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Résumé

We establish the asymptotic normality of the regression estimator in

a �xed-design setting when the errors are given by a �eld of dependent

random variables. The result applies to martingale-di�erence or strongly

mixing random �elds. On this basis, a statistical test that can be applied

to image analysis is also presented.

Résumé

Nous établissons la normalité asymptotique de l'estimateur de la ré-

gression lorsque la grille est �xée et les erreurs sont données par un

champ de variables aléatoires dépendantes. Le résultat s'applique pour

des champs de type di�érence de martingales ou fortement mélangeants.

Dans ce contexte, on présente un test statistique qui peut être utilisé en

traitement d'images.
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1 Introduction and notations

Our aim in this paper is to establish the asymptotic normality of a regression
estimator in a �xed-design setting when the errors are given by a stationary
�eld of random variables which show spatial interaction. Let Zd, d ≥ 1 denote
the integer lattice points in the d-dimensional Euclidean space. By a stationary
random �eld we mean any family (εk)k∈Zd of real-valued random variables de-
�ned on a probability space (Ω,F ,P) such that for any (k, n) ∈ Zd×N∗ and any
(i1, ..., in) ∈ (Zd)n, the random vectors (εi1 , ..., εin

) and (εi1+k, ..., εin+k) have
the same law. The regression model which we are interested in is

Yi = g(i/n) + εi, i ∈ Λn = {1, ..., n}d (1)

where g is an unknown smooth function and (εi)i∈Zd is a zero mean and square-
integrable stationary random �eld. Let K be a probability kernel de�ned on
Rd and (hn)n≥1 a sequence of positive numbers which converges to zero and
which satis�es (nhn)n≥1 goes to in�nity. We estimate the function g by the
kernel-type estimator gn de�ned for any x in [0, 1]d by

gn(x) =

∑
i∈Λn

YiK

(
x− i/n

hn

)
∑
i∈Λn

K

(
x− i/n

hn

) . (2)

In a previous paper, El Machkouri [10] obtained strong convergence of the es-
timator gn(x) with optimal rate. However, most of existing theoretical non-
parametric results for dependent random variables pertain to time series (see
Bosq [4]) and relatively few generalisations to the spatial domain are available.
Key references on this topic are Biau [2], Carbon et al. [5], Carbon et al. [6],
Hallin et al. [12], [13], Tran [26], Tran and Yakowitz [27] and Yao [29] who have
investigated nonparametric density estimation for random �elds and Altman
[1], Biau and Cadre [3], Hallin et al. [14] and Lu and Chen [17], [18] who have
studied spatial prediction and spatial regression estimation.
Let µ be the law of the stationary real random �eld (εk)k∈Zd and consider the

projection f from RZd

to R de�ned by f(ω) = ω0 and the family of translation

operators (T k)k∈Zd from RZd

to RZd

de�ned by (T k(ω))i = ωi+k for any k ∈ Zd

and any ω in RZd

. Denote by B the Borel σ-algebra of R. The random �eld

(f ◦ T k)k∈Zd de�ned on the probability space (RZd

,BZd

, µ) is stationary with
the same law as (εk)k∈Zd , hence, without loss of generality, one can suppose

that (Ω,F ,P) = (RZd

,BZd

, µ) and εk = f ◦ T k. An element A of F is said to
be invariant if T k(A) = A for any k ∈ Zd. We denote by I the σ-algebra of all
measurable invariant sets. On the lattice Zd we de�ne the lexicographic order
as follows: if i = (i1, ..., id) and j = (j1, ..., jd) are distinct elements of Zd, the
notation i <lex j means that either i1 < j1 or for some p in {2, 3, ..., d}, ip < jp
and iq = jq for 1 ≤ q < p. Let the sets {V k

i ; i ∈ Zd , k ∈ N∗} be de�ned as
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follows:
V 1

i = {j ∈ Zd ; j <lex i},

and for k ≥ 2

V k
i = V 1

i ∩ {j ∈ Zd ; |i− j| ≥ k} where |i− j| = max
1≤l≤d

|il − jl|.

For any subset Γ of Zd de�ne FΓ = σ(εi ; i ∈ Γ) and set

E|k|(εi) = E(εi|FV
|k|

i
), k ∈ V 1

i .

Note that Dedecker [8] established the central limit theorem for any stationary
square-integrable random �eld (εk)k∈Zd which satis�es the condition∑

k∈V 1
0

‖εkE|k|(ε0)‖1 <∞. (3)

A real random �eld (Xk)k∈Zd is said to be a martingale-di�erence random �eld
if for any m in Zd, E(Xm |σ(Xk ; k <lex m ) ) = 0 a.s. The condition (3)
is satis�ed by martingale-di�erence random �elds. Nahapetian and Petrosian
[21] de�ned a large class of Gibbs random �elds (ξk)k∈Zd satisfying the stronger
martingale-di�erence property: E( ξm |σ( ξk ; k 6= m ) ) = 0 a.s. for any m in
Zd. Moreover, for these models, phase transition may occur (see [19],[20]).

Given two sub-σ-algebras U and V, di�erent measures of their dependence have
been considered in the literature. We are interested by one of them. The strong
mixing (or α-mixing) coe�cient has been introduced by Rosenblatt [25] and is
de�ned by

α(U ,V) = sup{|P(U ∩ V )− P(U)P(V )|, U ∈ U , V ∈ V}.

