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CHAPITRE 1

Généralités

1. Travaux

1.1. Travaux présentés pour l’habilitation.

• Dans le Chapitre 2 :

- “On the Milnor fibers of cyclic quotient singularities” (en collaboration avec A. Némethi),
disponible sur ArXiv :0805.3449. Soumis.

- “On the cohomology rings of holomorphically fillable manifolds.” A parâıtre dans Contem-
porary Mathematics. Disponible sur ArXiv :0712.3484

- “Milnor open books and Milnor fillable contact 3-manifolds” (en collaboration avec C.
Caubel et A. Némethi). Topology 45 (2006), 673-689.

- “On the contact boundaries of normal surface singularities” (en collaboration avec C.
Caubel), C. R. Acad. Sci. Paris, Ser. I 339 (2004) 43-48.

• Dans le Chapitre 3 :

- “A finiteness theorem for the dual graphs of surface singularities” (en collaboration
avec J. Seade). A parâıtre dans International Journal of Mathematics. Disponible sur
ArXiv :0805.1842

- “The geometry of continued fractions and the topology of surface singularities”. In “Sin-
gularities in Geometry and Topology 2004”. Advanced Studies in Pure Mathematics 46,
2007, 119-195.

• Dans le Chapitre 4 :

- “Families of higher dimensional germs with bijective Nash map” (en collaboration avec
C. Plénat). Kodai Math. Journal.31 (2) (2008), 199-218.

- “A class of non-rational surface singularities for which the Nash map is bijective” (en
collaboration avec C. Plénat). Bulletin de la SMF 134 no. 3 (2006), 383-394.
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1.2. Autres travaux.

• Articles de spécialité :

- “Introduction to Jung’s method of resolution of singularities”, disponible sur ArXiv :
math.CV/0703353.

- “Iterating the hessian : a dynamical system on the moduli space of elliptic curves and
dessins d’enfants”. A parâıtre dans “Noncommutativity and Singularity”, J.P. Bourgui-
gnon, M.Kotani, Y.Maeda, N.Tose eds.

- “On higher dimensional Hirzebruch-Jung singularities”. Rev. Mat. Complut. 18 (2005),
no.1, 209-232.

- “The analytical invariance of the semigroup of quasi-ordinary hypersurface singulari-
ties”, Duke Math. J. 124 (2004), no.1, 67-104.

- “Sur le contact d’une hypersurface quasi-ordinaire avec ses hypersurfaces polaires”, Jour-
nal of the Inst. of Math. Jussieu (2004) 3 (1), 105-138.

- “Approximate Roots”, dans “Valuation Theory and its Applications.” vol. II, F.-V. Kuhl-
mann, S.Kuhlmann, M.Marshall editors, Fields Institute Communications 33, AMS 2003,
285-321.

- “Two-dimensional iterated torus knots and quasi-ordinary surface singularities”, C. R.
Acad. Sci. Paris, Ser. I 336 (2003) 651-656.

- “On the invariance of the semigroup of a quasi-ordinary surface singularity”, C. R. Acad.
Sci. Paris, Ser. I 334 (2002) 1101-1106.

- “On a canonical placement of knots in irreducible 3-manifolds”, C. R. Acad. Sci. Paris,
Ser. I 334 (2002) 677-682.

• Thèse :

- “Arbres de contact des singularités quasi-ordinaires et graphes d’adjacence pour les 3-
variétés réelles”, disponible sur le site :

http ://tel.ccsd.cnrs.fr/documents/archives0/00/00/28/00/index fr.html

• Textes de vulgarisation :

- “Sphères et développement embryonnaire”, dans ”La sphère sous toutes ses formes” Dos-
sier hors-série oct/décembre 2003 de Pour la Science, 114-117.

- “Pour nouer, il faut courber” (2000), développement d’un exposé fait aux journées
”Sciences en fête”, disponible sur le site :
http ://www.dma.ens.fr/culturemath/contenu/dossiers.html#courbure
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2. Survol des travaux présentés pour l’habilitation

Tout d’abord un mot sur la langue : j’ai choisi d’écrire la description de mes travaux
en anglais, car plusieurs des personnes potentiellement intéressées par ce texte ne com-
prennent pas le français. Comme d’autre part dans mes recherches se retrouvent deux
domaines de la géométrie qui ont peu communiqué jusqu’à présent (la théorie des sin-
gularités analytiques complexes et la topologie de contact), j’ai décidé de présenter les
définitions, intuitions et constructions de base des deux côtés, en espérant que cela puisse
aider une personne plutôt familière avec l’un des domaines à s’orienter dans l’autre.

Je tiens ensuite à remercier Bernard Teissier, mon directeur de thèse, qui m’a offert
un horizon suffisamment large pour que je ressente la richesse de l’inconnu et qui est resté
un interlocuteur des plus précieux pour son écoute attentive et ses conseils. Je remercie
également mes collaborateurs Clément Caubel, András Némethi, Camille Plénat et José
Seade, qui ont tellement fait pour rendre ces années de recherche passionnantes.

Dès ma thèse, j’ai travaillé en théorie des singularités des variétés analytiques com-
plexes. Mais après ma thèse j’ai changé complètement le type des structures que j’ai
regardées. Ainsi, pendant la thèse je me suis principalement intéressé aux singularités
quasi-ordinaires d’hypersurfaces et à des problèmes d’invariance analytique d’objets qui
leur sont associés via des séries de Newton-Puiseux. Après la thèse, je me suis tourné vers
les structures de contact canoniquement présentes sur les bords des singularités isolées
et vers leurs remplissages symplectiques obtenus comme fibres de Milnor de leurs divers
lissages. Ces réflexions m’ont amené aussi à obtenir de nouveaux résultats sur la topologie
des singularités de surfaces et à étudier le problème des arcs de Nash. Ce sont ces divers
aspects de ma recherche que je présenterai dans la suite.

• Le chapitre 2 a comme but de présenter le résultat de réflexions sur les liens entre la
théorie des singularités des espaces analytiques complexes et les topologies de contact et
symplectique. Le problème dominant est le suivant : décrire les remplissages de Stein du
bord de contact d’une singularité isolée obtenus comme fibres de Milnor. Les principaux
résultats sont :

(avec C. Caubel et A. Némethi, voir Théorème 3.3) Le livre ouvert de Milnor associé
à une fonction holomorphe à singularité isolée définie sur un germe d’espace analytique
complexe à singularité isolée porte la structure de contact standard.

(avec C. Caubel et A. Némethi, voir Théorème 3.6) La structure de contact stan-
dard sur le bord d’une singularité de surface normale est un invariant topologique de la
singularité.

(avec A. Némethi, prouvant en particulier une conjecture de P. Lisca, voir la sec-
tion 5.6) Les fibres de Milnor associées aux composantes irréductibles de la base de
déformation miniverselle d’une singularité quotient cyclique de surface sont deux à deux
non-difféomorphes par des difféomorphismes étendant les identifications naturelles de
leurs bords et constituent, à de tels difféomorphismes près, tous les remplissages de Stein
des structures de contact standard sur les espaces lenticulaires.

J’y explique aussi des théorèmes de restriction sur les anneaux de cohomologie des
bords fortement pseudo-convexes des variétés de Stein compactes à bord, des singularités
isolées et des variétés complexes compactes à bord. Certains avaient déjà été démontrés
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par Durfee & Hain et Bungart. Je pense que sont nouvelles les obstructions topologiques à
être un bord d’une variété de Stein, à la lissification d’une singularité isolée et à l’existence
de petites résolutions, le tout en dimension complexe ≥ 3 (voir la section 6).

