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About me

◮ associate professor at Université Lille

◮ working together with the Toravere Observatory since 2003

◮ mail : radu.stoica@univ-lille1.fr

◮ web page : http://math.univ-lille1.fr/ stoica/

◮ office : Toravere Observatory (during September)

◮ phone : + 33 6 20 06 29 30

Course structure

◮ 24 hours = 4 weeks × 6 hours = 4 weeks × 2 days times 3
hours

◮ mark : project + written/oral exam (last day of the course -
you need a mark of 50% to validate it)
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What is this course about ?

Spatial data analysis : investigate and describe data sets whose
elements have two components

◮ position : spatial coordinates of the elements in a certain
space

◮ characteristic : value(s) of the measure(s) done at this
specific location

◮ application domains : image analysis, environmental sciences,
astronomy

”The” question :

◮ what is the data subset made of those elements having a
certain ”common” property ?



”The” answer :

◮ generally, this ”common” property may be described by a
statistical analysis

◮ the spatial coordinates of the spatial data elements add a
morphological component to the answer

◮ the data subset we are looking for, it forms a pattern that has
relevant geometrical characteristics

”The” question re-formulated :

◮ what is the pattern hidden in the data ?

◮ what are the geometrical and the statistical characteristics of
this pattern ?

Aim of the course : provide you with some mathematical tools to
allow you formulate answers to these questions



Examples : data sets and related questions

For the purpose of this course : software and data sets are
available

◮ R library : spatstat by A. Baddeley, R. Turner and
contributors → www.spatstat.org

◮ C++ library : MPPLIB by A. G. Steenbeek, M. N. M. van
Lieshout, R. S. Stoica and contributors → available at simple
demand

Toravere Observatory : huge quantities of data sets and software,
and the questions going together with

◮ there are plenty of future Nobel subjects for you :)

◮ contact : E. Tempel, L. J. Liivamägi, E. Saar and myself



Forestry data (1) : the points positions exhibit attraction →
clustered distribution

redwoodfull

Figure: Redwoodfull data from the spatstat package

> library(spatstat)

> data(redwoodfull) ; plot(redwoodfull)



Forestry data (2) : the points positions exhibit neither attraction
nor repulsion → completely random distribution

japanesepines

Figure: Japanese data from the spatstat package

In order to see all the available data sets
> data(package="spatstat")



Biological data (1) : the points positions exhibit repulsion →
regular distribution

cells

Figure: Cell data from the spatstat package

> data(cells)

> cells

planar point pattern: 42 points

window: rectangle = [0, 1] x [0, 1] units



Biological data (2) : two types of cells exhibiting attraction and
repulsion depending on their relative positions and types

amacrine

Figure: Amacrine data from the spatstat package

> data(amacrine) ;

plot(amacrine,cols=c("blue","red"))



Animal epidemiology : sub-clinical mastitis for diary herds

◮ points → farms location

◮ to each farm → disease score (continuous variable)

◮ clusters pattern detection : regions where there is a lack of
hygiene or rigour in farm management
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Figure: The spatial distribution of the farms outlines almost the entire
French territory (INRA Avignon).



Cluster pattern : some comments

◮ particularity of the disease : can spread from animal to animal
but not from farm to farm

◮ cluster pattern : several groups (regions) of points that are
close together and have the “same statistical properties”

◮ clusters regions → approximate it using interacting small
regions (random disks)

◮ local properties of the cluster pattern : small regions where
locally there are a lot of farms with a high disease score value

◮ problem : pre-visualisation is difficult ...



Image analysis : road and hydrographic networks

a) b)

Figure: a) Rural region in Malaysia (http://southport.jpl.nasa.gov), b)
Forest galleries (BRGM).



Thin networks : some comments

◮ road and hydrographic networks → approximate it by
connected random segments

◮ topologies : roads are “straight” while rivers are “curved”

◮ texture : locally homogeneous, different from its right and its
left with respect a local orientation

◮ avoid false alarms : small fields, buildings,etc.

◮ local properties of the network : connected segments covered
by a homogeneous texture



Geological data : two types of patterns, line segments and points
→ are these patterns independent ?

Copper

Figure: Copper data from the spatstat package

> attach(copper) ; L=rotate(Lines,pi/2) ;

P=rotate(Points,pi/2)

> plot(L,main="Copper",col="blue") ;

points(P$x,P$y,col="red")



Cosmology (1) : spatial distribution of galactic filaments

Figure: Cuboidal sample from the North Galactic Cap of the 2dF Galaxy
Redshift Survey. Diameter of a galaxy ∼ 30× 3261.6 light years.



Cosmology (2) : study of mock catalogs

a) b)

Figure: Galaxy distribution : a) Homogeneous region from the 2dfN
catalog, b) A mock catalogue within the same volume



Cosmology (3) : questions and observations

Real data

◮ filaments, walls and clusters : different size and contrast

◮ inhomogeneity effects (only the brightest galaxies are
observed)

◮ filamentary network the most relevant feature

◮ local properties of the filamentary network : connecting
random cylinders containing a “lot” of galaxies “along” its
main axis ...

Mock catalogues

◮ how “filamentary” they are w.r.t the real observation ?

◮ how the theoretical models producing the synthetic data fits
the reality ?



Oort cloud comets (1)

The comets dynamics :

◮ comets parameters (z , q, cos i , ω,Ω) → inverse of the
semi-major axis,perihelion distance, inclination, perihelion
argument, longitude of the ascending node

◮ variations of the orbital parameters

◮ initial state : parameters before entering the planetary region
of our Solar System

◮ final state : current state

◮ question : do these perturbation exhibit any spatial pattern ?



Oort cloud comets (2)

Study of the planetary perturbations

◮ ∼ 107 perturbations were simulated

◮ data → set of triplets (q, cos i ,△z)

◮ spatial data framework : location (q, cos i) and marks △z

◮ △z = zf − zi :perturbations of the cometary orbital energy

◮ local properties of the perturbations : locations are uniformly
spread in the observation domain, marks tend to be important
whenever they are close to big planets orbits

◮ reformulated question : do these planetary observations
exhibit an observable spatial pattern ?

◮ problem : pre-visualisation is very difficult ...



Spatio-temporal data (1)

Time dimension available :

◮ the previous example may be considered snapshots

◮ more recent data sets have also a temporal coordinate

◮ question : what is the pattern hidden in the data and its
temporal behaviour ?

Satellite debris :

◮ after explosion, the debris of two colliding artificial satellites
distributes a long an orbit around Earth

◮ test the uniformity of the debris along the orbit

◮ characterize the spatio-temporal distribution of the entire set
of debris

◮ extremely interesting set : the evolution of the objects
dynamics is known from the initial state, i.e. no debris at all

→ video spatial debris



Spatio-temporal data (2)

Roads dynamics in Central Africa region :

◮ in forest region with rare woods, road networks appear and
disappear within the territory of an exploitation concession

◮ there is a difference between “classical” road networks and
“exploitation” networks → mining galleries

◮ this roads dynamics may be relevant in many aspects : health
of the forest, respect of rules for the enterprises,
environmental behaviour and understanding

◮ characterize the distribution and the dynamics of the road
network

→ video roads dynamics



Synthesis

Hypothesis : the pattern we are looking for can be approximated
by a configuration of random objects that interact

◮ marked points pattern : repulsive or attractive marked points

◮ clusters pattern : superposing random disks

◮ filamentary network : connected and aligned segments

Important remark :

◮ locally : the number of objects is finite



Marked point processes :

◮ probabilistic models for random points with random
characteristics

◮ origin → stochastic geometry

◮ the pattern is described by means of a probability density →
stochastic modelling

◮ the probability density allows the computation of average
quantities and descriptors (these are integrals) related to the
pattern



Remarks :

◮ there exist also deterministic mathematical tools able to treat
pattern recognition problems

◮ probability is cool : the phenomenon is not controlled, but
understood

◮ probability thinking framework offers simultaneously the
analysis and the synthesis abilities of the proposed method

◮ probabilistic approach deeply linked with physics →
exploratory analysis, model formulation, simulation, inference



◮ comets example : random fields → another probabilistic
mathematical tool

◮ unifying random fields and marked point processes is a
mathematical challenge

◮ spatio - temporal example : requires new clean and
appropriate mathematics, based on both stochastic processes
and stochastic geometry

◮ still, partial answers to these questions can be given using the
tools presented in this course

◮ present challenge : big data
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Measure and integration theory → blackboard

◮ σ−algebra

◮ measurable space, sets, functions

◮ measure

◮ measure space, integral with respect to a measure

◮ probability space, probability measure



Construction of a point processes

Mathematical ingredients :

◮ observation window : the measure space (W ,B, ν), with
W ⊂ R

d , B the Borel σ−algebra and 0 < ν(W ) <∞ the
Lebesgue measure

◮ points configuration space : probability space (Ω,F ,P)
Configuration space construction :

◮ state space Ω :

Wn is the set of all n-tuples {w1, . . . ,wn} ⊂ W
Ω = ∪∞

n=0Wn, n ∈ N

◮ events space F : the σ− algebra given by

F = σ({w = {w1, . . . ,wn} ∈ Ω : n(wB) = n(w ∩ B) = m})

with B ∈ B and m ∈ N

◮ probability measure P : the model answering our questions



Definition
A point process in W is a measurable mapping from a probability
space (S,A) in (Ω,F). Its distribution is given by

P(X ∈ F ) = P{ω ∈ S : X (ω) ∈ F},

with F ∈ F . The realization of a point process is random set of
points in W . We shall sometimes identify X and P(X ∈ F ) and
call them both a point process.



Remarks : point process ⇒ random configuration of points w in a
observation window W

◮ a points configuration is w = {w1,w2, . . . ,wn}, with n the
corresponding number of points

◮ locally finite : n(w) is finite whenever the volume of W is
finite

◮ simple : wi 6= wj for i 6= j

◮ in this course, W is almost always a compact set ...

◮ from time to time we will consider also the case W = R
d but

this should not worry you ... too much ...

→ drawing



Marked point processes : attach characteristics to the points →
extra-ingredient : marks probability space (M,M, νM)

Definition
A marked point process is a random sequence x = {xn = (wn,mn)}
such that the points wn are a point process in W and mn are the
marks corresponding for each wn.

Examples :

◮ random circles : M = (0,∞)

◮ random segments : M = (0,∞)× [0, π]

◮ multi-type process : M = {1, 2, . . . , k}
... and all the possible combinations ... → drawing



Stationarity and isotropy. A point process X on W is stationary if
it has the same distribution as the translated proces Xw , that is

{w1, . . . ,wn} L
= {w1 + w , . . . ,wn + w}

for any w ∈ W .
A point process X on W is isotropic if it has the same distribution
as the rotated proces rX , that is

{w1, . . . ,wn} L
= {rw1, . . . , rwn}

for any rotation matrix r.

◮ motion invariant : stationary and isotropic

◮ marked case : in principle easy to generalize, but take care ...



Intuitive description of a point process : being able to say how
many points of the process X can be found in any neighbourhood
of W
The mathematical tools for point processes : should be able to do
the following

◮ count the points of a point process in a small neighbourhood
of a point in W , and then extend the neighbourhood

◮ count the points of a point process in a small neighbourhood
of a typical point of the process X , and then extend the
neighbourhood

◮ counting within this context means using a probability
measure based counter



Let X be a point process on W , and let us consider the counting
variable

N(B) = n(XB), B ∈ B,
representing the number of points “falling” in B .
Let us consider also the sets of the form

FB = {x ∈ Ω : n(xB) = 0},

that are called void events.