Denote by ]Γ the cardinality of any subset Γ of Zd. In the sequel, we shall
use the following non-uniform mixing coe�cients de�ned for any (k, l, n) in
(N∗ ∪ {∞})2 × N by

αk,l(n) = sup {α(FΓ1 ,FΓ2), ]Γ1 ≤ k, ]Γ2 ≤ l, ρ(Γ1,Γ2) ≥ n},

where the distance ρ is de�ned by ρ(Γ1,Γ2) = min{|i − j|, i ∈ Γ1, j ∈ Γ2}.
We say that the random �eld (εk)k∈Zd is strongly mixing (or α-mixing) if there
exists a pair (k, l) in (N∗ ∪ {∞})2 such that limn→∞ αk,l(n) = 0.
The condition (3) is satis�ed by strongly mixing random �elds. For example,
one can construct stationary Gaussian random �elds with a su�ciently large
polynomial decay of correlation such that (5) holds ([9], p. 59, Corollary 2).

2 Main results

First, we recall the concept of stability introduced by Rényi [22].
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De�nition. Let (Xn)n≥0 be a sequence of real random variables and let X be
de�ned on some extension of the underlying probability space (Ω,A,P). Let U
be a sub-σ-algebra of A. Then (Xn)n≥0 is said to converge U-stably to X if for
any continuous bounded function ϕ and any bounded and U-measurable variable
Z we have limn→∞E (ϕ(Xn)Z) = E (ϕ(X)Z).

For any B > 0, we denote by C1(B) the set of real functions f continuously
di�erentiable on [0, 1]d such that

sup
x∈[0,1]d

max
α∈M

|Dα(f)(x)| ≤ B,

where

Dα(f) =
∂α̂f

∂xα1
1 ... ∂xαd

d

and M = {α = (αi)i ∈ Nd ; α̂ =
d∑

i=1

αi ≤ 1}.

In the sequel we denote ‖x‖ = max1≤k≤d |xk| for any x = (x1, ..., xd) ∈ [0, 1]d.
We make the following assumptions on the regression function g and the prob-
ability kernel K:

A1) The probability kernel K ful�ls
∫
K(u) du = 1 and

∫
K2(u) du < ∞.

K is also symmetric, non-negative, supported by [−1, 1]d and satis�es a
Lipschitz condition |K(x)−K(y)| ≤ r‖x− y‖ for any x, y ∈ [−1, 1]d and
some r > 0. In addition there exists c, C > 0 such that c ≤ K(x) ≤ C for
any x ∈ [−1, 1]d.

A2) There exists B > 0 such that g belongs to C1(B).

We consider also the notations:

σ2 =
∫

Rd

K2(u) du and η =
∑
k∈Zd

E(ε0εk|I).

The following proposition (see [10]) gives the convergence of Egn(x) to g(x).

Proposition 1 Assume that the assumption A2) holds then

sup
x∈[0,1]d

sup
g∈C1(B)

|Egn(x)− g(x)| = O [hn] .

By proposition 3 in [8], we know that under condition (3), the random variable
η belongs to L1. Our main result is the following.

Main theorem. If nhd+1
n →∞ and the condition (3) holds then for any k ∈ N∗

and any distinct points x1, ..., xk in [0, 1]d, the sequence

(nhn)d/2

 gn(x1)− Egn(x1)
...

gn(xk)− Egn(xk)

 L−−−−−−→
n→+∞

σ
√
η

 τ (1)

...

τ (k)

 (I-stably)
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where σ2 =
∫

Rd K
2(u) du and (τ (i))1≤i≤k ∼ N (0, Ik) where Ik is the identity

matrix. Moreover, (τ (i))1≤i≤k is independent of η =
∑

k∈Zd E(ε0εk|I).

As a consequence of this theorem, we obtain the following result for strongly
mixing random �elds.

Corollary. Let us consider the following assumption

∑
k∈Zd

∫ α1,∞(|k|)

0

Q2
ε0

(u) du <∞ (4)

where Qε0 denotes the cadlag inverse of the function Hε0 : t → P (|ε0| > t).
Then (4) implies (3) and also the main theorem.

Remark. If ε0 is (2 + δ)-integrable for some δ > 0 then the condition

∞∑
m=1

md−1α
δ/(2+δ)
1,∞ (m) <∞ (5)

is more restrictive than condition (4).

In order to use the main theorem for establishing con�dence intervals, one needs
to estimate η. It is done by the following result established in [8].

Proposition 2 Assume that the condition (3) holds. For any N ∈ N∗, set
GN = {(i, j) ∈ Λn ×Λn ; |i− j| ≤ N}. Let ρn be a sequence of positive integers
satisfying:

lim
n→+∞

ρn = +∞ and lim
n→+∞

ρ3d
n E(ε20(1 ∧ n−dε20) = 0

Then

1
nd

max

1,
∑

(i,j)∈Gρn

εiεj

 P−−−−−−→
n→+∞

η.

3 Proofs

3.1 Proof of the main theorem

Let x in [0, 1]d and n ≥ 1 be �xed. For any i in Λn, denote

ai(x) = K

(
x− i/n

hn

)
and bi(x) =

ai(x)√∑
j∈Λn

a2
j (x)

.

Denote also

vn(x) =

√
(nhn)d∑
i∈Λn

ai(x)
×

√∑
i∈Λn

a2
i (x)∑

i∈Λn
ai(x)

.
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Without loss of generality, we consider the case k = 2 and we refer to x1 and
x2 as x and y. Let λ1 and λ2 be two real numbers such that λ2

1 + λ2
2 = 1 and

let x, y ∈ [0, 1]d such that x 6= y. One can notice that

(nhn)d/2

σ
[λ1(gn(x)− Egn(x)) + λ2(gn(y)− Egn(y))] =

∑
i∈Λn

s̃i(x, y) εi

where s̃i(x, y) = (λ1vn(x)bi(x) + λ2vn(y)bi(y))/σ.

