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Résumé

We establish the asymptotic normality of the regression estimator in
a fixed-design setting when the errors are given by a field of dependent
random variables. The result applies to martingale-difference or strongly
mixing random fields. On this basis, a statistical test that can be applied
to image analysis is also presented.

Résumé

Nous établissons la normalité asymptotique de ’estimateur de la ré-
gression lorsque la grille est fixée et les erreurs sont données par un
champ de variables aléatoires dépendantes. Le résultat s’applique pour
des champs de type différence de martingales ou fortement mélangeants.
Dans ce contexte, on présente un test statistique qui peut étre utilisé en
traitement d’images.
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1 Introduction and notations

Our aim in this paper is to establish the asymptotic normality of a regression
estimator in a fixed-design setting when the errors are given by a stationary
field of random variables which show spatial interaction. Let Z¢, d > 1 denote
the integer lattice points in the d-dimensional Euclidean space. By a stationary
random field we mean any family (ej);cze of real-valued random variables de-
fined on a probability space (£2, F,P) such that for any (k,n) € Z? x N* and any
(i1, .-y in) € (Z9)™, the random vectors (g;,,...,&;,) and (€;, 4%, .-, i, +%) have
the same law. The regression model which we are interested in is

Y; =g(i/n) +e;, i€A,={1,..,n}? (1)

where ¢ is an unknown smooth function and (g;);czq is a zero mean and square-
integrable stationary random field. Let K be a probability kernel defined on
R4 and (hn)n>1 & sequence of positive numbers which converges to zero and
which satisfies (nhy)n>1 goes to infinity. We estimate the function g by the
kernel-type estimator g,, defined for any x in [0, 1]¢ by

S ()

i€EA,

()

€A,

gn($> =

In a previous paper, El Machkouri [10] obtained strong convergence of the es-
timator g,(xz) with optimal rate. However, most of existing theoretical non-
parametric results for dependent random variables pertain to time series (see
Bosq [4]) and relatively few generalisations to the spatial domain are available.
Key references on this topic are Biau [2], Carbon et al. [5], Carbon et al. [6],
Hallin et al. [12], [13], Tran [26], Tran and Yakowitz [27] and Yao [29] who have
investigated nonparametric density estimation for random fields and Altman
[1], Biau and Cadre [3], Hallin et al. [14] and Lu and Chen [17], [18] who have
studied spatial prediction and spatial regression estimation.

Let u be the law of the stationary real random field (ex)geze and consider the
projection f from RZ" to R defined by f(w) = wp and the family of translation
operators (T*),cza from RZ to RZ' defined by (T*(w)); = wiyy for any k € Z¢
and any w in RZ’. Denote by B the Borel o-algebra of R. The random field
(f 0 T*)4eza defined on the probability space (RZ*, BZ’, ) is stationary with
the same law as (ef)peza, hence, without loss of generality, one can suppose
that (©,F,P) = (R, B2 ;1) and £, = f o T*. An element A of F is said to
be invariant if T%(A) = A for any k € Z%. We denote by Z the o-algebra of all
measurable invariant sets. On the lattice Z? we define the lexicographic order
as follows: if i = (iy,...,i4) and j = (j1, ..., jq) are distinct elements of Z%, the
notation i <, j means that either i, < j; or for some p in {2,3,...,d}, i), < jp
and i, = j, for 1 < ¢ < p. Let the sets {V}*;i € Z¢, k € N*} be defined as
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follows:
Vvil = {j S Zd; 7 <lex i}»

and for k£ > 2

k 1 . d - . . . . .
S = . N — > — = — .
V; Vin{jez; |i—jl >k} where |i—j 1ngllagxd|zl Jil

For any subset I' of Z¢ define Fr = o(g;; i € ') and set

E\kl(gi) = E(Eilfm'k‘)’ ke Vil,

Note that Dedecker [8] established the central limit theorem for any stationary
square-integrable random field (e);cze which satisfies the condition

Y lexBir (o)l < oo 3)

keVy

A real random field (Xj)pcze is said to be a martingale-difference random field
if for any m in Z¢, E(X,,|0(Xp; k <iex m)) = 0 a.s. The condition (3)
is satisfied by martingale-difference random fields. Nahapetian and Petrosian
[21] defined a large class of Gibbs random fields (£x)reza satisfying the stronger
martingale-difference property: E(&,,|0o(&k; k # m)) = 0 a.s. for any m in
Z?. Moreover, for these models, phase transition may occur (see [19],[20]).

