
Neurocomputing 112 (2013) 164–171
Contents lists available at SciVerse ScienceDirect
Neurocomputing
0925-23

http://d

n Corr

Univers

E-m
journal homepage: www.elsevier.com/locate/neucom
Funclust: A curves clustering method using functional random variables
density approximation
Julien Jacques a,b,c,n, Cristian Preda a,b,c
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A new method for clustering functional data is proposed under the name Funclust. This method relies

on the approximation of the notion of probability density for functional random variables, which

generally does not exist. Using the Karhunen–Loeve expansion of a stochastic process, this approxima-

tion leads to define an approximation for the density of functional variables. Based on this density

approximation, a parametric mixture model is proposed. The parameter estimation is carried out by an

EM-like algorithm, and the maximum a posteriori rule provides the clusters. The efficiency of Funclust

is illustrated on several real datasets, as well as for the characterization of the Mars surface.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Cluster analysis aims to identify homogeneous groups of data
without using any prior knowledge on the group labels of data.
Several methods, from hierarchical clustering [1] or k-means [2]
to more recent probabilistic model-based clustering algorithms
[3,4], have been proposed. A particular type of data for which
clustering is a difficult task is the functional data (curves or
trajectories [5]). The main difficulty in clustering such data arises
because of the infinite dimensional space that the data belong to.

Consequently, most of the clustering algorithms for functional
data consist in a first step of transforming the infinite dimensional
problem into a finite dimensional one and in a second step, using
a model-based clustering method designed for finite dimensional
data. The representation of functions in a finite dimensional space
can be carried out in several ways: discretizing the time interval,
approximating data into a finite basis of functions or using some
dimension reduction techniques such as functional principal
component analysis (FPCA [5]). Note that using time interval
discretization, we need to observe all curves at the same time
stamps. The size of discretization being generally large, regular-
ized clustering algorithm should be used [3,4,6–8]. The approx-
imation of data (curves) into a finite dimensional space of
functions – using a basis of functions such as spline or Fourier –
has the advantage to take into account the possible measurement
ll rights reserved.
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errors. Indeed, in the presence of such errors, a least square
approximation approach can be used to estimate the coefficients
of the basis approximation, whereas an interpolation method can
be used if the data are observed without noise. More about
smoothing functional data is presented in [5].

In the framework of clustering, the main contributions use the
k-means algorithm, applied on a B-spline fitting [9], on defined
principal points of curves [10], on the truncated Karhunen–Loeve
expansion [11] or more recently on wavelets [12]. As in the finite
dimensional setting, where Gaussian model-based clustering
generalizes the k-means algorithm, some other works introduce
more sophisticated model-based techniques: [13] define an
approach particularly effective for sparsely sampled functional
data, [14] propose a non-parametric Bayes wavelet model for
clustering of functional data based on a mixture of Dirichlet
processes, [15] build a specific clustering algorithm based on
parametric time series models, [16] extend the high-dimensional
data clustering (HDDC [7]) algorithm to the functional case.

Although we are mainly interested in model-based clustering
algorithms, we mention several other approaches which contrib-
uted to the field of functional data clustering: [10] use k-means
with distance L2 on Gaussian process, [17] apply Self-Organized
Map onto curves coefficients into an orthogonal basis expansions,
[18] consider hierarchical clustering using specific semi-metric
between curves, [19] define crisp and fuzzy k-means for functional
data with time-dependent partition, [20,21] cluster piecewise estima-
tion of the curves using dynamic programming algorithms, [22] use
k-means algorithm using dissimilarity between curve based on a tail-
dependence indices, and more recently [23] propose the utilization of
divergences as dissimilarity measure in the Fuzzy c-Means algorithm
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and [24] extend the Conn-Index for fuzzy prototype vector quantiza-
tion clustering method.

In the finite dimensional setting, model-based clustering
algorithms assume that the data is sampled from a mixture of
probability densities. This is not directly applicable to functional
data since the notion of probability density generally does not
exist for functional random variable. Consequently, model-based
clustering algorithms previously cited assume a parametric dis-
tribution on a finite series of coefficients characterizing the
curves.