Definition
The distribution of a point process X is determined by the finite
dimensional distributions of its count function, i.e. the joint
distribution of N(B1), . . . ,N(Bm) for any B1, . . . ,Bm ∈ B and
m ∈ N.

Theorem
The distribution of a point process is uniquely determined by its
void probabilities

v(B) = P(N(B) = 0), B ∈ B.



Remarks :

◮ the previous definition is sometimes considered a
mathematical result ...

◮ the proof of the theorem shows first, that the events set F
can be built using the void set made of FB ’s. Then, a
measure theory argument says that two measures acting in the
same way on a first original event set, they will act similarly
on a second event set generated from the previous one

◮ this result is easy to generalize for marked point processes,
but with care ...

◮ the generalization of the previous result can be done also with
respect to W : complete and separable (Polish) space



Binomial point process

The trivial random pattern : a single random point x uniformly
distributed in W such that

P(x ∈ B) =
ν(B)

ν(W )

for all B ∈ F .

More interesting point pattern : n independent points distributed
uniformly such that

P(x1 ∈ B1, . . . , xn ∈ Bn) =

= P(x1 ∈ B1) · . . . · P(xn ∈ Bn)

=
ν(B1) · . . . · ν(Bn)

ν(W )n

for Borel subset B1, . . . ,Bn of W .
→ drawing



Properties

◮ this process earns its name from a distributional probability

◮ the r.v. N(B) with B ⊆ W follows a binomial distribution
with parameters

n = N(W ) = n(xW )

and

p =
ν(B)

ν(W )

◮ the intensity of the binomial point process, or the mean
number of points per unit volume

ρ =
n

ν(W )

◮ the mean number of points in the set B

E(N(B)) = np = ρν(B)



◮ the binomial process is simple : all points are isolated

◮ number of points in different subsets of W are not
independent even if the subsets are disjoint

N(B) = m ⇒ N(W \ B) = n−m

◮ the distribution of the point process is characterized by the
finite dimensional distributions

P(N(B1) = n1, . . . ,N(Bk) = nk) for k = 1, 2, . . .

such that n1 + n2 + . . .+ nk ≤ n



◮ if the Bk are disjoint Borel sets with B1 ∪ . . .Bk = W and
n1 + . . .+ nk = n, the finite-dimensional distributions are
given by the multinomial probabilities

P(N(B1) = n1, . . . ,N(Bk) = nk)

=
n!

n1! . . . nk !

ν(B1)
n1 . . . ν(Bk)

nk

ν(W )n

◮ the void probabilities for the binomial point process are given
by

v(B) = P(N(B) = 0) =
(ν(W )− ν(B))n

ν(W )n



Stationary Poisson point process

Motivation :

◮ convergence binomial towards Poisson

◮ → drawing + blackboard

Definition : a stationary (homogeneous) Poisson point process X is
characterized by the following fundamental properties

◮ Poisson distribution of points counts. The random number of
points of X in a bounded Borel set B has a Poisson
distribution with mean ρν(B) for some constant ρ, that is

P(N(B) = m) =
(ρν(B))m

m!
exp(−ρν(B))

◮ Independent scattering. The number of points of X in k
disjoint Borel sets form k independent random variables, for
arbitrary k



Properties

◮ simplicity : no duplicate points

◮ the mean number of points in a Borel set B is

E(N(B)) = ρν(B)

◮ ρ : the intensity or density of the Poisson process, and it
represents the mean number of points in a set of unit volume

◮ 0 < ρ <∞, since for ρ = 0 ⇒ the process contains no points,
while for ρ = ∞ we get a pathological case



◮ if B1, . . . ,Bk are disjoint Borel sets, then N(B1), . . . ,N(Bk)
are independent Poisson variable with means
ρν(B1), . . . , ρν(Bk).Thus

P(N(B1) = n1, . . . ,N(Bk) = nk)

=
ρn1+...+nkν(B1)

n1 . . . ν(Bk)
nk

n1! · . . . · nk !
exp

(
−

k∑

i=1

ρν(Bi)

)
,

◮ this formula can be used to compute joint probabilities for
overlapping sets

◮ the void probabilities for the Poisson point process are given
by

v(B) = P(N(B) = 0) = exp(−ρ(ν(B)))



◮ the Poisson point process with ρ = ct. is stationary and
isotropic

◮ if the intensity is a function ρ : W → R
+ such that

∫

B

ρ(w)dν(w) <∞

for bounded subsets B ⊆ W , then we have a inhomogeneous
Poisson process with mean

E(N(B)) =

∫

B

ρ(w)dν(w) = Υ(B)

◮ Υ is called the intensity measure

◮ we have already seen that for the stationary Poisson process :
Υ(B) = ρν(B)



Mapping theorem

◮ a Poisson process on W mapped into another space W ′ by a
function ψ is still a Poisson process, provided ψ is measurable
and has no atoms

◮ ψ has no atoms ↔ ψ does not map several points from W
into a single point in W ′

◮ consequence : the projection of a Poisson process is also a
Poisson process



◮ if ψ is a linear transformation, then we have :

Theorem
Linear transformation of a Poisson process. Let A : Rd → R

d a
non-singular mapping. If X is a stationary Poisson process of
intensity ρ, then AX = {Aw : w ∈ X} is also a stationary Poisson
process and its intensity is ρ|det(A−1)|, where det(A−1) is the
determinant of the inverse of A.



◮ Spherical contact distribution :

F (r) = P(d(w ,X ) < r)

= 1− P(d(w ,X ) > r)

= 1− P(b(w , r) ∩ X = ∅)

with b(w , r) the ball centred in w ∈ W and with radius r . For
the stationary Poisson point processes on W ⊂ R

2, we get

F (r) = 1− P(N(b(o, r)) = 0) = 1− exp(−ρπr2)

Remark : the spherical contact distribution does not completely
characterize a point process, because it is obtained for a particular
set B



◮ Conditioning and binomial point processes. Let X be a
stationary Poisson point process on W a compact set in R

d ,
and consider the conditioning N(W ) = n. The resulting
process is a binomial point process with n points.

This is easily verified, by computing the void probabilities in a
compact subset B ⊂ W → Exercice 1 and 2

◮ a Poisson point process on R
d is obtained by adding

“disjoint” boxes till covering the whole domain ...



The most important marked Poisson point proces : the unit
intensity Poisson point process with i.i.d. marks on a compact W

◮ number of objects ∼ Poisson(ν(W ))

◮ locations and marks i.i.d. : wi ∼ 1
ν(W ) and mi ∼ νM

The corresponding probability measure : weighted ‘counting” of
objects

P(X ∈ F ) =
∞∑

n=0

e−ν(W )

n!

∫

W×M

· · ·
∫

W×M

1F{(w1,m1), . . . , (wn,mn)}

×dν(w1)dνM(m1) . . . dν(wn)dνM(m)

for all F ∈ F .
Remark : the simulation of this process is straightforward, while
the knowledge of the probability distribution allows analytical
computations of the interest quantities



Simulations results of some Poissonian point processes : the
domain is W = [0, 1]× [0, 1] and the intensity parameter is ρ = 100

a)

Poisson point process

b)

Multi−type Poisson point process

c)

Poisson segment process

0.00 0.25 0.50 0.75 1.00

Figure: Poisson based models realizations : a) unmarked, b) multi-type
and c) Boolean model of segments.

→ Exercice 3



Some general facts concerning the binomial and the Poisson point
processes

◮ the law is completely known → analytical formulas,

◮ independence → no interaction → no structure in the data ...

◮ completely random patterns : null or the default hypothesis
that we want to reject

◮ more complicate models can be built → specifying a
probability density p(x) w.r.t. the reference measure given by
the unit intensity Poisson point process. This probability
measure is written as

P(X ∈ F ) =

∫

F

p(x)µ(dx)

with µ the reference measure.

Remark : in this case the normalizing constant is not available
from an analytical point of view. To check this replace in the
expression of µ(·) the indicator function 1F{y} with p(y) ...
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Moment and factorial moment measures, product densities

Present context :

◮ mathematical background

◮ definition of a marked point process

◮ Binomial and Poisson point process

◮ important result : the point process law is determined by
counts of points



Let X be a point process on W . The counts of points in Borel
regions of B ⊂ W , N(B) characterize the point process and they
are well defined random variables

◮ it is difficult to average the pattern X

◮ it is possible to compute moments of the N(B)’s

The appropriate mathematical tools are :

◮ the moment measures

◮ the factorial moment measures

◮ the product densities

→ blackboard



More properties of the Poisson process

Stationary Poisson point processes : compute the moment
measures, the factorial moment measures and the product densities

◮ find relations between all these for this process

→ Exercice 4



Definition
A disjoint union ∪∞

i=1Xi of point processes X1,X2, . . . is called
superposition.

Proposition

If Xi ∼ Poissson(W , ρi) , i = 1, 2, . . . are mutually independent
and if ρ =

∑
ρi is locally integrable, then with probability one,

X = ∪∞
i=1Xi is a disjoint union and est X ∼ Poisson(W , ρ) .

→ stable character of the Poisson process



Definition
Let be q : W → [0, 1] a function and X a point process on W .
The point process Xthin ⊂ X obtained by including the ξ ∈ X in
Xthin with probability q(ξ), where points are included/excluded
independently of each other, is said to be an independent thinning
of X with retention probabilities q(ξ).

Formally, we can set

Xthin = {ξ ∈ X : R(ξ) ≤ q(ξ)},

with the random variables R(ξ) ∼ U [0, 1], ξ ∈ W , mutually
independent and independent of X .



Proposition

Suppose that X ∼ Poisson(W , ρ) is subject to independent
thinning with retention probabilities q(ξ), ξ ∈ W and let

ρthin = q(ξ)ρ(ξ), ξ ∈ W .

Then Xthin and X \ Xthin are independent Poisson processes with
intensity functions ρthin and ρ− ρthin, respectively.

Corollary

Suppose that X ∼ Poisson(W , ρ) with ρ bounded by a positive
constant C. Then X is distributed as independent thinning of a
Poisson(W ,C ) with retention probabilities q(ξ) = ρ(ξ)/C.



Remarks : utility of the previous results

◮ the Poisson process is invariant under independent thinning

◮ easy procedure for simulate non-stationary Poisson process

◮ the n−th product density measure of an independently
thinned point process is

ρ
(n)
thin(w1, . . . ,wn) = ρ(n)(w1, . . . ,wn)

n∏

i=1

q(wi )

this gives the invariance under independent thinning of the
n−th point correlation function (van Lieshout, 2011)

ρ
(n)
thin(w1, . . . ,wn)

ρthin(w1) · . . . · ρthin(wn)
=

ρ(n)(w1, . . . ,wn)

ρ(w1) · . . . · ρ(wn)

but watch out ...

→ Exercice 5 : explain the envelope tests



Campbell moment measures

Present context :

◮ counting points i.e. computing moment and factorial moment
measures → very interesting tool for analysing point
patterns : allow the computation of average quantities

◮ still, compute an average pattern → difficult and challenging
problem

◮ idea : counting points that have some specific properties →
Campbell measures



Definition
Let X be a point process on W . The Campbell measure is

C (B × F ) = E [N(B)1{X ∈ F}] ,

for all B ∈ B and F ∈ F .

The first order moment measure can be expressed as a Campbell
measure :

C (B ×Ω) = E[N(B)] = µ(1)(B).



