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Summary. In this work a vortex method is used to simulate an incompressible
two-dimensional transitional flow over a backward-facing step. The simulations are
validated for two different Reynolds numbers comparing to previous studies. Then,
two different control strategies are implemented to modify the shedding, the recir-
culation zone behind the step and the transport in the channel. The first technique
consists in using a pulsing inlet velocity and the second one is based on local oscil-
lating jets implemented on the step wall. The influence of these controls on several
characteristic functionals related to the flow is carefuly investigated. Both, open-
loop and closed-loop active control approaches are performed in order to choose the
most efficient control methods.

Introduction

Control of internal separated and reattaching flows is motivated by a wide
amount of engineering applications, like sudden changes of sections or cor-
ners in pipes, cavitation in pumps, mixing in diffusers or combustors. Targets
to reach are very diversified, according to the wanted effect: Drag reduction,
noise suppression, mixing enhancement, flow stabilization, etc...

In this kind of flow, the backward-facing step test is one of the most stud-
ied cases, because this problem exhibits all the essential features of internal
separated flows. Indeed, the pressure increases in the direction of the flow,
which causes the boundary layer to separate from the solid surface. The flow
reattaches downstream, forming a recirculation bubble. In the same time, this
configuration allows some important simplifications with respect to more com-
plex cases. for example, the separation point is a priori known to be located
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at the edge of the step.

Bibliographic data about the backward-facing step is incredibly wide. Nev-
ertheless, some references among the available papers are already useful to
have a large overview. Description of such a flow was given on several di-
mensioned geometries for laminar, transitional or turbulent regimes. Armaly
et al [ADPS83] investigated the detailed description from the laminar to the
turbulent regime (70 < Re < 8000), both experimentally and numerically.
Their study focussed not only on the primary zone of recirculation attached
to the backward-facing step, but also on the additional regions of recirculation.
They confirmed that available computer codes for flow predictions can be suc-
cessfully employed to compute backward-facing step flows. Le et al [LMK97]
worked on the pressure fluctuation contours and on the reattachment length
obtained by a direct numerical simulation for a turbulent regime, and were
interested in the skin friction coefficient particularly high in the recirculation
regions. Another reference on the skin friction distribution is the paper of
Spazzini et al [SIOZD01], which analysed in details the behavior of instan-
taneous wall shear stresses downstream of the step. More recently, Wee et al
[WYAG04] and Yi et al [YWAG04] considered a two-dimensional direct nu-
merical simulation to obtain the dominant absolute mode frequency and to
investigate large eddy formation and shedding phenomena in the backward-
facing step flow as well as instabilities which occur.

Papers on control of such flows are also available. Chun and Sung [CS96]
experimentally produced excitations to separated flow by means of a sinu-
soidally oscillating jet issuing from a thin slit near the separation line for a
turbulent regime. The effects of the amplitude and of the frequency on the
reattachment lenght were analysed. More recently, Kaiktsis anf Monkewitz
[KM03] investigated the global destabilization of a two-dimensional flow over
a backward-facing step embedded in a channel using self-excited oscillations
of the entire flow, induced by an appropriate local blowing and suction device.
Wengle et al [WHBJ01] experimentally and numerically studied the effect of
a low amplitude and periodic blowing and suction excitation through a nar-
row slot at the edge of the step on the mean recirculation lenght. Creusé and
Mortazavi [CM04] numerically investigated the recirculation areas obtained
by an inlet pulsed velocity in a laminar configuration.

A closed-loop control by local forcing near the separation point was stud-
ied by Yi et al [YAG04]: Using an adaptive sliding controller based on a proper
orthogonal decomposition, a very significant reduction in the kinetic energy
of the fluctuations was achieved. Two other very interesting references cor-
respond to the turbulent channel flow control. Even if the configuration is
no more the back-facing step, the flow control procedure can be used in a
similar way to confined flow problems and the separation control. The first of
them is Hammond et al [HBM98], which succeeded in attenuating near wall
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turbulence and reducing drag in wall bounded turbulent flows. It consists in
blowing and suction at the wall, in the opposite direction to the wall normal
fluid velocity. The direction is recorded respecting the flow unsteadiness at ev-
ery time step in the vicinity of the boundary. The second is the one of Joshi et
al [JSK97], which developed feedback controllers based on linear theory that
stabilize a two-dimensional plane Poiseuille flow to infinitesimal disturbances,
using also a blowing/suction device to the wall in the normal direction for a
laminar flow configuration.

The aim of the present work is to develop two different active control
strategies to manipulate the flow characteristics inside a backward-facing step
channel with a transitional flow regime: 1) using pulsed inlet velocities, with
open and closed-loop frequency choices; 2) implementing two vertical jets to
step wall with passive, open-loop or closed-loop action into the lower and
upper levels of the step. This work follows the primary results obtained by
the authors in a previous paper, devoted to the open-loop control of laminar
flows in a similar geometry [CM04]. In this work, the impact of the control
on several significant flow characteristics like vorticity, energy, fluctuations,
velocity gradients etc. are carefully analysed.

The numerical simulations are performed using a Vortex-In-Cell method
[Chr71]. In VIC calculations, an Eulerian grid can be implemented in order
to compute efficiently the velocity field on the Lagrangian particles. The goal
is to obtain a fast computation of the particle velocities in regular bounded
domains. VIC methods for viscous flows may be viewed as an appealing alter-
native to pure grid-free vortex methods in simple geometries. In this case, the
use of fast Possion solvers also enables fast velocity evaluations. Compared
with pure finite-difference methods, VIC methods offer the advantage of a
robust and accurate treatment of the convective part of equations with time
steps not constrained by convective CFL conditions [CK00]. Moreover, the
diffusion part of equations are solved by the Random Walk Algorithm [GS85]
that is easy to implement with very small time consuming and well adaptable
to the Lagrangian particles transport [Pel97], [MMG02], [SG88].

In the following we describe the flow simulation method with some vali-
dation tests. This section covers the flow configuration, the governing equa-
tions, and the numerical code used for the simulation. The uncontrolled sim-
ulation is then validated, by comparing our results to some other numeri-
cal experiments available in the literature for two different Reynolds number
([SG88],[WYAG04]). The second part explains the control objectives in term
of functionals definitions as well as different control strategies: open-loop con-
trol, closed-loop control with intrusive or non intrusive sensors. The next part
is devoted to discussion on controlled numerical results related to the first
approach (oscilating inlet velocities), to find which procedure is the most rele-
vant in order to make the control efficient. Finally, in the last part the second
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control strategy (jets normal to the step wall) is numerically implemented and
detaily discussed. The results are then compared to each other.