Lemma 1 Let x, y ∈ [0, 1]d be �xed. If nhd+1
n →∞ then

lim
n→+∞

1
(nhn)d

∑
i∈Λn

ai(x)ai(y) = δxy σ
2 (6)

and

lim
n→+∞

1
(nhn)d

∑
i∈Λn

ai(x) = 1 (7)

where δxy equals 1 if x = y and 0 if x 6= y.

Proof of Lemma 1. In the sequel, we denote ψ(u) = 1
hd

n
K
(

x−u
hn

)
K
(

y−u
hn

)
and

In(x, y) =
∫
[0,1]d

ψ(u) du, we have

In(x, y) =
∑
i∈Λn

∫
Ri/n

ψ(u) du

=
∑
i∈Λn

λ(Ri/n)ψ(ci)with ci ∈ Ri/n

=
∑
i∈Λn

n−dψ(ci)

where Ri/n =](i1 − 1)/n, i1/n] × ...×](id − 1)/n, id/n] and λ is the Lebesgue

measure on Rd. Let ϕx(u) = (x− u)/hn, for any v in [0, 1]d, we have

d(K ◦ ϕx)(u)(v) =
−1
hn

d∑
i=1

vi

d∑
j=1

∂K

∂uj
(ϕx(u)).

Using the assumptions on the kernel K and noting that

dψ(u) =
1
hd

n

[
d(K ◦ ϕx)(u)×K(ϕy(u)) + d(K ◦ ϕy)(u)×K(ϕx(u))

]
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we derive that there exists c > 0 such that supu∈[0,1]d ‖dψ(u)‖ ≤ ch
−(d+1)
n . So,

it follows that∣∣∣∣ 1
(nhn)d

∑
i∈Λn

ai(x)ai(y)− In(x, y)
∣∣∣∣ = ∣∣∣∣ ∑

i∈Λn

n−d(ψ(i/n)− ψ(ci))
∣∣∣∣

≤ sup
u∈[0,1]d

‖dψ(u)‖
∑
i∈Λn

n−d‖i/n− ci‖∞

≤ c

hd+1
n

∑
i∈Λn

n−(d+1)

=
c

nhd+1
n

−−−−−−→
n→+∞

0.

Moreover,

In(x, y) =
∫

[0,1]d

1
hd

n

K

(
x− u

hn

)
K

(
y − u

hn

)
du

=
∫

ϕx([0,1]d)

K(u)K
(
u+

y − x

hn

)
du.

So, by the dominated convergence theorem, we obtain

lim
n→+∞

In(x, y) = δxy σ
2

and consequently (6) holds. The proof of (7) follows the same lines. The proof
of Lemma 1 is complete. �

Using Lemma 1 and denoting κ2
xy = (λ1 + λ2)2δxy + 1− δxy, we derive

lim
n→+∞

∑
i∈Λn

s̃2i (x, y) = κ2
xy = 1 (since x 6= y).

So, denoting

si(x, y) =
s̃i(x, y)√∑
j∈Λn

s̃2j (x, y)
,

it su�ces to prove the convergence I-stably of
∑

i∈Λn
si(x, y) εi to

√
ητ0 where

τ0 ∼ N (0, 2). In fact, we are going to adapt the proof of the central limit
theorem by Dedecker [8].
For any i in Zd, let us de�ne the tail σ-algebra Fi,−∞ = ∩k∈N∗FV k

i
(we are

going to note F−∞ in place of F0,−∞) and consider the following proposition
established in [8].

Proposition The σ-algebra I is included in the P-completion of F−∞.

Let f be a one to one map from [1, N ]∩N∗ to a �nite subset of Zd and (ξi)i∈Zd

a real random �eld. For all integers k in [1, N ], we denote

Sf(k)(ξ) =
k∑

i=1

ξf(i) and Sc
f(k)(ξ) =

N∑
i=k

ξf(i)
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with the convention Sf(0)(ξ) = Sc
f(N+1)(ξ) = 0. To describe the set Λn =

{1, ..., n}d, we de�ne the one to one map fn from [1, nd]∩N∗ to Λn by: fn is the
unique function such that for 1 ≤ k < l ≤ nd, f(k) <lex f(l). From now on, we

consider two independent �elds (τ (1)
i )i∈Zd and (τ (2)

i )i∈Zd of i.i.d. random vari-

ables independent of (εi)i∈Zd and I such that τ
(1)
0 and τ

(2)
0 have the standard

normal lawN (0, 1). We introduce the two sequences of �eldsXi = si(x, y)εi and

γi = si(x, y)τi
√
η where τi = τ

(1)
i + τ

(2)
i ∼ N (0, 2). Let h be any function from

R to R. For 0 ≤ k ≤ l ≤ nd + 1, we introduce hk,l(X) = h(Sf(k)(X) +Sc
f(l)(γ)).

With the above convention we have that hk,nd+1(X) = h(Sf(k)(X)) and also
h0,l(X) = h(Sc

f(l)(γ)). In the sequel, we will often write hk,l instead of hk,l(X)
and si instead of si(x, y). We denote by B4

1(R) the unit ball of C4
b (R): h belongs

to B4
1(R) if and only if it belongs to C4(R) and satis�es max0≤i≤4 ‖h(i)‖∞ ≤ 1.

3.1.1 Lindeberg's decomposition

Let Z be a I-measurable random variable bounded by 1. It su�ces to prove
that for all h in B4

1(R),

lim
n→+∞

E
(
Zh(Sf(nd)(X))

)
= E

(
Zh
(
(λ1τ

(1)
0 + λ2τ

(2)
0 )

√
η
))

.

