebra generated by the mappings
that count the number of marked points in Borel sets A C K x M.

At our knowledge the simplest marked point process is the Poisson
marked point process of probability measure

p(F) = Z?:o%(!mexM"'me Lpi(k,ma) .., (knyma)} (2)
xdv(ky) -+ dv(kp)dvar(my) ... dvy(my)



for all F' € F. According to a Poisson law of intensity v(K), this process
distributes points uniformly in K. The point marks are chosen independently
according to vjy.

The Poisson marked point process does not take into account interac-
tion between the marked points. Indeed, more complicated models may be
constructed by specifying a Radon-Nikodym derivative p(y) with respect
to u.

Stability conditions need to be fulfiled, for any probability density of a
marked point process. The Ruelle’s stability condition [34] requires

]LY) n(y)
p(0) =A ®)

to hold for a finite constant A > 0 and any y € Q. n(y) is the cardinality
of y. The marked point process fulfiling (3) is called stable.

The local stability is a stronger condition than (3) and it is defined as
follows

Mey) = LYAED ()
p(y)
with A > 0 finite, for all y € Q and £ € K x M. A& y) is called the
Papangelou conditional intensity. In this case the marked point process is
said to be locally stable.

The stability of a point process (3) ensures the integrability of its prob-
ability density with respect to the Poisson reference measure. The local
stability (4) often guarantees the necessary convergence properties of the
Monte Carlo dynamics simulating a point process.

For a rigorous and detailed presentation of the marked point processes
theory, we recommend the monographs [19, 25, 29].

2.2 Tools for modelling

As stated in the beginning the paper, the key idea throughout this work
is to consider the cluster pattern as a collection of random disks driven by
a marked point process. In order to detect and to form cluster patterns,
such a marked point process has to detect the regions in the data where
the objects are situated, to agregate these objects to form the clusters and
simultaneously to spread them throughout the entire location space in the
data.

Clearly, more complicated processes than the reference measure (2) are
needed. In the following we will present three marked point processes. These



processes are modelling tools in the construction of the solution for our
problem.

Tool 1. Inhomogeneous Poisson process With respect to the reference

measure 1, the probability density of an inhomogeneous point proces is de-
fined by

ply)oc [ Blkm) (5)

with the intensity B : K x M — R beeing a bounded function.
Note that, the Papangelou conditional intensity is given by

A& y) = B(E) = Blke, me).

Tool 2. Area interaction process Consider the mark space M = [rmin, Tmax) -
In the following, y; = (k;,m;) represents the parameters of a disk, i.e. its
center and radius, respectively.

The set Z(y) = U?:(X)b(k;i,mi) is the union of all the disks b(k;,m;) =
{a € R? : d(a, k;) < m;}.

The area interaction process has the following probability density

p(y) o AV IZE)] (6)

with respect to the reference process (2). The model parameters are (3,74 > 0.
The local stability ratio is given by

—v[b(ke ,me)\Z
)\(g’y) — /B’Ya [( 3 5)\ (y)]

Tool 3. A pairwise interaction - Strauss like - process As in the pre-
vious example, let y represent a random configuration of disks parameters.
Let us suppose that overlapping between these objects has to be taken
into account. Here, we consider that two disks of parameters y; = (k;,m;)
and y; = (kj,m;) overlap and we write y; ~, y;, if the following relation is
verified
d(kl, k]) < max{mi, m]'}

The object point process that takes into account the defined interaction
has the probability density

p(y) ox fr¥)ynel) (7)

with respect to the reference measure (2). The model parameters are 3 > 0
and v, € (0,1). The sufficient statistics n(y) and n,(y) represent the total



number of disks in y and the number of pairs of different disks in 'y that
overlap.
Here, the Papangelou ratio is

M&y) = By
with N,(€,y) beeing the number of disks in'y that overlap with &.

The marked point processes presented in these examples are all locally
stable. Furthermore these processes belong to the class of (Ripley-Kelly)
Markov point processes [30].