1 Flow simulation and validation

1.1 Flow configuration and governing equations

The dynamics of a two-dimensional incompressible flow over a backward-
facing step is governed by the conservation of mass and momentum, namely
the two-dimensional incompressible Navier-Stokes equations, given by :

∇.u = 0 in Ω (1)

∂u

∂t
+ u.∇u = −∇p+

1

Re
∆u in Ω, (2)

where Ω is the computational domain of Figure 1 with Ldown = 10, Hstep =
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Fig. 1. The computational domain

0.5 and Hup = 0.5. According to the validation objective, we will set either
Lup = 1 (similarly to [SG88]) or Lup = 5. The boundary conditions to impose
on the wall Γwall as well as on the inflow Γin and on the outflow Γout will be
specified below. Here, u = (u, v) is the velocity normalized with respect to a
given velocity U , x = (x, y) the two orthogonal space directions normalized
with respect to 2H where H is the physical height of the step (that’s why
the computational height is Hstep = 0.5), t the time normalized with respect
to 2H/U , and p the pressure normalized with respect to ρU2 where ρ is the
density of the fluid. The numerical Reynolds number Re is then defined by
Re = 2ρUH/µ, with µ the dynamic viscosity of the fluid, which corresponds
to a physical Reynolds number Reφ = ρUH/µ = Re/2. The commonly used
differential operators are given by:

∇.(f1, f2)
T =

∂f1
∂x

+
∂f2
∂y

,
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∇f =

(

∂f

∂x
,
∂f

∂y

)T

,

∆f =
∂2f

∂x2
+
∂2f

∂y2
.

The vorticity ω is defined in two dimensions by the curl of the velocity vector :

ω = ∇× u =
∂v

∂x
−
∂u

∂y
. (3)

Taking the curl of equation (2) and using equation (1), we get the Helmholtz
or the Vorticity Transport Equation (VTE):

∂ω

∂t
+ u.∇ω =

1

Re
∆ω in Ω, (4)

expressing the transport of vorticity by convection and diffusion. Solving this
equation permits us to convect and diffuse the vorticity field. Once the vor-
ticity field known, integrating the equations (1) and (3) permits to describe
the velocity field. The unsteady structure of these equations permits to find
out the solution along the time. Finally, because the VTE doesn’t contain
directly the pressure term (taking the curl of Navier-Stokes equations this
term is vanished), the pressure can be recovered from the velocity field by
integrating the following Poisson equation:

∆p = 2

(

∂u

∂x

∂v

∂y
−
∂u

∂y

∂v

∂x

)

in Ω, (5)

which is derived as the divergence of equation (2) also using the equation (1).

1.2 Numerical method

The previous equations are approximated using a Vortex method [Chor73],
[CK00]. These methods that are very robust and low-cost techniques to sim-
ulate high Reynolds number recirculating flows (see for example [GC87],
[SG88]), are more recently used to implement control techniques in fluid me-
chanics [PKNDT03]. In this kind of approach, the VTE equation (4) is solved
using a two-fractional step (or viscous splitting) method. It corresponds to
approximate separately the diffusion and convection terms at each time step.
Beale and Majda [BM81] prooved that the viscous splitting method converges
towards the solution of the Navier-Stokes equations as the viscosity increases.
The two fractional steps are:

∂ω

∂t
+ u.∇ω = 0, (6)

∂ω

∂t
=

1

Re
∆ω. (7)



6 E. Creusé, A. Giovannini, and I. Mortazavi

The convective part is solved using a ”Vortex-In-Cell (VIC)” method (see
e.g. [CK00]) with a semi-Lagrangian resolution. In this fractional step, the
transport of vorticity due to convection is obtained from the solution of equa-
tion (6) in terms of the Lagrangian displacement of a set of finite vortex
elements. If we define the stream function Ψ by :

u =
∂ψ

∂y
and v = −

∂ψ

∂x
, (8)

and then substituting it in the equation (3), the following Poisson equation is
achieved :

−∆ψ = ω. (9)

Let assume that a number nvn of the finite vortex elements, located at xn(it)
with a circulation (strength) γn(it), are known at time tn, 1 ≤ it ≤ nvn. Let
also assume that the vorticity field ωn(i, j) at time tn is known on a cartesian
mesh of the computational domain, i and j being respectively the horizontal
and vertical indices of the mesh. The main target of the resolution method is
to compute the same quantities at time tn+1 = tn + δt as nvn+1, xn+1(it),
γn+1(it) and ωn+1(i, j).

In the first step of the computational procedure, the equation (9) with
associated boundary conditions (see paragraph 1.3) is solved to recover the
stream function field Ψn(i, j). Then, solving the equation (8), the velocity
un(i, j) is computed at each node of the mesh. Finally, using a linear inter-
polation procedure, a convective velocity un

v (it) is associated to each finite
vortex element (1 ≤ it ≤ nvn), and so a convective displacement is given by
dlnconv(it) = un

v δt.

In the second fractional step, the solution of the equation (7) is simu-
lated stochastically with the displacement of the vortex elements by the ran-
dom walk method. This method is based on the theorem expressing that the
brownian motion of an infinite number of particles converges towards the so-
lution of the heat equation ([Chor73], [GS85]). The Green function of the
two-dimensional diffusion equation (7) is given by:

Gr(x, y, t) =
Re

4πt
exp

(

−
Re(x2 + y2)

4t

)

, (10)

which is identical to the probability density fonction of a Gaussian random
variable η = (ηx, ηy) with a zero mean and a standard deviation σ(t) =
√

2t/Re:

G(ηx, ηy, t) =
1

2πσ2(t)
exp

[

−
1

2σ2(t)

(

η2
x + η2

y

)

]

, (11)

where ηx and ηy are two independant random variables related to directions x
and y. Based on the linearity of equation (7), the solution of (7) is simulated
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stochastically by 2-dimensional displacement of the vortex elements in per-
pendicular directions x and y using two sets of independant Gaussian random
numbers with a zero mean and σ =

√

2 δt/Re standard deviation . This leads
to a random and markovian Lagrangian displacement of dlndiff(it) from time
tn to time tn+1.