In the present paper, we use the density approximation
defined in [22] to build our model-based clustering. This density
approximation, based on the truncation of the Karhunen–Loeve
expansion, relies on the probability density of the first principal
components [5] of the curves. Our model assumes a cluster-
specific Gaussian distribution for the principal component scores.
The number of principal components as well as the computation
of the principal component scores is cluster specific.

The most related methods are the k-centres algorithm (kCFC,
[11]) and the FunHDDC algorithm [16]. In [11], the k-means
algorithm is based on the distance between the truncated
Karhunen–Loeve expansion of the curves. As for our model,
different truncation orders are allowed for each cluster. But,
contrary to our model, the k-means algorithm assumed equal
within-cluster variations. Moreover, the estimation algorithm
used in k-means performed classification at each iteration,
whereas only a fuzzy partition is used in our algorithm. These
differences are similar to the differences between k-means and
more general Gaussian mixture models: k-means assumes
equal diagonal covariance matrices for each cluster, whereas
Gaussian mixture models allow more general covariance struc-
tures; k-means uses a CEM (Classification Expectation Maximisa-
tion [25]) algorithm whereas Gaussian mixture models are
generally estimated more efficiently by the EM (Expectation
Maximisation [26]) algorithm. In [16], the authors assume a
parsimonious Gaussian model on the principal component scores
issued from cluster-specific functional principal components
analysis (FPCA). Real-data applications (Section 4) will illustrate
numerically these differences between our methods, kCFC and
FunHDDC.

The paper is organized as follows. Section 2 presents the
approximation for the probability density of a functional random
variable introduced in [22]. Model-based clustering using this
approximation as well as the model estimation procedure, based
on the EM algorithm, is presented in Section 3. Finally, Section 4
compares our method with other clustering algorithms on real
datasets. An application to the characterization of the surface of
Mars using clustering of spectrum concludes the paper.
2. Density approximation for functional data

Let X be a functional random variable with values in L2ð½0,T�Þ,
T40, and assume that X is a L2-continuous stochastic process,
X ¼ fXðtÞ, tA ½0,T�g. Let X ¼ ðX1, . . . ,XnÞ be an i.i.d sample of size n

from the same probability distribution as X. X is generally called a
sample of functional data for which the underlying model is X.

It is well known that the notion of probability density for this
type of random variables is not well defined. In [18] a non-
parametric approach for the estimation of probability density is
presented as an extension of the multivariate finite case. This
non-parametric approximation is not helpful in the context of
model-based approaches.

Our work is based on the idea developed in [22] where an
‘‘approximation density’’ for X is proposed using the Karhunen–
Loeve expansion (or principal component analysis (PCA))

XðtÞ ¼ mðtÞþ
X1
j ¼ 1

CjcjðtÞ, ð1Þ

where m is the mean function of X, Cj ¼
R T

0 ðXðtÞ�mðtÞÞcjðtÞ dt, jZ1,
are zero-mean random variables (called principal components)
and cj’s form an orthonormal system of eigen-functions of the
covariance operator of XZ T

0
CovðXðtÞ,XðsÞÞcjðsÞ ds¼ ljcjðtÞ, 8tA ½0,T�:

Notice that the principal components Cj’s are uncorrelated ran-
dom variables of variance lj. Considering the principal compo-
nents indexed upon the descending order of the eigenvalues
(l1Zl2Z � � �), let XðqÞ denote the approximation of X by truncat-
ing (1) at the q first terms, qZ1

XðqÞðtÞ ¼ mðtÞþ
Xq

j ¼ 1

CjcjðtÞ: ð2Þ

Then, XðqÞ is the best approximation of X, under the mean square
criterion, among all the approximations of the same type (linear
combination of q deterministic functions of t with random
coefficients, [27]). Denoting by J � J the usual norm on L2ð½0,T�Þ,
we have

EðJX�XðqÞJ2
Þ ¼

X
jZqþ1

lj and JX�XðqÞJ -
m:s:

q-1
0: ð3Þ

Without loss of generality, we will suppose in the following that X

is a zero-mean stochastic process, i.e. mðtÞ ¼ 0, 8tA ½0,T�.
Based on the approximation of X by XðqÞ, in [22] it is shown

that the probability of X to belong to a ball of radius h centred in
xAL2½0,T� can be written as

log PðJX�xJrhÞ ¼
Xq

j ¼ 1

log f Cj
ðcjðxÞÞþxðh,qðhÞÞþoðqðhÞÞ, ð4Þ

where f Cj
is the probability density of Cj and cj(x) is the jth principal

component score of x, cjðxÞ ¼/x,cjSL2
. The functions q and x are

such that q grows to infinity when h decreases to zero and x is
depending only on h. Thus, the dependency of log PðJX�xJrhÞ with
x is contained in the term