Higher order Campbell measures are constructed in a similar
manner. For instance, the second ordre Campbell measure is

C (2)(B1 × B2 × F ) = E [N(B1)N(B2)1{X ∈ F}] ,

from which we can get the second order moment measure

C (2)(B1 × B2 ×Ω) = E [N(B1)N(B2)] = µ(2)(B1 × B2)

Remark :

◮ the moment measures allow to average functions h(x)
measured in the location of a point process X : the function h
does not depend on X

◮ the Campbell measures allow to average functions h(x , x)
measured in the location of a point process X : the function h
may depend on X



Campbell - Mecke formula

Theorem
Let h : W × Ω → [0,∞) a measurable function that is either
non-negative either integrable with respect to the Campbell
measure. Then

E

[
∑

w∈X

h(w ,X )

]
=

∫

W

∫

Ω
h(w , x)dC (w , x).

Proof.
→ blackboard



A more general Campbell-Mecke formulas

Theorem
For a point process X and arbitrary nonnegative measurable
function h that does not depend on X we have

E

∑

w1,...,wn∈X

h(w1, . . . ,wn) =

∫

W

· · ·
∫

W

h(w1, . . . ,wn)dµ
(n)(w1, . . . ,wn)

and

E

6=∑

w1,...,wn∈X

h(w1, . . . ,wn) =

∫

W

· · ·
∫

W

h(w1, . . . ,wn)dα
(n)(w1, . . . ,wn)

Proof.
Follow the same proof scheme as previously.



◮ If the function h does not depend on the point process X , the
Campbell - Mecke becomes

E

[
∑

w∈X

h(w)

]
=

∫

W

h(w)dµ(1)(w).

◮ point process of intensity function ρ(w)

E

[
∑

w∈X

h(w)

]
=

∫

W

h(w)ρ(w)dν(w).

◮ point process of second order intensity function ρ(2)(u, v)

E




6=∑

u,v∈X

h(u, v)


 =

∫

W

∫

W

h(u, v)ρ(2)(u, v)dν(u)dν(v).
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Interior and exterior conditioning

Present context :

◮ counting points measures : count the points in a small
neighbourhood and then integrate using the Campbell Mecke
formula → the small neighbourhood is a small region in W

◮ idea : the “same” counting points measures → the small
neighbourhood is a small region in W “centred” in a point of
the process X → interior conditionning

◮ question : how the measures applied to a process X change, if
we add or if we delete a point from the current configuration
→ exterior conditionning



A review of the Palm theory

◮ construction → blackboard

◮ the Palm distributions of X at w ∈ W can be interpreted as

Pw (F ) = P(X ∈ F |N({w}) > 0)

◮ the Campbell - Mecke formula can be expressed as

E

[
∑

w∈X

h(w ,X )

]
=

∫

W

∫

Ω
h(w , x)dPw (x)dµ

(1)(w)

◮ for stationary point processes

E

[
∑

w∈X

h(w ,X )

]

= ρ

∫

W

∫

Ω
h(w , x)dPw (x)dν(w)

= ρ

∫

W

∫

Ω
h(w , x+ w)dPo(x)dν(w)



Slivnyak - Mecke theorem

Theorem
If X ∼ Poisson(W , ρ), then for functions g : W × Ω → [0,∞), we
have

E

∑

w∈X

h(w ,X \ {w}) =
∫

W

Eh(w ,X )ρ(w)dν(w),

(where the left hand side is finite if and only if the right hand side
is finite).

◮ proof : → blackboard

◮ generalization : rather easy ... (the same comment as for the
Campbell - Mecke theorem)



◮ this theorem is a very strong result, since it allows computing
averages of a Poisson point process knowing that one or
several points belong to the process ...

◮ application in telecomunications : knowing, in this location I
have a mobile phone antena, how the quality of the signal
change if I add randomly more antenas ? (the group of F.
Baccelli)



◮ combining the Campbell-Mecke and the Slivnyak-Mecke
theorem, we obtain for a Poisson proces

∫

Ω
h(x)dPw (x) =

∫

Ω
h(x ∪ {w})dP(x)

◮ in words : the Palm distribution of a Poisson process with
respect to w is simply the Poisson distribution plus an added
point at w

◮ a more mathematical formulation : the Palm distribution
PΥ
w (·) of a Poisson process of intensity measure Υ and

distribution P
Υ is the convolution P

Υ ⋆ δw of PΥ with an
additional deterministic point at w

◮ explanation : blackboard

→ Exercice 6 and 7



Assumption : X is a stationary point process

◮ the nearest neighbour distance distribution function

G (r) = Pw (d(w ,X \ {w}) ≤ r) (1)

with Pw the Palm distribution. The translation invariance of
the distribution of X → inherited by the Palm distribution →
G(r) is well-defined and does not depend on the choice of w .

◮ replacing the Palm distribution in (1) by the distribution of X
→ the spherical contact distribution or the empty space
function

F (r) = P(d(w ,X ) ≤ r)

with P the distribution of X .



◮ the J function : compares nearest neighbour to empty
distances

J(r) =
1− G (r)

1− F (r)

defined for all r > 0 such that F (r) < 1

The J function describes the morphology of a point pattern with
respect to a Poisson process :

J(r) is





= 1 Poisson : complete random
≤ 1 clustering : attraction
≥ 1 regular : repulsion



For the stationary Poisson process of intensity parameter ρ, on
W ⊂ R

2, these statistics have exact formulas :

F (r) = 1− exp[−ρπr2]
G (r) = F (r)

J(r) = 1

→ Exercice 8
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Reduced Palm distributions

Present context :

◮ Palm distributions : count the points in a neighbourhood
centred on a point of the process → this point is counted as
well

◮ idea : in some applications (telecommunications) we may wish
to measure the effect of a point process in a location being a
point of the process, while this particular point has no effect
on the entire process → reduced Palm distributions

◮ the following mathematical development is rather easy to
follows since it is similar to what we have already seen during
until now



Reduced Campbell measure

Definition
Let X be a simple point process on the complete, separable metric
space (W , d). The reduced Campbell measure is

C !(B × F ) = E

[
∑

w∈X∩B

1{X \ {w} ∈ F}
]
,

for all B ∈ B and F ∈ F .

◮ the analogue of Campbell-Mecke formula reads

E

[
∑

w∈X

h(w ,X \ {w})
]
=

∫

W

∫

Ω
h(w , x)dC !(w , x).



◮ assuming the first order moment measure µ(1) of X exists and
it is σ−finite, we can apply Radon-Nikodym theory to write

C !(B × F ) =

∫

B

P !
w (F )dµ

(1)(w),

for all B ∈ B and F ∈ F
◮ the function P !

· (F ) is defined uniquely up to an µ(1)−null set

◮ it is possible to find a version such that for fixed w ∈ W ,
P !
w (·) is a probability distribution → the reduced Palm

distribution



Campbell and Slivnyak theorems

◮ the reduced Palm distribution can be interpreted as the
conditional distribution

P !
w (F ) = P(X \ {w} ∈ F |N({w}) > 0)

◮ the Campbell-Mecke formula equivalent

E

[
∑

w∈X

h(w ,X \ {w})
]
=

∫

W

∫

Ω
h(w , x)dP !

w (x)dµ
(1)(w).



◮ for stationary point processes

E

[
∑

w∈X

h(w ,X \ {w})
]

= ρ

∫

W

∫

Ω
h(w , x)dP !

w (x)dν(w)

= ρ

∫

W

∫

Ω
h(w , x+ w)dP !

o(x)dν(w)

◮ the Slivnyak-Mecke theorem : for a Poisson process on W
with distribution P, we have

P !
w (·) = P(·)

◮ there is a general result linking the reduced Palm distribution
and the distribution of a Gibbs process → a little bit later in
this course ...



Example

The nearest neighbour distribution G (r) of stationary process can
be expressed in terms of the Palm distributions

G (r) = 1− Po(X ∈ Ω : N(b(o, r)) = 1),

and the reduced Palm distributions

G (r) = 1− P !
o(X ∈ Ω : N(b(o, r)) = 0),

where N(b(o, r)) is the number of points inside the ball centred at
the origin o of radius r .



Summary statistics : the K and L functions

The K function :

◮ maybe one of the most used summary statistic

◮ for a stationary process, its definition depending on the
reduced Palm distribution is

ρK (r) = E
!
o [N(b(o, r))]

◮ the L function is

L(r) =

[
K (r)

ωd

]1/d

with ωd = ν(b(0, 1)) the volume of the d−dimensional unit
ball



◮ for stationary point processes, the pair correlation function is

g(r) =
K ′(r)

σd rd−1

with σd the surface area of the unit sphere in R
d

◮ for the stationary Poisson process we have

K (r) = ωd r
d , g(r) = 1

and
L(r) = r

◮ theoretical explanations → blackboard



Exterior conditioning : conditional intensity

◮ assume that for any fixed bounded Borel set A ∈ B, the
reduced Campbell measure C !(A× ·) is absolutely continuous
with respect to the distribution P(·) of X

◮ then

C !(A × F ) =

∫

F

Λ(B ; x)dP(x)

for some measurable function Λ(B ; ·) specified uniquely up to
a P−null set

◮ moreover, one can find a version such that for fixed x, Λ(·; x)
is a locally finite Borel measure → the first order Papangelou
kernel



◮ if Λ(·; x) admits a density λ(·; x) with respect to the Lebesgue
measure ν(·) on W , the Campbell-Mecke theorem becomes

E

[
∑

w∈X

h(w ,X \ {w})
]

=

∫

W

∫

Ω
h(w , x)dC !(w , x)

= E

[∫

W

h(w ,X )λ(w ;X )dν(w)

]

◮ the function λ(·; ·) is called the Papangelou conditional
intensity

◮ the previous result is known as the Georgii-Nguyen-Zessin
formula



◮ the case where the distribution of X is dominated by a
Poisson process is especially important

Theorem
Let X be a finite point process specified by a density p(x) with
respect to a Poisson process with non-atomic finite intensity
measure ν. Then X has Papangelou conditional intensity

λ(u; x) =
p(x ∪ {u})

p(x)

for u /∈ x ∈ Ω.

Proof.
→ blackboard



Importance of the conditional intensity :

◮ intuitive interpretation :

λ(u; x)dν(u) = P(N(du) = 1|X ∩ (dν(u))c = x ∩ (dν(u))c ),

the infinitesimal probability of finding a point in a region
dν(u) around u ∈ W given that the point process agrees with
the configuration x outside of dν(u)

◮ the “conditional reverse” of the Palm distributions



◮ describe the local interactions in a point pattern → Markov
point processes

◮ if
λ(u; x) = λ(u; ∅)

for all patterns x satisfying x ∩ b(u, r) = ∅ → the process has
‘interactions of range r at u’

◮ in other words, points further than r away from u do not
contribute to the conditional intensity at u



◮ integrability of the model

◮ convergence of the Monte Carlo dynamics able to simulate the
model

◮ differential characterization of Gibbs point processes →
blackboard

→ Exercice 9
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Some main ideas to be retained till now

◮ counting measures → summary statistics for point pattern
characterization

◮ two categories : interpoint distances (F ,G and J) and second
order characteristics (ρ,K and L)

◮ possible extension of the summary statistics : marks,
non-stationary processes, different observation spaces W case
and spatio-temporal → some of these topics are already
solved, others are rather hot research topics

◮ non-parametrical estimation of the summary statistics : kernel
estimation and management of the border effects + numerical
sensitivity → not presented in this course, but Enn and his
team are experts of this domain ...

◮ central limit available : statistical tests



◮ summary statistics for parameter estimation of the undergoing
model ⇒ these statistics are an ”equivalent” of the moments
in probability theory, hence they do not entirely determine the
model to be estimated ... (Baddeley and Silverman, 1984)

◮ good exploring tool : spatstat provides also some 3d
estimators ...

◮ outline important aspects of a point pattern : clustering,
repulsion, completely randomness

→ real need for models able to reproduce these characteristics
→ counting is not always obvious ...