• Le chapitre 3 contient le résultat de mes réflexions sur la topologie des singula-
rités de surfaces analytiques complexes. Le problème dominant qui a guidé cette réflexion
est le suivant : décrire les types topologiques possibles des singularités normales de sur-
faces qui sont respectivement des hypersurfaces/ des intersections complètes/ Gorenstein/
numériquement Gorenstein. Les principaux théorèmes sont :

(voir le Théorème 4.5) La structure de plombage tracée sur le bord d’une singularité
normale de surface par sa résolution minimale à croisements normaux est invariante à
isotopie près par les difféomorphismes préservant l’orientation.

(avec J. Seade, voir le Théorème 5.3) A topologie du diviseur exceptionnel de la
résolution minimale fixée, il existe un nombre fini de possibilités pour le cycle canonique
d’une singularité numériquement Gorenstein réalisant cette topologie. En particulier, ceci
est vrai pour les intersections complètes.

J’y explique aussi comment une dualité élémentaire entre cônes supplémentaires par
rapport à un réseau bidimensionnel permet de comprendre géométriquement les calculs
faits à l’aide de fractions continues apparaissant en théorie des singularités des courbes et
des surfaces.

• Le chapitre 4 contient le résultat de réflexions sur le problème des arcs de Nash.
Le problème dominant est le suivant : décrire les diviseurs essentiels d’une singularité
isolée normale en dimension ≥ 3. Je pense que la possibilité d’étendre les réflexions des
précédents chapitres aux dimensions plus grandes passe par une meilleure compréhension
de ces diviseurs essentiels.

Le principal théorème obtenu, permettant de donner les premiers exemples non tri-
viaux de singularités normales non toriques ayant une application de Nash bijective, est :

(avec C. Plénat, voir Corollaire 3.13) Soit (X, 0) un germe normal à singularité isolée
d’espace analytique complexe. Considérons une résolution divisorielle projective π de (X, 0).
Soit F une composante irréductible du lieu exceptionnel Exc(π) de π. Supposons que pour
toute autre composante irréductible G de Exc(π), il existe un diviseur effectif entier D
de support Exc(π) dans lequel la multiplicité de F est strictement inférieure à celle de G,
et tel que le fibré en droites O(−D) est ample en restriction à Exc(π). Alors F est une
composante essentielle et elle est contenue dans l’image de l’application de Nash.

• Le chapitre 5 contient les questions principales apparues pendant les recherches
précédentes, et qui continuent à nourir ma réflexion.
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3. Remarques sur mon enseignement

Pendant les trois dernières années, j’ai donné un cours-TD intégré de M1 (première
année de Master) intitulé Topologie algébrique et géométrique. J’ai démarré avec le théo-
rème d’Euler sur les polyèdres convexes, et j’ai terminé par les axiomes d’Eilenberg-
Steenrod d’une théorie homologique. Mon fil directeur a été le problème de la classifica-
tion des espaces topologiques. J’ai essayé de maintenir l’équilibre entre une manipulation
concrète à travers de nombreux dessins (les étudiants ont commencé par apprendre à
dessiner les polyèdres réguliers, que la plupart ne connaissaient même pas de nom) et la
rigueur des définitions précises. Mais celles-ci n’ont jamais été parachutées, nous y sommes
arrivés graduellement, expérimentalement.

Nous avons lu plusieurs textes originaux : des extraits de l’article de Riemann sur les
fonctions abéliennes [R 57], décrivant la surface qui porte son nom associée à une fonction
algébrique ; l’introduction et des extraits de l’article de Poincaré [P 95], fondateur de la
topologie algébrique ; l’un de ses articles sur l’enseignement des mathématiques [P 89] (qui
à mon sens devrait être au programme de l’Agrégation) ; l’article d’Eilenberg et Steenrod
[ES 45]. Nous avons beaucoup travaillé à partir des exemples de variétés de dimension 3
obtenus en recollant des faces de cubes ou d’octaèdres, décrits par Poincaré [P 95] : ils
constituèrent par exemple la base expérimentale pour voir que la caractéristique d’Euler
s’annulait en dimension 3, et qu’il fallait donc enrichir notre panoplie d’invariants, ainsi
que la base expérimentale pour conjecturer une première version du théorème de dualité
(ce que plusieurs étudiants firent correctement au vu des données expérimentales).

J’ai tenu à faire sentir aux étudiants la durée du développement mathématique, ainsi
que l’évolution du langage et des problèmes étudiés. J’ai voulu aussi leur mettre entre les
mains des articles de recherche et les faire réfléchir sur les diverses manières de faire un
cours de maths. Tout cela à un moment-clé de leurs études, où ils devront choisir s’ils
s’orienteront plutôt vers la recherche ou vers l’enseignement.

La plupart d’entre eux ont apprécié cela. Voici quelques-uns de leurs commentaires
écrits dans le questionnaire final anonyme que j’ai distribué chaque année. Ils constituent
des réponses aux questions écrites en caractères gras.

• Les renseignements historiques vous ont-ils permis de mieux comprendre
les maths ?

“Les renseignements historiques étaient intéressants, surtout lorsque ceux-ci permet-
taient de comprendre la démarche intellectuelle qui mène aux théorèmes, ou à l’élaboration
d’une théorie. ”

“C’est quelque chose d’extraordinaire : pour une fois, on nous dit d’où ça vient, pour-
quoi on a pensé à faire ça. On n’a pas cette impression que tout vient naturellement et
cela nous permet d’avoir différentes approches d’un problème.”

“Les renseignements historiques ont beaucoup apporté, tant à l’intérêt qu’à la compré-
hension. Ils ont rendu ce cours plus “intuitif” et permis d’en comprendre la logique.”

“Peut-être pas mieux comprendre les maths, mais mieux comprendre le cheminement
des découvertes. Je pense que cela m’a éclairé sur ce qu’est réellement la recherche.”

“Disons plutôt que ces renseignements m’ont conforté dans l’idée de l’absolue beauté
des maths, abstraites et pourtant si proches de la réalité (état d’esprit perdu un peu lors
des dernières années d’étude). ”
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“C’est un des aspects les plus intéressants du cours à mon sens. Ça permet de replacer
les choses dans leur contexte et d’avoir une meilleure idée de comment les maths sont
construites. Ça manque dans les autres cours. ”

• Avez-vous trouvée intéressante l’étude de l’article de Poincaré ? Qu’est-ce
qui vous a le plus marqué le concernant ?

“Sa capacité à faire le lien entre différents domaines des mathématiques et surtout la
réflexion qu’il mène en même temps sur ses recherches m’ont marqué.”

“L’article de Poincaré est, bien qu’assez ancien, très actuel. Ce qui m’a le plus marqué,
c’est la “vision” de Poincaré et aussi sa façon d’expliquer qui est très claire.”

“L’étude de l’article de Poincaré était très intéressante, il paraissait très opaque au
début, puis petit à petit, on comprend certaines choses... (pas encore tout !) Les exemples
m’ont marqué, car ça ressemblait à un jeu.”

“L’étude de l’article de Poincaré permet de se “faire la main” sur des premiers exemples
et de lire dans le texte des articles de l’époque, ce qui apporte beaucoup. J’ai été surpris
par le caractère intuitif de ces écrits. ”

“Enfin de la littérature mathématique ! Ce qui m’a marqué est la façon dont il peut
rendre “accessible” certaines parties de ses idées. Mais surtout : il m’a permis de me faire
(enfin) une idée de ce que sont les maths et la “création”. Il a décrit les développements
intuitifs de l’esprit mathématique, pouvant servir dans d’autres domaines. C’est surtout
son texte sur l’enseignement qui m’a le plus marqué.”

“Oui, c’est intéressant de voir ce que les fondateurs d’un domaine pensaient vraiment.”

Références

[ES 45] Eilenberg, S., Steenrod, N. “Axiomatic approach to homology theory”, Proc.
Nat. Acad. Sci. USA 31 (1945), 117-120.

[P 89] Poincaré, H. “La logique mathématique dans la science mathématique et dans
l’enseignement”, L’Enseignement Math. 1 (1889), 157-162.