Pq
j ¼ 1 log f Cj

ðcjðxÞÞ. Since the notion of
probability density can be seen in the finite dimensional case as the
limit of PðJX�xJrhÞ=h when h tends to 0, [22] suggests the use ofQq

j ¼ 1 f Cj
ðcjðxÞÞ as an approximation for the density of X. In the sequel

we give some additional justifications to this approximation.
Moreover, observe that we have, 8h40, xAL2½0,T�,

PðJXðqÞ�xJrh�JX�XðqÞJÞrPðJX�xJrhÞrPðJXðqÞ�xJrhþJX�XðqÞJÞ:

ð5Þ

The relations (3) and (5) also suggest that the probability
PðJX�xJrhÞ could be approximated by PðJXðqÞ�xJrhÞ.

Let f ðqÞX denote the joint probability density of CðqÞ ¼ ðC1, . . . ,CqÞ.
If x¼

P
jZ1cjðxÞcj and xðqÞ ¼

Pq
j ¼ 1 cjðxÞcj then

PðJXðqÞ�xJrhÞ ¼

Z
DðqÞx

f ðqÞX ðyÞ dy, ð6Þ

where DðqÞx ¼ fyARq : Jy�xðqÞJRq r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
�
P

jZqþ1c2
j ðxÞ

q
g. Eqs. (5) and

(6) suggest that the density f ðqÞX can then be used as an approximation

of the density of X. Moreover, when X is a Gaussian process, the
principal components Cj are Gaussian and independent. The density
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f ðqÞX is then

f ðqÞX ðxÞ ¼
Yq

j ¼ 1

f Cj
ðcjðxÞÞ, ð7Þ

with f Cj
the Gaussian centred density of variance lj.

These results justify at least theoretically, the use of the
principal component densities f Cj

to approximate the notion of
probability density of X. In particular, it gives a theoretical
justification to the method kCFC [11] which applies k-means on
the principal components.
3. Model-based clustering for functional data

Several clustering algorithms for functional data used a trun-
cation of the Karhunen–Loeve expansion [11,28]. In these works,
the truncation is used in order to define a distance between
function, which relies on the difference between the first Karhu-
nen–Loeve expansion coefficients. The approximation provided in
(7) allows to define more general model-based clustering by
considering that the observed curves are sampled from a mixture
of such densities.

Let us consider that there exists a latent group variable Z, of K

modalities (K groups), such that Z ¼ Z1, . . . ,ZK with Zg ¼ 1 if X

belongs to the cluster g, 1rgrK , and 0 otherwise. Conditionally
on Zg¼1, let us assume that X is a Gaussian random variable of
density f

ðqg Þ

X9Zg ¼ 1
ðxÞ. Here, qg is the number of principal components

used to approximate the density of X conditionally on the group g

(Zg¼1). For each i¼ 1, . . . ,n, let us associate to Xi the correspond-
ing categorical variable Zi indicating the group Xi belongs.

3.1. The mixture model

Let us assume that each couple ðXi,ZiÞ is an independent
realization of the random vector (X,Z). Given a group Zg¼1, we
consider the approximation (7) of the density of X9Zg ¼ 1 being

f
ðqg Þ

X9Zg ¼ 1
ðx;SgÞ ¼

Yqg

j ¼ 1

f Cj 9Zg ¼ 1
ðcj,gðxÞ; lj,gÞ

where qg is the number of the first principal components retained
in the approximation (7) for the group g, cj,gðxÞ is the jth principal
component score of X9Zg ¼ 1 for X¼x, f Cj,g

is its probability density
and Sg is the diagonal matrix diagðl1,g , . . . ,lqg ,gÞ. Conditionally on
the group, the probability density f Cj,g

of the jth principal
component of X is assumed to be the univariate Gaussian density
with zero mean (the principal component are centred) and
variance lj,g . This assumption is satisfied when X9Zg ¼ 1 is a
Gaussian process.