The area interaction process was proposed to model patterns of objects
that cluster [3]. The model given by (6) forms configurations of disks that
tend to be “regular” if v, < 1 or “clustered” whenever v, > 1. A similar
model to (7) - in fact the original Strauss process - was used to form clustered
patterns using a parameter v, > 1. It turned out that, in this case, the
corresponding probability density is not integrable [11, 38]. Some more
recent models propose alternative ways of clustering objects defining the
connectivity of an object [21, 36].

The Gibbs energy of these processes is U(y) = —log p(y). The definition
of a model in energetical terms is sometimes prefered in modelling because
of the more intuitive description of the considered phenomenon. In this case,
the Papangelou ratio represents the energetical contribution of a particle to
the considered system.

2.3 Simulation methods

Several Monte Carlo techniques are available for simulating marked point
processes : spatial birth-and-death processes, reversible jump dynamics or
more recently exact simulation techniques [7, 8, 9, 12, 19, 22, 28].

Exact simulation methods have the advantage of indicating by them-
selves when convergence is reached. Still, methods such as coupling from
the past or clan of ancestors are efficient in practice only within a limited
range of parameters [22]. Since, the spatial birth-and-death processes are
the core of the mentioned exact simulation methods, the same drawbacks
may discard this choice, too.

The Metropolis-Hastings paradigm - a particular case of the reversible
jump framework - is generaly prefered because the models can be easily sim-
ulated for the whole range of parameters. Furthermore, this technique allows
the use of transition kernels tailored to the model to simulate. The simula-
tions throughout this paper are done using a Metropolis-Hastings dynamics
as in [7, 8].



2.4 Inference

Our problem consists of infering the cluster pattern - i.e. the positions and
the characteristics of the cluster pattern y - from the spatial data d. The
estimator obtained maximizing (1) clearly depends on the model parameters.

The ideal solution would be to simultaneously perform pattern detection
and parameter estimation. The image analysis community using Markov
random fields showed a great interest for this kind of approaches [15, 40, 41].
Intuitively, a theoretical extrapolation of these methods for marked point
processes can lead to a possible answer to this question. Still, the image
segmentation method presented by [15] performs also parameter estimation
but no convergence guarantees are given. Ideas used for parameter esti-
mation in image analysis [40, 41] can be also found in the point processes
litterature [8]. The parameter estimation for marked point processes can be
formulated under the complete or the missing data framework. This formu-
lation requires a total - or a partial - observation of the sufficient statistics
of the pattern to be detected. Clearly, for the problem on hand such an
observation is not available. The only thing we observe is the data field
“hidding” the pattern we are looking for.

Under these circumstances, a possible answer is to model the parameters
too, using a prior law p(f). The uniform law is commonly used, when no
particular knowledge about the parameters is available. Hence, the pattern
estimator can be written as follows

y = arg glggp(y, f) = arg glggp(ymp(@) (8)

where © represents the parameters space.

The estimated object configuration given by (8) can be computed using
a simulated annealing algorithm [18, 36].The obtained solution is a random
object configuration in the conifiguration sub-space maximizing p(y, ). The
obtained solution is not unique.

Therefore, we are interested in how often a spatial region R in the data
is considered to be part of the pattern. Let us define the following quantity

Ne =B({RC ZON] = | URCZWhly.outivias ()
X

as the visit number of the spatial region R by the random pattern Y. Since,

the integral in (9) is not available analytically, the Monte Carlo approxima-

tion

Ng =

1 J
5> R CZ(Y))} (10)
j=1
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may be used. {Y7,...,Y;} are samples of p(y,6).

There is an analogy of the equation (9) with formulas coming from
stochastic geometry. In [37], the authors derive analytical expressions for
the Boolean model. One direct application of such formulas is to test the hy-
pothesis of completely randomness - Poissonianity - for a pattern of objects.
In the following, we will use the presented methods in order to make infer-
ence not related to the pattern of objects, but rather to the data “covered”
by the pattern.