Cox processes

Definition
Let Υ be a random locally finite diffuse measure on (W ,B). If the
conditional distribution of X given Υ is a Poisson process on W
with intensity measure Υ, X is said to be a Cox point process with
driving measure Υ. Sometimes X is also called doubly stochastic
Poisson process.

Remarks :

◮ if there exists a random field Z = {Z (w),w ∈ W } such that

Υ(B) =

∫

B

Z (w)dν(w)

then X is a Cox process with driving function Z



◮ the conditional distribution of X given Z = z is a distribution
of the Poisson process with intensity function z ⇒

E[N(B)|Z = z] =

∫

B

z(w)dν(w)

◮ the first order factorial moment measure is obtained using the
law of the total expectation

µ(1)(B) = α(1)(B) = E[N(B)]

= E [E[N(B)|Z = z]] = E

[∫

B

Z (w)dν(w)

]

= E[Υ(B)] =

∫

B

EZ (w)dν(w)

◮ if ρ(w) = EZ (w) exists then it is the intensity function



◮ smilarly, it can be shown that the second order factorial
moment measure is

α(2)(B1 × B2) = E [Υ(B1)Υ(B2)]

= E

[∫

B1

Z (u)dν(u)

∫

B2

Z (v)dν(v)

]

= E

[∫

B1

∫

B2

Z (u)Z (v)dν(u)dν(v)

]

=

∫

B1

∫

B2

E [Z (u)Z (v)] dν(u)dν(v)

◮ if ρ(2)(u, v) = EZ (u)Z (v) exists, then it is the product density

◮ proof : use the results from Exercice 4 and the total
expectation law



◮ the pair correlation function is

g(u, v) =
ρ(2)(u, v)

ρ(u)ρ(v)
=

E [Z (u)Z (v)]

E [Z (u)]E [Z (v)]

◮ depending on Z it is possible to obtain analytical formulas for
the second order characteristics (g ,K and L) and the
interpoint distance characteristic (F ,G and J)



◮ the variance VarN(B) is obtained using the total variance law,
and it is

VarN(B) = EN(B) + Var

[∫

B

Z (w)dν(w)

]
≥ EN(B)

⇒ over - dispersion of the Cox process counting variables

◮ the void probabilities of Cox processes are

P(N(B) = 0)) = E1{N(B) = 0}
= E [E1{N(B) = 0}|Z = z)] = E [P(N(B) = 0|Z = z)]

= E

[
exp

(
−
∫

B

Z (w)dν(w)

)]

= E [exp (−Υ(B))]



Trivial Cox process : mixed Poisson processes

◮ Z (w) = Z0 a common positive random variable for all
locations w ∈ W

◮ X |Z0 follows a homogeneous Poisson process with intensity Z0

◮ the driving measure is Υ(B) = Z0ν(B)

Thinning of Cox processes

◮ X is a Cox process driven by Z

◮ Π = {Π(w) : w ∈ W } ⊆ [0, 1] is a random field which is
independent of (X ,Z )

◮ Xthin|Π → the point process obtained by independent thinning
of the points in X with retention probabilities Π

◮ ⇒ Xthin is a Cox process driven by Zthin(w) = Π(w)Z (w)



Cluster processes

Definition
Let C be a point process (parent process), and for each c ∈ C let
Xc be a finite point process (daughter process). Then

X =
⋃

c∈C

Xc

is called a cluster point process.

Definition
Let X be a cluster point process such that C is a Poisson point
process and conditional on C, the processes Xc , c ∈ C are
independent. Then X is called a Poisson cluster point process.



Definition
Let X be a Poisson cluster point process such that centred
daughter processes Xc − c are independent of C . Given C, let the
points of Xc − c be i.i.d. with density function k on R

d and N(Xc )
be i.i.d. random variables. Then X is called a Neyman-Scott
process. If moreover N(Xc ) given C has a Poisson distribution with
intensity α, then X is a Neyman-Scott Poisson process.

→ drawing + Exercice 10



Theorem
Let X be a Neyman-Scott Poisson process such that C is a
stationary Poisson process with intensity κ. Then X is stationary
process with intensity ρ = ακ and pair correlation function

g(u) = 1 +
h(u)

κ
,

where

h(u) =

∫
k(v)k(u + v)dν(v)

is the density for the difference between two independent points
which have density k.

Proof.
→ blackboard



Matérn cluster process (Matérn 1960,1986)

k(u) =
1{‖ u ‖≤ r}

ωd rd

is the uniform density on the ball b(o, r)

Thomas process (Thomas 1949)

k(u) =
exp

(
−‖u‖2

2ω2

)

(2πω2)d/2

is the density for Nd (0, ω
2Id ), i.e. for d independent normally

distributed variables with mean 0 and variance ω2 > 0



◮ both kernels are isotropic

◮ the Thomas process pair correlation function is

g(u) = 1 +
1

κ(4πω2)d/2
exp

[
−‖ u ‖2

4ω2

]

and its K−function for d = 2 is

K (r) = πr2 +
1− exp[−r2/(4ω2)]

κ

◮ other summary statistics can be also computed

◮ the expressions of the summary statistics are more
complicated for the Matérn process

→ drawing + show on your computer Exercice 11 + data sets
(redwoodfull, japanesepines, celss)



Remarks :

◮ usually in applications Z is unobserved

◮ we cannot distinguish a Cox process X from its corresponding
Poisson process X |Z when only one realisation of X is
available

◮ open question : which of the two models might be most
appropriate, i.e. whether Z should be random or
“systematic”/deterministic

◮ prior knowledge of the observed phenomenon

◮ Bayesian setting of the intensity function ⇒ Cox processes

◮ if we want to investigate the dependence of certain covariates
associated to Z , these may be treated as systematic terms,
while unobserved effects may be treated as random terms

◮ Cox process : more flexible models for clustered patterns than
inhomogeneous Poisson point processes



Boolean model

Random objects “centred” around Poissonian points → germs and
grains

◮ germs : a stationary Poisson point process X of intensity ρ on
R
d

◮ grains : a sequence of i.i.d. random compact sets Γ1, Γ2, . . .
and independent of X

The Boolean model is the random set obtained by the replacement
of the germs by the appropriately shifted corresponding set, and
taking the set union as it follows

Γ =

∞⋃

n=1

(Γn + wn) = (Γ1 + w1) ∪ (Γ2 + w2) ∪ . . .

The random set Γ0 is said to be the typical grain. The set Γ is also
called the Poisson germ-grain model.



The Boolean model observation is an incomplete observation of a
marked point process, since the locations points is not available

a)

Boolean model of random discs

b)

Boolean model : what is really observed

Figure: Boolean model of random discs : complete and incomplete views.



Remarks :

◮ classical references : Matheron (1975), Molchanov (1997),
Lantuéjoul (2002), Chiu et al. (2013)

◮ important practical applications → one of the first models of
complex patttern

◮ no structure ↔ no objects interactions

◮ Neyman-Scott processes may be seen as Boolean models as
well ...



Capacity functional.Choquet theorem

◮ in general, for random sets it is rather difficult to use moment
and factorial measures ↔ it is not possible to “count” points

◮ un-marked and marked point processes are particular random
sets

Definition
The capacity functional the random closed set Γ is

TΓ(K ) = P(Γ ∩ K 6= ∅)

for K an element of the family K of compact sets in R
d .

Theorem
(Choquet theorem). The distribution of a random closed set Γ is
completely determined by the capacity functionals TΓ(K ) for all
K ∈ K.



Capacity functional of the Boolean model

Proposition

The capacity functional of the Boolean model Γ is

TΓ(K ) = 1− exp
[
−ρE(ν(Γ̌0 ⊕ K ))

]
.

◮ the reflection of the typical grain :

Γ̌0 = −Γ0 = {−w : w ∈ A}, for A ⊂ R
d

◮ the Minkowski addition :

A⊕ B = {u + v : u ∈ A, y ∈ B}, for A,B ⊂ R
d

Proof.
→ blackboard



Basic characteristics of the Boolean model

◮ the volume fraction

◮ covariance

◮ contact distribution

→ blackboard



Stability of the Boolean model

Proposition

The following properties are satisfied :
i) the union of two independent Boolean models is a Boolean
model
ii) a Boolean model dilated by a non-empty compact subset of Rd

is a Boolean model
iii) the intersection between a Boolean model and a compact
subset of Rd is a Boolean model
iv) the cross-section of a Boolean model by an i-flat is a Boolean
model

Proof.
→ blackboard
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Probability density of a point processes

Present context :

◮ the independence property of the Poisson based processes
does not allow to introduce point interactions

◮ interactions can be introduced by means of a probability
measure w.r.t a Poissonian reference measure µ

◮ the distribution of such a point process writes as

P(X ∈ F ) =

∫

F

p(x)dµ(x)



◮ let µ be the standard unit intensity Poisson process

◮ the point process distribution w.r.t µ writes as

P(X ∈ F ) =

=
∞∑

n=0

exp[−ν(W )]

n!

∫

W

· · ·
∫

W

1({w1, . . . ,wn} ∈ F )×

p({w1, . . . ,wn})dν(w1) . . . dν(wn),

whenever n > 0. If n = 0, we take exp[−ν(W )]1(∅ ∈ F )p(∅).
If ν(W ) = 0, then P(X = ∅) = 1. For applications, we always
assume that ν(W ) > 0.

◮ the marked case writes in a similar way by introducing also
the marks distribution νM



◮ usually the probability density is known up to a constant :
p ∝ h

◮ the normalizing constant or the partition function is given by

α =

∫

Ω
h(x)dµ(x)

that becomes

α =
∞∑

n=0

exp[−ν(W )]

n!

∫

W

· · ·
∫

W

h({w1, . . . ,wn})dν(w1) . . . dν(wn)

(2)



◮ the previous quantity is not always available under analytical
closed form

◮ this is the main difficulty to be solved while ausing this
approach ...

Normalizing constant for the Poisson process : Let ρ be the
intensity function of a Poisson point process on W . Its probability
density up to a normalizing constant is

p(w) ∝
∏

wi∈w

ρ(wi ).

Let Υ(B) =
∫
B
ρ(w)dν(w) be the associated intensity measure.

We asssume 0 < Υ(B) <∞ for any B ⊆ W .
By using (2), we get

α = exp[−ν(W )]

∞∑

n=0

Υ(W )n

n!
= exp[Υ(W )− ν(W )],



that gives for the complete probability density

p(w) = exp[ν(W )−Υ(W )]
∏

wi∈w

ρ(wi )

If the process is stationary ρ(w) = ρ = ct., then the probability
density is

p(w) = exp[(1 − ρ)ν(W )]ρn



Interacting marked point processes

Construction of the probability density :

◮ specify the interaction functions φ(k) : Ω → R
+

φ(xi1 , . . . , xik )
(k)

for any k−tuplet of objects

◮ the density is the product of all these functions

p(x) = α
∏

xi∈x

φ(xi )
(1) · · ·

∏

{xi1 ,...,xik }∈x

φ(xi1 , . . . , xik )
(k) (3)

◮ α the normalizing constant is not known



◮ the probability densities (3) are suitable for modelling provided
they are integrable on Ω ; that is

α =

∫

Ω
p(x)dµ(x) <∞.

◮ the following results ensure the integrability of the probability
density of a marked point process → the Ruelle stability
conditions



Definition
Let X be a marked point process with probability density p w.r.t
the reference measure µ. The process X is stable in the sense of
Ruelle, if it exists Λ > 0 such that

p(x) ≤ Λn(x), ∀x ∈ Ω. (4)

Proposition

The probability density of a stable point process is integrable.