The vector Z ¼ ðZ1, . . . ,ZK Þ is assumed to have one order multi-
nomial distribution M1ðp1, . . . ,pK Þ, where p1, . . . ,pK are the mix-
ing probabilities (

PK
g ¼ 1 pg ¼ 1). Under this model it follows that

the unconditional approximated density of X is given by

f ðqÞX ðx; yÞ ¼
XK

g ¼ 1

pg

Yqg

j ¼ 1

f Cj,g
ðcj,gðxÞ; lj,gÞ ð8Þ

where y¼ ðpg ,l1,g , . . . ,lqg ,gÞ1rgrK have to be estimated and
q¼ ðq1, . . . ,qK Þ. By extrapolation of the finite dimensional setting,
we define a pseudo-likelihood by

lðqÞðy;X Þ ¼
Yn

i ¼ 1

XK

g ¼ 1

pg

Yqg

j ¼ 1

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2plj,g

q exp �
1

2

C2
i,j,g

lj,g

 !
ð9Þ

where Ci,j,g ¼ Cj,gðXiÞ is the jth principal score of the curve Xi

belonging to the group g.
3.2. Parameter estimation

In the unsupervised context the estimation of the mixture
model parameters is not as straightforward as in the supervised
context since the group’s labels Zi are unknown. A classical way to
maximize a mixture model likelihood when data are missing
(here the clusters indicators Zi) is to use the iterative EM
algorithm [29]. In this work we use an EM-like algorithm includ-
ing in the M step the computation of the principal components
scores of each group and the selection of the group specific
dimension qg. Our EM-like algorithm consists in maximizing the
pseudo completed log-likelihood

LðqÞc ðy;X ,ZÞ ¼
Xn

i ¼ 1

XK

g ¼ 1

Zi,g log pgþ
Xqg

j ¼ 1

log f Cj,g
ðCi,j,gÞ

0@ 1A,

which is easier to maximize than its incomplete version (9), and
leads to the same estimate. Let yðhÞ be the current value of the
estimated parameter at step h, hZ1.

E step: As the group indicators Zi,g ’s are unknown, the E step
consists in computing the conditional expectation of the pseudo
completed log-likelihood

Qðy; yðhÞÞ ¼ EyðhÞ ½L
ðqÞ
c ðy;X ,Z Þ9X ¼ x�

¼
Xn

i ¼ 1

XK

g ¼ 1

ti,g log pgþ
Xqg

j ¼ 1

log f Cj,g
ðci,j,gÞ

0@ 1A

where ti,g is the probability for the curve Xi to belong to the group
g conditionally to Ci,j,g ¼ ci,j,g:

ti,g ¼ EyðhÞ ½Zi,g9X ¼ x�C
pg
Qqg

j ¼ 1 f Cj,g
ðci,j,gÞPK

l ¼ 1 pl

Qql

j ¼ 1 f Cj,l
ðci,j,lÞ

: ð10Þ

The approximation (10) is due to the use of the approximation of
the density of X given by (7).

M step: The M step is composed of three stages:
1.
 Principal score update: The principal components Cj,g of group g

are computed by weighting the curves according to the
conditional probabilities ti,g (1r irn) computed in the E step.
The estimation of the principal components is described in
Section 3.3.
2.
 Group specific dimension qg selection: The estimation of the
group specific dimension qg is an open problem. In this work
we propose to use, once the group specific FPCA have been
computed, the scree-test of Cattell [30] in order to select each
group specific dimension qg. The advantage of using this test is
that one hyperparameter (the threshold of the Cattell scree-
test) allows to estimate K approximation orders.
3.
 Parameters update: The M step consists in computing the
mixture model parameters yðhþ1Þ which maximizes Qðy; yðhÞÞ.
The variance lj,g of the jth principal component for cluster g

has already been computed in the principal score update step.
For the mixing proportions, the usual estimator is obtained:

pðhþ1Þ
g ¼

1

n

Xn

i ¼ 1

ti,g :

Let us recall that the mean of the principal component Cj,g is
not considered since it is 0. The average shape of the curves of
a cluster is taken into account in the computing of the
principal components Cj,g of the cluster.