Then, the final location of each finite vortex element xn+1
∗

(it) at time tn+1

is obtained as the sum of the convective and diffusive movements during the
last time step:

xn+1
∗

(it) = xn(it) + dlnconv(it) + dlndiff (it). (12)

If the vortex element leaves the computational domain through the inlet
or outlet boundary, then the vortex is destroyed and does not exist any more
in the domain. However, because the lagrangian property of vortex methods
there is a very small probability that a computational particle leaves the do-
main by a solid wall. Of course, such an event is not natural and is related to
the computational errors in the fluid trajectory especially because the random
walk method ([SG88], [GS85]). In this case, the vortex element has to be re-
placed in the computational domain. To achieve this aim, the exited particle is
reflected to the internal domain through the solid wall. This reflection proce-
dure is symmetrical respecting to the wall position. It should be outlined that
this element ”recapturing” approach is only valid for a very small number of
exhausted elements and the computation is interrupted if the number of ex-
ited vortices via solid walls becomes higher than an accuracy limit ([Chor73],
[CK00]).

In incompressible flows the unique source of generation of the vorticity
is the no-slip boundary condition. Vortex methods mimic this physical phe-
nomenon. So, the slip velocity on the wall is nullified by the generation of
new vortex elements on the boundary [Chor78]; it also compensates the vor-
ticity leaving the domain from the exit boundary. Therefore, the last step of
the algorithm is devoted to the vortex generation on the solid boundary. The
task is performed using an induced circulation cancelling of the slip veloc-
ity un(i, j) . τ computed in the first step on the nodes of the wall boundary,
where τ is the tangential vector to the wall. New vortices are then injected in
the domain by the normal diffusion. The number of newly created vortices is
determined by the value of the slip velocity in order to achieve a zero velocity
at each boundary point. The new number of vortices nvn+1 as well as their
location xn+1(it) and circulation γn+1(it) is then known (1 ≤ it ≤ nvn+1).

The circulation of vortices is finally distributed on the grid nodes, allowing
to recover the vorticity field ωn+1(i, j) for the post-processing needs, and to
repeat the whole procedure to get the variables at the following time steps.
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1.3 Boundary conditions

To close the problem, boundary conditions on u have to be added to the set
of equations (1)-(2), which are :

u = (0, 0)T on Γwall, (13)

u = (1, 0)T on Γin, (14)

∂v

∂x
= 0 on Γout. (15)

Boundary conditions (13) and (14) are very common. The choice of u = 1 for
the boundary Γin, means that the normalizing velocity U introduced in the
section 1.1 corresponds to the physical inlet velocity. The boundary condition
(15) is chosen for its accuracy and simplicity to implement in vortex techniques
[MG01]. In vortex methods, boundary conditions are only used to solve the
Poisson equation (9), and have to be expressed in terms of the non-primitive
variable Ψ .
Since Ψ has a constant variation from the lower to the upper wall, we set
Ψ(O) = 0, with O as the origin of the axis (see Figure 1). Therefore,, on the
bottom part of Γwall, the boundary condition (13) leads to Ψ = 0. On Γin,

the boundary condition (14) leads to
∂Ψ

∂y
= 1, that also means Ψ(−1, y) =

y−Hstep since Ψ(A) = 0. On the upper part of Γwall, the boundary condition
(13) reads Ψ = Ψ(B) = Hup −Hstep. Finally, on Γout, the boundary condition

(15) is resumed as
∂2Ψ

∂x2
= 0.

1.4 Validation of the simulation

The validation of the simulation is performed for two Reynolds numbers :
Re = 500 (ReΦ = 250), and Re = 2000 (ReΦ = 1000). The first flow corre-
sponds to a low transitional regime. It is motivated by the fact that our results
can be compared to existing literature [SG88] on the same geometry (Lup = 1)
for several characteristic quantities : The length of the averaged recirculation
area, the transversal horizontal velocity profiles, the signal of the horizontal
velocity at several monitoring points in the flow. Some computations are also
performed on a geometry with (Lup = 5), to make the comparisons possible
with other bibliography references concerning the length of the averaged re-
circulation area ([ADPS83, KM85, LM98, Cru98, MPP05]). We should also
outline that the first Reynolds number has a strong two-dimensional behavior,
then several experiments to validate the vortex computations are available.
The second one corresponds to a higher transitional regime, and constitutes
the reference flow to control in the following of the paper. For this case, the
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validation is ensured by the verification of the grid convergence property on
the length of the averaged recirculation area as well as the comparisons with
the literature [WYAG04] concerning the frequency behavior related to the
control strategy. Here, even if the flow is transitional with the onset of insta-
bilities, our validations respect to other studies, permit to build a coherent
control benchmark that can be used in a general way. The main target is to
perform a large number of control simulations in order to develop a useful
data base on the backward-facing step active control. Such a source can be
obtained by the two-dimensional case studies.

Validation at Re = 500

Three sets of discretization parameters are used in vortex methods. These
parameters are summarized in Table 1. The parameters nx and ny are re-
spectively, the number of mesh nodes in the horizontal and vertical directions.
Cmax is the elementary circulation value of a vortex element, and δt the time
step.
Previous studies have shown that an appropriate choice of these parame-
ters considering their mutual influence on each other is necessary in order to
achieve accurate and low-cost computations ([Pel97], [MMG02], [MMG97]).

Taking h =
Lup + Ldown

nx
=

Hstep +Hup

ny
, the values of parameters Cmax

Level 1 Level 2 Level 3

nx 150+15 Lup 300+30 Lup 600+60 Lup

ny 15 30 60

Cmax 2E-04 1E-04 5E-05

δt 2E-01 1E-01 5E-02

Table 1. The three sets of parameters.

and δt with respect to h from coarse (level 1) to fine grids (level 3) are chosen
with a linear evolution. This property was inspired from the work of Pel-
lerin [Pel97] for a similar vortex method, and also from studies of Mortazavi
et al. [MMG02], [MMG97], who studied the dependence between these three
discretization parameters for a purely lagrangian vortex approach called the
Random Vortex Method.

At t = 0, there is no vortices in the domain and the velocity is equal to
zero. The calculation is performed from t = 0 to t = 600, and to obtain a well
established flow the time-averaged quantities are computed from t = 300 to
t = 600.
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A first set of tests is performed using Lup = 5. Here, the inlet section
is far enough from the step to provide a fully developped parabolic velocity
profile just in front of the step. Results are compared to the ones obtained
by many other papers ([ADPS83, KM85, LM98, Cru98, MPP05]) on the av-
eraged recirculation length Lr. Table 2 gives the value of Lr obtained by the
computations in this work, as well as its lowest and highest values obtained
in previously mentionned works for the same Reynolds number. We can see
that using level 1 computations the value of Lr is very different from the lit-
terature, but the results are in good agreement with the available literature
for levels 2 and 3.

Min. / Max. values of Lr Level 1 Level 2 Level 3
in [ADPS83, KM85, LM98, Cru98, MPP05]

4.16 / 5.97 3.63 4.71 4.62

Table 2. The averaged recirculation length Lr values for Re = 500 (Reφ = 250),
Lup = 5.