[P 95] Poincaré, H. “Analysis Situs”, Journal de l’Ecole Polytechnique, 1 (1895), 1-121.

[R 57] Riemann, B. “Théorie des fonctions abéliennes” Dans “Oeuvres mathématiques
de Riemann”, trad. L. Laugel, Gauthier-Villars, 1898. Réed. J. Gabay, 1990, 89-164. Tra-
duction de plusieurs articles parus dans J. für die reine und angew. Math. 54 (1857).



CHAPTER 2

Milnor fillable contact manifolds and their Stein fillings

1. Motivations

After my PhD, I spent the academic year 2001-2002 in the École Normale Supérieure
of Lyon. There I had the opportunity to listen to some talks of Emmanuel Giroux on
contact topology, and more precisely on his newly elaborated theory on the interaction
between contact structures and open books on a given odd-dimensional manifold. His
extremely geometrical style appealed a lot to my imagination and gave me the strong will
to learn to see and manipulate contact structures.

This will was intensified by the fact that there is a natural contact manifold associated
to each isolated singular point of a complex analytic space (its contact boundary). In my
thesis I had studied (not necessarily isolated) singularities of complex spaces, and my
main preoccupation was to make dictionaries between algebraic aspects and geometric
or topologic ones. While listening to Emmanuel Giroux, I felt that learning to think in
terms of contact structures would enrich the geometric panoply of structures in terms of
which I could try translations of algebraic aspects.

After my recruitment as Mâıtre de Conférences in the University Paris 7, I began
discussing with Clément Caubel about contact structures and singularities, as he had also
felt attracted by research at the interface between the two fields. One of the main questions
we discussed was to determine whether the natural contact structure on the boundary
of a normal surface singularity was or not a topological invariant of the singularity. As
a result of those discussions we arrived at a strategy for proving this. We succeeded in
realising all the steps of the strategy with the collaboration of András Némethi and we
presented our results in the papers [24] and [25]. I explain them in section 3. Before
that, section 2 is dedicated to the necessary background on contact topology.

In November 2004, I was invited by Ricardo Benedetti to the University of Pisa to talk
about those results. There I met Paolo Lisca, with whom I discussed a lot about contact
structures and their symplectic fillings. In particular, he told me that he had classified the
minimal symplectic fillings of the contact boundaries of cyclic quotient surface singularities
up to diffeomorphisms and that he conjectures that they correspond in an explicit way
to the Milnor fibers of the smoothings of those singularities. I felt immediately extremely
attracted by that conjecture, as it seemed to me to be the door by which I could enter to
a world of better understanding of the relation between the Stein structures of the Milnor
fibers and the contact structures of the boundaries of smoothable surface singularities. I
began discussing this problem with András Némethi. This year we finally succeeded in
proving a strong version of Lisca’s conjecture (see [126]). I explain it in section 5. Before
that, section 4 is dedicated to the needed background on deformations of singularities.

11
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In the meantime I kept in mind a question which Etienne Ghys asked me in 2001,
namely, to know if odd-dimensional tori could be diffeomorphic to boundaries of isolated
singular points of complex analytic spaces. Sullivan had proved in 1975 that this was not
the case for the 3-dimensional torus, but apparently it was an open question for higher
dimensions. I never worked deeply on this question, but I never forgot it.

In 2007 the question interacted suddenly in my mind with a theorem of Marc de
Cataldo and Luca Migliorini which I learnt from a talk of Jan Schepers. This starting
point allowed me to surf through the literature till I found a theorem of Goresky and
MacPherson which enabled me to prove a structure theorem about the cohomology rings
of boundaries of isolated singularities, having as a corollary the fact that odd-dimensional
tori are never boundaries of complex singularities of dimension at least 2. I could apply
this structure theorem to obtain also a structure theorem for strongly convex boundaries
of compact complex manifolds. A little later, Eduard Looijenga made me discover that
those theorems had already been proved by Durfee and Hain [39] on one side, and Bungart
[21] on another side. As those results seem not to be well-known and as my proof of
Durfee and Hain’s theorem is shorter than theirs, I wrote the survey [140]. There I also
explained a similar structure theorem for the boundaries of compact manifolds in terms of
the homotopical dimension of the entire manifold. This allows to give simple topological
obstructions for a manifold to be the boundary of a Stein manifold and for a singularity
to be smoothable or to have small resolutions. I explain those results in section 6.

2. Contact manifolds

I recommend as a general reference on contact geometry Geiges’ recent textbook [54].
Here I explain only the notions and the views which allow to understand the context of
my research.

2.1. Basic definitions.
In everyday language, two objects are in contact if they touch. If we think that both

are limited by smooth surfaces, then at each point of contact their bounding surfaces
are tangent. Therefore the two surfaces have not only that point in common, but also
a tangent plane at that point. For this reason, the pair formed by a point in space and
a plane through that point is called a contact element. This may be generalized to an
arbitrary abstract manifold: a contact element of it is simply a hyperplane of the tangent
space at some point.

The set of contact elements attached to a manifold is also naturally endowed with a
structure of manifold: it is simply the projectified cotangent bundle PT ∗(V ) of the initial
manifold V . But it has more structure, which may be concretely felt by realizing that
there are special parametrized curves inside it. Such curves represent the movement of
a contact element of V , that is, of a mobile point of V and simultaneously of a tangent
hyperplane attached to the mobile. The special curves are those such that at each moment,
the velocity of the mobile in V is contained in the corresponding hyperplane (this is called
in a visual way ‘the skating condition’ by Arnold). One sees that the velocities of those
curves, when thought inside PT ∗(V ), sweep a hyperplane of the tangent space of PT ∗(V )
at each point. Therefore the manifold of contact elements has a natural hyperplane
distribution. It is called its contact structure.
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By working in local coordinates on V , one sees that PT ∗(V ) may be covered by
charts of coordinates (q1, ..., qn, p1, ..., pn, z) in which the contact structure is defined by
the equation:

(2.1) dz +
n

∑

i=1

pidqi = 0

Using this formula and Frobenius’ theorem, one shows that this hyperplane distri-
bution is not tangent to a foliation of codimension 1 or, said technically, that it is not
completely integrable. In fact it is as far as possible from being completely integrable:
it is completely non-integrable, a notion existing only on odd-dimensional manifolds. It
was precisely this condition of complete non-integrability that was taken as definition of
a general contact structure:

Definition 2.2. Let M be an oriented (2n − 1)-dimensional manifold. A contact
structure on M is a hyperplane distribution ξ in TM given by a global 1-form α such
that α∧ (dα)∧(n−1) vanishes nowhere. We say that the pair (M, ξ) is a contact manifold
and that α is a contact form. The form α is called positive if α∧ (dα)∧(n−1) defines the
chosen orientation of M . If n is even, then the orientation defined by α∧ (dα)∧(n−1) does
not depend on the choice of the defining form α, hence one can speak about positive
contact structures.

The contact form of the left-hand side of equation (2.1) is called the standard contact
form on R2n+1 and the associated contact structure is the standard contact structure on
R2n+1 .

As explained before, one has also a so-called standard contact structure on any man-
ifold of (oriented) contact elements.

2.2. Contact structures coming from complex geometry.
Another very important class of examples (which is the central one for the results

presented here) comes from complex analytic geometry. Start from a connected complex
manifold X of complex dimension n ≥ 2 and from a real smooth hypersurface M of it.
Denote by J : TX → TX the (integrable) almost complex structure associated to the
complex structure of X, where TX denotes the tangent bundle of the underlying smooth
manifold of X. Then J(TM) cannot be equal to TM , because this last space is odd-
dimensional. Therefore ξ := TM ∩ J(TM) is a J-invariant subspace of real codimension
1 of TM , that is, a hyperplane distribution with a natural complex structure J |ξ. We will
call it the complex distribution of M →֒ X.