Given two sub-o-algebras U and V), different measures of their dependence have
been considered in the literature. We are interested by one of them. The strong
mixing (or a-mixing) coefficient has been introduced by Rosenblatt [25] and is
defined by

a(U,V) = sup{|P(UNV) —PU)P(V)|, U €U, V € V}.

Denote by fI" the cardinality of any subset I' of Z%. In the sequel, we shall
use the following non-uniform mixing coefficients defined for any (k,I,n) in
(N* U {00})? x N by

api(n) =sup {a(Fr,, Fr,), iT1 < k, T2 <, p(I'1,T2) > n},

where the distance p is defined by p(I'1,T'2) = min{|i — j|, ¢ € Ty, j € T'2}.
We say that the random field (ej)peza is strongly mixing (or a-mixing) if there
exists a pair (k,1) in (N* U {o0})? such that lim,, . ax(n) = 0.

The condition (3) is satisfied by strongly mixing random fields. For example,
one can construct stationary Gaussian random fields with a sufficiently large
polynomial decay of correlation such that (5) holds ([9], p. 59, Corollary 2).

2 Main results

First, we recall the concept of stability introduced by Rényi [22].
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Definition. Let (X,)n>0 be a sequence of real random variables and let X be
defined on some extension of the underlying probability space (Q, A,P). Let U
be a sub-o-algebra of A. Then (X,,)n>0 is said to converge U-stably to X if for
any continuous bounded function ¢ and any bounded and U-measurable variable
Z we have lim,, .. E(o(X,)Z) = E(p(X)Z).

For any B > 0, we denote by C!(B) the set of real functions f continuously
differentiable on [0, 1]¢ such that

sup max |D,(f)(z)| < B,
z€l0,1]¢ QGM‘

oxf

d
= = = i )i d. 4 = < 1
e . 02 and M ={a=(w); € N; & z:: 1.

In the sequel we denote ||z|| = maxj<y<q|7i| for any @ = (1, ...,24) € [0,1]%
We make the following assumptions on the regression function g and the prob-
ability kernel K:

A1) The probability kernel K fulfils [ K(u)du = 1 and fK2 du < oo.
K is also symmetric, non-negative, supported by [—1,1]% and satisfies a
Lipschitz condition |K (z) — K(y)| < r|lz — y| for any z,y € [-1,1]? and
some r > 0. In addition there exists ¢, C' > 0 such that ¢ < K(z) < C for
any z € [—1,1]%.

A2) There exists B > 0 such that g belongs to C!(B).

We consider also the notations:
o? = K*(u)du and n= Z E(eoek|T).
Rl =
The following proposition (see [10]) gives the convergence of Eg,(z) to g(z).

Proposition 1 Assume that the assumption A2) holds then

sup  sup |Egy(z) — g(z)| = O [hn].
z€[0,1]4 geC(B)

By proposition 3 in [8], we know that under condition (3), the random variable
n belongs to L'. Our main result is the following.

Main theorem. If nh?*! — oo and the condition (3) holds then for any k € N*
and any distinct points 1, ...,x;, in [0,1], the sequence

gn(fﬁl) _Egn(xl) 7_(1)
(nhn)d/Q 4)[' 0'\/> (I-Stably)

n—-+o0o

gn(zr) — Egn(xy) (k)
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where 0 = [, K?(u)du and (7 )y cicr ~ N(0,1},) where Ty, is the identity
matriz. Moreover, (T( ))1§i§k is independent of n =, ;1 E(cock|T).

As a consequence of this theorem, we obtain the following result for strongly
mixing random fields.

Corollary. Let us consider the following assumption

1,00 ([K])
> / Q? (u)du < 0o (4)
0

kezd

where Q., denotes the cadlag inverse of the function H., : t — P (o] > ¢).
Then (4) implies (3) and also the main theorem.

Remark. If ¢q is (2 + §)-integrable for some ¢ > 0 then the condition
Z mdila(ls’/cf-"&)(m) < o0 (5)
m=1

is more restrictive than condition (4).

In order to use the main theorem for establishing confidence intervals, one needs
to estimate 7. It is done by the following result established in [8].

