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Introduction

Clustering
Task of assigning a set of objects into groups (clusters).

Objects in a cluster are more similar to each other than to those in
other clusters.

⇒
clustering
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Clustering techniques for functional data

Parametric clustering techniques for curves
are generally performed in two steps

The discretization step aims to describe the functions in a finite
dimensional space:

direct discretization (Xt1 , . . . ,Xtp ),
approximation of curves into a space spanned by a finite basis of
functions

X (t) =
J∑

j=1

αj Φj (t) + ε(t)

use of on functional principal components (FPCA),

The clustering step usually applies a multivariate clustering technique on
the discretized version of the data:

k-means,
hierarchical clustering,
model-based clustering.
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Clustering techniques for functional data

Two steps methods are not satisfactory
discretization step is done independently on the clustering task,
how to choose between the discretization techniques and the
clustering ones in a unsupervised context ?

Funclust
Our model-based clustering method, by approximating the notion of
density of a functionnal random variable, performed simultaneously
dimension reduction and clustering.
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Plan

1 Clustering functional data using density approximation
Defining a density approximation
The mixture model
Model inference

2 Numerical applications on real data
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Model-based clustering for functional data

X = {X (t), t ∈ [0,T ]} a L2-continuous stochastic process with values
in L2([0,T ]).

Density probability for functional random variable
Probability density for functions is in general not well defined.

Karhunen-Loeve expansion or principal component analysis

X (t) can be decomposed into X (t) = µ(t) +
∞∑

j=1

Cjψj(t) where

µ is the mean function of X (let assume µ ≡ 0)

Cj =

∫ T

0
X (t)ψj (t)dt , are zero-mean random variables (principal components)

ψj ’s form an orthonormal system of eigen-functions of the covariance operator of
X : ∫ T

0
Cov(X (t),X (s))ψj (s)ds = λjψj (t), ∀t ∈ [0,T ], λ1 ≥ λ2 ≥ . . .
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A surrogate for the density

Delaigle & Hall [2011]
For h > 0 and ‖.‖ the usual L2 norm

log P(‖X − x‖ ≤ h) =

q∑
j=1

log fCj (cj (x)) + ξ(h,q(h)) + o(q(h)),

where fCj is the p.d.f. of Cj , and ξ(h, q(h)) + o(q(h)) does not depend on x .

A surrogate for the density
We deduce that all the variation with x of log P(‖X − x‖ ≤ h), up to an
approximation at order q, is captured by

∑q
j=1 log fCj (cj (x)) and then

P(‖X − x‖ ≤ h) '
q∏

j=1

fCj (cj (x)) = f (q)X (x)

J.JACQUES & C.PREDA (Lille 1) Clustering of functional data ESANN 2012 9 / 29



A surrogate for the density

Delaigle & Hall [2011]
For h > 0 and ‖.‖ the usual L2 norm

log P(‖X − x‖ ≤ h) =

q∑
j=1

log fCj (cj (x)) + ξ(h,q(h)) + o(q(h)),

where fCj is the p.d.f. of Cj , and ξ(h, q(h)) + o(q(h)) does not depend on x .

A surrogate for the density
We deduce that all the variation with x of log P(‖X − x‖ ≤ h), up to an
approximation at order q, is captured by

∑q
j=1 log fCj (cj (x)) and then

P(‖X − x‖ ≤ h) '
q∏

j=1

fCj (cj (x)) = f (q)X (x)

J.JACQUES & C.PREDA (Lille 1) Clustering of functional data ESANN 2012 9 / 29



Plan

1 Clustering functional data using density approximation
Defining a density approximation
The mixture model
Model inference

2 Numerical applications on real data

J.JACQUES & C.PREDA (Lille 1) Clustering of functional data ESANN 2012 10 / 29



A model for functional data clustering

Let’s go back to clustering
X = (X1, ...,Xn) be an i.i.d sample of size n of X ,

for each Xi , Zi = (Zi1, . . . ,ZiK ) ∈ {0,1}K is such that Zik = 1 if Xi
belongs to the cluster k ,
the goal is to predict Z = (Z1, ...,Zn).

A mixture model for functional data
We assume that X has the following density approximation,

f (q)X (x ; θ) =
K∑

k=1

πk

qk∏
j=1

fCj |Zk=1
(cjk (x);σ2

jk )

where
Cj is assumed to be Gaussian (true if X is a Gaussian process)
θ = (πk , σ

2
1k , . . . , σ

2
qk k )1≤k≤K have to be estimated,

cjk (x) have to be computed,
q = (q1, . . . ,qK ) have to be selected.
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Model inference

The model parameters can be estimated by maximizing the
approximated likelihood

An approximated likelihood

l(q)(θ; X ) =
n∏

i=1

K∑
k=1

πk

qk∏
j=1

1√
2πσjk

exp−1
2

(
Cijk

σjk

)2

︸ ︷︷ ︸
fCj |Zk=1

(Cijk )

where Cijk is the j th principal score of the curve Xi belonging to the
group k .