A second set of tests is then performed using Lup = 1 to be compared to
Sethian and Ghoniem ([SG88]). In this case, the parabolic velocity is not en-
tirely developped in the step level. Figure 2 shows the averaged recirculation
area for each of the three sets of discretization parameters, and Table 3 gives
the corresponding value of Lr, comparing it to the value obtained in [SG88].
Then, Figure 3 shows the averaged transversal horizontal velocity profiles at
x = 1, x = 2, x = 3, x = 4, x = 5 and x = 6, again compared to Sethian and
Ghoniem.

Results obtained in Table 3 with levels 2 and 3 are in very good agreement
with the corresponding results in [SG88] (less than 0.8% of relative error). The
grid convergence is achieved from level 2, since the results obtained with Level
2 and Level 3 on Figures 2 and 3 are very close to each other (on Figure 3,
the dotted line (level 2) can not been distinguished from the plain one (level 3).

Figure 4 shows the time history of the horizontal component of the velocity
u as a function of the time from t = 40 to t = 90 at three different moni-
toring points M1 = (8.0, 0.2), M2 = (8.0, 0.5) and M3 = (8.0, 0.8), for every
discretization parameter set. For all of the three different parameter sets, the
averaged value of u is larger in M2 than in M1 and M3. It corresponds to the
fact that the motion of some eddies are more sharper near the top and bottom
walls than in the middle of the section. The same behavior was underlined in
[SG88].
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Fig. 2. Averaged recirculation areas for Re = 500 : Isovalue Ψ = 0. Top : Level 1,
Middle : Level 2, Bottom : Level 3.

Ref. [SG88] Level 1 Level 2 Level 3

Lr 3.93 3.50 3.95 3.96

Table 3. The averaged recirculation length Lr values for Re = 500, Lup = 1.

This first validation leads to the conclusion that for Re = 500, level 1
fails to give a sufficiently accurate solution whereas level 2 and level 3 ensure
very good results compared to the litterature references. Consequently, the
validation at Re = 2000 will be performed using only level 2 and level 3.

Validation at Re = 2000

A second validation is now performed at Re = 2000 in the high transitional
regime, in order to obtain a more turbulent flow, which will be the reference
flow to control. In order to preserve -at least partially- the initial aspect of
the inlet flow, we set Lup = 1. In fact, because the physical target of this
paper is to implement control tools into the inlet flow (see next section), the
upstream channel is chosen as short as possible to avoid the dissipation of
these effects before the step. The table 4 gives the corresponding values of Lr

for the two parameter sets. The obtained results are very close to each other
for both discretizations levels (less than 4% of relative error).
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Fig. 3. Averaged transversal horizontal velocity profiles for Re = 500. Dashed :
Level 1, Dotted : Level 2, Plain : Level 3.
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Fig. 4. u for Re = 500 from t = 40 to t = 90 at points M1 (top), M2 (middle) and
M3 (bottom). Dashed : Level 1, Dotted : Level 2, Plain : Level 3.

Level 2 Level 3

Lr 4.58 4.39

Table 4. The averaged recirculation length Lr values for Reφ = 1000, Lup = 1.
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When the regime is established, a spectral analysis of
∂2u

∂y2
as a function

of the time is performed for Level 2, at 3 sensors on the bottom wall (y = 0)
respectively located at x = 6, x = 7 and x = 8 (see Figure 5). The choice of
this particular physical quantity to record by the sensors is justified below.
For each of these sensors, the dominant frequency of the signal corresponds to
a Strouhal number close to 0.067 (this frequency is equal to 2St since Hstep =
0.5). This result is the same as the one obtained in Wee et al ([WYAG04]): The
absolute mode frequencies corresponding to the downstream region are all in
the order of St ∼ 0.07 that is the standard Strouhal number for this range of
Reynolds numbers in channel flows. The slow variation of the absolute mode
frequency is directly due to the slow change of the shear layer thickness in
the region close to the end of the recirculation zone. As the table 5 indicates,
this dominant frequency is captured by every sensor (especially for the two
sensors located at the highest x-values (x = 7 and x = 8), whatever the used
discretization grid level. So, the grid convergence is achieved for Re = 2000.
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Fig. 5. Signal of
∂2u

∂y2
(t) for Re = 2000 at intrusive sensors on the bottom wall at

x = 6, x = 7 and x = 8 for level 2 and spectral analysis.

Based on the above validations and the numerical convergence results, all
the numerical tests in forthcoming sections are performed on the level 2 dis-
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Dominant frequency Level 2 Level 3

Sensor x = 6 0.1367 0.16

Sensor x = 7 0.1367 0.1267

Sensor x = 8 0.1367 0.1267

Table 5. Dominant frequency at Re = 2000 for sensors located at x = 6, x = 7 and
x = 8.

cretization parameter zone. This level is not only fine enough to get accurate
results, but also needs a reasonable computational cost in order to explore
efficient control strategies with a large number of numerical experiments.

2 Control

In this section different active control tools are designed and studied in order
to manipulate the main recirculation zone developped behind the step wall.
Among the control targets we can mention the reduction of the recirculation
area or to shorten the reattachment length. This procedure is directly related
in modifying the vortex shedding on the step and then altering the vortex
dynamics inside the channel. This control can also permit to reduce or increase
the residence time of trapped particles inside the recirculation zone. It should
be outlined that we focus in this work on the control of the vortex shedding
and the vorticity field mainly generated by the step effect and its recirculation
zone. We don’t include the secondary vortices which are generated close to
the upper wall without any important effect on the shedding dynamics.
The control is performed either by taking an oscillating inlet velocity u(t) =
(uin(t), 0)T on Γin, instead of the uniform velocity boundary condition (14)
associated to the non-controlled simulation (Figure 6, Control1), or by two
small jets implemented on the upper and lower parts of the step (Figure 6,
Control2).
Both, open loop and closed-loop controls are used and compared to each other.
The open loop control studies are performed in both cases for a wide range
of parametric values to get the most efficient control configurations. These
values are then compared to the closed-loop control simulations to verify its
efficiency for every control problem. Since the value of the inflow velocity is
no more constant in time, boundary condition on Ψ on the inflow boundary
as well as on the top boundary, needed for the resolution of (9), is updated at
each computational time step.