Proposition 2 Assume that the condition (3) holds. For any N € N*, set
Gy ={(4,J) € Ap X Ap; i — j| < N}. Let p,, be a sequence of positive integers
satisfying:

lim p,=+oo and lim p3E(e3(1An"%3) =0

n—-+4oo n—-+4oo
Then
1 P
ﬁ max ].7 Z Ei€j m 7.
(1,5)€Gp,
3 Proofs

3.1 Proof of the main theorem

Let z in [0,1]? and n > 1 be fixed. For any i in A,,, denote

w(a) = K [ E=m nd bi(e) = @)
(@) K( N ) md o) = =

\/ZzeA a iL’
Zze]\n i eA ai(z)

Denote also
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Without loss of generality, we consider the case k = 2 and we refer to x; and
ro as x and y. Let A\; and A2 be two real numbers such that A3 + A\3 = 1 and
let z,y € [0,1]¢ such that = # y. One can notice that

Ulhn)d/Q ~
——— [M(gn(®) = Egn()) + A2(gn(y) — Egn(y))] = Z 5i(z,y)ei
i€EA,
where §;(x,y) = (Mon(2)bi(x) + Aavn(y)bi(y)) /0.
Lemma 1 Let z,y € [0,1]¢ be fized. If nhdt! — oo then
. 1
S g 2 () = by’ ©)
and )
Jim g 2 (@) =1 )

€A,

where 0y equals 1 if v =y and 0 if x # y.

Proof of Lemma 1. In the sequel, we denote 1(u) = h%,K (1};7‘) K (yh—n“> and
In(xay) = f[ovl]d w(u) dU, we have

Ly =Y / (u) du

i€EN, Rz/n

= Y ARijn)t(ci) with ¢; € Ryjy,
i€EA,

= > nP(e)

i€An

where R;/,, =|(i1 — 1)/n,i1/n] x ...x|(iq — 1)/n,iq/n] and X is the Lebesgue
measure on RY. Let ¢, (u) = (x — u)/hy, for any v in [0, 1], we have

—_

d d
d(K o ¢q)(u)(v) = % doviy m—(pu(u)).

(O

Using the assumptions on the kernel K and noting that

dip(u) d(K 0 pq)(u) x K(py(u)) + d(K o py)(u) x K(pz(u))

T
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we derive that there exists ¢ > 0 such that sup,¢jo 1j¢ [|dy(u)] < chn T So,
it follows that

ﬁ Z a;(z)a;(y) — In(x,y)‘ —

5 i ui/n) — vieo)|

1€A, i€EA,
< sup |dg(w)l| > ni/n - cills
uel0,1]¢ i€AR
c
—(d+1)
< pat1 Z n
m4EA,
c

= 0.
nhitt  n—oo

1 T—u Y —u
I = —K K d
n(x,y) /[(),1]d h‘gz ( hy ) < hp > !
:/ K(u)K(quyw)d
2 (10.1]%) han

So, by the dominated convergence theorem, we obtain

Moreover,

. _ 2
ngrfoo I(z,y) = 0gy0

and consequently (6) holds. The proof of (7) follows the same lines. The proof
of Lemma 1 is complete. (I

Using Lemma 1 and denoting x3, = (A1 + A2)*0zy + 1 — 04y, we derive

lim §2(z,y) = Iiiy =1 (since z #y).
n— 00 ien ’ '

So, denoting

si(z,y) = /—ZJGA" 5?(33,:1/)’

it suffices to prove the convergence Z-stably of >, si(z,y) i to /o where
70 ~ N(0,2). In fact, we are going to adapt the proof of the central limit
theorem by Dedecker [8].

For any i in Z%, let us define the tail o-algebra, Fi—oo = mkeN*]:Vik (we are
going to note F_o in place of Fy _o) and consider the following proposition
established in [8].

Proposition The o-algebra T is included in the P-completion of F_ .