For various hypersurfaces M one can get all the degrees of integrability of this distri-
bution, from the completely integrable case till the completely non-integrable (or contact)
one. A general situation when ξ is automatically contact is got when M is strongly pseu-
doconvex.

Definition 2.3. Let ρ be a smooth function on X. It is called strictly plurisub-
harmonic (abbreviated spsh) if −ddcρ > 0, where dcρ := dρ ◦ J ∈ T ∗X. If a cooriented
real hypersurface of X may be defined locally in the neighborhood of any of its points as
a regular level of a spsh function which grows from its negative to its positive side, then
it is called strongly pseudoconvex.
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It is important to care about the coorientation of the hypersurface: seen from one side
it is pseudoconvex, from the other it is pseudoconcave. The terminology was chosen such
that the positive side is the pseudoconcave one, distinguished by the fact that holomorphic
curves tangent to the hypersurface are locally contained in that side.

The announced general family of contact manifolds given by complex geometry is
presented in the next proposition:

Proposition 2.4. The complex distribution of any strongly pseudoconvex hypersurface
of a complex manifold is a (naturally oriented) contact structure.

The simplest example of this type of construction is given by X = Cn, with n ≥ 2
and ρ :=

∑n

j=1 |zj|
2. This is a proper spsh function. The complex distribution on any

euclidean sphere centered at the origin is therefore a contact structure. As homotheties
centered at the origin leave both the foliation of Cn \ 0 by such spheres and the almost
complex structure invariant, they realize contactomorphisms between all such contact
spheres. Therefore, one gets a well-defined contact structure on S2n−1, called the standard
contact structure on it.

2.3. From Darboux to Martinet.
Let us discuss now the problem of classification of contact structures. As in any

problem of classification, one has to decide first which objects are considered equivalent.
One has to separate the continuously varying characters (the so-called moduli) from the
discrete ones. When one varies the underlying space, one gets like this a ‘family’ of
objects. If one has instead a fixed underlying space and only the structure on it is varied,
one speaks about homotopy. A particular case of homotopy is obtained by changing the
structure using a path of isomorphisms of the underlying fixed space, in which case one
speaks about isotopy.

Let us be more formal for the case of contact structures. A homotopy between two
contact structures is a smooth path of contact structures connecting them. An isotopy
between two contact structures is a homotopy of the form (φ∗

t ξ)t, where (φt)t is a smooth
path of self-diffeomorphisms of M . Two contact structures ξ and ξ′ on M are homotopic,
resp. isotopic, resp. isomorphic or contactomorphic if there is a homotopy, resp. an
isotopy, resp. a diffeomorphism of M which sends ξ on ξ′. One usually tries to classify
contact structures on a given manifold up to isotopy or up to contactomorphism.

Any contact structure may be seen as a hyperplane field (or distribution). One has
to be careful that a homotopy between the underlying hyperplane fields of two contact
structures is not necessarily a homotopy of contact structures, as the path under consid-
eration may cross inside the space of hyperplane fields the discriminant formed by those
which are not contact.

Again, a general problem of classification of structures splits into a local and into
a global one. For example, complex structures and foliations have no local invariants,
riemannian metrics do have (measured for instance by the Levi-Civita connexion and the
associated curvature tensors).

Contact forms have no local invariants:

Theorem 2.5. (Darboux) Any contact form may be written in suitable local coordi-
nates as the left-hand side of (2.1).
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Globally the situation is distinct, due to the fact that there is a canonical vector field
attached to any contact form: its so-called Reeb vector field , uniquely determined by the
requirements to be in the kernel of dα and to have length 1 when measured by α. Then
any dynamical invariants of the Reeb vector field are invariants of the contact form, which
makes one feel that by deforming a form, the global structure may change drastically. In
fact one can get subtle invariants from the study of Reeb vector fields. This is the subject
of contact homology, but we won’t speak about it here.

When one keeps instead of the whole contact form only the contact structure defined
by a contact form, the situation is completely different. Indeed, on a closed manifold
there is then an Ehresmann-type theorem:

Theorem 2.6. (Gray [69]) Two homotopic contact structures on a closed manifold
are isotopic.

The previous theorem shows that on closed manifolds, contact structures have no
moduli, that is, that their classification up to isotopy is discrete. This is the reason why,
when looking at the tangent distribution to a real hypersurface of a complex manifold,
one does not keep the field of complex operators J : ξ → ξ as a supplementary structure.
Indeed, then one would keep moduli, that is, the analog of Gray’s theorem would not be
true.

The first question which one asks in any classification problem is that of existence of
the objects. While in all odd dimensions ≥ 5 the problem of characterization of closed
manifolds which admit a contact structure is still open, in dimension 3 one has:

Theorem 2.7. (Martinet; Lutz) Any closed oriented 3-manifold carries a positive
contact structure. Moreover, one may find a positive contact structure in any homotopy
class of plane fields.

The first affirmation was proved by Martinet [114] and the second one by Lutz [113].

2.4. The dichotomy tight/overtwisted.
From now on and till the end of the section, we will restrict to closed oriented 3-

manifolds.
Martinet’s theorem posed the problem to find invariants which could distinguish con-

tact structures with homotopic underlying plane fields. The breakthrough in this problem
came from Bennequin’s thesis [9]:

Theorem 2.8. (Bennequin) On the 3-sphere S3 there exist two non-isotopic contact
structures with homotopic underlying plane fields.

The geometry underlying this result having led in the hands of Eliashberg to the
essential dichotomy between tight and overtwisted contact structures, I want to explain it
a little.

Another model than (2.1) of the standard contact structure on R3 is given by the
following equation in cylindrical coordinates:

dz + r2dθ = 0.

This equation shows that the defined structure is invariant by rotations around the z-axis
and by translations parallel to it. Therefore, in order to understand the structure, it is
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enough to look at it along a half-line starting from the z-axis and perpendicular to it (we
use in this discussion the standard euclidean metric attached to the cylindrical coordinate
system (z, r, θ)). Choose for example the positive x-axis. The contact planes are tangent
to it at each point. At the origin the plane is perpendicular to the z-axis, but as one
moves away from the origin, the planes turn with non-vanishing speed in the same sense,
tending to a vertical position at infinity, after a quarter of turn.

Let us concentrate now on what is happening inside a bi-infinite circular solid cylinder
centered on the z-axis. By translational-invariance, we see that one gets an induced
contact structure on the solid torus obtained by taking the quotient of the cylinder by
such a (non-trivial) translation. It happens that one obtains in this way models for
the tubular neighborhoods of transverse knots in contact 3-manifolds. More precisely, if
K is a knot in the contact 3-manifold (M, ξ), everywhere transverse to ξ, then it has a
fundamental system of tubular neighborhoods contactomorphic with the previous models.
This allows to modify the contact structure ξ only inside such a neighborhood by working
on the model. There one does the following operation: along the x-axis, insert a full twist
between two given positions, and propagate the resulting field of planes in the whole solid
cylinder by respecting the rotational and translational invariance. This structure descends
of course again to the solid torus. The resulting modification of a contact structure in a
neighborhood of a transverse knot is called a Lutz twist .

It is a nice exercice to see that a contact structure obtained by a Lutz twist is homotopic
through plane fields to the initial contact structure. If it were homotopic through contact
structures, Gray’s theorem would show that both are in fact isotopic. But it is not always
the case.

Consider again the model construction of a Lutz twist inside the solid cylinder in R3.
One gets at least one concentric cylinder with smaller positive radius on the boundary
of which the contact planes are perpendicular to the z-axis. Therefore, any meridional
disc of such a cylinder is tangent to the contact structure all along its boundary. Such a
disc exists therefore in any contact manifold obtained by a Lutz twist. Bennequin proved
Theorem 2.8 by proving:

Theorem 2.9. (Bennequin) The standard contact structure ξst on S3 does not contain
any embedded smooth disc tangent to ξst all along the boundary.