Stopping criterion: When using an EM algorithm, usual stop-
ping criterion is based on the growth of the likelihood. In our
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work, since the group specific approximation orders can change
between two steps of the algorithm, the likelihood can artificially
change (increase or decrease). In practice, we notice quite often
that the estimation algorithm is hesitating between approxima-
tion orders, which prevents convergence of the pseudo-likelihood.
For this reason, the algorithm often stops on the maximum
number of iterations allowed. In this case, the retained solution
is the solution maximizing the pseudo-likelihood.

The proposed mixture model and the corresponding estima-
tion algorithm will be called Funclust in what follows.

3.3. Estimation and approximation for functional principal

component analysis (FPCA)

Except some theoretical models (e.g. Brownian motion, Pois-
son process), the mean and the covariance functions of the
stochastic process X are unknown. They are estimated from an
i.i.d. sample of X, fX1, . . . ,Xng, n41, by

m̂ðtÞ ¼ 1

n

Xn

i ¼ 1

XiðtÞ, tA ½0,T�,

and

dCovðt,sÞ ¼
1

n�1

Xn

i ¼ 1

ðXiðtÞ�m̂ðtÞÞðXiðsÞ�m̂ðsÞÞ:

In the context of functional principal components, the asymptotic
properties of these estimators are studied in [3,31]. Under the
existence condition of fourth moment of X, in [32] convergences
rates for the estimators of the eigenvalues and of the eigenfunc-
tion of the integral operator with kernel dCovðt,sÞ are provided.
See also [33] for more details.

3.3.1. Smoothing and interpolating curves

In practice, a new problem appears because of the continuous-
time feature of the X0is. In practice, a curve Xi ¼ fXiðtÞ,tA ½0,T�g is
usually observed only in a discrete set of time-points,
fXðti,sÞ,0rsrmi,ti,sA ½0,T�g, that is, we have only discrete obser-
vations of each sample path Xi at a discrete set of knots
fti,s : s¼ 1, . . . ,mig. Because of this, the first step in functional data
analysis is often the reconstruction of the functional form of data
from discrete observations. In [34] it is shown that this is
equivalent to the choice of a metric in the space of discrete
observations. The most common solution to this problem is to
consider that sample paths belong to a finite dimensional space of
functions spanned by a basis of functions ffjgj ¼ 1,...p (see, for
example, [5]).

XiðtÞ ¼
Xp

j ¼ 1

gi,jfðtÞ, pZ1:

An alternative way of solving this problem is based on non-
parametric smoothing of functions (see [18]).

Sample paths basis coefficients gi,j’s are estimated from
discrete-time observations by using an appropriate numerical
method. If the functional predictor is observed with error

Xobs
i ðti,sÞ ¼ Xiðti,sÞþeis, s¼ 0, . . . ,mi,

least square smoothing is used after choosing a suitable basis, for
example, trigonometric functions, B-splines or wavelets (see [5]
for a detailed study). In this case, the basis coefficients of each
sample path Xi are approximated by

bgi ¼ ðY
0
iYiÞ

�1Y0iX
obs
i ,

with Yi ¼ ðfjðtisÞÞ1r irn,1r srmi
and Xobs

i ¼ ðX
obs
i ðti,0Þ, . . . ,

Xobs
i ðti,mi

ÞÞ
0.
The choice of the basis functions as well as the dimension of
this basis are quite subjective. If the sample paths of X are smooth
and periodic then Fourier basis could be a good choice. However,
the optimal properties of cubic B-spline functions make them the
first choice for smoothing noisy data. See for example the
monograph [35] and, in the context of functional data, see [5].

If the sample curves are observed without error, an interpola-
tion procedure can be used. For example, in [36] quasi-cubic
spline interpolation for reconstructing annual temperatures
curves from monthly values is proposed. More about interpola-
tion of functional data is provided in [27].
3.3.2. FPCA computation

Let G be the n�p expansion coefficients gij matrix and W be
the matrix of the inner products between the basis functions
wj‘ ¼

R T
0 fjðtÞf‘ðtÞ dt (1r j,‘rp). We explain here the computa-

tion of the principal component Cj,g of group g appearing in the M
step as previously described. This computation is carried out by
weighting the importance of each curve in the construction of the
principal components with the conditional probabilities
Tg ¼ diagðt1,g , . . . ,tn,gÞ. Consequently, the first step consists in
centring the curve Xi within the group g by subtraction of the
mean curve computed using the ti,g ’s. The expansion coefficients
of the centred curves are given by