Proof.
The integrability of p(x) follows directly from the preceding
condition :

∫

Ω
p(x)µ(dx) ≤

∫

Ω
Λn(x)µ(dx)

=
∞∑

n=0

exp[−ν(W )][Λν(W )])n

n!
= exp[ν(W )(Λ − 1)].



Definition
Under the same hypotheses as in Prop. 5, a marked point process
is said to be locally stable if it exists Λ > 0 such that

p(x ∪ {η}) ≤ Λp(x), ∀x ∈ Ω, η ∈ W ×M \ x (5)

Proposition

A locally stable point process is stable in the sense of Ruelle.



Proof.
It is easy to show by induction that

p(x) = p(∅)Λn(x), ∀x ∈ Ω.

The local stability of a point process (5) implies its
integrability (4).



◮ the local stability implies the hereditary condition

p(x) = 0 ⇒ p(y) = 0, if x ⊆ y.

◮ this condition allows the definition of the conditional intensity
as

λ(η; x) =
p(x ∪ {η})

p(x)
, x ∈ Ω, η ∈ W ×M \ x,

assuming 0/0 = 0

◮ the conditional intensity is also known in the literature as the
Papangelou intensity condition (we have already meet it)



Importance of the conditional intensity : key element in modelling

◮ plays a similar role as the conditional probabilities for Markov
random fields

◮ integrability

◮ convergence properties of the MCMC algorithms used to
sample from p

◮ the process X is attractive if x ⊆ y implies

λ(η; x) ≤ λ(η; y),

and repulsive otherwise

λ(η; x) ≥ λ(η; y),



◮ attractive processes tend to cluster the points, while the
repulsive ones tend to distance the points

◮ these conditions are important also for exact MCMC
algorithms

◮ there exist processes that are neither attractive nor repulsive

◮ there are processes that are integrable but not locally stable :
Lennard - Jones (statistical physics)



Markov point processes

The conditional intensity of an interacting point process is given by

λ(η; x) = φ(η)(1)
∏

xi∈x

φ(xi , η)
(2) · · ·

∏

{xi1 ,...,xik }∈x

φ(xi1 . . . . , xik , η)
(k+1)

◮ difficult to manipulate

◮ possible simplifications : limit the order of interactions → only
pairs of points for instance

◮ limit the range of the interaction : a point interact only with
its closest neighbours



Let ∼ be a symmetrical and reflexive relation between points
belonging to W ×M. This may be a typical neighbourhood
relation based on a metric (Euclidean, Hausdorff) or on sets
intersection.

Definition
A clique is a configuration x ∈ Ω such that η ∼ ζ for all η, ζ ∈ x.
The empty set is a clique.



Definition
Let X be a marked point process on W ×M with probability
density p w.r.t the reference measure µ. The process X is Markov
if for all x ∈ Ω such that p(x) > 0, the following conditions are
simultaneously fulfilled :

(i) p(y) > 0 for all y ⊆ x (hereditary)

(ii) p(x∪{ζ})
p(x) depends only on ζ and ∂(ζ) ∩ x = {η ∈ x : η ∼ ζ}.

This process is known in the literature as the Ripley-Kelly Markov
process.



Example : The probability density w.r.t to µ of a marked Poisson
process on W ×M with constant intensity function
(ρ(η) = β > 0) is

p(x) = βn(x) exp[(1 − β)ν(W )].

Clearly p(x) > 0 for all configurations x. Its Papangelou
conditional intensity is

λ(η; x) = β1{η /∈ x}.

Hence, the Poisson process is Markov, independently of the
interaction functions φ(k). This agrees with the choice of the
Poisson process for modelling a completely random structure.



The following result is known as the spatial Markov property.
→ drawing

Theorem
Let X be a Markov point process with density p(·) on W and
consider a Borel set A ⊆ W. Then the conditional distribution of
X ∩ A given X ∩ Ac depends only on X restricted to the
neighbourhood

∂(A) ∩ Ac = {u ∈ W \ A : u ∼ a for some a ∈ A}.

Proof.
→ blackboard



The following result is known as the Hammersley-Clifford theorem.

Theorem
A marked point process density p : Ω → R

+ is Markov with
respect to the interaction relation ∼ if and only if there is a
measurable function φc : Ω → R

+ such that

p(x) =
∏

cliques y⊆x

φc(y), α = φ(∅) (6)

for all x ∈ Ω.

Proof.
→ blackboard



Remarks :

◮ the previous result simplifies the writing of the probability
density of an interacting point process

◮ taking φc (y) = 1 whenever y is not a clique leads us to the
equivalence of (3) and (6)

◮ Markov point processes are known in physics community as
Gibbs point processes

p(x) =
1

Z
exp [−U(x)] =

1

Z
exp


−

∑

cliques z⊆x

Uc(z)


 ,

with Z the partition function, U the system energy and
Uc = log φc the clique potential

◮ all the Markov processes are Gibbs

◮ the reciprocal is not true



Poisson process as a Markov process : the probability density of a
Poisson point process is

p(x) = e(1−β)ν(W )
∏

x∈x

β.

Hence, the interactions functions applied to cliques are

φc(∅) = e(1−β)ν(W )

φc({u}) = β

with φc ≡ 1 for the cliques made of more than one object. The
potential of the cliques made of a single object is

Uc(u) = − log β,

while Uc = 0 otherwise. This confirms the lack of interaction in
the Poisson process. It validates also, the choice of this process to
model patterns exhibiting no particular morphological structure.



Distance interaction model - Strauss model : (Strauss, 1975),
(Kelly and Ripley, 1976)

p(x) = αβn(x)γsr (x), α, β > 0, γ ∈ [0, 1]
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Figure: Strauss model realisations for different parameter values : a)
γ = 1.0, b) γ = 0.5 and c) γ = 0.0.



The interaction function γ : W ×W → [0, 1] is

γ(u, v) =

{
γ if d(u, v) ≤ r
1 otherwise

The conditional intensity of adding a point η to x \ {η} is

λ(u; x) = βγcard∂(u)

where ∂(u) = {v ∈ x : d(u, v) ≤ r}



The Strauss model is a locally stable model with Λ = β and
Markov with interaction range r .
The interaction functions applied to cliques are

φc(∅) = α

φc({u}) = β

φc({u, v}) = γ(u, v)

and φc ≡ 1 if the cliques have three or more objects. The
interaction potentials are obtained taking Uc = − log φc .



Multi-type pairwise interaction processes

a)

Bivariate Poisson model

b)

Bivariate Strauss model

c)

Widom − Rowlinson model

Figure: Bivariate pairwise interaction processes with r = 0.05 and : a)
γ1,2 = γ2,1 = 1.0, b) γ1,2 = γ2,1 = 0.75 and c) γ1,2 = γ2,1 = 0. Circles
around the points have a radius of 0.25.



Widom-Rowlinson or penetrable spheres model : this model is
described by the mark space M = {1, 2} and the density

p(x) = α
∏

(w ,m)∈x

βm
∏

(u,1),(v ,2)∈x

1{‖ u − v ‖> r} (7)

w.r.t the standard Poisson point process on W ×M with
νM(1) = νM(2).
The parameters β1 > 0 and β2 > 0 control the number of particles
of type 1 and 2, respectively.
The conditional intensity for adding (w , 1) /∈ x to the configuration
x is

λ((w , 1); x) = β11{d(u,w) > r for all the (u, 2) ∈ x}.

A similar expression is available for adding an object of type 2.



The Widom-Rowlinson is hereditary and locally stable with

Λ = max{β1, β2}.

Furthermore, λ((w ,m); x′) ≥ λ((w ,m); x) for all x′ ⊆ x and
(w ,m) ∈ W ×M.
The interaction functions are

φc (∅) = α

φc({(w ,m)}) = βm

φc({(u, 1), (v , 2)}) = 1{d(u, v) > r}

and φc ≡ 1 if the cliques have two or more objects of the same
type.



Multi-type pairwise interaction process : consider M = {1, . . . , I}
with I ∈ N and νM the uniform distribution on M. The probability
density w.r.t the standard multi-type process is

p(x) = α
∏

(w ,m)∈x

βm
∏

(u,i)6=(v ,j)∈x

γij(d(u, v)). (8)

◮ the parameters βm > 0, m ∈ M control the intensity of the
points of type m.

◮ the measurable functions γij : [0,∞) → [0, 1] describe the
interaction between each type pair of objects i , j ∈ M

◮ symmetric functions : γij ≡ γji for all i , j ∈ M



For (w ,m) /∈ x, the conditional intensity is

λ((w ,m); x) = βm
∏

(u,i)∈x

γim(d(u,w)).

This process is locally stable with Λ = maxm∈M βm, anti-monotonic
and Markov under smooth assumptions on the functions γij .
The interaction functions are

φc(∅) = α

φc({(w ,m)}) = βm

φc ({(u, i), (v , j)}) = γij(d(u, v))

with φc ≡ 1 for cliques of three objects and more.



Area interaction model :
(Baddeley and van Lieshout, 1995)

p(x) ∝ βn(x)γ−ν[Γ(x)], β, γ > 0 (9)
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Figure: Area interaction model realisations for different parameter
values : a) γ = 1.0, b) γ > 1.0 and c) γ < 1.0.



Remarks :

◮ the first probability density based point process producing
clusters → alternative to the Strauss process ...

◮ the model should be re-parametrized in order to be identifiable

Proposition

The area interaction process given by (9) is a Markov point
process.

Proof.
→ blackboard



Candy model :

(van Lieshout and Stoica, 2003), (Stoica, Descombes and Zerubia,
2004)

p(x) ∝ γ
nf (x)
f γ

ns (x)
s γ

nd (x)
d γ

no(x)
o γ

nr (x)
r ,

with γf , γs , γd > 0 and γo , γr ∈ [0, 1]
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Figure: Candy model realisations.



Bisous model :
(Stoica, Gregori and Mateu, 2005)

p(x) ∝
[

q∏

s=0

γ
ns(x)
s

]
∏

κ∈Γ⊂R

γnκ(x)κ γs > 0, γκ ∈ [0, 1]
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Figure: Random shapes generated with Bisous model.



Remarks :

◮ Candy and Bisous are based on compound interactions →
drawing + explanations

◮ connections are produced by giving different weights for the
repulsive interactions

◮ the conditional intensity is bounded

λ(ζ; x) ≤
q∏

s=0

max{γs , γ−1
s }12 = Λ.

this gives the name of the model → kissing number

◮ → blackboard - Candy

◮ Markov range : 4rh + 2ra

◮ the models are locally stable but the exact simulation is
sometimes difficult ...



Compare two random sets : idea inspired by current undergoing
work with M. N. M. van Lieshout and classical literature in
mathematical morphology

Figure: Realizations of the Candy model obtained with different samplers.



Empty space function : these probability distributions should be
similar ⇒ Kolmogorov-Smirnov p− value is higher than 0.8
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Figure: Estimation of the empty space function for the previous Candy
realizations



J function for multi-type segment pattern : undergoing work with
Marie-Colette van Lieshout

◮ undergoing work with Marie-Colette van Lieshout (CWI
Amsterdam) and a group of people from CIRAD Montpellier

◮ show : R script testJFuncData.R

Open questions :

◮ may the F function be used to characterize and to compare
different filamentary patterns ?

◮ may a general J function be used to characterise the
interactions of filaments, clusters and walls ?

◮ temporal behaviour ? if yes, for what type of model ?

◮ planar and cluster patterns ?
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Markov chain Monte Carlo algorithms

Problem : sampling or simulation probability distributions

π(A) =

∫

A

p(x)dµ(x)

that are not available in closed form ↔ normalizing constant
analytically intractable
Remarks :

◮ almost all the point process models and Markov random fields

◮ exceptions : Poisson processes and also permanental and
determinental point processes

◮ Markov chain theory and simulation is whole domain in
probability and statistics → very general working framework



Basic MCMC algorithm

Algorithm

x = My first MCMC sampler (T )

1. choose an initial condition x0

2. for i = 1 to T , do

{
xi = Update(xi−1)

}
3. return xT .