Eliashberg saw that the classification of contact manifolds which contain such a disc
is much simpler than for those which do not contain one. In order to deal with these
differences, he introduced the following terminology:

Definition 2.10. An overtwisted disc in a 3-dimensional contact manifold is an
embedded disc which is tangent to the contact planes all along the boundary. An over-
twisted contact structure is one which contains an overtwisted disc. A tight contact
structure is one which is not overtwisted.

In this terminology, he proved:

Theorem 2.11. (Eliashberg [41]) Two oriented overtwisted contact structures on a
closed 3-manifold are isotopic if and only if their underlying oriented plane fields are
homotopic.
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In particular, two contact structures obtained by doing Lutz twists starting from the
same contact structure are isotopic. Therefore the abundance of possibilities of choice of
transversal knots and of twisting inside tubular neighborhoods is only apparent: this is a
very surprising aspect of theorem 2.11.

Combining the theorems 2.7 and 2.11, one sees that for each homotopy class of oriented
plane fields, there exists exactly one isotopy class of overtwisted oriented contact structures
whose underlying plane field is in that homotopy class.

From that point on, the classification centered on that of tight contact structures.
But how to determine if a contact structure is tight? Bennequin’s proof for the standard
contact structure in S3 passed through some very subtle knot theory and did not seem
to be transplantable to other 3-manifolds. In fact the first general criterion of tightness
was proved using completely different techniques, namely using Gromov’s theory [72] of
pseudoholomorphic curves in symplectic manifolds. Informally, it says that a contact
manifold which can be filled adequately by a compact symplectic manifold is necessarily
tight. In order to explain this precisely, we have to introduce first various notions of
fillings.

2.5. Various notions of fillability.
For more details about fillings of contact 3-manifolds, see [132].
We have seen that contact geometry exists only in odd dimensions. But it interacts

very deeply with an even-dimensional geometry, namely symplectic geometry.

Definition 2.12. A symplectic form on an even-dimensional vector space is a
non-degenerate exterior form of degree 2. A symplectic form on an even-dimensional
manifold is a closed non-degenerate smooth form of degree 2. A symplectic manifoldis
a manifold endowed with a symplectic form.

As a first example of the presence of symplectic structures in the contact world, note
that part of Definition 2.2 may be rephrased as saying that α is a contact form if and
only if dα is a symplectic form in restriction to ker α.

Let us come back to the examples of contact manifolds originating in complex geom-
etry. Consider more particularly as ambient space a Stein manifold. Such manifolds are
the complex analytic equivalents of affine manifolds of algebraic geometry. The following
theorem gives several characterizations of them (see [68, page 152], [133, Sect. 1-4]):

Theorem 2.13. (Cartan, Serre, Grauert, Narasimhan) Let X be a complex man-
ifold whose connected components are of bounded dimensions. Then the following are
equivalent:

1) X admits a proper spsh function.
2) X is holomorphically convex (that is, for any infinite discrete set in X, there is a

global holomorphic function which is unbounded on it) and its structural sheaf is generated
by global functions.

3) X may be properly holomorphically embedded into some Cn.
4) All the positive dimensional cohomology groups of any coherent analytic sheaf on

X vanish.

Therefore the following notion is well-defined:
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Definition 2.14. A complex manifold which satisfies any of the previous properties
is called a Stein manifold.

One has an analog of Theorem 2.13 for possibly singular reduced spaces X, the con-
dition of boundedness of the dimension being replaced by that of boundedness of the
embedding dimension (which is obviously true for a subspace of some Cn). One obtains
then the notion of Stein space.

Characterizations 3) and 4) of Stein manifolds are the ones which emphasize their anal-
ogy with affine manifolds. Indeed, complex affine manifolds are by definition the algebraic
submanifolds of some Cn and they may also be characterized as those algebraic manifolds
such that all the positive dimensional cohomology groups of any coherent algebraic sheaf
on X vanish.

As an algebraic embedding is also analytic, we see that affine manifolds are also Stein.
The converse is not true even in the world of algebraic manifolds: there are examples of
algebraic manifolds which are not affine but whose underlying complex analytic structure
is Stein. The first example is due to Serre, and is explained in Hartshorne [75]. Even if
we won’t examine this kind of phenomenon in this survey, I mention it because it seems
not to be well-known.

Look now at a Stein manifold from the point of view 1) of Theorem 2.13. That is,
consider a Stein manifold X and a proper spsh function ρ : X → R bounded from below.
Let M := Xρ=a be a regular level of ρ. We call the compact sublevel Y := Xρ≤a a compact
Stein manifold. One should note that Y is a compact smooth manifold-with-boundary, but
that it is not a compact complex manifold. By Proposition 2.4, the complex distribution
on M is a contact structure. This motivates:

Definition 2.15. A contact manifold which is contactomorphic to the contact bound-
ary of a compact Stein manifold is called Stein fillable, and any such compact Stein
manifold is a Stein filling of the initial manifold.

A more general notion is obtained by asking that the bounded from below and proper
function ρ be spsh only in a neighborhood of its considered regular level M . One obtains
then the notion of compact complex manifold with boundary, and a related notion of filling:

Definition 2.16. A contact manifold which is contactomorphic to the complex dis-
tribution on a strongly convex boundary of a compact complex manifold with boundary
is called holomorphically fillable, and any such compact complex manifold is a holo-
morphic filling of the initial manifold.

Consider again a pair (X, ρ) as before, that is, ρ : X → R is a proper spsh function
bounded from below. If one denotes:

αρ := −dcρ
ωρ := dαρ

then:
αρ|M is a contact form defining ξ
ωρ is a symplectic form on X

One may forget part of the previous structures and relations in order to arrive at concepts
of symplectic geometry, which make no reference to an almost-complex structure:
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Definition 2.17. Let (M, ξ) be a closed oriented contact manifold, such that ξ is
positive and cooriented.

A strong symplectic filling of (M, ξ) is a compact symplectic manifold (Y, ω) with
boundary ∂Y = M such that there exists a primitive α of ω in a neighborhood of M
whose restriction to M is a defining form of ξ.

A weak symplectic filling of (M, ξ) is a compact symplectic manifold (Y, ω) with
boundary ∂Y = M such that the restriction of ω to ξ is a field of positive symplectic
forms on ξ.

The systematic study of such purely symplectic notions of fillability was started in
Eliashberg-Gromov [46].

A Stein filling of a contact manifold is obviously a strong symplectic filling and a
strong symplectic filling is necessarily a weak symplectic filling. All three notions are
different, as we will explain in a moment.

Let us formulate the historically first general criterion of tightness for 3-dimensional
contact structures (see also [10]):

Theorem 2.18. (Gromov [72], Eliashberg [42]) A weakly symplectically fillable con-
tact structure is necessarily tight.

This gives another proof and places in a broader context Bennequin’s theorem 2.9.
Indeed, as explained before, the standard contact structure on S3 is Stein filled by the
standard ball in C2.

The results which allow to differentiate the previous notions of fillability in dimension
3 are the following:

• There exist weakly symplectically fillable contact structures which are not strongly
symplectically fillable (Eliashberg [44] for T3 and Ding & Geiges [33] for arbitrary torus
bundles over the circle).

• There exist oriented irreducible 3-manifolds which admit no positive tight contact
structures (Etnyre & Honda [50] proved this for the Poincaré homology sphere with the
orientation opposite to the one obtained as the boundary of the complex surface singularity
E8). Therefore there exist reducible 3-manifolds which admit no tight contact structure
at all (one simply takes the connected sum of two copies of the Poincaré homology sphere
with both its orientations).

• There exist tight contact manifolds which are not weakly symplectically fillable
(Etnyre and Honda [51] constructed such structures on some small Seifert manifolds).

• There exist strongly symplectically fillable contact manifolds which are not Stein
fillable (Ghiggini [55] constructed such a structure on some small Seifert manifolds).