Let f be a one to one map from [1, N]NN* to a finite subset of Z¢ and (&;);czq
a real random field. For all integers k in [1, N], we denote

k N
Sy (§) = fo(i) and 5%, () = fo(i)
=1 1=k
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with the convention Sy)(§) = S§n11)(§) = 0. To describe the set A, =

{1,...,n}?, we define the one to one map f,, from [1,n?]NN* to A, by: f, is the

unique function such that for 1 <k <1 < n?, f(k) <jer f(I). From now on, we

consider two independent fields (T-(l))iezd and (T-(z))iezd of i.i.d. random vari-

ables independent of (g;);cze and Z such that Tél) and Téz) have the standard
normal law A(0,1). We introduce the two sequences of fields X; = s;(z, y)e; and
vi = si(x,y)7i\/n where 7; = Ti(l) + Ti(2) ~ N(0,2). Let h be any function from
R to R. For 0 < k <1< n?+1, we introduce hg(X) = h(Sp@)(X) + 550y (7)-
With the above convention we have that hy ,a41(X) = h(Sfu) (X)) and also
ho1(X) = h(S§;)(7)). In the sequel, we will often write hi, instead of he(X)
and s; instead of s;(z,y). We denote by Bi(R) the unit ball of C#(R): h belongs
to B (R) if and only if it belongs to C*(R) and satisfies maxg<;<4 ||| o < 1.

3.1.1 Lindeberg’s decomposition

Let Z be a Z-measurable random variable bounded by 1. It suffices to prove
that for all h in B}(R),

lim E (Zh(Spme) (X)) = E (Zh ((Angl) + AQT(?))\/E)) .

n—-+oo

We use Lindeberg’s decomposition:

E (2[5 (X)) = b () + 2eri) i) |)
= E(Z [1(Sga) (X)) = b (Spmay(1)])
— B (Zlhpa pasr — hoa])

nd
= ZE (Z[hk k1 — hi—1,k]) -
k=1

Now,
i e+1 — P—1,60 = Pkt — Po—1 k41 + Pl—1 k41 — Pl—1 -
Applying Taylor’s formula we get that:
’ ]_ 12
P k1 — he—1k41 = Xy hi—1 g1 + §X,%(k)hk_1,k+1 + Ry,

and

! 1 1"
hk—1 k1 — hk—16 = =Vf) Pr—1k41 — 57?(;9)}%71,1%1 + 1

Where ‘Rk| < X]%(k)(l A le(k)|) and ‘Tk| < ’)/J%(k)(l A |7f(k)|)- Since (X, Ti)i;ﬁf(k;)
is independent of 7y, it follows that

E (Z'Yf(k)hk—l,k+1) =0 and E (Z’Y]%(k)hk—l,kﬂ) =E (Zsi(k)nhk—l,k+1)
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Hence, we obtain

E(z [h(sn(X)) ((/\ RNV %ﬁ)b

a d "
n , T P11
=) E(ZXyuhp—1 1) + Z E (Z (X)%(k) - S?‘Uﬂ)”) %
k=1 k=1
nd
+ Z E (Rk + Tk) .
k=1

Arguing as in Rio [24], it is easily proved that

nd

li E ; 1) =
n}fw; (1Rk] =+ |7x])

Let us denote Cy = [~ N, N]?NZ? for any positive integer N. If we define ny =
EkeCN,l E (eoex|Z), the upper bound E|n — ny| < QZkeVON E|E (g0ek|T) |
holds. Hence according to condition (3) and the above proposition, we derive
limy_ 400 E|ln —nn| = 0 and consequently we have only to show

lim hmsupZ( ZXf(k)h/kfl,k:Jrl) +

N—+00 n—too
2 2 h;ﬁi—l,k’—‘rl

3.1.2 First reduction

(8)

First, we focus on ZZ; (ZXf(k)hk 1 k+1) For all N in N* and all inte-
ger k in [1,n4)], we define
i€eEYN

For any function ¥ from R to R, we define U}, ; = (S, (X) + 55, (7)) (we
shall apply this notation to the successive derivatives of the function h). Our
aim is to show that

lim lims E((h
e O

= Xr) (Sf(kfl)()o - Sf(k)(X)) h;q,kﬂ)) = 0.
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First, we use the decomposition

Xyl 01 = Xy M1 psr + X (hk—l,k+1 - hkjil,kJrl) :

We consider a one to one map m from [1,|EY|] N N* to EY and such that

|m(i) — f(k)| < |m(i —1) — f(k)|. This choice of m ensures that S,,;)(X) and

Sm(i—1)(X) are F\im(— o -measurable. The fact that ~ is independent of X
F (i)

together with proposition 3 in [8] imply that

E (ZXf(k)h/ (SJC”(kH)(V))) =K (h/ (S]Cf(kﬂ)(V))) E(ZE (Xl F-x)) = 0.
Therefore |E (ZXf(k)h;ﬁl’kH) | equals
||