2.1 Control functionals and devices

As mentioned before, the control effect is focused on the vortex shedding,
transport phenomena and the step recirculation zone behavior. In order to
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Fig. 6. Control devices on the step geometry.

quantify this control, the following time dependant fonctionnals are intro-
duced :

1. The recirculation area lenght Lr(t). This functional is the most common
physical quantity to characterize the backward-facing step flow. It is de-
fined as the distance between the point O (Figure 1) and the point located
on the bottom wall for which the normal gradient of the horizontal veloc-
ity component becomes positive after it reached its minimum value;

2. The total enstrophy in the domain that measures the vorticity of the
flowfield, defined as:

Jω(u(t)) =
1

2

∫

Ω

ω2(t) dt,

where ω is defined by (3).

3. The total energy in the domain. One of the control tasks is to tune the
energy of vortical structures. It is defined as:

JE(u(t)) =
1

2

∫

Ω

u2(t) + v2(t) dt.

The control has to reduce the entrophy and energy of the flow.
4. The near wall recirculation area intensity that corresponds to the level of

shear forces defined by:

JW (u(t)) =

∫ C

0

∂u

∂y
(t)

(

∂u

∂y
(t) −

∣

∣

∣

∣

∂u

∂y
(t)

∣

∣

∣

∣

)

dx.

Breaking the step-side large recirculation zone this functional may increase
because the creation of smaller high gradient structures close to the wall.
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5. The fluctuation coefficient. This coefficient corresponds to the flow insta-
bilities in transition towards turbulence deviating the flow from the mean
values:

JF (u(t)) =

∫∫

B

dx dy

1 + (u′(t))2+(v′(t))2

2

,

where B is the box [0; 6] × [0; 0.5], and u′(t) (resp. v′(t)) is the variation
of u(t) (resp. v(t)) around its mean value. This functional is quite sensible
to flow oscillations induced by the pulsing control strategy.

The above functionals will be used not only in their unsteady time evolution,
but also for their following time-averaged values achieved between t = T1 and
t = T2:

Lr = Lr(u) JF =
1

T2 − T1

∫ T2

T1

JF (u(t)) dt

Jω = Jω(u) Jω =
1

T2 − T1

∫ T2

T1

Jω(u(t)) dt

JE = JE(u) JE =
1

T2 − T1

∫ T2

T1

JE(u(t)) dt

JW = JW (u) JW =
1

T2 − T1

∫ T2

T1

JW (u(t)) dt

with :

u =
1

T2 − T1

∫ T2

T1

u(t) dt.

Our objective is to control these instantaneous and time-averaged functionals.
In the following, the simulations are performed between t = 0 and t = 600.
The control starts at t = 300, and the time-averaged functionals are evaluated
from T1 = 320 and T2 = 600.

2.2 Control with pulsing inlet velocities

In this part the control is achieved oscilating the inlet velocity profile:

uin(t) = 1.0 + A cos(2 π f t).

The frequency f and the amplitude A of this oscilating flow can be ob-
tained either by an extensive parametric study (open-loop control) or imple-
menting the dominant frequencies of the vorticity formation and transport in
the pulsing flow as the reference value (closed-loop control).
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Open-loop Control: Influence of the frequency f

In this section the influence of the frequency f on the flow behavior for a
constant value of A will be studied.

The value of amplitude is taken A = 0.2, in the same order as the aver-
age fluctuations absolute value. For 50 low frequencies uniformly distributed
in the range [0.0; 1.0], the averaged functional values defined in part 2.1 are
ploted as a function of the frequency f (see Figure 7).
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Fig. 7. Open-loop control: Functionals versus frequency. Dashed line: uncontrolled
simulation

As the figure shows, an extremum value for each functional for a frequency
nearly equal to the basic fundamental frequency of the flow, namely f ≈ 0.14

is achieved. Lr as well as Jω (and Jω), JE (and JE) and JF are significatively

diminished, and JW is consequently increased. It corresponds to the fact that
the recirculation area is broken by this control strategy, and then the total
enstrophy and energy of the flow descreases and is focused in the near wall
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small advective coherent structures. Nevertheless, the increase of JW for the
mean flow does’nt represent the control efficiency, because JW is more related
to the instantaneous near-wall shear effects of vortical structures. That’s why

in the following we will only consider JW which is a more relevant quantity.
For the larger values of the frequency, the efficiency of the control is reduced,
but it becomes stable with a permanent effect on the flow behavior.

Open-loop Control: Influence of the amplitude A

The value of the frequency is taken f = 0.14 (the basic fundamental frequency
of the flow). For 10 amplitude values distributed in the range [0.0; 1.0], we
plot the averaged functional values defined in part 2.1 as a function of the
frequency A (see Figure 8).
This figure shows that the efficiency of the control almost linearly increases
with the increasing values of the amplitude until A = 0.2, attending then a
”plateau”. For larger values of amplitude the control effect doesn’t change
anymore. These results confirm the existence of an optimal control amplitude
A = 0.2 and there is no need to take higher A values.

Closed-loop control

The closed-loop control consists in using the fundamental frequencies of flow
shedding or transport in order to fit the oscillation frequency. The frequency
measuring sensors may be implemented on the wall (non-intrusive sensors) or
inside the flow field (intrusive sensors). The main advantage of the closed-loop
control is that the control frequency is taken directly from the principal flow
frequencies. Therefore, with a good choice of sensors, it is not only very simple
to implement but also it avoids the heuristic trial and error type approaches
necessary in open-loop methods.

Non-intrusive sensors

This first section is devoted to closed-loop control using non-intrusive sensors.
Because the non-intrusive sensors are implemented in the channel walls and
deal with the measure of the wall tangential pressure gradient, they are much
more easier to be used in experimental and industrial applications. However,
their near wall location makes them vulnerable to the noisy near-wall high
gradient flow motion. From numerical point of view, because vortex methods
approximate non-primitive variables, the pressure field is not directly obtained
from computations. Therefore, the boundary layer models are used to connect
the quantity ∂2u/∂y2, to the pressure gradient. Indeed, in the wall since u ≡ 0,
the equation (2) is reduced to:
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Fig. 8. Open-loop control: Functionals versus amplitude. Dashed line: uncontrolled
simulation

∂p

∂x
=

1

Re

∂2u

∂y2
.

As a consequence, on the wall, the signal ∂2u/∂y2(t) is equivalent to the signal
∂p/∂x(t).

Closed-loop control consists in taking:

uin(t) = 1.0 +M
(

∂2u/∂y2(t)
)

Sn

,

where M = 2.5E−03 is chosen to make vary uin(t) in the range of [0.8; 1.2] as
in section 2.2, and

(

∂2u/∂y2(t)
)

Sn

is the value of ∂2u/∂y2(t) quantity related
to a non intrusive sensor Sn. Five simulations are performed, using for each
of them a different sensor locations (xSn

= 3 + n, ySn
= 0, 1 ≤ n ≤ 5).