On the other hand, any holomorphically fillable contact 3-manifold is necessarily Stein
fillable (Bogomolov and de Oliveira [13]). This is false in higher dimensions. For example,
Eliashberg, Kim & Polterovich [47] have shown that the projective spaces RP2n−1, which
are always holomorphically fillable, are not Stein fillable whenever n ≥ 3. We will speak
more about this in Section 6 of this chapter.

2.6. Classification results.
By a theorem of Lisca & Stipsicz [111], the oriented Seifert fibered 3-manifolds which

do not admit any positive tight contact structure are completely known: they are exactly
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the manifolds Mn obtained by performing a (2n− 1)-surgery along the torus knot T2,2n+1

in S3. For n = 1, one obtains the Poincaré homology sphere with changed standard
orientation, which was the original example of this phenomenon given by Etnyre & Honda
[50].

It is still not known if there exists a closed irreducible 3-manifold without any tight
contact structure with either one of its orientations. By Thurston’s geometrization con-
jecture, proved now using Perelman’s work, any such manifold admits either a Seifert
or a hyperbolic structure. But Gompf [62] proved that any Seifert manifold admits a
positive tight contact structure with at least one of its orientations. Therefore a pos-
sible counterexample could exist only among hyperbolic manifolds. In fact one should
search only among hyperbolic manifolds which are rational homology spheres, as on any
other irreducible 3-manifold there exist weakly symplectically fillable contact structures
(Eliashberg & Thurston [48]).

Starting with [56], Giroux began to develop cut-and-paste techniques in contact geom-
etry. These were fundamental in order to prove that there are 3-manifolds which admit
an infinite number of non-isotopic contact structures with homotopic underlying plane
fields (Giroux [58]) and to start the classification of tight contact structures on particular
3-manifolds. Till now were completely classified up to isotopy the tight contact structures
on the following classes of manifolds:

• lens spaces (Giroux [58], Honda [81]).
• torus bundles over the circle (Giroux [58]).
• circle bundles over surfaces (Giroux [59], Honda [82]).
• some Seifert 3-manifolds (see the references in [111]).
Moreover, one has the following general results:

Theorem 2.19. (Colin, Giroux, Honda [30], [31]) On any closed oriented 3-manifold,
there is a finite number of homotopy classes of plane fields realizable as tight contact
structures.

Theorem 2.20. (Colin, Giroux, Honda, Kazez, Matić, see [30], [31]) A closed, ori-
ented 3-manifold, carries an infinite number of isotopy classes of tight contact structures
if and only if it is toroidal (that is, it contains an embedded incompressible torus).

The first of these theorems is the end result of a process of successive approximations
and radical changes of technique: first Eliashberg [43] proved that there is a finiteness re-
sult for the Euler classes of the underlying plane fields of tight contact structures (using the
adjunction inequalities valid for such structures), then Kronheimer & Mrowka [96] proved
the finiteness of homotopy classes for strongly symplectically fillable contact structures
using Seiberg-Witten theory and finally Colin, Giroux & Honda [30] proved Theorem 2.19
by putting a contact structure in normal form with respect to a triangulation.

In the enterprise of classification, it was essential to be able to determine whether a
constructed contact structure is tight or not. In addition to the fillability criteria, gluing
criteria were also developed. Moreover, if the lifted contact structure is tight on some
cover, then the initial one is obviously also tight. But these criteria were not enough to
pursue the classification. Fortunately, around 2001, Giroux introduced a new tool in the
study of contact structures: open books. This is the subject of the next subsection.
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2.7. Open books carrying contact structures.
For more details on the content of this subsection, see Colin [29] or Etnyre [49].
Martinet’s proof in [114] that any closed oriented 3-manifold admits a positive contact

structure started from a presentation of the 3-manifold as the result of surgery on a link
in S3. The fact that any 3-manifold can be obtained in this way had been proved by
Lickorish and Wallace.

An alternative proof was proposed by Thurston and Winkelnkemper [160], starting
from another kind of presentation of a 3-manifold: as an open book.

Definition 2.21. An open book with binding N in a manifold M is a couple (N, θ),
where N is a (not necessarily connected) 2–codimensional closed oriented submanifold of
M with trivial normal bundle and θ : M \ N → S1 is a smooth fibration which in a
neighborhood N × D2 of N coincides with the angular coordinate. The closures of the
fibers of θ are called the pages of the open book.

We say that the open books (N, θ) and (N ′, θ′) in the manifolds M , respectively M ′,
are isomorphic if there exists a diffeomorphism φ : (M,N) → (M ′, N ′) which preserves
the orientations and carries the fibers of θ into the fibers of θ′.

Notice that dθ induces natural co-orientations on the binding and the pages of the open
book. Thus, any fixed orientation of M induces a natural orientation on N . If N itself is
oriented a priori, then we say that the open book is compatible with the orientations of
M and N if the two orientations of N coincide.

The previous terminology was introduced by Winkelnkemper [171]. This kind of
structure had appeared before, in various contexts, as can be seen in the historical survey
[172]. In particular, it appeared in Milnor’s work on singularity theory, as we explain in
subsection 3.3.

Giroux realised that the contact structure constructed by Thurston and Winkelnkem-
per has a special relation to the open book used to construct it and that this relation was
in fact also fundamental in Bennequin’s work [14]. He formulated this relation in [60] in
all dimensions through the following definition:

Definition 2.22. A positive contact structure ξ on an oriented manifoldM is carried
by an open book (N, θ) if it admits a defining contact form α which verifies the following:

• α induces a positive contact structure on N ;
• dα induces a positive symplectic structure on each fiber of θ.

If a contact form α satisfies these conditions, we say that it is adapted to (N, θ).

The construction of Thurston and Winkelnkemper shows that in dimension 3, any
open book on a closed oriented manifold carries a positive contact structure (a fact no
longer true in higher dimensions). In dimension 3, if such a structure exists, then it is
unique:

Theorem 2.23. (Giroux [60], see also [49]) In dimension 3, two positive contact
structures carried by the same open book are isotopic.

Therefore, in order to describe a positive contact structure on a manifold, it is enough
to describe an open book which carries it. Conversely, one has:

Theorem 2.24. (Giroux [60]) In dimension 3, any contact structure is carried by
some open book.
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Giroux and Mohsen generalized this theorem to all dimensions (see [60]).
Two open books which carry the same contact structure are not necessarily isotopic.

But in dimension 3, Giroux [60] proved that they become isotopic after a process of sta-
bilisation, that is, plumbing with positive Hopf bands. This allows to translate problems
about isomorphism classes of contact structures into problems about open books up to
stabilisation.

A word about the application of open books to the problem of determination whether
a contact structure is tight or not. For the moment there is no known algorithm which
allows to determine in terms of the monodromy of the open book whether the associated
contact structure is tight. But using carrying open books, Ozsváth & Szábo constructed
a new invariant c(ξ) of contact structures, which vanishes for overtwisted structures.
Therefore, its non-vanishing ensures tightness. It was shown that there are non-fillable
contact structures ξ with c(ξ) 6= 0, which proves that it is stronger than the fillability
criterion 2.18.

3. Milnor fillable contact manifolds

In this section I present the results of the papers [24] and [25], done in collabora-
tion with Caubel and Némethi. For the needed general notions about complex analytic
singularities, one may consult Chapter 3.

3.1. A prototype: Milnor’s study of hypersurface singularities.
In the paper [121], Mumford proved that if the boundary of a normal surface singular-

ity is simply connected, then one has in fact a regular point, and the boundary is therefore
diffeomorphic to a sphere. Around 1965, using recent work of Pham, Brieskorn proved
that this is false in any higher dimension: he exhibited isolated hypersurface singularities
defined by equations of the form:

za00 + · · ·+ zan

n = 0

(nowadays such singularities are called Brieskorn-Pham singularities) and whose bound-
aries are diffeomorphic to standard spheres.