5 5 (2350 1 (Sn(X) + Sin)) =1 (S + Sjn) | ) |

i=1

Since Sp,(;)(X) and S,(;-1)(X) are F\im(—so -measurable, we can take the
£(6)

conditional expectation of Xy with respect to ]:V\m,(i)—f(k)\ in the right hand
o)

side of the above equation. On the other hand the function i’ is 1-Lipschitz,
hence

11 (Smeo (X) + S50s0y (1)) = B

Consequently, the term

’

(Sm(i—l)(X) + S]Cf(k+1)(’7)) | < Xl

‘E (ZXf(k) {h (Smu) (X) + 5?<k+1>(7)> g (S’”("‘”(X) * SJC“’““)(W)) D ’

is bounded by
B X (i) Elmiy— o)) (Xr(wy) |

and
/ |BY |
1B (2X 100 111) 1 € D BV Xon(o) Bty 1001 (X001
i=1
Hence,

nd n? \E;iv|
> E(2Xahi ki) ‘ <D 155wl D [smi | Blem) Bme— ) (€5
k=1 k=1 =1

d

= Z |5 7)] Z |8i4 10| Bl Ep5i(€0)]
k=1 jGVON
<4 Z lejEpj)(e0)lli < 400 (A €RY)
jevhy
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where (by Lemma 1) we used the fact that

1
ap bl =0 () 1o
and
> fsil = O ((nha)"2) (11)
’iEAn

Since (3) is satisfied, this last term is as small as we wish by choosing N large
enough. Applying again Taylor’s formula, it remains to consider

Xiky(hg—1,541 — hlﬁmﬂ) = X5y (Spp—1)(X) — Sﬁk)(X))hkakJrl + Ry,

where [Ry| < 2|X () (Sy(k-1)(X) = S0y (X)) (LA S 51y (X) = SNy (X)) Tt
follows that

77.d nd
DCEIR <2 lssml | E <|€0| (Z Sz‘|€1i|> (1/\ > |Si|€i|)>
k=1 k=1

i€EAN iE€EAN
<2AE<|50| <Z €i|> (m > |si|5i|>> (A€ RY).
i€EAN i€EAN

Keeping in mind that s; — 0 as n — oo and applying the dominated conver-
gence theorem, this last term converges to zero as n tends to infinity and (9)
follows.

3.1.3 The second order terms

It remains to control

" Xim St IV
Wi=E|2ZY hy_ 14 (2 + Xy (Sf(kfl)(X) — S5l (X)> - )
k=1

We consider the following sets:
AN ={ieA,;d(i,0A,) >N} and IN ={1<i<n?; f(i)e AN},
and the function ¥ from RZ” to R such that

U(e) = e + Z 2e0€;.

i€eVNCn 1

For k in [1,n%], we set DY = ny — ¥ o T¥(*)(¢). By definition of ¥ and of the
set I, we have for any k in IY

Vo TIM () = e ) + 2e (1) (Sy(r-1) (€) = SF{ny (€))-
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Therefore for k in IY
st DR = 70V — XFwy = 2X 500 (S -1y (X) = 87 (X))

Since lim,, .y, n =4I| = 1, it remains to prove that

nd

lim limsupE | 2y 2 hie 1 e DY | = 0. 13
N—+00 n— 400 ; FR)Yk—1,k+1"k ( )

3.1.4 Conditional expectation with respect to the tail o-algebra

Now, we are going to replace Dy by E (D |Fix),—oc). We introduce the
expression

d

Hy = Z E (S?(k)th—LkH[‘I’ ° Tf(k)(g) —E(¥o Tf(k)(g)‘}—f(k)y—oo)w .
k=1

For sake of brevity, we have written h;—l,k+1 instead of h;_LHl(X). Using the
stationarity of the field we get that

d

HY = 37 B (8300 200101 0 T ) (X)[U(E) ~ B(YE)F-o0)])
k=1

For any positive integer p, we decompose H,JLV in two parts

nd

nd
HY =3 "7+ > D),
k=1 k=1
where

TH®) = B (530 27 oy 0 T )W) — B(U(E)IF-o0)])

and J?(p) equals to

"

E (33”(k)Z[h;c/—1,k+l oTIW — P o TTIX) W (e) — E(‘I’(E)L}:oo)]) :