We use Lindeberg's decomposition:

E
(
Z
[
h(Sf(nd)(X))− h

(
(λ1τ

(1)
0 + λ2τ

(2)
0 )

√
η
)])

= E
(
Z
[
h(Sf(nd)(X))− h

(
Sf(nd)(γ)

)])
= E

(
Z[hnd,nd+1 − h0,1]

)
=

nd∑
k=1

E (Z[hk,k+1 − hk−1,k]) .

Now,

hk,k+1 − hk−1,k = hk,k+1 − hk−1,k+1 + hk−1,k+1 − hk−1,k.

Applying Taylor's formula we get that:

hk,k+1 − hk−1,k+1 = Xf(k)h
′

k−1,k+1 +
1
2
X2

f(k)h
′′

k−1,k+1 +Rk

and

hk−1,k+1 − hk−1,k = −γf(k)h
′

k−1,k+1 −
1
2
γ2

f(k)h
′′

k−1,k+1 + rk

where |Rk| ≤ X2
f(k)(1∧ |Xf(k)|) and |rk| ≤ γ2

f(k)(1∧ |γf(k)|). Since (X, τi)i 6=f(k)

is independent of τf(k), it follows that

E
(
Zγf(k)h

′

k−1,k+1

)
= 0 and E

(
Zγ2

f(k)h
′′

k−1,k+1

)
= E

(
Zs2f(k)ηh

′′

k−1,k+1

)
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Hence, we obtain

E
(
Z
[
h(Sn(X))− h

(
(λ1τ

(1)
0 + λ2τ

(2)
0 )

√
η
)])

=
nd∑

k=1

E(ZXf(k)h
′

k−1,k+1) +
nd∑

k=1

E

(
Z
(
X2

f(k) − s2f(k)η
) h′′k−1,k+1

2

)

+
nd∑

k=1

E (Rk + rk) .

Arguing as in Rio [24], it is easily proved that

lim
n→+∞

nd∑
k=1

E (|Rk|+ |rk|) = 0.

Let us denote CN = [−N,N ]d∩Zd for any positive integer N . If we de�ne ηN =∑
k∈CN−1

E (ε0εk|I), the upper bound E|η − ηN | ≤ 2
∑

k∈V N
0
E|E (ε0εk|I) |

holds. Hence according to condition (3) and the above proposition, we derive
limN→+∞E|η − ηN | = 0 and consequently we have only to show

lim
N→+∞

lim sup
n→+∞

nd∑
k=1

(
E(ZXf(k)h

′

k−1,k+1) +

+ E

(
Z
(
X2

f(k) − s2f(k)ηN

) h′′k−1,k+1

2

))
= 0.

(8)

3.1.2 First reduction

First, we focus on
∑nd

k=1E
(
ZXf(k)h

′

k−1,k+1

)
. For all N in N∗ and all inte-

ger k in [1, nd], we de�ne

EN
k = f([1, k] ∩ N∗) ∩ V N

f(k) and SN
f(k)(X) =

∑
i∈EN

k

Xi.

For any function Ψ from R to R, we de�ne ΨN
k−1,l = Ψ(SN

f(k)(X)+Sc
f(l)(γ)) (we

shall apply this notation to the successive derivatives of the function h). Our
aim is to show that

lim
N→+∞

lim sup
n→+∞

nd∑
k=1

E
(
Z
(
Xf(k)h

′

k−1,k+1 −

− Xf(k)

(
Sf(k−1)(X)− SN

f(k)(X)
)
h
′′

k−1,k+1

))
= 0.

(9)
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First, we use the decomposition

Xf(k)h
′

k−1,k+1 = Xf(k)h
′N
k−1,k+1 +Xf(k)

(
h
′

k−1,k+1 − h
′N
k−1,k+1

)
.

We consider a one to one map m from [1, |EN
k |] ∩ N∗ to EN

k and such that
|m(i)− f(k)| ≤ |m(i− 1)− f(k)|. This choice of m ensures that Sm(i)(X) and
Sm(i−1)(X) are F

V
|m(i)−f(k)|

f(k)
-measurable. The fact that γ is independent of X

together with proposition 3 in [8] imply that

E
(
ZXf(k)h

′
(
Sc

f(k+1)(γ)
))

= E
(
h
′
(
Sc

f(k+1)(γ)
))

E
(
ZE

(
Xf(k)|F−∞

))
= 0.

Therefore |E
(
ZXf(k)h

′N
k−1,k+1

)
| equals

∣∣∣∣ |E
N
k |∑

i=1

E

(
ZXf(k)

[
h
′
(
Sm(i)(X) + Sc

f(k+1)(γ)
)
− h

′
(
Sm(i−1)(X) + Sc

f(k+1)(γ)
)]) ∣∣∣∣.

Since Sm(i)(X) and Sm(i−1)(X) are F
V
|m(i)−f(k)|

f(k)
-measurable, we can take the

conditional expectation of Xf(k) with respect to F
V
|m(i)−f(k)|

f(k)
in the right hand

side of the above equation. On the other hand the function h
′
is 1-Lipschitz,

hence

|h
′
(
Sm(i)(X) + Sc

f(k+1)(γ)
)
− h

′
(
Sm(i−1)(X) + Sc

f(k+1)(γ)
)
| ≤ |Xm(i)|.