Principles of the MCMC algorithm :

◮ simulates a Markov chain

◮ the Update function reproduces the transition kernel of the
Markov chain

◮ the output xT is asymptotically distributed according to π
whenever T → ∞

◮ if the simulated Markov chain has good properties →
statistical inference is possible

◮ several solutions : Gibbs sampler, Metropolis-Hastings, birth
and death processes, stochastic adsorption, RJMCMC, exact
simulation (CFTP, clan of ancestors, etc.)



Markov chains : a little bit of theory

Let (Ω,F , µ) a probability space.

Markov chain : a sequence of random variables {Xn} such that :

P(Xn+1|X0, . . . ,Xn) = P(Xn+1|Xn)

The chain is homogeneous if the probabilities from going from one
state to another do not change in time.



Transition kernel : it is the “engine” of the Markov chain, that is a
mapping P : Ω×F → [0, 1] such that

◮ P(·,A) is measurable for any A ∈ F
◮ P(x , ·) is a probability measure on (Ω,F) for any fixed x ∈ Ω

Invariant distribution : the probability distribution π that satisfies

π(A) =

∫

Ω
π(dx)P(x ,A), ∀A ∈ F

◮ interpretation : the transition kernel changes of the current
state, but the new state is distributed according to π



Reversible chain : the probability of going from A to B equals the
probability of going from B to A

∫

B

π(dx)P(x ,A) =

∫

A

π(dx)P(x ,B).

The reversibility implies invariance. Indeed, since P(x ,Ω) = 1 and
considering B = Ω in the reversibility equations, we get

∫

Ω
π(dx)P(x ,A) =

∫

A

π(dx) = π(A)



Equilibrium distribution : the invariant distribution is an
equilibrium distribution if and only if :

lim
n→∞

Pn(x ,A) = π(A)

for all measurable sets A ∈ F and any x ∈ Ω ; Pn is the n−th
application of the transition kernel



Markov chains : convergence properties

Important : key elements whenever building a transition kernels

◮ aperiodicity : no deterministic loops

◮ irreducibility : the chain can go from any state to any other
state

◮ recurrence : the chain can go from any state to any other
state “often enough” → independence of the initial conditions

◮ ergodicity : the chains distribution converge towards its
equilibrium distribution “fast enough” (an ergodic chain is
recurrent ..)



Proposition

The invariant distribution of an aperiodic and irreducible chain is
unique and it is also the equilibrium distribution of the chain.

Remark : the previous result is verified, for all starting points
x ∈ Ω′ such that π(Ω \ Ω′) = 0. Hence, the convergence depend
on the initial conditions. The recurrence property banishes these
null-sets.



Proposition

The ergodic chain reaches the equilibrium regime, fast enough,
from any initial state. The large numbers law and the central limit
theorem can be used whenever sampling with an ergodic chain.

Remark : the speed of convergence of the chain may be the same
for all the initial conditions, the chain is uniformly ergodic. If the
speed of convergence depends on the starting a point, we may
have a geometrically ergodic chain

◮ drift condition : technical mathematical tool for establishing
convergence properties of a Markov chain



Metropolis-Hastings algorithm

Principle :

◮ consider the chain in the state xi = x

◮ propose a new state xf = y using the proposal density
q(xi → xf )

◮ accept this new state with probability

α(x , y) = min

{
1,

p(y)q(y → x)

p(x)q(x → y)

}

if not remain in the previous state

◮ iterate as many times as we need (... in theory till infinity ...)



Properties

◮ α(·, ·) is a solution of the detailed balance equation →
reversibility is preserved

◮ very few conditions are required for q(· → ·) so that the chain
has all the convergence properties

◮ q(· → ·) should be simple to calculate and to simulate

◮ the knowledge of the normalizing constant of p(·) is not
needed

→ blackboard + Exercise 12 + comment Elmo



MH algorithm for sampling marked point processes

Idea : the transition kernel propose to add an object to the
configuration with probability pb or propose to delete an object
from the configuration with the probability pd
Birth : add an object

◮ initial state : xi = x an object configuration

◮ final state : xf = x ∪ {ζ}
◮ proposal density to add an object : choose uniformly its

location in W and its mark independently according to νM

q(xi → xf ) = q(x → x ∪ {ζ}) = pb
1{ζw ∈ W }
ν(W )

◮ proposal density to remove an object : choose uniformly an
object from x ∪ {ζ}

q(xf → xi) = q(x ∪ {ζ} → x) = pd
1{ζ ∈ x ∪ {ζ}}

n(x) + 1



◮ acceptance probability

α(x → x ∪ {ζ}) = min

{
1,

pdp(x ∪ {ζ})
pbp(x)

× ν(W )

n(x) + 1

}
(10)

Death : remove an object

◮ the inverse movement of birth

◮ acceptance probability

α(x → x \ {ζ}) = min

{
1,

pbp(x \ {ζ})
pdp(x)

× n(x)

ν(K )

}
(11)

Remark : note the appearance of the Papangelou intensity in the
acceptance probability ⇒ local stability property guarantees good
convergence properties of the Markov chain



A transition kernel doing these transformations is

P(x,A) = pb

∫

K

b(x, η)α(x, y := x ∪ {η})1{y ∈ A}dσ(η)

+ pd
∑

η∈x

d(x, η)α(x, y := x \ {η})1{y ∈ A}

+ 1{x ∈ A}
[
1− pb

∫

K

b(x, η)α(x, x ∪ {η})dσ(η)

− pd
∑

η∈x

d(x, η)α(x, x \ {η})
]
,

where K = W ×M, dσ(η) = dσ((w ,m)) = dν(w)× dνM(m) et
0 < pb + pd ≤ 1. The birth rate is b(x, η) = 1

ν(W ) and the death

rate is d(x, η) = 1
n(x)



Algorithm

y = Update(x)

1. Choose “birth” or “death” with probabilities pb and pd ,
respectively.

2. If “birth” was chosen, then generate a new object following
b(x, η). Accept the new configuration, y = x ∪ {η} with the
probability α(x, y) given by (10).

3. If “death” was chosen, then select the object to be removed
using d(x, η). Accept the new configuration, y = x \ {η} with
the probability α(x, y) given by (11).

4. Return the present configuration.



Theorem
Let be b, d and q as described previously. Assume that b(x, η) and
d(x, η) are strictly positive on their corresponding definition
domain, respectively, and

lim
n→∞

un = lim
n→∞

[
sup

η∈W×M,x∈Ξn

d(x ∪ {η}, η)
b(x, η)

]
→ 0.

Fix pb, pd ∈ (0, 1) with pb + pd ≤ 1 and let p(x) be the probability
density of a marked point process on W ×M. The point process is
locally stable and p(x) is built w.r.t the standard Poisson process
µ. The MH sampler defined previously simulates a Markov chain
with invariant measure π =

∫
pdµ who is φ−irreducible, Harris

recurrent and geometric ergodic.



Remark :

◮ the same result holds if change moves are introduced with
care ... → explain ...

Optimality of the MH dynamics

◮ theoretical convergence properties

◮ local computation

◮ no need of the normalising constant

◮ highly correlated samples : only one element changed per
accepted transition

◮ allows improvements : transition kernels that “help” the
model



Tailored to the model proposal distribution

b(x, η) =
p1
ν(K )

+ p2ba(x, η),

with p1 + p2 = 1 and ba(x, η) a probability density given by

ba(x, η) =
1

n(A(x))

∑

x∈A(x)

b̃(x , η).

◮ the role of ba(x, η) : propose the birth of a new pointin those
regions where the interactions between the new born and the
other configuration members is favoured or not penalised by
the model

◮ A(x) : the set of marked points in a configuration that are not
exhibiting yet “good” interactions



Figure: Extremities marked by triangles are connected and further than
1
2 lmax + rc to the boundary, those labeled by a black disk are closer than
1
2 lmax + rc to the boundary of K .



MH algorithm for sampling the Candy model : dynamics behaviour
through the sufficient statistics analysis
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◮ great adaptability and theoretical convergence

◮ easy to use

◮ but appropriate solutions need to be found for each new
problem or situation ...

◮ the dynamics has to be built depending on the model

◮ the general framework, even if having good theoretical
properties, it is not always the most efficient from a numerical
point of view ...

◮ but if you do not have good theoretical properties, your
results will be bad anyway ...



Spatial birth-and-death processes

Theoretical background : continuous time Markov chains → the
very nice book of S. Resnick (2005)

◮ history : the first MCMC sampler for marked point processes

◮ the simulation of locally stable marked point process is very
simple

◮ thinning procedure

◮ the simulated pattern is “hidden” in a dominating Poisson
process



Algorithm

Let p be the probability density w.r.t. the standard Poisson
process, of a locally stable marked point process on W ×M. Its
corresponding Papangelou conditional intensity bound is Λ.

1. Simulate a Poisson process on W ×M with intensity function
ρ = Λ. Let xΛ be the obtained configuration.

2. Set x = ∅ the realisation of p, and continue

3. For every point η in xΛ do

◮ the point is added to x : x = x ∪ {η} with probability

λ(η; xΛ)

Λ

◮ otherwise the point is deleted from xΛ : xΛ = xΛ \ {η}
4. Return x



Remarks :

◮ this algorithm has all the desired convergence properties

◮ comparing with MH algorithm, this algorithm may easily
produce independent samples ...

◮ nevertheless, for strong interactions Λ may be very high

◮ Candy and Bisous models with strong interactions cannot be
simulated with this algorithm



Perfect or exact simulation

◮ classical MCMC methods → need a theoretical infinite time
till convergence

◮ dependence on the initial conditions

◮ perfect or exact MCMC methods indicate by themselves
whenever the convergence is attained

◮ these methods are perfect within the limits of the random
number generators of the computers

◮ historical paper : (Propp and Willson, 1996)



Principle : discrete case

Let us build a MCMC sampler for π defined on the discrete state
space Ω = {ω1, ω2, . . . , ωm}. The induced Markov chain (Xn) is
represented by its transition functiones φ(·, ·) such that

Xn+1 = φ(Xn,Vn), (12)

where Vn are i.i.d random variables.



Key idea :

◮ consider m, (Xn(ωi )) all initialised with a different state, that
evolve from −T < 0 till 0

◮ the chains are coupled : they use the same Vns

◮ if at a certain moment n ∈ −T , . . . , 0 all the chains are in the
same state or they coalesced, that is

Xn ≡ x

then they will all remain in the same state, till the time 0

◮ the influence of the initial conditions just ... vanished

◮ if the chains are started before the time −T , at infinite, the
chains will be all in the same state, at the same moment

◮ it comes out that X0 is a perfect sampler from the equilibrium
distribution π

→ blackboard drawing



Extraordinary smart idea :

◮ launching m parallel chains is not always feasible

◮ if Ω can be ordered

ωmin = ω(1) < ω(2) < . . . < ω(m) = ωmax

and if the transition kernel respect this order relation

ω ≤ ω′ ⇒ φ(ω) ≤ φ(ω′)

then only the states ωmin and ωmax are needed

◮ the behaviour of the other chains is bounded by the extremal
chains Xn(ωmin) and Xn(ωmax)

This idea is known under the name Coupling From The Past
(CFTP).