From the definition of h;ﬁl,kﬂ, we infer that the variable h;c/lil,k+1 o T~/ R (X)
is ]—"Vop—measurable. Therefore, we can take the conditional expectation of
U(e) — E(¥(g)|F-) with respect to Fyr in the expression of Ji(p). Now,
the backward martingale limit theorem implies that

Jim  EIE(Y(e)[Fvp) — B(Y(e)[F-o)| =0

and consequently

nd

lim limsup
P—+0 ntoo

a7 <p>\ —0.
k=1
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On the other hand

kZJE(p)‘ < E{ 2N shaleil | [®(e) — B(¥()| Fos)l|-
=1

li|<p

Hence, applying the dominated convergence theorem, we conclude that HX
tends to zero as n tends to infinity. It remains to consider

d

Wo=E |2 iy 101570 E(DY | Fpr) o)
k=1

3.1.5 Truncation

For any integer k in [1,n%] and any M in Rt we introduce the two sets

BY (M) = E(DY |F k), —00) Wiy — E(UoT 50 ()| Fyony )| <M
and N
By, (M) = E(DY|Fy(r),—o0) — BY (M).

The stationarity of the field ensures that E\FkN(M)| = E|§§V(M)| for any k in
[1,n%). Now, applying the dominated convergence theorem, we have

. —=N
Jm BB (M) =o.

It follows that

’I’Ld

12 —N
I E (h 820 B (M ) —0.
MLHJ}OO 2 E—1,k+15f(k) Pk (M) 0

Therefore instead of W5 it remains to consider

7I,d

Ws=E |2 hy_1 15500 Br (M)
k=1

3.1.6 An ergodic lemma

The next result is the central point of the proof.

Lemma 2 For all M in RY, we introduce

Bn(M) =E ([nn — E (Y(e)|F-oc)] Liny— B (o) 7o) <M | T) -
Then

nd
m By(M)=0 as. and ngglmE'ﬂN(M)—;s?w)B?(M)‘=0-
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Proof of Lemma 2. Let

u(e) = n — E(Y(E)F o) Liyy— E(W(e)|F_oo)|<M-

Using the function u, we write Sy (M) = E(u(e)|Z). The fact that Sy (M) tends
to zero as M tends to infinity follows from the dominated convergence theorem.
In fact

Jim_u(e) =y — B(W()|F o)

and u(¢) is bounded by |nn — E(¥(£)|F_oo)| which belongs to L'. This implies
that
Jim Bn(M) =E (ny — E(¥(¢)|F-)|T) as.

Since 7 is included in the P-completion of F_, (see the above proposition) and
keeping in mind that ny is Z-measurable, it follows that

lim On(M)=ny—E(¥(e)|Z) as.

M — o0

By stationarity of the random field, we know that E(coer|Z) = E(goe—k|T)
which implies that

E(W(e)I) = ) EleoeklT) =y
kECN 1

and the result follows.
We are going to prove the second point of Lemma 2. First note that

Bp(M)=nny —E(¥o Tf(k)(g)\ff(k),foo)] L)y~ BUOT ) ()| Friy . — o) | <M
=uo Tf(k)(s).
Consequently
nd,
D st Br (M) =Y siuoT'(e).
k=1 i€A,
Finally, the proof of lemma 2 is completed by the following lemma which is
proved in Section 5.

Lemma 3

=0.
2

lim
n—oo

Y stuoTi(e) — E(u(e)|T)

€A,

As a direct application of lemma 2, we see that

d

\E 2" b5 B (M) \SEWMN
k=1
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is as small as we wish by choosing M large enough. So instead of W3 we consider

d

Wy,=F ZZ h}g71,k+15?(}g) [BY (M) — By (M)]
k=1

3.1.7 Abel transformation

In order to control Wy, we use the Abel transformation:

nd k
Wy = E{Z ( 55 B (M) — ﬁN(M)]> Z(hg_1 41— P pya)
k=1 i=1

d

+E Zh;;d7nd+2 Z Si(k) (B (M) — Bn (M)

k=1
Now
B 20, i3 200 B (M) — Br(M)] \ < E\WM)—Z 2 BY (M)\.
k=1 k=1
Then applying lemma 2, we obtain
L
i B 210003 30 B 00) - w00 || 0.
k=1