These locations permit to get on the wall different dominant frequency values
from the recirculation area until the downstream channel region. We plot the
functional values as a function of xSn

on Figure 9. For each graph, we also
plot the value of the functional values for the uncontrolled simulation (cf. part
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1.4) as well as the best value obtained by the open-loop control (the optimal
values observed for these functionals).
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Fig. 9. Closed-loop control: Functionals versus n. Dashed line : uncontrolled simu-
lation, solid line: best value obtained by open-loop control.

As Figure 9 shows, closed-loop control is efficient since each obtained func-
tional value is close to the best result achieved by the open-loop control, what-
ever the sensor used. The important advantage of the closed-loop control is
that automatically without a huge computational cost the backward-facing
step flow is controlled. Especially, the sensor values recorded on the edge of
the reattachment point are very interesting. As the figure shows, these points
give an excellent recirculation length, fluctuation, energy and vorticity reduc-
tion. The wall stress forces for the mean flow also are reduced even if the
average value of the shear forces is still larger than non-controlled flow. As
mentioned before, this last behavior is because the control is achieved by the
flow oscillation.

To understand the dynamics of the flow, instantaneous streamlines are
ploted on figures 10 and 11 from time t = 592.5 to t = 600. It coresponds



Active control strategies for transitional backward-facing step flows 21

to a simulation time of 7.5 equivalent to fundamental period at basic control
frequency f = 0.1367. Figure 10 corresponds to the uncontrolled flow, and
figure 11 to the controlled flow with the sensor located at xS = 8. Similarly,
the instantaneous recirculation areas are shown on Figure 12 (without con-
trol) and figure 13 (with control). As the figures show the recirculation zone
area is considerably reduced in the controlled case and replaced by two small
counter-rotating vortex structures. The shedding mechanism il aslo changed:
the upper clockwise structure breaks the lower counter-clockwise one and cre-
ates a shorter shedding procedure and generates small fast traveling vortices.
Finally, the efficiency of this closed-loop control is verified ploting the mean
steamlines and the mean recirculation areas, and comparing them to mean
flows in uncontrolled cases (Figures 14 and 15). As the figures show the av-
eraged recirculation zones are remarquably reduced and concentrated in a
small area behind the step using the closed-loop control. That means that
with control less particles will be trapped in the main recirculation region.
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Fig. 10. Streamlines from t = 592.5 to t = 600.0, with ∆t = 1.5, uncontrolled
regime.

Fig. 11. Streamlines from t = 592.5 to t = 600.0, with ∆t = 1.5, closed-loop
controlled (non-intrusive) regime.
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Fig. 12. Horizontal velocity u < 0 from t = 592.5 to t = 600.0, with ∆t = 1.5,
uncontrolled regime.

Fig. 13. Horizontal velocity u < 0 from t = 592.5 to t = 600.0, with ∆t = 1.5,
closed-loop controlled (non-intrusive) regime.
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Fig. 14. Mean streamlines for uncontrolled (up) and closed-loop (non-intrusive)
controlled (down) regime.

Fig. 15. Mean horizontal velocity u < 0 for uncontrolled (up) and closed-loop
(non-intrusive) controlled (down) regime.

Intrusive sensors

We now wonder if it would be possible to improve results obtained with the
previous non-intrusive closed-loop control. Using intrusive sensors seems to
be an alternative way. Even if it is not possible to use such sensors without
perturbating the flow, it can be used as an interesting step to understand and
modify the flow behavior related to transport phenomena inside the channel.
This control consists in the following velocity definition:

uin(t) = 1.0 + 2A

(

uSi
(t) − uSi

umax
Si

− umin
Si

)

,

where the intrusive sensor Si is located at x = 6 and y = 0.33, and
where uSi

, umin
Si

and umax
Si

are respectively the average, the minimum and the
maximum values of the uncontrolled velocity uSi

(t) computed at the same
time and space location. Therefore, the spectrum of this signal is the same as
the one recorded on the sensor Si. Using the previous results the amplitude
is set equal to A = 0.2, leading to an inlet velocity uin oscillating between 0.8
and 1.2, that has been verified by numerical tests. Values of the functionals Lr,
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Jω, JE , JW and JF are reported on table 6 and compared to the uncontrolled
case, the best result obtained with the open-loop control, and the best result
obtained with closed-loop and non intrusive sensors. Moreover, numerical tests

indicated that the behavior of Jω (respectively JE) is similar to the one of Jω

(respectively JE). They show exactly the same evolution.

Uncontrolled Open-loop Closed-loop non intrusive Closed-loop intrusive

Smallest value of Lr 4.51 2.08 2.71 2.38

Smallest value of Jω 63.53 55.32 54.52 52.64

Smallest value of JE 2.45 2.24 2.16 2.09

Highest value of JW 122.09 185.75 146.13 159.95

Smallest value of JF 3.19 3.13 3.15 3.15

Table 6. Values of the functionals for different active control techniques.

As the table 6 indicates, the control effect in the intrusive case is slightly
more efficient than in the non intrusive one. This behavior can be explained
as follows: in the non-intrusive case the sensors are placed on the wall that
is quite noisy because the vorticity generation procedure and local near-wall
effects. It perturbates the captured frequencies that are used for the control
task. This perturbation slightly affects the control efficiency. In the intrusive
configuration, the sensors are placed inside the flow that is less perturbated
by the shear effects, and so the flow dominating basic frequencies are better
captured and control is more efficient.
To verify this phenomenon the inlet velocity uin(t) time history is ploted for
both non-intrusive and intrusive cases from t = 280 to t = 400 (Figure 16). It
should be noted that control starts at t = 300. As the figure shows the intrusive
velocity has a regular quasi-periodical evolution, but the non-intrusive one is
quite perturbated and oscillating around the quasi-periodic evolution.
The intrusive control results are also very close to the best open-loop control
results. It prooves that this closed-loop control approach is almost an ideal
noise-free frequency capturing tool, permitting to record precisely the flow’s
dominant frequencies.

2.3 Control with active jets on the step wall

In this section two small jets are implemented on the upper and lower parts
of the step (Figure 6, Control2). The main target of this control technique
is to influence directly the vortex shedding and the main recirculation zone:
the upper jet changes the shedding dynamics and the lower one perturbates
and pushes away the recirculation zone. The flow around the step is char-
acterized by the vortex shedding process and the roll-up of the separating
boundary layer into Kelvin-Helmholtz type shear layer vortices [PKNDT03].
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Fig. 16. Signal of uin(t) for closed-loop control: with non intrusive sensor located
at x = 6 (top) and with intrusive sensor located at x = 6 and y = 0.33 (bottom).