Gg ¼ ðIn�1nðt1,g , . . . ,tn,gÞÞG,

where In and 1n are respectively the identity n�n-matrix and the
unit n-vector. The jth principal component scores Cj,g is then the
jth eigenvector of the matrix GgWG0gTg associated with the jth
eigenvalue lj,g

GgWG0gTgCj,g ¼ lj,gCj,g :

Note that usual FPCA computation occurs if Tg ¼ 1=nðInÞ.
4. Applications

4.1. Clustering evaluation

Before validating the proposed clustering method on numer-
ical applications, we have to choose an evaluation strategy, which
remains an open questions in clustering. In lot of works, classi-
fication benchmark datasets are commonly used to validate and
compare clustering models (see for instance [3,37,38]). As men-
tioned in several works [39,40], this strategy can be sometimes
dangerous and misleading. Indeed, this evaluation strategy relies
on the assumption that class labels coincide with cluster struc-
ture, which can be true for some datasets and not for others.
Another strategy can be the use of artificial datasets. But this
strategy can also be criticized, since it evaluates the clustering
only under particular assumption on the data generating process.
[41] argues that the best way to evaluate clustering is probably to
work on real world datasets, and to explain how the obtained
clusters make sense.

In this section, each of these three strategies will be used. First,
a simulation study will be carried out to compare Funclust with
two challengers for functional data clustering as well as usual
clustering methods for finite dimensional data applied on FPCA
scores. In a second part, the comparison is based on the three
classification datasets. Finally, a clustering of the surface of the
soil of Mars will be estimated with Funclust, and a physical
interpretation of the clusters will be used to validate the useful-
ness of the obtained clustering.
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4.2. Simulation study

In this simulation, the number of clusters is assumed to be
known: K¼2. A sample of n¼100 curves are simulated according
to the following model inspired by [42,43]

Class 1 : XðtÞ ¼U1h1ðtÞþU2h2ðtÞþEðtÞ, tA ½1,21�,

Class 2 : XðtÞ ¼U1h1ðtÞþEðtÞ, tA ½1,21�,

where U1 and U2 are independent Gaussian variables such that
E½U1� ¼ E½U2� ¼ 0, VarðU1Þ ¼VarðU2Þ ¼ 1=12 and EðtÞ is a white
noise, independent of Ui’s and such that VarðEtÞ ¼ 1=12. The
functions h1 and h2 are defined, for tA ½1,21�, by h1ðtÞ ¼ 6�9t�79
and h2ðtÞ ¼ 6�9t�159. The mixing proportions pi’s are chosen to
be equal, and the curves are observed in 41 equidistant points
(t¼ 1, 1:5, . . . ,21). Fig. 1 plots the simulated curves. The func-
tional form of the data is reconstructed using linear spline
smoothing (with 30 equidistant knots).

Funclust is compared with the two challengers for functional
data clustering, FunHDDC [16] and fclust [13], and the three
clustering methods traditionally devoted to clustering finite-
dimensional data applied on the FPCA scores: Gaussian mixture
models on the FPCA scores (GMM, [4]) via the Rmixmod package
for R, k-means [2] and hierarchical clustering (packages kmeans

and hclust). The selection of the number of FPCA components is
carried out by the Cattell scree test. For FunHDDC and GMM,
which proposes several models, the best model according to BIC
has been retained. Fig. 2 shows the correct classification rates
over 100 simulations, which exhibited better results for Funclust
on this simulation set-up.

4.3. Benchmark study

Funclust is now compared with other clustering methods on
the basis of the capacity to find the class labels of the three
classification datasets.