Therefore it remains to prove that for any positive integer N and any positive
real M,

n? k
i 23 (30501800 - 53001 2011 o) =0

n—-+o0o
k=1 \i=1
3.1.8 Last reductions
We are going to finish the proof. We use the same decomposition as before:

1" 1" " 1" 1" 1"
P k2 = P k1 = Pk — Pooor + P pr — P g

Applying Taylor’s formula

P ko = P k1 = = V5t 1) P k2 Ttk
and 1" 1" 17

P k1 — Poe—1 k1 = Xty hg—1 641 + Tk
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where |t < 'yj%(

y and [T < Xf(k) To examine the remainder terms, we
consider:

k+1

Zsf ) (Z Sio Bl (M) = By (M ﬂ) 25y
The definition of BN (M) and of By (M) enables us to write for all integer k in
[1,n],

ZS?mleN(M) — Bn(M)| < 2M.

Therefore

n

d k
E|Y (Zsfm[B (M) = Bn(M )]) 5?<k>25?<k>ﬂ8m|>f<‘ <2ME (£ 120> )

k=1 \i=1

and applying the dominated convergence theorem this last term is as small as
we wish by choosing K large enough. Now, for all K in RT, Lemma 2 ensures
that

nll}}looE Zsf(k) (Z Sf(% B (M ﬂN(M’”) Zs?’(k) Liesyl<i | =0

So, we have proved that

nd

RLS Z(Zsf BY () = (0 )])m -0

k=1

In the same way, we obtain that

WA E Z (Zm (B (M) ~ (M >1> Zt, | =0.
Moreover since (&, (7;)izf(k+1)) is independent of 741y we have

(Zsf( BN ﬁN( )]'Yf(k+1)Zh;;zk+2) =0.

Finally, it remains to consider

{Z (Zsf( [BY (M) — B (M )]> ZXf(k)h;c”LkH]-

k=1
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Let p be a fixed posmve integer. Since R s 1- Lipschitz, we have the upper
bound |y, 1 hk Vel S 1Spg—1)(X) - Sp(k)( )|- Now, we can apply the
same truncation argument as before: first we choose the level of our truncation
by applying the dominated convergence theorem and then we use Lemma 2. So,
it follows that

nEIEwE{Z (Z S¥(i) BN ﬁN( )]) ZXf(k)(hk1,k+1_hk—pl,k+1)] =0.

Therefore, to prove our theorem it is enough to show that

lim hmsupE{Z (Z 57 BN — Bn(M )]) ZXf(k)h;/—kaH} =0.

P+ ntoo 1 ( )
14

We consider a one to one map m from [1, |[EY|[|NN* to E} and such that |m(i) —
f(k)| < |m(i—1) — f(k)|. Now, we use the same argument as before:

Py — 1 (S50 ()
|EY|

= Z h Sy (X) + SFy (7)) — hm(sm(i—l)(X) + S50 (1)
\Ep

Here recall that B (M) is F(;), —oo-measurable and 3y (M) is Z-measurable.
We have E(&f(k)|z) = 0, E(gf(k)‘]:f(k),—oo) =0 and E(sf(k)‘]:f(i),—oo) = 0 for
any positive integer i such that i < k. Consequently, for any positive integer i
such that ¢ < k, we have

B (53 [BY (M) = By (M) Zs 59 0k (S5 (1)) = 0.

Therefore using the conditional expectation, we find

n? k
E[Z (Z st B (M) — 5N(M)]> ZXf(k)h;c//pl,kJrlj|

k=1 =1
nd A
<2M Y sl Y sm@i) | Elem Bim— o) €5
k=1 =1

nd'

=2M Y sra| Y I854500)|Eles Bjji (20)]
k=1 jevy
<2AM Y Elg;Ej ()] (A€R}) by (10) and (1),
jevy
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Since (3) is realised the last term is as small as we wish by choosing p large
enough, hence Wy is handled. Finally, the main theorem is proved. O

3.2 Proof of the corollary

As observed in [8], the proof of the corollary is a direct consequence of Theorem
1.1 in Rio [23]. In fact, for any k in V{, we have

Elex By (g0)| = Cov (\Ekl (HEW(EO)ZU - ]lEW(sg)§0> 750)

1,00 (1K)
< 4/ Q2, (u) du.
Jo

The proof of the corollary is complete. O

4 Application

The direct consequence of our result is that it allows the construction of statis-
tical tests able to quantify the estimation error. For this purpose, we show the
construction of such a test that can be used in image denoising [11, 16, 28]. In
the context given by the model (1), let us consider the following situation : a
true image g is affected by a correlated additive noise ¢, that gives Y for the
observed image.