Implementing actuators on two upper and lower levels of the step modifies
both of the above characteristics and then is a useful control tool to study.
The actuators placed in the close vicinity of the bottom and the top of the
step, blow or expell an horizontal flow inside the flow. On the level 2 grid,
the modelisation of each actuator is performed using two points of the mesh.
This geometrical configuration will remain unchanged during all the study. In
following, different possibilities as steady open-loop, active open-loop and ac-
tive closed-loop actuators are applied to this configuration and their efficiency
is verified. All computations are performed with a level 2 grid that has been
validated in section 1.3., and the final results are verified comparing to a level
3 grid. The control efficiency is measured using the average flow field and the
same functionals as in the previous section. Especially, the following function-
als should decrease (respectively increase) to get a good control with step jet

configuration: Lr, Jω, JE (respectively JW ). The inlet velocity is taken equal
to unity; uju and ujb correspond to the uniform jet velocities respectively on
the top and the bottom of the step. Then, the oscillation should be imposed
to these velocities.

Open-loop control

In this subsection the efficiency of several open-loop control techniques on the
flow mechanism is studied. The first range of results is obtained with steady
jets on the step walls. Then, other studies with pulsing open-loop approaches
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are presented. In order to find the most efficient open-loop control setups, a
parametric study on the choice of the frequency and the amplitude values is
performed.

Control with steady jets- The simplest control actuator is a constant jet
blowing or sucking a steady flow inside the main fluid. Several computations
with different positive and negative velocities on the upper and lower parts
of the step were performed. All of these results will not be shown here, but
some important remarks are resumed as follows:

1. To perturbate efficiently the vortex shedding and to reduce the size of the
recirculation zone the suction should take place in the top of the step and
the blowing in the bottom. In fact, this configuration creates a momentum,
breaking the large recirculation zone and pushing it out of the diffusive
formation zone.

2. To achieve the best functionals and to break down the recirculation zone
the suction should be stronger than the blowing. This setup is justified,
because the suction is just behind the shedding region and a higher energy
is necessary to cross it.

In the table 7 the effect of different constant jet devices on three control
functionals is resumed. As the figure shows the average recirculation length
Lr is considerably reduced when the jet velocity coefficient is equivalent to
(uju, ujb) = (−1.0, 0.5) or (−1.0, 0.25), where uju and ujb are respectively the
upper un lower jet velocites. The mean vorticity Jω is decreased and near wall

shear stresses JW related to the reduction of the large recirulation zone are
increased. It confirms the above-mentioned remarks and then for the open-
loop control we will oscillate the flow around the configuration (uju, ujb) =
(−1.0, 0.5). It should be outlined that in the oscillating cases, (uju, ujb) are
the coefficients of the amplitude A related to the upper and the lower jets.

(uju, ujb) (0, 0) (−1.0, 1.0) (-0.5,0.5) (0.5,−0.5) (−1.0, 0.5) (−1.0, 0.25) (−0.5, 0.25)

Lr 4.5 3.43 3.97 3.46 2.31 1.90 3.35

Jω 51.6 47.0 49.6 52.4 44.1 47.3 48.0

JW 122 122 127 89 166 217 148

Table 7. Effect of permanent jet actuators on different global functionals.

Control with pulsing jets- In this section two open-loop approaches
with step jets are studied. In the first case the actuators are pulsed by:
uj(t) = (uju, ujb)(A + A cos(2 π f t)). It means that in both devices the jet
varies between 0 and |2A|, with a negative jet in the upper side of the step
and a positive one in the lower part. Here, the influence of the amplitude A
and the frequency f on the flow behavior is explored. First, for a constant fre-
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quency f = 0.2 (close to the one used in the previous section) the amplitude
is varied with A = 0.5, 1.0 and 2.0. The table 8 shows the functional values for
different amplitudes compared to uncontrolled case. As the figure shows the
recirculation length linearly decreases with amplitude, as well as the energy.
The results for the enstrophy give an optimal value for A = 1.0 and the wall
stresses show a reasonable increase for all cases. These results show that as a
compromise the amplitudes A = 0.5 or A = 1.0 are both efficient to control
the flow with a slight energy consuming.
Otherwise, a large frequency analysis for frequencies in the gap [0.1; 2.0] with a
0.1 stepping was performed. The amplitude was taken as A = 1.0. The results
were almsot like each other and the only observed difference was the slight
proportionality of Lr value with the frequency. It appears that for frequen-
cies larger than f = 0.05 the efficiency of the control very slowly decreases
increasing the frequency. This result confirms the observed behavior for the
frequency in the previous section.

Uncontrolled A = 0.25 A = 0.5 A = 1.0 A = 2.0

Lr 4.5 3.46 2.95 2.04 1.98

Jω 51.6 47.5 44.9 37.5 40.5

Je 2.31 2.20 2.07 1.86 1.78

JW 122 139 154 131 140

Table 8. Effect of oscilating jet actuators with uj(t) = (uju, ujb)(A+A cos(2π f t))
on different global functionals.

In the second case the actuators are pulsed by: uj(t) = (uju, ujb)A cos(2 π f t),
always with f = 0.2. It means that in both devices the jet varies between −A
and A and there is no absolutely positive or negative device, even they never
coincide to each other. For this reason we decided to perform some compu-
tations with different pulsing properties. As the table 9 shows the case with
A = 1.0 and (uju, ujb) = (−1.0, 0.5) gives a very good compromise concern-
ing all controlled functionals. Another altenative is to use an actuator with
A = 1.0 and (uju, ujb) = (−1.0, 1.0), where the inlet and outlet velocities are
equivalent, then there is no energy add or loss in the system.

To verify several implemented techniques in this section the mean stream-
lines are plotted for three different controlled flows and compared to the un-
controlled case (Figure 17). As the figures show the three different control
techniques reduce remarquably the recirculation area growth and stop the
shedding progress.
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A(uju, ujb) 0.0 0.25(−1.0, 0.5) 0.5(−1.0, 0.5) 1.0(−1.0, 0.5) 1.0(−1.0, 1.0) 1.0(1.0, 0.5)

Lr 4.5 3.77 3.22 2.55 2.61 2.18

Jω 51.6 48.3 45.3 41.2 45.6 38.3

Je 2.31 2.22 2.16 2.07 2.20 2.02

JW 122 132 136 140 98 152

Table 9. Effect of oscilating jet actuators with uj(t) = (uju, ujb)A cos(2π f t) on
different global functionals.