4.3.1. The data

The three real datasets are considered: the Kneading, Growth,
and ECG datasets. These three datasets are plotted in Fig. 3. The
Kneading dataset comes from Danone Vitapole Paris Research
Center and concerns the quality of cookies and the relationship
with the flour kneading process. The kneading dataset is
described in detail in [44]. There are 115 different flours for
which the dough resistance is measured during the kneading
process for 480 s. One obtains 115 kneading curves observed at
241 equispaced instants of time in the interval [0, 480]. The 115
flours produce cookies of different qualities: 50 of them have
produced cookies of good quality, 25 produced medium quality
and 40 low quality. This data have been already studied in a
supervised classification context [44,45]. They are known to be
hard to discriminate, even for supervised classifiers, partly
because of the medium quality class. Taking into account that
the resistance of dough is a smooth curve measured with error,
and following previous works on this data [44,45], least squares
approximation on a basis of cubic B-spline functions (with 18
knots) is used to reconstruct the true functional form of each
sample curve. The Growth dataset comes from the Berkeley
growth study [46] and is available in the fda package of R. In this
dataset, the heights of 54 girls and 39 boys were measured at 31
stages, from 1 to 18 years. The goal is to cluster the growth curves
and to determine whether the resulting clusters reflect gender
differences. The ECG dataset is taken from the UCR Time Series

Classification and Clustering website.1 This dataset consists of 200
electrocardiogram from 2 groups of patients sampled at 96 time
instants, and has already been studied in [47]. For these two
datasets, the same basis functions as for the Kneading dataset has
been arbitrarily chosen (20 cubic B-splines).

4.3.2. Experimental set-up

In this benchmark study, Funclust is compared with FunHDDC
and fclust, as in the simulation study. The Growth dataset allows
an additional comparison with k-centres (kCFC, [11]), since they

http://www.cs.ucr.edu/~eamonn/time_series_data/
http://www.cs.ucr.edu/~eamonn/time_series_data/
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Fig. 3. Kneading, Growth and ECG datasets.

Table 1
Correct classification rates (CCR) in percentage for Funclust, FunHDDC (best model according BIC), fclust, kCFC and usual non-functional methods on the Kneading, Growth

and ECG datasets.

Functional methods Kneading 2-step methods Kneading

Discretized (241 instants) Spline coeff. (20 splines) FPCA scores (4 components)

Funclust 66.96 HDDC 66.09 53.91 44.35

FunHDDC 62.61 MixtPPCA 65.22 64.35 62.61

fclust 64 GMM 63.48 50.43 60

kCFC - k-means 62.61 62.61 62.61

hclust 63.48 63.48 63.48

Growth 2-step methods Growth

Discretized (350 instants) Spline coeff. (20 splines) FPCA scores (2 components)

Funclust 69.89 HDDC 56.99 50.51 97.85
FunHDDC 96.77 MixtPPCA 62.36 50.53 97.85
fclust 69.89 GMM 65.59 63.44 95.70

kCFC 93.55 k-means 65.59 66.67 64.52

hclust 51.61 75.27 68.81

ECG 2-step methods ECG

Discretized (96 instants) Spline coeff. (20 splines) FPCA scores (19 components)

Funclust 84 HDDC 74.5 73.5 74.5

FunHDDC 75 MixtPPCA 74.5 73.5 74.5

fclust 74.5 GMM 81 80.5 81.5

kCFC – k-means 74.5 72.5 74.5

hclust 73 76.5 64
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present in [11] the correct classification rate they obtained on the
Growth dataset (their code are not available to the best of our
knowledge). Concerning the finite-dimensional methods to which
Funclust is compared, we added to GMM, k-means and hierarch-
ical clustering, the two methods dedicated to the clustering
of high-dimensional data: HDDC [7] and MixtPPCA [6] (HDclassif

package). These methods for finite-dimensional data have been
applied on the FPCA scores with choice of the number of
components with the Cattell scree test, but also directly on the
discrete observations of the curves and on the coefficients in the
cubic B-spline basis approximation.

Details for Funclust: The maximum number of iterations is
fixed to 200. Note that for these three applications, the maximum
number of iterations has always been reached. Nevertheless, since
the iterations corresponding to the retained solutions (according
to the best pseudo-likelihood) were always relatively far from the
last one, we assume this maximum number of iterations as
sufficient. The threshold of the Cattell scree test allowing to select
the approximation order qk is fixed to 0.05. In order to avoid
convergence to a local maximum of the pseudo-likelihood, our
EM-like algorithm has been initialized with the best solutions of
20 small EM-like algorithms with 20 iterations each [48]. With
this experimental set-up, Funclust estimation is obtained in about
30 s for each dataset, on a laptop (2.80 GHz CPU) and with a code
in R software.
4.3.3. Results