In the present clustering setting, this approximated likelihood can be
maximized by an EM-like algorithm
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EM-like algorithm

As for the EM algorithm, we maximize the completed approximated
likelihood:

L(q)
c (θ; X ,Z ) =

n∑
i=1

K∑
g=1

Zik

logπk +

qk∑
j=1

log fCj |Zk=1
(Cijk )

 ,

The algorithm will iterate the following steps:
E estimate Zik , i.e. compute Eθ(h) [Zik |X = x ] (usual E step)

U update the principal scores Cijk according to Ẑik ,

S select the approximation order qk according to Ẑik ,

M maximize Eθ(h) [L
(q)
c (θ; X ,Z )|X = x ] according to θ (usual M step).
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Clustering Kneading data

The data:
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Figure: Kneading data : resistance of dough during the kneading process
(480 seconds) for 115 flours. Top : observed data. Bottom : smoothed data
using cubic B-splines

J.JACQUES & C.PREDA (Lille 1) Clustering of functional data ESANN 2012 16 / 29



Clustering Kneading data

The models under competition:

2-steps methods

discretization: discretized data, spline coeff., FPCA scores
clustering: kmeans, hclust, and several parsimonious Gaussian
models (HDDC, MixtPPCA, mclust)

Functional methods

funHDDC (Bouveyron & J. [2011])
our method funclust
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Clustering Kneading data

The results: Percentage of correct classification

2-steps discretized spline coeff. FPCA scores
methods (241 instants) (20 splines) (4 components)

HDDC 66.09 53.91 44.35
MixtPPCA 65.22 64.35 62.61
mclust 63.48 50.43 60
kmeans 62.61 62.61 62.61
hclust 63.48 63.48 63.48

functional methods
fun-HDDC1 62.61
funclust 71.30

1best model selected by BIC
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Mars surface characterization

The data
Hyperspectral images (OMEGA instrument, Mars Express spacecraft)
C. Bernard-Michel, S. Douté, M. Fauvel, L. Gardes and S. Girard Retrieval of Mars surface

physical properties frim OMEGA hyperspectral images using regularized sliced inverse

regression, Journal of Geophysical Research, 2009, 114, E06005.

Image 300× 128 For each pixel
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Mars surface characterization

Goal of the study
Characterization of the surface materials,
⇒ clustering of the 38400 pixels,
number of groups expected by the experts: 8.
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Mars surface characterization

Results obtained with funclust
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Conclusion

Conclusion

a new insight for functional data clustering: Use an approximation
of the notion of density rather than modeling a discretization of the
curves,
good performance on simulated and real data sets.

Future works

clustering of multidimensional functional data,
clustering of qualitative functional data,
clustering of heterogeneous data (functional data,
finite-dimensional quantitative or qualitative data)...
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EM-like algorithm - details

Details of the 4 step of our EM-like algorithm
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EM-like algorithm - E step

Let θ(h) be the current value of the parameter θ at this step of the
algorithm

EM-like algorithm - E step

Compute Eθ(h) [L
(q)
c (θ; X ,Z )|X = x ]: it consists of computing

tik = Eθ(h) [Zik |X = x ] = Pθ(h)(Zik = 1|X = x)

'

π
(h)
k

qk∏
j=1

f (h)Cj |Zik=1
(cijk )

K∑
`=1

π
(h)
`

q∏̀
j=1

f (h)Cj |Zi`=1
(cij`)

.

where f (h)Cj |Zik=1
= 1√

2πσ(h)
jk

exp−1
2

(
Cijk

σ
(h)
jk

)2
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EM-like algorithm - U step

Function Principal Component Analysis computation
FPCA eigenfunctions and scores computation needs to assume a basis expansion for
the observed curves. Let:

φ = (φ1, . . . , φL) be such a basis,

Γ = (γi`)1≤i≤n,1≤`≤L be the expansion coefficients matrix of x1, . . . , xn in this
basis,

W =
∫
φφ′ denotes the inner product matrix of basis functions.

EM-like algorithm - U step
Principal component scores Cijk are updated according to tik ’s:

curve centering Γg = (In − 1In(t1,g , . . . , tn,g))Γ
In and 1In are the identity n × n-matrix and the unit n-vector

j th principal component scores vector Cjk : j th eigenvector of ΓgW Γ′gTg

associated to j th eigenvalue λjk .
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EM-like algorithm - S step

EM-like algorithm - S step
We need to select the approximation order qk for each group.

likelihood criterion are useless,
but usual empirical criterion can be used:

Cattel scree-test,
proportion of the explained variance (used in the applications).
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EM-like algorithm - M step

The M step is now usual.
We have to maximize

Eθ(h) [L
(q)
c (θ; X ,Z )|X = x ]

according to θ.

EM-like algorithm - M step
The maximum are

π
(h+1)
k =

1
n

n∑
i=1

tik , and σ2
jk
(h+1)

= λjk , 1 ≤ j ≤ qk

where λjk is already computed at the U step.
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Clustering Kneading data

Convergence of the EM like algorithm

Figure: Left panel: growth of the approximated likelihood (left). Right panel: evolution of the
selection of the dimension q1 (black), q2 (red) and q3 (green).
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