Moreover, he showed that one could obtain like this also exotic spheres, that is, man-
ifolds homeomorphic to a standard sphere but not diffeomorphic to it. This was the first
construction of such spheres as explicit algebraic sets, after the discovery of their existence
by Milnor [117]. It intrigued a lot Milnor, who began to think about this discovery. This
led to his book [119], which founded the topological theory of hypersurface singularities.
See Brieskorn [19] and Durfee [38] for details about the preceding story.

I want to describe briefly the main geometric actors introduced by Milnor [119].
Briefly speaking, they allow to localize the study of monodromy of the family of levels of
a holomorphic function in the neighborhood of a critical point.

Suppose that f : (Cn, 0) → (C, 0) is a holomorphic function having an isolated critical
point at 0. Then Milnor considered the following objects associated to it:

(1) a sufficiently small euclidean ball Bǫ centered at the origin.
(2) the intersection Nǫ := f−1(0)∩ ∂Bǫ of the critical level with the boundary of the

ball.
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(3) the pieces Fǫ,λ contained in Bǫ of nearby regular levels f−1(λ), for λ 6= 0 suffi-
ciently small.

(4) the family (Fǫ,λ)|λ|=const of such pieces, for a fixed absolute value of the level.
(5) the map θ : ∂Bǫ \Nǫ → S1 defined by the argument of f .

He proved that:

(1) ǫ > 0 may be chosen such that the critical level f−1(0) intersects transversally
all the spheres of radius ≤ ǫ centered at the origin. One calls such a ball Bǫ a
Milnor ball and its boundary a Milnor sphere with respect to f .

(2) if Bǫ is a Milnor ball, then the pair (∂Bǫ, Nǫ) is independent of the choices. One
calls it the embedded link of the critical point.

(3) one may choose δ > 0 such that Fǫ,λ are diffeomorphic smooth manifolds-with-
boundaries whose boundaries are diffeomorphic to Nǫ, for each λ such that 0 <
|λ| < δ.

(4) the family (Fǫ,λ)|λ|=const is a locally trivial fibration over the circle. It is called
the Milnor fibration associated to the considered critical point and its fibers Fǫ,λ
are called Milnor fibers.

(5) (Nǫ, θ) is an open book in ∂Bǫ, whose associated fibration is isomorphic to the
Milnor fibration. One calls it the Milnor open book.

As explained before, the term “ open book” was introduced later, partly because Milnor
showed that this structure played such an important role in the study of critical points of
holomorphic functions, that it was found that it deserves a name.

3.2. The contact boundary of an isolated singularity.
Let (X, x) be a reduced germ of complex analytic space. There exists then a preferred

system of compact semi-analytic neighborhoods of x in X: those defined as sufficiently
small levels of real semi-analytic non-negative functions whose zero-level has x ∈ X as an
isolated component. Following the terminology of Thom [159], let us call such functions
rug functions. One can show, following the work done by Durfee [36] in the algebraic
category, that the boundaries of those neighborhoods are all canonically homeomorphic
up to isotopy (one uses a variant of Ehresmann’s theorem for stratified spaces). Moreover,
they are canonically oriented pseudomanifolds. We call their preferred homeomorphism
class the (abstract) boundary of the singularity (X, x), and we denote it ∂(X, x).

This is also called the link of (X, x) in the literature. We prefer to avoid this name,
because nowadays it makes reference most of the time to embedded submanifolds of an
ambient manifold (for example a collection of circles in the 3-sphere), and in our case we
look at it abstractly.

When a representative of X is smooth outside the origin (one says then that (X, x)
has an isolated singularity , which is a slight abuse of language, as X may be smooth also
at 0), then by restricting the class of preferred rug function to smooth real analytic ones,
one sees that one may define a preferred class of smooth abstract boundaries, which are
canonically diffeomorphic up to smooth isotopies. Here one uses the initial version of
Ehresmann’s theorem.

One may restrict more the class of rug functions, by demanding them to be spsh.
As was proved by Varchenko [165], one gets then a preferred class of oriented manifolds
endowed with positive contact structures, which are canonically contactomorphic up to
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isotopies. One uses in the proof the contact version of Ehresmann’s theorem, that is,
Gray’s theorem 2.6.

Definition 3.1. The oriented contact manifold thus associated, up to contactomor-
phisms isotopic to the identity, to any isolated singularity (X, x) is called the contact
boundary of (X, x), and is denoted (∂(X, x), ξ(X, x)). A contact manifold isomorphic
to such a contact structure on the boundary of an isolated singularity is called Milnor
fillable.

We introduced the name ‘Milnor fillable’ in [25] in reference to the prototype [119]
recalled in subsection 3 of the study of a germ by intersecting it with sufficiently small
euclidean balls.

A Milnor fillable contact manifold is holomorphically fillable. Indeed, any resolution
of the singularity gives a holomorphic filling of it. By Bogomolov & de Oliveira’s theorem
[13], in dimension 3 it is also Stein fillable. This last fact is false in higher dimensions, as
I explain in section 6.

3.3. Milnor open books.
Start from an irreducible equidimensional germ (X, x) of complex analytic space with

isolated singularity. Denote by OX,x its local ring of germs of holomorphic functions and
by mX,x its maximal ideal, formed by the functions which vanish at x.

A germ of holomorphic function f ∈ mX,x is said to have an isolated singularity
at x ∈ X if there is a representative of (X, f) such that f is regular outside x. By
the general theorems of Lê & Teissier [104] on limits of tangent hyperplanes to a germ
of complex analytic space, one sees that, given (X, x), there are always functions with
isolated singularities.

In what follows, we need to restrict more than in the previous subsection the class of
rug functions we are working with. Namely, we work with euclidean rug functions, which
are by definition spsh functions of the form:

ρ :=

N
∑

k=1

|φk|
2

where φ1, ..., φN ∈ mX,x. The strict plurisubharmonicity of ρ is equivalent to the fact that
(φ1, ..., φN) defines an immersion of X \ x in CN ([25, Lemma 3.1]).

Fix an f ∈ mX,x which has an isolated singularity at x. Choose a representative of
the germ (X, f) and a euclidean rug function ρ. For ǫ > 0 sufficiently small, one defines:

M := Xρ=ǫ

N(f) := M ∩ f−1(0)
θ(f) := arg f : M \N(f) → S1

.

Following the techniques of Milnor [119] (for the case where X = Cn and ρ is the
squared-distance to the origin) as extended by Hamm [73] to the case when X is an
arbitrary germ but ρ is still the squared-distance to the origin after some embedding in
CN , we showed in [25, Proposition-Definition 3.4] that:
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Proposition 3.2. For ε > 0 sufficiently small, the pair (N(f), θ(f)) is an open book
in the boundary M and it is compatible with the orientations. Furthermore, its isotopy
type does not depend on the choice of ε > 0 nor on the choice of euclidean rug function.

We called the pair (N(f), θ(f)), well-defined up to isotopy, the Milnor open book of
f . The pair (M,N(f)) is called the link of f . Note that “the link” of f is a submanifold
of an ambient manifold, as in the most common usage of the term.

Studying carefully and making intrinsic some proofs of Milnor [119] and Giroux [61],
which were treating the case where X = Cn, we proved in [25, Theorem 3.9]:

Theorem 3.3. Let (X, x) be an irreducible complex analytic germ with isolated singu-
larity and let f : (X, x) → (C, 0) be a germ of holomorphic function with isolated singular-
ity. Then its Milnor open book carries the standard contact structure (∂(X, x), ξ(X, x)).

More precisely, we showed that for ǫ > 0 sufficiently small, the open books (N(f), θ(f))
carry the contact structure defined by the complex tangencies.

Answering one of my questions, Caubel extended this theorem in [23] to the contact
boundaries of the Milnor fibers of a special class of non-isolated singularities (those defined
by a map (Cn+p, 0) → (Cp, 0) “with no blowing-up”).