Perfect algorithms for sampling marked point processes

Previous ideas hold for perfect sampling of marked point processes
CFTP based algorithms :

◮ spatial birth-and-death and clan of ancestors : thinning
principles

◮ Metropolis-Hastings

◮ locally stable point processes

◮ monotonic and anti-monotonic point processes

◮ dominating process : stationary Poisson → (CFTP and clan of
ancestors), Λ parameter is important

◮ the transition function ingredients : conditional intensity, Λ
and the Vns



Gibbs sampler algorithm :

◮ discrete probability densities → approximation of the
continuous marked point processes probability density

◮ does not require : order relation, dominating process,
monotonic or anti-monotonic relation

◮ still the algorithm is more efficient if these properties are
exhibited by the considered model

◮ Potts like models

Remarks :

◮ CFTP algorithm is implemented within the spatstat package

◮ all these algorithms are implemented within the MPPLIB

C++ package



Strauss model : convergence speed for exact sampling methods

(van Lieshout and Stoica, 2006)
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Figure: Exact simulation algorithms applied to Strauss model : a) CFTP,
b) clan of ancestors, c) Metropolis-Hastings and d) Gibbs.



Comparison exact simulation and MH algorithm for the

Strauss model (1)
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Figure: Boxplots comparison for the n and sr statistics distributions :
white - the distributions obtained using the exact algorithm, pink (dark
couloured) - the distributions obtained using the Metropolis - Hastings
algorithm.



Comparison exact simulation and MH algorithm for the

Strauss model (2)
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Figure: Qqplot comparison for the n and sr statistics distributions.



Open questions MCMC methods :

Classical algorithms - MH based dynamics

◮ good convergence properties but convergence at infinity

◮ burning-in methods + de-correlation techniques

◮ great adaptability : tailored to the model moves

◮ manipulate several objects during one move : work of X.
Descombes

◮ link with RJMCMC : great adaptability, but difficult to state
convergence proofs, hence difficult to use ...



Perfect simulation algorithms

◮ the simulated chain indicates by itself whenever convergence
is reached

◮ parameter dependence : can be applied in practice only to a
restricted range of parameters

◮ neither change moves, nor tailored moves

◮ study existing algorithm : Fill algorithm, forward simulation
and simulated tempering

◮ challenging perspective : synthesis of both families of
algorithms → exact algorithms able to be tailored to the
model



Lesson I
Introduction
Some data sets and their related questions

Lesson II
Mathematical background
Definition of a point process
Binomial point process
Poisson point process

Lesson III
Moment and factorial moment measures, product densities
More properties of the Poisson process
Campbell moment measures
Campbell - Mecke formula

Lesson IV
Interior and exterior conditionning
A review of the Palm theory
Slivnyak - Mecke theorem
Applications : summary statistics

Lesson V



Reduced Palm distributions
Campbell and Slivnyak theorems
Summary statistics : the K and L functions
Exterior conditioning : conditional intensity

Lesson VI
Cox processes
Cluster processes
Boolean model
Capacity functional.Choquet theorem

Lesson VII
Probability density of a point processes
Interacting marked point processes
Markov point processes

Lesson VIII
Monte Carlo simulation
Markov chains : a little bit of theory
Metropolis-Hastings algorithm
MH algorithm for sampling marked point processes
Spatial birth-and-death processes



Perfect or exact simulation

Lesson IX
Statistical inference problems
Monte Carlo Maximum likelihood estimation
Parameter estimation based on pseudo-likelihood
Model validation : residual analysis for point processes
Statistical pattern detection

Conclusion and perspectives



Statistical inference problems

Problem I : parameter estimation

◮ observe the pattern x and find the model parameters θ able to
statistically reproduce it

◮ complete and incomplete data : Monte Carlo maximum
likelihood, pseudo-likelihood, EM ...

◮ open problem : sampling p(θ|x) ...
Problem II : pattern detection

◮ observe the data d and find x “hidden”

◮ the model parameters are : hidden, modelled, unknown

◮ open problem : the detected pattern does it really exist ...?



Problem III : sample the joint law of the pattern and the
parameters p(x, θ)

◮ shape modelling → “crystal ball” ?

◮ observe a phenomenon and propose a model doing the
“same” ...

◮ needs the time dimension

◮ open problem : time,

◮ what it is the time “quanta” → generating element and
interactions as for marked point processes ?



Monte Carlo Maximum likelihood estimation

Exponential family models :

◮ very general framework

◮ the point processes models that were presented are given by

p(x|θ) = exp〈t(x), θ〉
Z (θ)

where t(x) and θ represent the sufficient statistics vector and
the model parameters vector, respectively. The normalising
constant Z (θ) is unknown.

The configuration x is entirely observed, hence the log-likelihood
with respect a known parameter ψ can be written as follows :

l(θ) = 〈t(x), θ − ψ〉 − log
Z (θ)

Z (ψ)



It is easy to check, that the normalizing constants ratio is

Z (θ)

Z (ψ)
= E [exp〈t(X), θ − ψ〉] ,

since we have

Z (θ)

Z (ψ)
=

1

Z (ψ)

∫

Ω
p(x|θ)dµ(x)

=
1

Z (ψ)

∫

Ω
p(x|θ)p(x|ψ)

p(x|ψ)dµ(x)

=

∫

Ω

p(x|θ)
p(x|ψ)

p(x|ψ)
Z (ψ)

dµ(x)

= E

[
p(X|θ)
p(X|ψ)

]



The Monte Carlo approximation of the normalizing constants ratio
gives :

Z (θ)

Z (ψ)
≈ 1

n

n∑

i=1

exp〈t(Xi), θ − ψ〉,

where X1,X2, . . . ,Xn are samples obtained from p(y|ψ).
Hence, the Monte-Carlo counterpart of the log-likelihood is :

ln(θ) = 〈t(x), θ − ψ〉 − log

(
1

n

n∑

i=1

exp〈t(Xi), θ − ψ〉
)
.



Theorem
The log-likelihood of an exponential family model is a convex
function.

◮ proof : see (Monfort 1997, Thm.3, pp. 61)

◮ ln(θ) → l(θ) almost sureley

◮ all these suggest that local optimisation procedures applied to
ln(θ) may give interesting results



MCMC local optimisation procedures

The gradient of the MCMC log-likelihood is

∇ln(θ) = t(x)− En,θ,ψ[t(X)]

where

En,θ,ψ[t(X)] =

∑n
i=1 t(Xi) exp〈t(Xi), θ − ψ〉∑n

i=1 exp〈t(Xi ), θ − ψ〉
that is the Monte Carlo importance sampling approximation
of Eθt(X).



Similarly, the Hessian can be computed too :

−∇2ln(θ) = Varn,θ,ψ[t(X)]

where

Varn,θ,ψ[t(X)] = En,θ,ψ[t(X)t(X)
t ]− En,θ,ψ[t(X)]En,θ,ψ[t(X)

t ].



Newton-Raphson method :

θk+1 = θk − [∇2ln(θk)]
−1∇ln(θk) (13)

for k = 1, 2, . . .,

◮ ln(·) is computed using n samples from p(x|ψ)
◮ the computation of the gradient and Hessian inverse is

numerically unstable

◮ useful only if the initial value is close enough from the solution



Stochastic gradient :

θk+1 = θk + ǫk [t(x)− t(Xk)]

where ǫk > 0 is a decreasing sequence while Xk is a sample of
p(x|θk)

◮ very simple, but finding an optimal sequence {ǫk} is an open
problem

◮ L. Younes, G. Winkler : Markov random fields

◮ R. Moyeed and A. Baddeley : point processes

◮ joint pattern detection and parameter estimation



Iterative gradient method :

{
ln(θk + ρ(θk)∇ln(θk)) = maxρ∈R ln(θk + ρ∇ln(θk))
θk+1 = θk + ρ(θk)∇ln(θk)

where ρ(θk) is the optimal step (Descombes et al. ’99, Stoica ’01).

◮ re-sampling if ‖ θk − ψ ‖> threshold

◮ obtain a reference value θ0 close enough to the maximum
likelihood estimator



Asymptotic results

The random variable
√
n(θ̂n − θ̂) whenever n → ∞, it converges in

distribution towards a normal random variable of zero mean and
variance I (θ̂)−1ΓI (θ̂)−1 :

√
n(θ̂n − θ̂) → N (0, I (θ̂)−1ΓI (θ̂)−1).

◮ the matrix
I (θ̂) = Var

θ̂
[t(X)] = −∇2l(θ̂)

is the Fisher information of θ̂

◮ the matrix Γ is the matrix of asymptotic covariance of the
normalised Monte Carlo gradient

√
n∇ln(θ̂)

◮ an approximation of these matrices may be found in (van
Lieshout and Stoica, 2003)

◮ under some assumptions, the error θ̂ − θ0 can be estimated by
the diagonal of the inverse of −∇2ln(θ̂n)



MCML example

Candy model : (van Lieshout and Stoica, 2003)
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Figure: Realization (left) of the reference model given by the parameters
in the middle table. The observed values of the sufficient statistics are
listed at right.



Results : estimation of the parameters from the reference
configuration given by the Candy model

Initial param-
eters

Iterative
method

Monte Carlo
MLE

θif = −9.5 θ̂0f = −8.37 θ̂nf = −8.32

θis = −4.0 θ̂0s = −2.74 θ̂ns = −2.73

θid = 1.5 θ̂0d = 2.46 θ̂nd = 2.47

θio = −3.5 θ̂0o = −2.13 θ̂no = −2.17

θir = −3.5 θ̂0r = −2.42 θ̂nr = −2.42

Asymptotics : estimation errors (central limit theorems available)

Asymptotic standard MCSE
deviation of MLE

0.51 0.002
0.23 0.003
0.17 0.001
0.30 0.002
0.31 0.005



Log-likelihood ratio approximation :

a) −11 −10.5 −10 −9.5 −9 −8.5 −8 −7.5 −7
−8

−7

−6

−5

−4

−3

−2

−1

0

1

b) −5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1
−30

−25

−20

−15

−10

−5

0

5

c) 1 1.5 2 2.5 3 3.5 4 4.5 5
−60

−50

−40

−30

−20

−10

0

d) −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5
−16

−14

−12

−10

−8

−6

−4

−2

0

2

e) −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5
−16

−14

−12

−10

−8

−6

−4

−2

0

2

Figure: Monte Carlo approximation of the log likelihood function. The X
axis represents the variation of a single component. The Y axis
represents the values of the Monte Carlo log likelihood with all other
components of θ̂0 fixed : a - θf ∈ [−11,−7], b - θs ∈ [−5,−1], c -
θd ∈ [1, 5], d - θo ∈ [−4.5,−0.5], e - θr ∈ [−4.5,−0.5].



Parameter estimation based on pseudo-likelihood

The pseudo-likelihood of a marked point process X with conditional
intensity λθ(ζ; x) observed on the bounded set W is expressed as

PLW (θ; x) =

=

[
∏

xi∈x

λθ(xi ; x)

]
exp

[
−
∫

W×M

λθ((w ,m); x)ν(dw)νM (dm)

]
.

The pseudo-likelihood estimator is given by the solution of the
equation :

∂PLW (θ; x)

∂θ
= 0



Properties :

◮ the PL is concave for exponential models

◮ no normalising constant needed ...

◮ it ”amplifies” the interaction weights : check the formula - for
a Strauss process the interactions are counted twice ...