Fig. 17. Mean streamlines (from up to down) for uncontrolled, uniform jet control
(uju, ujb) = (−1.0, 0.5), open-loop with uj(t) = (uju, ujb)(A + A cos(2π f t)) and
open-loop control with uj(t) = (uju, ujb)A cos(2π f t) where A = 1.0 and (uju =
−1.0, ujb = 0.5).

Closed-loop control

The closed-loop control in this section is focused only on non-intrusive sensors
because they are more practical in engineering applications, also because the
channel flow is directly influenced by step jets a then the noise-free behavior
oberved in the previous section for the intrusive sensors has less meaning here.
Finally, the control with step jets is a more local technique than the inlet flow
and the near-wall frequencies are enough to implement this control.
As the previous section the closed-loop control is used to vary the flow around
(uju, ujb) = (−1.0, 0.5). The first closed-loop control formula is similar to the
one in the section 2.2, and is given by:

uj(t) = (uju, ujb)(A+M
(

∂2u/∂y2(t)
)

Sn
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(referred as CLC1). The amplitude of the negative upper jet varies between
0 and 2A, while the amplitude of the positive lower jet varies between 0 and
A. It was made possible by choosing empirically the M parameter. The study
here consists in implementing the sensors on two locations x = 4 and x = 7
on top of the channel bottom wall. Also, the effect of the amplitude on the
control efficiency is verified. In the table 10 the effect of the amplitude choice
is verified for both sensors. As the table shows the control efficiency almost lin-
early increases with the amplitude value. This behavior seems natural because
increasing the amplitude the energy induced in order to change the shedding
and the recirculation zone is increased. Nevertheless, even for small amplitudes
(e.g. A = 0.25) the flow functionals are improved by this closed-loop control.
Otherwise, the table shows that the sensor placed at x = 7 is slightly more
efficient than the sensor at x = 4. It is due to the fact that at x = 4 the flow is
still influenced by the large recirculation zone behind the step. The best reults
are achieved for A = 1. at x = 7 where the average recirculation length is re-
duced more than half and all other functionals also are considerably improved.
In the second case the actuators are pulsed by: uj(t) = (uju, ujb)M

(

∂2u/∂y2(t)
)

Sn

(referred as CLC2). This definition means that the amplitude of the upper jet
varies between 0 and A, while the amplitude of the lower jet varies between 0
and A/2, but this time there is no absolutely positive or negative device. The
flow showing slightly better results using the sensor x = 7, only the compu-
tations related to this later actuator are reported. As the table 11 indicates
the results are again linearly improved increasing the amplitude value. How-
ever, the control is less impressive than the previous case because the velocity
differences between the two jets are in average smaller for this control. Fur-
thermore, as the table shows, even for jet velocities with the same absolute
value ((uju, ujb) = (−1.0, 1.0)), where the added energy flux is almost zero,
the control is still very efficient and the mean recirculation length is sensibly
reduced from 4.5 to 2.9. This result underlines the main advantage of this
closed-loop control approach that permits to implement an efficient zero-flux
control strategy.

(x,A) uncontrolled (4, 0.25) (4,0.5) (4, 1.0) (7, 0.25) (7, 0.5) (7, 1.0)

Lr 4.5 3.5 3.1 2.1 3.4 2.9 1.9

Jω 51.6 48.0 45.7 39.0 47.8 45.1 37.8

Je 2.31 2.19 2.12 1.90 2.18 2.08 1.86

JW 122 140 149 152 139 155 151

Table 10. Effect of closed-loop jet actuators on global functionals with two different
sensors located at x = 4.0 and x = 7.0 for different jet amplitudes and negative upper
and positive bottom jets (CLC1).
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A(uju, ujb) uncontrolled 0.25(−1, 0.5) 0.5(−1, 0.5) 1.0(−1, 0.5) 1.0(−1, 1)

Lr 4.5 3.7 3.2 2.7 2.9

Jω 51.6 47.9 44.9 41.7 44.0

Je 2.31 2.22 2.16 2.11 2.15

JW 122 130 134 135 123

Table 11. Effect of closed-loop step jet actuators with a sensor located at x = 7.0
and different amplitudes on global functionals and both jets oscillating around zero
(CLC2).

Finally, in figure 18 the mean streamlines for three different closed-loop
control cases are compared to the uncontrolled flow. As the figure shows the
CLC1 technique due to its higher flux gradients is the most efficient one and
almost reduces the recirculation zone until about one third of the uncontrolled
case. Nevertheless, using the CLC2 method also suitable results are ahieved,
even implementing a zero-flux approach. We can conclude this part with two
remarks. First, not only the closed-loop control is very convenient to achieve
efficient control results but also it avoids heavy trial and error calculations to
choose the control modes. Second, even if the best results are obtained with
significant energy supplies, a convenient control can also be achieved using
lower amplitudes or nullifying the flux flowrate.

To verify the grid convergence for this family of control approachs, some
of these controlled flows are computed using a fine level 3 grid and compared
to the uncontrolled flow. The observed trends of the flow behavior, like the
decrease or the increase of the functionals or the average streamlines, are
always similar to the results obtained by the level 2 grid and confirm the
numerical convergence.

Conclusion

In this work, both open and closed-loop control methods were applied to
control a backward-facing step flow. Computations were performed using a
Vortex-In-Cell method and adapted to this control procedure. The numerical
convergence was then detaily verified and compared to experimental results
for transitional flows. Then, two control configurations were studied, the first
configuration correponding to a pulsing inlet flow and the second one to jets
introduced into the lower and upper parts of the step. The achieved results for
the first strategy showed that the natural fundamental frequency of the flow
offers the characteristic value to tune the pulsing frequency. The control should
therefore be based on this value whatever the used devices. We also observed
the efficiency of implementing the intrusive sensors. This approach improves
the closed-loop control results, reducing the near-wall noisy flow fluctuations.
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Fig. 18. Mean streamlines (from up to down) corresponding respectively to uncon-
trolled, CLC1 with (uju, ujb) = (−1.0, 0.5) and A = 1.0, CLC2 with (uju, ujb) =
(−1.0, 0.5) and A = 1.0, CLC2 with (uju, ujb) = (−1.0, 1.0) and A = 1.0 closed-loop
strategies.

With an appropriate control, the flow functionals like the recirculation length,
the global flow energy or the enstrophy were dramatically reduced.
For the second strategy we observed that the best control results are achieved
with a high velocity negative upper jet compared to a positive bottom jet.
This result was also true for oscillating jets. Then, an effcient closed-loop
control technique was build using the above considerations. As an important
conclusion, it was verified that an automatic closed-loop approach can provide
a control as efficient as the best open-loop control. This observation confirms
the essential importance of robust closed-loop control methods as the most
practical techniques designed to manipulate today’s applied flow problems.
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