3 Presentation of the data

In this paper, the data to analyse are made of elements having two compo-
nents. The first component represents the location of a farm on the territory
of France, given by the center of the commune to which the farm belongs.
Hence, the data exhibits multiple points at the same location. These farms
are dairy herds breeding Holstein cows only. To each farm a continous vari-
able is attached. This variable represents the annual somatic cell score, an
indicator for subclinical mastitis. The range of the variable value is approx-
imately between 1 and 5. In contrast with the high values, the low ones are
interpreted as "healthy”. FEach data set represents the registration of more
than 30,000 farms with a general cellular score computed for a whole year.
Five data sets are available, representing the years 1996 to 2000, included.
This disease is endemic. Its random spread all over the territory is con-
sidered as usual by the epidemiologists. Therefore, the detection of spatial
clusters is important, since it may indicate a locally un-normal situation.
The cluster definition adopted in the beginning of the paper forces us to
empiricaly decide when the cellular score is high. In Figure 1 the histograms
for each data set are plotted. Through all the cases, a significant Gaussian
shape can be noticed. For each data set ¢, a threshold value is computed

doi = f1; + 0

where fi; and J; are the corresponding estimated mean and standard devi-
ation, respectively. These threshold values are shown in Figure 2 and they
are to be used in the data energy term of the proposed model.

4 Model construction for cluster detection

In the following, the modelling tools presented previously are integrated in
a model able to detect cluster patterns in the presented data. This is done
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Figure 1: Histogram of the cellular score values of the year : a) 1996, b)
1997, ¢) 1998, d) 1999 and e) 2000.

Year | 1996 1997 1998 1999 2000
do; | 3.7673 | 3.8183 | 3.7812 | 3.6846 | 3.6795

Figure 2: Threshold values of for the data sets.



by specifying the Gibbs energy functions Uq4(y, 6) and U;(y, ) defining (1).

4.1 The data energy

The term Uq(y,0) verifies whether a random disk belongs to the cluster
pattern or not. A random disk y is considered to be a part of the pattern if
the number of covered farms nq(y) is higher than a fixed value ng. In the
same time, we want to avoid the detection of clusters of “healthy” farms.
Hence, d(y) the estimated mean of the cellular score values covered by a disk
is tested against the threshold dy computed previously. Under the Gaussian
assumption for the covered values, a rejection region Wy(y, dp) is computed
by the Student test. The significance level of the Student test has a fixed
value.

All these considerations lead us to the following expression for the energy
contribution of a disk, :

v(y) = Hna(y) > no}1{d(y)  Wa(y,do)}d(y) — do + vmax] — Vmax

where vpax is a positive fixed value. Its role is to penalize those disks in the
object configuration that do not fulfil the enumerated conditions.

The data energy of a cluster pattern is the sum of the contributions of
all the disks in the configuration:

<

n(

)

Ua(y,0) == ) _v(y).

i=1

It is easy to check that

Ua(y) — Ua(y U{¢}) < max{d(¢) — do, —Vmax}

is a bounded quantity, since it is data conditioned. Therefore, the inhomo-
geneous Poisson process defined by exp [-Uq(y)] is locally stable.

4.2 The interaction energy

Random disks tend to form clusters if they are driven by an area interaction
process (6) with a parameter v, > 1. In the same time, the area-interaction
process helps the model to better fit the data. By this, we understand that
the area covered by a disk does not over exceed the region underlined by
the farms positions. An example is given in Figure 3. The region induced
by the same configuration of points is better fitted by the small circle, than
by the big one.
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Figure 3: Two different disks around the same point configuration.

The cluster regions formed only using the area interaction process are
made of disks that overlap, minimizing the occupied area. Nevertheless,
the disks have to “search” for clusters through all the data locations and
to not group together in an isolated region. Somehow, the disks need to be
“encouraged” to cluster and to spread simultaneously. To lower the effect
of the area interaction process, the pairwise interaction process given by (7)
is superposed to it. This process introduces a penalty between overlapping
disks.