Consequently, the term∣∣∣∣E (ZXf(k)

[
h
′
(
Sm(i)(X) + Sc

f(k+1)(γ)
)
− h

′
(
Sm(i−1)(X) + Sc

f(k+1)(γ)
)]) ∣∣∣∣

is bounded by
E|Xm(i)E|m(i)−f(k)|

(
Xf(k)

)
|

and

|E
(
ZXf(k)h

′N
k−1,k+1

)
| ≤

|EN
k |∑

i=1

E|Xm(i)E|m(i)−f(k)|(Xf(k))|.

Hence,∣∣∣∣ nd∑
k=1

E
(
ZXf(k)h

′N
k−1,k+1

) ∣∣∣∣ ≤ nd∑
k=1

|sf(k)|
|EN

k |∑
i=1

|sm(i)|E|εm(i)E|m(i)−f(k)|(εf(k))|

≤
nd∑

k=1

|sf(k)|
∑

j∈V N
0

|sj+f(k)|E|εjE|j|(ε0)|

≤ A
∑

j∈V N
0

‖εjE|j|(ε0)‖1 < +∞ (A ∈ R∗+)
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where (by Lemma 1) we used the fact that

sup
i∈Λn

|si| = O

(
1

(nhn)d/2

)
(10)

and ∑
i∈Λn

|si| = O
(
(nhn)d/2

)
. (11)

Since (3) is satis�ed, this last term is as small as we wish by choosing N large
enough. Applying again Taylor's formula, it remains to consider

Xf(k)(h
′

k−1,k+1 − h
′N
k−1,k+1) = Xf(k)(Sf(k−1)(X)− SN

f(k)(X))h
′′

k−1,k+1 +R
′

k,

where |R′

k| ≤ 2|Xf(k)(Sf(k−1)(X)− SN
f(k)(X))(1∧ |Sf(k−1)(X)− SN

f(k)(X)|)|. It
follows that

nd∑
k=1

E|R
′

k| ≤ 2

 nd∑
k=1

|sf(k)|

E

(
|ε0|

(∑
i∈ΛN

|si||εi|

)(
1 ∧

∑
i∈ΛN

|si||εi|

))

≤ 2AE

(
|ε0|

(∑
i∈ΛN

|εi|

)(
1 ∧

∑
i∈ΛN

|si||εi|

))
(A ∈ R∗+).

Keeping in mind that si → 0 as n → ∞ and applying the dominated conver-
gence theorem, this last term converges to zero as n tends to in�nity and (9)
follows.

3.1.3 The second order terms

It remains to control

W1 = E

Z nd∑
k=1

h
′′

k−1,k+1

(
X2

f(k)

2
+Xf(k)

(
Sf(k−1)(X)− SN

f(k)(X)
)
−
s2f(k)ηN

2

) .

(12)
We consider the following sets:

ΛN
n = {i ∈ Λn ; d(i, ∂Λn) ≥ N} and IN

n = {1 ≤ i ≤ nd ; f(i) ∈ ΛN
n },

and the function Ψ from RZd

to R such that

Ψ(ε) = ε20 +
∑

i∈V 1
0 ∩CN−1

2ε0εi.

For k in [1, nd], we set DN
k = ηN −Ψ ◦ T f(k)(ε). By de�nition of Ψ and of the

set IN
n , we have for any k in IN

n

Ψ ◦ T f(k)(ε) = ε2f(k) + 2εf(k)(Sf(k−1)(ε)− SN
f(k)(ε)).
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Therefore for k in IN
n

s2f(k)D
N
k = s2f(k)ηN −X2

f(k) − 2Xf(k)(Sf(k−1)(X)− SN
f(k)(X)).

Since limn→+∞ n−d|IN
n | = 1, it remains to prove that

lim
N→+∞

lim sup
n→+∞

E

Z nd∑
k=1

s2f(k)h
′′

k−1,k+1D
N
k

 = 0. (13)

3.1.4 Conditional expectation with respect to the tail σ-algebra

Now, we are going to replace DN
k by E

(
DN

k |Ff(k),−∞
)
. We introduce the

expression

HN
n =

nd∑
k=1

E
(
s2f(k)Zh

′′

k−1,k+1[Ψ ◦ T f(k)(ε)− E(Ψ ◦ T f(k)(ε)|Ff(k),−∞)]
)
.

For sake of brevity, we have written h
′′

k−1,k+1 instead of h
′′

k−1,k+1(X). Using the
stationarity of the �eld we get that

HN
n =

nd∑
k=1

E
(
s2f(k)Z(h

′′

k−1,k+1 ◦ T−f(k))(X)[Ψ(ε)− E(Ψ(ε)|F−∞)]
)
.

For any positive integer p, we decompose HN
n in two parts

HN
n =

nd∑
k=1

J1
k (p) +

nd∑
k=1

J2
k (p),

where

J1
k (p) = E

(
s2f(k)Z(h

′′p
k−1,k+1 ◦ T

−f(k))[Ψ(ε)− E(Ψ(ε)|F−∞)]
)

and J2
k (p) equals to

E
(
s2f(k)Z[h

′′

k−1,k+1 ◦ T−f(k) − h
′′p
k−1,k+1 ◦ T

−f(k)](X)[Ψ(ε)− E(Ψ(ε)|F−∞)]
)
.

From the de�nition of h
′′p
k−1,k+1, we infer that the variable h

′′p
k−1,k+1 ◦T−f(k)(X)

is FV p
0
-measurable. Therefore, we can take the conditional expectation of

Ψ(ε) − E(Ψ(ε)|F−∞) with respect to FV p
0

in the expression of J1
k (p). Now,

the backward martingale limit theorem implies that

lim
p→+∞

E|E(Ψ(ε)|FV p
0
)− E(Ψ(ε)|F−∞)| = 0

and consequently

lim
p→+∞

lim sup
n→+∞

∣∣∣∣ nd∑
k=1

J1
k (p)

∣∣∣∣ = 0.
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On the other hand∣∣∣∣ nd∑
k=1

J2
k (p)

∣∣∣∣ ≤ E

[2 ∧
∑
|i|<p

s2f(i)|εi|

 |Ψ(ε)− E(Ψ(ε)|F−∞)|
]
.