For the original function the classical Lena image is used. This image is a gray
level image with pixels values in the interval [0, 255]. The size of the image is
256 x 256 pixels. The correlated noise we consider is a Gaussian field (ex)gez2
built using an exponential covariance function

C(k) = E(epeg) = Cst x exp{—%}.

The choice of such random field ensures the validity of the projective crite-
rion (3)(see [9], p.59 Corollary 2). There exist several methods for simulating
such a random field, here we have opted for the spectral method [15]. In order
to obtain an important visual effect of how the noise affects the original image
Cst was set to 200 and a = 1. The noisy image is obtained by adding pixel by
pixel the original image to the simulated noise. The estimator of the original

image is computed using the Epanechnikov kernel
3
K(z) = g(l - |x|2)]1{|x\§1}, x = (w1,22) € R

In order to compute the expectation of the estimated function, several realisa-
tion of the noisy image are needed. Here we have considered 50 such images,
constructed by adding the original Lena image with a noise realisation. Us-
ing (2), for each noisy image, an estimate g, of the original function g was
computed using the kernel K defined above. The expectation F(g,) is com-
puted by just taking the pixel by pixel arithmetical means corresponding to the
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images previously restored.

Clearly, it is now possible to estimate the difference g, — E(g,). Following our
theoretical result, the normalised square of this difference follows a x? distri-
bution with one degree of freedom. Since this quantity is observable, p-values
pixel by pixel can be computed.

The original image and the realisation of a noisy image are shown in Figure la
and 1b, respectively. It can be noticed that in the “dirty” picture, spots are
formed, due to the noise correlation. The expectation of the estimated origi-
nal images in Figure 1c exhibits almost no such spots. Furthermore, the visual
quality of this restored image is close to the original. A more quantitative eval-
uation of this result is given by the image of p-values of the proposed statistical
test given in Figure 1d. The light-coloured pixels represent p-values close to 1,
whereas the dark-coloured pixels indicate values close to 0. We have counted
83% of the pixels for which we have obtained a p-value higher than 0.01. This
ratio is quite a reliable indicator concerning the restored image. Together with
the visual analysis of the results, it provides a detailed description of the ob-
tained result. We conclude that, under these considerations, the theoretical
results developed in this paper may be used as a basis for the development of
practical tools in image analysis.

5 Annexe

In this section we prove lemma 3.

Proof of Lemma 3. In fact, for any u in L?, we can write v = w + E(u|Z)
where w = v — E(u|Z), hence it suffices to prove that

Z sszTk

keA,

=0.
2

lim
n—-+oo

Let us consider the transformations T, T, ..., T defined by T} = T(0)]
Ti =T050 T = 7O for any integer i. It is well known (cf. [7]) that
the space

H={hi—hoT) —(hg —haoTy) — ... — (ha — hao Ta); hy,..,hq € L*}

is dense in the space G = {g € L?; E(g|Z) = 0}. Let ¢ > 0 be fixed, there exist
hi,....;hq € L? such that ||w —[(hy — hy 0 Ty) — ... = (hg — ha 0 Ty)]||, < &. So,
we derive

55

j=1

keA,

Z Si (h] OTk — hj @) Tk(j))
ke,

<e+
2

2

where k(j) = (k1,....kj—1,k; + 1,kj41, ..., kq). Using Lemma 1 and keeping in
mind that K is a bounded and Lipschitzian kernel, one can check that

1 1
2 2 2
Sk ka) = O <(nhn)d> and S, y,eka) TS (kg —1,eka) = O ((nhn)dﬂ)
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d)’

Figure 1: Results of the image restoration procedure : a) original Lena image, b)
realisation of a noisy image, c¢) expectation of the restored images, d) obtained
p—values as a gray level image (white pixels represent values close to 1, whereas
black pixels indicate values close to 0).
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and consequently, we obtain

d

>

Jj=1

S st (hjoT* —hyo THD)
keA,

1
2 =0 (nh#—l) .

Finally, keeping n sufficiently large, we obtain

Z sf woT* < 2e.
ke, 2
The proof of lemma 3 is complete. g
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