The estimated approximation order qg for Funclust are the
following: Kneading (q1 ¼ 2, q2 ¼ 1, q3 ¼ 3), Growth (q1 ¼ 2,
q2 ¼ 3), ECG (q1 ¼ 9, q2 ¼ 4). The correct classification rates
(CCR) according to the known partitions are given in Table 1.
Funclust performs better to estimate the class label than all the
other methods on two datasets among three (Kneading and ECG).
On the last dataset, the results are relatively poor (69.89%
accurate whereas some method are about 97% accurate), but the
performance can be greatly increased (95.70%) if the dimensions
qg are fixed to 2 (as the number of FPCA scores used by the non-
functional methods). This dataset illustrates that the choice of the
approximation order is a very important question, and that
further works have to be carried out in this direction. A last
remark concerns the use of non-functional methods. These
methods can sometimes perform very well to estimate the class
label, but the main problem is that, in the present unsupervised
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context, we have no way to choose between working with the
discrete data, with the spline coefficients or with the FPCA scores.
For instance, HDDC and MixtPPCA are very well performing on
the Growth dataset using the FPCA scores, but they are very poor
using the discrete data or the spline coefficients.

4.4. Application to Mars surface characterization

This data, provided by the Laboratory of Planetology of
Grenoble [49,50], were acquired by the OMEGA imaging satellite.
The soil of Mars has been observed with a resolution between 300
and 3000 m depending on the altitude of the satellite. It was
acquired for each pixel a spectra whose wavelengths range from
0.36 to 5:2 mm and stored this information in a vector of 256
dimensions. The purpose of this preliminary study is to charac-
terize the composition of the surface of Mars by determining
zones composed of similar material. The number of groups has
been fixed to 8, since the experts expect 8 main classes of
mineralogical. The analysis of some spectra in each cluster will
allow the expert to indicate to which mineralogical corresponds
each cluster. A photography of size 300�128 pixels of the surface
of Mars (left image of Fig. 4) is considered, each of 38,400 pixels
being described by a spectrum (right image of Fig. 4).

The clusters resulting from Funclust is represented in Fig. 5.
This clustering seems to be in accordance with the photography
of Fig. 4 (we recall that no spatial information has been used
for this clustering). Moreover, the experts of the Laboratory of
Planetology of Grenoble particularly appreciated that our method
is able to detect specific cluster, in the form of edging, at the
border of the main areas: for instance the magenta and cyan
clusters separate the main blue and orange area. Analyzing some
spectra in each cluster has allowed to deduce that these clusters
reflect the presence of particular materials (mixture of carbonate
and ice) at the border of main materials (ice and dust).
5. Conclusion

In this paper we propose a new clustering procedure for
functional data based on an approximation of the notion of
density of a random function. The main tool is the use of the
probability densities of the principal components scores. Assum-
ing that the functional data are sampled from a Gaussian process,
the resulting mixture model is an extrapolation of the finite
dimensional Gaussian mixture model to the infinite dimensional
setting. We defined an EM-like algorithm for the parameter
estimation and performed several numerical applications, in
order to show the performance of this approach with respect to
usual clustering procedures.

Future work is devoted to investigate the choice of the
approximation orders. We observed in our application study that
a bad choice of these dimensions can drastically deteriorate the
clustering results. However, allowing the approximation order to
change in the estimation algorithm leads to lose the properties of
the EM algorithm. In particular, the pseudo-likelihood is not
necessarily increasing, and we have to stop the algorithm after
a given number of iterations and to choose the best reached
solutions.
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[24] T. Geweniger, M. Kästner, M. Lange, T. Villmann, Modified conn-index for the
evaluation of fuzzy clusterings, in: Proceedings of ESANN 2012, Bruges,
Belgium, pp. 465–470.

[25] G. Celeux, G. Govaert, A classification EM algorithm for clustering and two
stochastic versions, Comput. Stat. Data Anal. 14 (1992) 315–332.

[26] A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from incomplete
data via the EM algorithm, J. R. Stat. Soc. Ser. B 39 (1977) 1–38.
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les Glaces et l’Activité, ESA SP-1240: Mars Express: the Scientific Payload, p.
37–49.
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