Hence, applying the dominated convergence theorem, we conclude that HN
n

tends to zero as n tends to in�nity. It remains to consider

W2 = E

Z nd∑
k=1

h
′′

k−1,k+1s
2
f(k)E(DN

k |Ff(k),−∞)

 .

3.1.5 Truncation

For any integer k in [1, nd] and any M in R+ we introduce the two sets

BN
k (M) = E(DN

k |Ff(k),−∞) 11|ηN−E(Ψ◦T f(k)(ε)|Ff(k),−∞)|≤M

and
B

N

k (M) = E(DN
k |Ff(k),−∞)−BN

k (M).

The stationarity of the �eld ensures that E|BN

k (M)| = E|BN

1 (M)| for any k in
[1, nd]. Now, applying the dominated convergence theorem, we have

lim
M→+∞

E|BN

1 (M)| = 0.

It follows that

lim
M→+∞

nd∑
k=1

E
(
h
′′

k−1,k+1s
2
f(k)B

N

k (M)
)

= 0.

Therefore instead of W2 it remains to consider

W3 = E

Z nd∑
k=1

h
′′

k−1,k+1s
2
f(k)B

N
k (M)

 .

3.1.6 An ergodic lemma

The next result is the central point of the proof.

Lemma 2 For all M in R+, we introduce

βN (M) = E
(
[ηN − E (Ψ(ε)|F−∞)] 11|ηN−E(Ψ(ε)|F−∞)|≤M

∣∣I) .
Then

lim
M→+∞

βN (M) = 0 a.s. and lim
n→+∞

E

∣∣∣∣βN (M)−
nd∑

k=1

s2f(k)B
N
k (M)

∣∣∣∣ = 0.
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Proof of Lemma 2. Let

u(ε) = [ηN − E (Ψ(ε)|F−∞)] 11|ηN−E(Ψ(ε)|F−∞)|≤M .

Using the function u, we write βN (M) = E(u(ε)|I). The fact that βN (M) tends
to zero as M tends to in�nity follows from the dominated convergence theorem.
In fact

lim
M→∞

u(ε) = ηN − E(Ψ(ε)|F−∞)

and u(ε) is bounded by |ηN −E(Ψ(ε)|F−∞)| which belongs to L1. This implies
that

lim
M→∞

βN (M) = E
(
ηN − E(Ψ(ε)|F−∞)

∣∣I) a.s.

Since I is included in the P-completion of F−∞ (see the above proposition) and
keeping in mind that ηN is I-measurable, it follows that

lim
M→∞

βN (M) = ηN − E(Ψ(ε)|I) a.s.

By stationarity of the random �eld, we know that E(ε0εk|I) = E(ε0ε−k|I)
which implies that

E(Ψ(ε)|I) =
∑

k∈CN−1

E(ε0εk|I) = ηN

and the result follows.
We are going to prove the second point of Lemma 2. First note that

Bk(M) = [ηN − E(Ψ ◦ T f(k)(ε)|Ff(k),−∞)] 11|ηN−E(Ψ◦T f(k)(ε)|Ff(k),−∞)|≤M

= u ◦ T f(k)(ε).

Consequently
nd∑

k=1

s2f(k)B
N
k (M) =

∑
i∈Λn

s2i u ◦ T i(ε).

Finally, the proof of lemma 2 is completed by the following lemma which is
proved in Section 5.

Lemma 3

lim
n→∞

∥∥∥∥ ∑
i∈Λn

s2i u ◦ T i(ε)− E(u(ε)|I)
∥∥∥∥

2

= 0.

As a direct application of lemma 2, we see that

∣∣∣∣E
Z nd∑

k=1

h
′′

k−1,k+1s
2
f(k)βN (M)

∣∣∣∣ ≤ E|βN (M)|
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is as small as we wish by choosingM large enough. So instead ofW3 we consider

W4 = E

Z nd∑
k=1

h
′′

k−1,k+1s
2
f(k)[B

N
k (M)− βN (M)]

 .

3.1.7 Abel transformation

In order to control W4, we use the Abel transformation:

W4 = E

[ nd∑
k=1

(
k∑

i=1

s2f(i)[B
N
i (M)− βN (M)]

)
Z(h

′′

k−1,k+1 − h
′′

k,k+2)
]

+ E

Zh′′nd,nd+2

nd∑
k=1

s2f(k)[B
N
k (M)− βN (M)]

 .

Now∣∣∣∣E
Zh′′nd,nd+2

nd∑
k=1

s2f(k)[B
N
k (M)− βN (M)]

∣∣∣∣ ≤ E

∣∣∣∣βN (M)−
nd∑

k=1

s2f(k)B
N
k (M)

∣∣∣∣.
Then applying lemma 2, we obtain

lim
n→+∞

∣∣∣∣E
Zh′′nd,nd+2

nd∑
k=1

s2f(k)[B
N
k (M)− βN (M)]

∣∣∣∣ = 0.

Therefore it remains to prove that for any positive integer N and any positive
real M ,

lim
n→+∞

E

[ nd∑
k=1

(
k∑

i=1

s2f(i)[B
N
i (M)− βN (M)]

)
Z(h

′′

k−1,k+1 − h
′′

k,k+2)
]

= 0.