Under these considerations, the interaction energy of a disks configura-
tion can be written as follows:

Ui(y,0) = v[Z(y)]10g Ya — no(y)10g Yo (11)

with log~, and log~, parameters of the model. The local stability of the
marked point process induced by (11) is easy to prove, since this process is
the superposition of two locally stable marked point processes.

5 Experiments and results

In this section, we first present the choices for the model parameters together
with some details related to the simulation dynamics. Cluster detection
results on the presented data together with some statistical descriptors of
the clusters are shown and interpreted.

The location space is given by the rectangle K = [0,317] x [0,318]. The
radii of the disks are continuously uniformly distributed on M = [1,10].
One unit length corresponnds to 3 km distance in the real world.

The parameters for the data term are considered fixed. In this paper,
their corresponding values were set as follows : ng = 4,Umax = 20 and
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5% for the significance level of the Student test. For each data set, the
corresponding threshold value in Figure 2 is asigned to dj.

The parameters vector 6 contains only those parameters related to the
interaction energy only. Hence, we have 6 = (log~,,log~,) defined on the
parameter space © = [0,0.125] x [—0.1,0]. The prior law p(é) is the uniform
distribution over ©.

Sampling from p(y, 0) is done in two steps. First, a parameter value is
chosen with respect p(#). Then, conditionally on 6, a new cluster pattern is
sampled from p(y|@). The conditional law is simulated using a Metropolis-
Hastings algorithm [7, 8]. Three types of moves are used for the construction
of the transition kernel : add, delete and modify a disk to/from the current
configuration. An iteration consists of two steps : first a sample from p(6)
is chosen and second, 3000 Metropolis-Hastings moves for p(y|f) are per-
formed.

The simulated annealing algorithm samples from p(y, 0) %, while T' goes
slowly to zero. Its implementation is based on the method previously de-
scribed. The authors in [36] prove the convergence of the simulated an-
nealing for simulating marked point processes, when a logarithmic cooling
schedule is used. Therefore, here the temperature is lowered as follows

~ log(n) + 1

n

with Ty = 10.0.

5.1 Cluster detection

For each data set, 50000 iterations of the simulated annealing algorithm were
carried out. The spatial domain was divided into square cells by a regular
grid of size 317 x 318, hence the cells have an approximate area of 9km?.
For each cell, its corresponding visit number was calculated using (10), while
running the simulated annealing. Samples were picked up every 10 itera-
tions. The disks configurations together with its corresponding visit number
map that are obtained for the data set of year 1996 are shown in Figure 4.

In both representations, we observe a massive cluster structure in the
center of the spatial domain. A little bit lower around the point (150, 150) in
Figure 4a, a small disk can be observed. The same region in the visit number
map looks like rather an important cluster region. In the same time, to the
small cluster detected up the massive cluster, around the point (175,210)
in Figure 4a, it corresponds in the visit number map to a less significative
region. So, the visit number map can be used as a visual indicator of the
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“quality” of the detected clusters. The results obtained over the data sets
from of years 1997 to 2000 are represented in Figure 5.

A lot of care has to be taken when using such a visit number map. Taking
into account how this map was calculated, we can assign the computed visit
number to each separate cell only. When computing the visit number for a
greater region, we have to introduce each time the region of interest in the
formula (9).

300
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I I I I I I
a) 0 50 100 150 200 250 300 350
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100
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200

250
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Figure 4: Cluster detection for the data set of the year 1996 : a) disks
configuration obtained with the simulated annealing algorithm ; b) visit
number map.
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5.2 Statistical description of the cluster pattern

For the data set of year 1996 the cellular scores were permuted. 100 such
fields were generated. For each field a cluster detection was performed using
a simulated annealing algorithm running at fixed temperature 7' = 1. The
same algorithm was run for the data set from of year 1996. 10000 iterations
of the algorithm were carried out for each data set.

The visit number map obtained for the not permuted data is shown in
Figure 6a. With respect to the permuted data, for each cell of the grid, the
maximum of the visit number over all the 100 fields was computed. The
result is plotted in Figure 6b. Significant differences can be noticed in terms
of visit number value and areas of the connected components. The cluster
regions observed in the not permuted data have a higher visit number values
and a greater area.