◮ consistency and asymptotic normality of the estimator : if we
observe the model in a finite window, then it converges
towards the parameters estimated based on the “whole”
window (Jensen and Møller, 1991)

◮ lacks of statistical significance (except for the Poisson
process) : there is no real link with the true model behind the
pattern

◮ but easy to be implemented : this was the motivation to
introduce it in the middle of 70s (Besag, 1975)



Implementation within R spatstat package

◮ stationary Strauss process :

log λθ(ζ; x) = log β + (log γ)t(ζ, x)

with t(ζ, x) the number of pairs of objects closer than the
distance r in the configuration y

◮ general structure of the conditional intensity

log λθ(ζ; x) = ηS(ζ) + φV (ζ, x),

with the ‘first order term’ S(u) that describes spatial
inhomogeneity and/or covariates effects and the ‘higher order’
term that describes interobject interaction

◮ refer to the spatstat documentation



Applications

Pseudo-likelihood profile analysis : the range parameters
>radius = data.frame(r=seq(0.05,0.11, by=0.01))

>pradius = profilepl(radius, Strauss, japanesepines)

>plot(pradius,main="Strauss : PL analysis")
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Fitting the model to the pattern :
> ppm(japanesepines, 1,Strauss(r=0.08),rbord=0.08)

Stationary Strauss process

First order term: beta 77.93567

Interaction: Strauss process interaction distance:

0.08

Fitted interaction parameter gamma: 0.7953



Synthesis parameter estimation

Monte Carlo maximum likelihood :

◮ general statistical framework

◮ numerically unstable → but re-sampling is guaranteed to
convergence, since the log-likelihood is convex

◮ the asymptotics are related to the true model

◮ property : the expectation of the sufficient statistics
computed by the model with the ML parameters equals the
observed sufficient statistics



Pseudo-likelihood :

◮ easy to compute

◮ good alternative whenever nothing else can be done

◮ consistency and central limit theorems : difficult to interpret

◮ no properties concerning the sufficient statistics of the model
using the PL estimates of the parameters

◮ work of J. Mateu and P. Montes : comparison with maximum
likelihood

Open questions :

◮ range parameters

◮ parameters of the mark distribution

◮ posterior sampling

◮ incomplete data : EM algorithms converges towards the first
local maximum → a lot of references available ...

◮ ABC methods : empirical methods for parameter estimation
→ control the sufficient statistics



Model validation : residual analysis for point processes
Let X be a locally stable marked point process on W ×M.

h−Innovations : for nonnegative functions h and A ⊆ W ×M

I (A, h, λ) =
∑

xi∈YA

h(xi ,X \ xi)−
∫

A

λ(η;X)h(η,X)(ν × νM)(dη)

◮ assuming the sum and the integral in the definition have finite
expectations, the Georgii-Nguyen-Zessin formula gives

EI (A, h, λ) = 0

◮ I is a signed measure

◮ △I (xi ) = h(xi ,X \ η) : the innovation increment (’error’)
attached to a point η ∈ X

◮ dI (η) = −λ(η;X)h(η,X) : the innovation increment attached
to a background location η ∈ W ×M



h−Residuals : for h ≥ 0 functions and A ⊆ W ×M

R(A, ĥ, θ̂) = I (A, ĥ, λ̂)

=
∑

xi∈xA

ĥ(xi , x \ xi)−
∫

A

λ̂(η; x)ĥ(η, x)(ν × νM)(dη)

since the function h may depend on the model, ĥ denotes an
estimate.
Application idea :

◮ consider a parametric model for a marked point process X
observed within A

◮ estimate the model parameters (maximum likelihood,
pseudo-likelihood)

◮ expect the residuals R(A) to be close to 0 if the model is
appropriate



Building residuals : several possible choices for h

◮ raw residuals h(η, x) = 1

R(A, 1, θ̂) = n(x ∩ A)−
∫

A

λ̂(η; x)(ν × νM)(dη)

◮ inverse residuals h(η, x) = 1/λ(η; x) (equivalent with the
Stoyan-Grabarnik diagnostic)

R(A,
1

λ̂
, θ̂) =

∑

xi∈xA

1

λ̂(xi ; xA)
−
∫

A

1{λ̂(η; x) > 0}(ν × νM)(dη)

◮ Pearson residuals h(η, x) = 1/
√
λ(η; x) (analogy with Poisson

log-linear regression)

R(A,
1√
λ̂
, θ̂) =

∑

xi∈xA

1√
λ̂(xi ; xA)

−
∫

A

√
λ̂(η; x)(ν × νM)(dη)



Remark
The inverse and Pearson residuals we need λθ(x)(xi ; x) > 0 for all
xi ∈ x for any pattern yy , while λθ(x)(η; x) = 0 is allowed for η /∈ x

Properties

◮ expectation

E

[
R(A, ĥ, θ̂)

]

=

∫

A

E

[
h
θ̂(X∪{η})

(η,X)λ(η,X) − h
θ̂(X)

(η,X)λ
θ̂(X)

(η,X)
]

◮ variance : more complicate structures but very nice formulas
for Poisson processes (Baddeley, Moller and Pakes 2008)

◮ these residuals do not have independent increments → the
raw innovations for Markov point processes are conditionnaly
independent and uncorrelated (Baddeley, 2005)

◮ consistency and asymptotic normality for the residuals of
stationary Gibbs point processes (Coeurjolly and Lavancier,
2013)



Application : smoothed residuals to test several models for
japanesepines datasets

◮ Strauss process : only repulsion

◮ area-interaction process : repulsion or attraction (competition
for ressources)
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Figure: Raw residual analysis, from left to right : Strauss(r=0.08) and
AreaInt(r=0.09)



◮ R code
>mjp=ppm(japanesepines, 1,Strauss(r=0.08),rbord=0.08)

>rjp=residuals(mjp,type="raw")

>plot(rjp)

QQ plots : comparison of empirical quantiles of the smoothed
residuals with the expected quantiles under the estimated model

◮ interpretation in the spirit of K and F functions

◮ if the data pattern is more clustered than the model : heavier
tails especially in the left-hand tail

◮ if the data pattern is more inhibited than the model : lighter
tails especially in the right-hand tail

◮ R code : qqplot.ppm(rjp, type="raw")
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Figure: Q-Q plot analysis, from left to right : Strauss(r=0.08) and
AreaInt(r=0.09)

◮ Strauss(r=0.08) : over-estimates repulsion, but
under-estimates close attraction

◮ AreaInter(r=0.09) : very well for the close attraction,
underestimate the repulsion

◮ the best model for the entire data set : polynomial
inhomogeneity and soft-core interaction



Remarks :

◮ the theory is wonderful

◮ but the numerical results are obtained using the PL estimators
...

◮ see the remark of J. Besag

◮ visualisation of residuals difficult for higher dimensions

◮ the qq plots very informative → link with the central limit
theorems for computing confidence intervals

◮ open question : validating pattern detection result ... ?



Statistical pattern detection
Build the pattern model : probability density construction
conditionally on the data observation

p(x, θ|d) ∝ exp

[
−Ud(x|θ) + Ui (x|θ)

Z (θ)
+ log p(θ)

]

◮ interaction energy Ui(x|θ) → objects interactions (geometrical
shape of the structure)

◮ data energy Ud(x|θ) induced by the data field d → object
locations

◮ if the interaction parameters are unknown → prior model p(θ)

Pattern estimator : the object configuration that maximises the
probability density

(x̂, θ̂) = arg min
Ω×Ψ

{
Ud(x|θ) + Ui(x|θ)

Z (θ)
− log p(θ)

}

with Ψ the model parameters space



Simulated annealing : global optimisation technique

◮ sampling from p(x, θ)1/T while slowly T → 0

◮ convergence towards the uniform distribution on the
configuration subspace minimizing U(x, θ) (Stoica, Gregori
and Mateu, 2005)

◮ inhomogeneous Markov chain ...

Algorithm

x = Simulated Annealing (T0, δ,T )

1. choose an initial condition x0

2. for i = 1 to T do

{
xi = Update (xi−1,Ti−1, δ)
Ti = T0/[log(i) + 1]
}

3. return xT .



Level sets estimators :

◮ visit maps for compact regions in K (Heinrich, Stoica and
Tran, 2012) :

{T (x) > α} ⇒ {Tn(x) > α}

◮ two challenges : discretisation and Monte Carlo
approximations

◮ average behaviour of the pattern (fixed temperature)



Build the machine ...
Galaxies catalogs :

◮ interaction energy : Bisous model (random cylinders)
◮ data energy : local tests (density and spread of galaxies inside

a cylinder)
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Figure: Locating interacting cylinders in a field of points.



Epidemiological data :

◮ interaction energy : Strauss and Area-interaction model
(random disks)

◮ data energy : local statistical test (the average score of the
farms covered by a disk)

a) b)

Figure: Data→ field of marked points : a) observed clusters, b) clusters
approximated by random disks.



Road network extraction

(Stoica, Descombes, van Lieshout and Zerubia, 2002)

a) b)

Figure: Rural region in Malaysia : a) original image; b) obtained results.



Forest galleries : verifying the results
(Stoica, Descombes and Zerubia, 2004)

a) b)

c) d)

Figure: Forest galleries extraction : a) original image ; b) ground truth ;
c)-d) obtained results. Data provided by BRGM.



Galaxy catalogue (1) : (Tempel, Stoica et. al., 2014)

Figure: Detected filamentary pattern (cylinder axes) in a small sample
volume within a pattern of galaxies (points).



Galaxy catalogue (2)

(Tempel, Stoica et. al., 2014)
The movie, showing the MCMC in action is available at
:http://www.aai.ee/ elmo/sdss-filaments/



Epidemiology : sub-clinical mastitis data

(Stoica, Gay and Kretzschmar, 2007)
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Figure: Disease data scores and coordinates for the year 1996 : a) disk
configuration obtained using the simulated annealing algorithm ; b) cover
probabilities.



Does the detected pattern really exist ?

Idea : the sufficient statistics of the model → morphological
descriptors of the shape hidden by the data

◮ turn the machine at constant temperature T = 1

◮ compute the average of the sufficient statistics

◮ compare with the maximum value obtained for the permuted
data

Sufficient statistics :

◮ Bisous model (pattern of connected cylinders) : free cylinders,
cylinders with one extremity connected, cylinders with both
extremities connected



Test for the galaxy catalogs

Permuted data : keeping the same number of galaxies while
spreading them uniformly (binomial point process)

Data
Sufficient statistics NGP150 NGP200 NGP250

n̄2 4.13 5.83 9.88
n̄0 15.88 21.19 35.82
n̄1 21.35 35.58 46.49

Simulated data (100 binomial catalogs)
Sufficient statistics NGP150 NGP200 NGP250

max n̄2 0.015 0.05 0.015
max n̄0 0.54 0.27 0.45
max n̄1 0.39 0.24 0.33



Test for the epidemiological data

Permuted data : keeping the same farm locations while exchanging
the score disease

Results :

◮ sufficient statistics for the data from the year 1996 :

n̄(y) = 74.10, ν̄[Z (y)] = 312.46, n̄o = 555.08

◮ maximum values of the sufficient statistics for 100 simulated
data fields

n̄(y) = 2.36, ν̄[Z (y)] = 13.83, n̄o = 2.62

Interpretation : this test does not say if the pattern is well
detected, but it says that there is something to be detected ...



How similar are two data sets ?

Cosmology : compare the sufficient statistics for 22 mock
catalogues with the ones for the observation (Stoica, Martinez and
Saar, 2010)

Discussion

◮ mock catalogues exhibit filaments

◮ mock filaments are generally shorter, more fragmented and
more dense

◮ Bisous model : good for testing the filamentary structure
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Figure: Comparison of the sufficient statistics distributions for the real
data (dark box plot) and the mock catalogues.



Spatial models and random geometry :

◮ Markov marked point processes allow statistical and
morphological description of the pattern

◮ good synthesis properties

◮ limitations : models remain just models ...

Perspectives :

◮ random geometry (marked point processes, random fields) →
modelling, simulation, statistical inference

◮ temporal dimension ...

◮ applications : astronomy and environmental sciences
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