3.1.8 Last reductions

We are going to �nish the proof. We use the same decomposition as before:

h
′′

k,k+2 − h
′′

k−1,k+1 = h
′′

k,k+2 − h
′′

k,k+1 + h
′′

k,k+1 − h
′′

k−1,k+1.

Applying Taylor's formula

h
′′

k,k+2 − h
′′

k,k+1 = −γf(k+1)h
′′′

k,k+2 + tk

and
h
′′

k,k+1 − h
′′

k−1,k+1 = Xf(k)h
′′′

k−1,k+1 + Tk
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where |tk| ≤ γ2
f(k+1) and |Tk| ≤ X2

f(k). To examine the remainder terms, we
consider:

E

 nd∑
k=1

s2f(k)

(
k∑

i=1

s2f(i)[B
N
i (M)− βN (M)]

)
Zε2f(k)

 .

The de�nition of BN
i (M) and of βN (M) enables us to write for all integer k in

[1, nd],
k∑

i=1

s2f(i)|B
N
i (M)− βN (M)| ≤ 2M.

Therefore

E

∣∣∣∣ nd∑
k=1

(
k∑

i=1

s2f(i)[B
N
i (M)− βn(M)]

)
s2f(k)Zε

2
f(k) 11|εf(k)|>K

∣∣∣∣ ≤ 2ME
(
ε20 11|ε0|>K

)
and applying the dominated convergence theorem this last term is as small as
we wish by choosing K large enough. Now, for all K in R+, Lemma 2 ensures
that

lim
n→+∞

E

 nd∑
k=1

s2f(k)

(
k∑

i=1

s2f(i)[B
N
i (M)− βN (M)]

)
Zε2f(k) 11|εf(k)|≤K

 = 0.

So, we have proved that

lim
n→+∞

E

 nd∑
k=1

(
k∑

i=1

s2f(i)[B
N
i (M)− βN (M)]

)
ZTk

 = 0.

In the same way, we obtain that

lim
n→+∞

E

 nd∑
k=1

(
k∑

i=1

s2f(i)[B
N
i (M)− βN (M)]

)
Ztk

 = 0.

Moreover since (ε, (τi)i 6=f(k+1)) is independent of τf(k+1) we have

E

(
k∑

i=1

s2f(i)[B
N
i (M)− βN (M)]γf(k+1)Zh

′′′

k,k+2

)
= 0.

Finally, it remains to consider

W5 = E

[ nd∑
k=1

(
k∑

i=1

s2f(i)[B
N
i (M)− βN (M)]

)
ZXf(k)h

′′′

k−1,k+1

]
.



VIII � 18

Let p be a �xed positive integer. Since h
′′′

is 1-Lipschitz, we have the upper

bound |h′′′k−1,k+1−h
′′′p
k−1,k+1| ≤ |Sf(k−1)(X)−Sp

f(k)(X)|. Now, we can apply the

same truncation argument as before: �rst we choose the level of our truncation
by applying the dominated convergence theorem and then we use Lemma 2. So,
it follows that

lim
n→+∞

E

[ nd∑
k=1

(
k∑

i=1

s2f(i)[B
N
i (M)− βN (M)]

)
ZXf(k)(h

′′′

k−1,k+1−h
′′′p
k−1,k+1)

]
= 0.

Therefore, to prove our theorem it is enough to show that

lim
p→+∞

lim sup
n→+∞

E

[ nd∑
k=1

(
k∑

i=1

s2f(i)[B
N
i (M)− βN (M)]

)
ZXf(k)h

′′′p
k−1,k+1

]
= 0.

(14)
We consider a one to one map m from [1, |Ep

k |]∩N∗ to Ep
k and such that |m(i)−

f(k)| ≤ |m(i− 1)− f(k)|. Now, we use the same argument as before:

h
′′′p
k−1,k+1 − h

′′′
(Sc

f(k)(γ))

=
|Ep

k |∑
i=1

h
′′′

(Sm(i)(X) + Sc
f(k)(γ))− h

′′′
(Sm(i−1)(X) + Sc

f(k)(γ))

≤
|Ep

k |∑
i=1

|Xm(i)|.

Here recall that BN
i (M) is Ff(i),−∞-measurable and βN (M) is I-measurable.

We have E(εf(k)|I) = 0, E(εf(k)|Ff(k),−∞) = 0 and E(εf(k)|Ff(i),−∞) = 0 for
any positive integer i such that i < k. Consequently, for any positive integer i
such that i ≤ k, we have

E
(
s2f(i)[B

N
i (M)− βN (M)]Zsf(k)εf(k)h

′′′
(Sc

f(k)(γ))
)

= 0.

Therefore using the conditional expectation, we �nd

E

[ nd∑
k=1

(
k∑

i=1

s2f(i)[B
N
i (M)− βN (M)]

)
ZXf(k)h

′′′p
k−1,k+1

]

≤ 2M
nd∑

k=1

|sf(k)|
|Ep

k |∑
i=1

|sm(i)|E|εm(i)E|m(i)−f(k)|(εf(k))|

= 2M
nd∑

k=1

|sf(k)|
∑

j∈V p
0

|sj+f(k)|E|εjE|j|(ε0)|

≤ 2AM
∑

j∈V p
0

E|εjE|j|(ε0)| (A ∈ R∗+) by (10) and (11).
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Since (3) is realised the last term is as small as we wish by choosing p large
enough, hence W4 is handled. Finally, the main theorem is proved. �

3.2 Proof of the corollary

As observed in [8], the proof of the corollary is a direct consequence of Theorem
1.1 in Rio [23]. In fact, for any k in V 1

0 , we have

E|εkE|k|(ε0)| = Cov
(
|εk|

(
11E|k|(ε0)≥0 − 11E|k|(ε0)≤0

)
, ε0

)
≤ 4

∫ α1,∞(|k|)

0

Q2
ε0

(u) du.