During this experiment, the sufficient statistics of the model were ob-
served every 10 iterations. For a pattern y, these statistics are n(y) the
total number of disks, v(Z(y)) the area of the pattern and n,(y) the num-
ber of pairs of overlapping disks. In Figure 7, the cumulative means of the
sufficient statistics obtained for the year 1996 are shown. For the 100 fields
of permuted data, the mean of the suffcient statistics was computed for each
of them. These values are plotted in Figure 8. Over the 100 permuted data
fields, the maximum value of the mean of each statistic is also indicated.

These experiments indicate good discriminant properties of the sufficient
statistics of the proposed model. When clusters are detected in a data set,
this is clearly indicated by the sufficient statistics of the model.

6 Conclusions and perspectives

In this paper we have proposed for the problem of cluster detection in spatial
data a methodology based on marked point processes theory. Using this
theoretical tool and making hypothesis on the observed phenomenon lead us
to the construction of a marked point process model for the cluster pattern.
Simulating this model allows statistical inference for the cluster pattern.
The proposed model is constructed by the superposition of three point
processes : an inhomogeneous point process - the data term, an area in-
teraction and a Strauss like process - the interaction term. Each of these
processes plays its own role. The inhomogeneous point process detects the
regions in the data where the somatic cell score is high. Using such a term
only, has two drawbacks. First, an extra-detection of the clusters can occur
as explained by the Figure 3. Second, the minimization of the energy func-
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Figure 5: Cluster detection for the data sets of years : a) 1997, b) 1998,
¢)1999, d)2000. Left column : disks configuration obtained with the simu-
lated annealing algorithm. Right column : visit number map.
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Figure 7: Sufficient statistics obtained for the year 1996 : a) n(y) = 74.10
cumulative mean for the total number of disks; b) 7(Z(y)) = 312.46 cumu-
lative mean for the area of the pattern (mesured in cells) ; ¢) n, = 555.08
cumulative mean for the number of pairs of overlapping disks.

Figure 8: Mean of the sufficient statistics obtained for the 100 field of the
permuted data of the year 1996 : a) mean of the total number of disks :
maximum value n(y) = 2.36; b) mean of the area of the pattern (mesured
in cells) : maximum value 7(Z(y)) = 13.83 ; ¢) mean of the number of pairs
of overlapping disks : maximum value 7, = 2.62 .
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tion may attract all the disks in a single region, since the disks exhibit no
interaction. The area interaction component remediates the first drawback.
The Strauss-like componet deals with the second one : penalizing the disks
that overlap too much, forces the model to look for cluster through all the
location space.

The parameters for the data term are all pre-fixed and there is no special
indication for choosing p(#). All these values were chosen studying configu-
rations of objects that are to be favoured or not. Sampling the joint law of
the pattern and the parameters helps in obtaining a natural weightening of
the contribution of each component for the interaction term. This is com-
promise solution, since sampling from p(f|y) in this context, it is far from
beeing trivial [23].

The visit number for a region enabled us to build visit number maps.
These are good indicators of the cluster presence and spread in the teri-
tory. These maps are robust with respect the model parameters. They are
somehow shape smoother of the cluster pattern obtained by the detection
algorithm.

The sufficient statistics of the model are another indicator of the cluster
pattern presence and consistency. The total number of objects and the total
area occupied by the cluster pattern give indications about the size of the
cluster pattern. The number of pairs of overlapping objects indicates the
“strength” of these clusters.

Some perspectives may be outlined. The proposed model allows the
computation of the area and the perimeter of a connected component in a
cluster pattern. An interesting question is whether it is possible to com-
pute average quantities of these characteristics. Adapting the parameter
estimation method [23] to the present approach can be a way to eliminate
compromise solutions for the pattern detection. Studying patterns made
of objects having different shapes or introducing a time dimension for the
models, are open and challenging problems.

From a more applied point of view, we intent to apply this approach to
data coming from other epidemiological domains.
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