The proof of the corollary is complete. �

4 Application

The direct consequence of our result is that it allows the construction of statis-
tical tests able to quantify the estimation error. For this purpose, we show the
construction of such a test that can be used in image denoising [11, 16, 28]. In
the context given by the model (1), let us consider the following situation : a
true image g is a�ected by a correlated additive noise ε, that gives Y for the
observed image.
For the original function the classical Lena image is used. This image is a gray
level image with pixels values in the interval [0, 255]. The size of the image is
256× 256 pixels. The correlated noise we consider is a Gaussian �eld (εk)k∈Z2

built using an exponential covariance function

C(k) = E(ε0εk) = Cst× exp{−|k|
a
}.

The choice of such random �eld ensures the validity of the projective crite-
rion (3)(see [9], p.59 Corollary 2). There exist several methods for simulating
such a random �eld, here we have opted for the spectral method [15]. In order
to obtain an important visual e�ect of how the noise a�ects the original image
Cst was set to 200 and a = 1. The noisy image is obtained by adding pixel by
pixel the original image to the simulated noise. The estimator of the original
image is computed using the Epanechnikov kernel

K(x) =
3
8
(1− |x|2)I{|x|≤1}, x = (x1, x2) ∈ R2.

In order to compute the expectation of the estimated function, several realisa-
tion of the noisy image are needed. Here we have considered 50 such images,
constructed by adding the original Lena image with a noise realisation. Us-
ing (2), for each noisy image, an estimate gn of the original function g was
computed using the kernel K de�ned above. The expectation E(gn) is com-
puted by just taking the pixel by pixel arithmetical means corresponding to the



VIII � 20

images previously restored.
Clearly, it is now possible to estimate the di�erence gn − E(gn). Following our
theoretical result, the normalised square of this di�erence follows a χ2 distri-
bution with one degree of freedom. Since this quantity is observable, p-values
pixel by pixel can be computed.
The original image and the realisation of a noisy image are shown in Figure 1a
and 1b, respectively. It can be noticed that in the �dirty� picture, spots are
formed, due to the noise correlation. The expectation of the estimated origi-
nal images in Figure 1c exhibits almost no such spots. Furthermore, the visual
quality of this restored image is close to the original. A more quantitative eval-
uation of this result is given by the image of p-values of the proposed statistical
test given in Figure 1d. The light-coloured pixels represent p-values close to 1,
whereas the dark-coloured pixels indicate values close to 0. We have counted
83% of the pixels for which we have obtained a p-value higher than 0.01. This
ratio is quite a reliable indicator concerning the restored image. Together with
the visual analysis of the results, it provides a detailed description of the ob-
tained result. We conclude that, under these considerations, the theoretical
results developed in this paper may be used as a basis for the development of
practical tools in image analysis.

5 Annexe

In this section we prove lemma 3.

Proof of Lemma 3. In fact, for any u in L2, we can write u = w + E(u|I)
where w = u− E(u|I), hence it su�ces to prove that

lim
n→+∞

∥∥∥∥ ∑
k∈Λn

s2k w ◦ T k

∥∥∥∥
2

= 0.

Let us consider the transformations T1, T2, ..., Td de�ned by T i
1 = T (i,...,0),

T i
2 = T (0,i,...,0), ..., T i

d = T (0,...,i) for any integer i. It is well known (cf. [7]) that
the space

H =
{
h1 − h1 ◦ T1 − (h2 − h2 ◦ T2)− ...− (hd − hd ◦ Td) ; h1, .., hd ∈ L2

}
is dense in the space G = {g ∈ L2 ; E(g|I) = 0}. Let ε > 0 be �xed, there exist
h1, ..., hd ∈ L2 such that

∥∥w − [(h1 − h1 ◦ T1)− ...− (hd − hd ◦ Td)]
∥∥

2
≤ ε. So,

we derive∥∥∥∥ ∑
k∈Λn

s2k w ◦ T k

∥∥∥∥
2

≤ ε+
d∑

j=1

∥∥∥∥ ∑
k∈Λn

s2k (hj ◦ T k − hj ◦ T k(j))
∥∥∥∥

2

where k(j) = (k1, ..., kj−1, kj + 1, kj+1, ..., kd). Using Lemma 1 and keeping in
mind that K is a bounded and Lipschitzian kernel, one can check that

s2(k1,..,kd) = O

(
1

(nhn)d

)
and s2(k1,..,kj ,..,kd)−s

2
(k1,..,kj−1,..,kd) = O

(
1

(nhn)d+1

)
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a) b)

c) d)

Figure 1: Results of the image restoration procedure : a) original Lena image, b)
realisation of a noisy image, c) expectation of the restored images, d) obtained
p−values as a gray level image (white pixels represent values close to 1, whereas
black pixels indicate values close to 0).
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and consequently, we obtain

d∑
j=1

∥∥∥∥ ∑
k∈Λn

s2k (hj ◦ T k − hj ◦ T k(j))
∥∥∥∥

2

= O

(
1

nhd+1
n

)
.

Finally, keeping n su�ciently large, we obtain∥∥∥∥ ∑
k∈Λn

s2k w ◦ T k

∥∥∥∥
2

≤ 2ε.

The proof of lemma 3 is complete. �
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