3.4. The topological invariance of 3-dimensional contact boundaries.
For the notations used in this subsection about normal surface singularities and their

resolutions, see subsection 3.1 of Chapter 3.
In 2003 Clément Caubel and myself began to discuss about the contact boundaries of

singularities. We knew the work [162] of Ustilovsky, showing that one obtains an infinite
number of pairwise non-contactomorphic contact structures on the standard differentiable
spheres S4m+1 for m ≥ 1, as contact boundaries of Brieskorn-Pham singularities . Namely,
for varying p ≥ 1, the contact boundaries of the isolated hypersurface singularities defined
by the equation:

zp0 + z2
1 + · · ·+ z2

2m = 0

are pairwise non-isomorphic. In order to distinguish them, he computed their contact
homology. This led Caubel to ask question (1) of Chapter 5.

This result motivated us to ask ourselves if the same phenomenon could exist in
complex dimension two. As the result of various discussions, we arrived at the following
strategy to prove that in fact in dimension 2 the standard contact structure is a topological
invariant:

Step 1. Show that the standard contact structure is carried by any Milnor open book.
Step 2. Show that, given the topological type of a normal surface singularity, there

exists a numerically principal topological type of link which may be realised by a holo-
morphic function for any analytical realisation of the singularity.

Step 3. Conclude using Giroux’s theorem 2.23.

It was the desire to accomplish step 1 which motivated us to prove Theorem 3.3.
The desire to accomplish step 2 made us start the collaboration with András Némethi.
Together with him we proved the following result of algebraic geometry (see [25, Theorem
4.1]):
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Theorem 3.4. Let π : (X̃, E) → (X, x) be a strict normal crossings resolution of a
normal surface singularity (X, x). Assume that the effective exceptional divisor D satisfies

(D + E +KX̃) · Ei + 2 ≤ 0 for any i ∈ I.

Then there exists a function f ∈ mX,x, with an isolated singularity at x, such that (π∗f)

is a normal crossing divisor on X̃ with (π∗ ◦ f)e = D. Moreover, for each i, the number
of intersection points ni := (π∗ ◦ f)s · Ei is positive.

That is, if we impose that the pull-back of a holomorphic function vanishes enough
on the exceptional divisor of a resolution in a way which is explicit only in terms of the
topology of the resolution, then such functions exist and moreover may be chosen such
that the divisor of their pull-back has normal crossings. This ensures that the topology
of this divisor is determined by the chosen topology of the vanishing divisor. In general,
if one takes an arbitrary element of the Lipman semigroup (see subsection 3.1 of next
chapter), it is only for rational singularities that one may be sure that there exists a
function whose pull-back vanishes exactly along it.

If we start from the minimal resolution with normal crossings, whose topology en-
codes the same information as that of the boundary of the singularity, using the work
[135] of Pichon one extracts from the previous theorem the following proposition, which
accomplishes step 2 of the strategy:

Corollary 3.5. Let M be a closed connected oriented 3-manifold which is Milnor
fillable. Then there exists an open book (N, θ) in M , which can be completely characterized
by the topology of M , such that, for any germ (X, x) of normal complex surface with
M ≃ ∂(X, x), there exists a function f ∈ mX,x having an isolated singularity at 0 and
whose Milnor open book (N(f), θ(f)) is isomorphic to (N, θ).

Step 3 is now automatic. One gets the announced theorem of topological invariance
of the standard contact structure on the boundary of a normal surface singularity:

Theorem 3.6. Any Milnor fillable 3-manifold admits a unique Milnor fillable contact
structure up to contactomorphism. If the manifold is a rational homology sphere, then the
structure is unique up to isotopy.

First we proved the second sentence of the previous theorem (see [24]). In order to
conclude, I want to explain the difficulty we had to overcome in order to get the uniqueness
for boundaries which were not rational homology spheres. From Theorem 3.4, we get in a
way which is standard for the topological study of surface singularities, a weaker version
of Corollary 3.5, in which we get a link (M,N) which may be realized by a function
f ∈ mX,x, for any analytical realization of the given topology. But in general (M,N) does
not determine the open book with binding N up to isotopy (see [135], [124]), excepted
for the case of rational homology spheres. Nevertheless, Pichon [135] showed that if
ni > 0 for all i (see the definition of ni in the last sentence of Theorem 3.4), then the
link (∂(X, x), N(f)) corresponding to such a function determines the open book up to an
isomorphism. It is false that in general this open book is determined up to an isotopy.
Nevertheless, the associated contact structure could be. This motivates question (2) of
Chapter 5.



4. SMOOTHABLE SINGULARITIES AND THEIR MILNOR FIBERS 27

Theorem 3.6 shows that singularity theory defines a standard contact structure on any
Milnor fillable oriented 3-manifold, up to contactomorphisms. This motivates question
(3) of Chapter 5.

4. Smoothable singularities and their Milnor fibers

4.1. General facts.
For more details on the material contained in this subsection, one may consult Teissier

[158], Stevens [156] and Greuel, Lossen & Shustin [71].
One of the ways to study singularities, is to see them as limits of smooth spaces and

to understand how the structure of the smooth spaces is captured at the limit by the
singular point. The usual way in algebraic and analytic geometry to conceptualize limits
is to take families of objects and a special member of the family. Not only the members
of the family are requested to belong to the category under consideration, but also their
total space, that is, the members of the family are asked to be the fibers of a morphism
in the category.

The definition which this suggests is too general. For example, if one looks at the
morphism of blow-up of a point in the plane and at the special fiber over that point, one
would get that the projective line is a limit of points, which does not correspond to the
analysed intuition. In order to get a notion more proximate to this intuition, one would
like to ask at least that all the fibers of the morphism be equidimensional. The algebraic
notion of flatness ensures this and in fact much more. That is why one restricts in the
following way the notion of deformation in analytic geometry:

Definition 4.1. Let (X, x) be a germ of a complex analytic space. A deformation
of (X, x) is a germ of flat morphism ψ : (Y, y) → (S, s) together with an isomorphism
between (X, x) and the special fiber ψ−1(s).

For example, when X is reduced, f ∈ mX,x is flat as a morphism (X, x)
f
→ (C, 0) if

and only if f does not divide zero. Such deformations over germs of smooth curves are
called 1-parameter deformations. The simplest example is got when X = Cn and f has an
isolated singularity at 0. Then one gets the situation considered by Milnor and recalled
in subsection 3.1, in which now f is thought as a deformation of ({f = 0}, 0).

In general, to think about a flat morphism as a deformation means to see it as a
family of continuously varying fibers and to concentrate on a particular fiber. From such
a family, one gets new families by rearranging the fibers, that is, by base change. One
is particularly interested in the situations where there exist families which generate all
other families by such base changes. The following definition is a reformulation of [71,
Definition 1.8, page 234]:

Definition 4.2. (1) A deformation ψ of (X, x) is complete if any other defor-
mation is obtainable from it by a base-change.

(2) A complete deformation ψ of (X, x) is called versal if for any other deformation
over a base (T, t) and identification with a pull-back from ψ of the induced
deformation over a subgerm (T ′, t) →֒ (T, t), one may extend this identification
over all (T, t) with a pull-back from ψ.
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(3) A versal deformation is miniversal if the Zariski tangent space of its base (S, s)
has the smallest possible dimension.

When the miniversal deformation exists, its base space is unique up to non-unique
isomorphism (only the tangent map to the isomorphism is unique). For this reason, one
does not speak about a universal deformation, and was coined the word “miniversal”,
with the variant “semi-universal”.

In many references, versal deformations are defined as the complete ones in the previ-
ous definition. Then usually is stated the theorem that the base of a versal deformation
is isomorphic to the product of the base of a miniversal deformation and a smooth germ.
With this weaker definition the result is false. Indeed, starting from a complete defor-
mation, by doing the product of its base with any germ (not necessarily smooth) and
by taking the pull-back, we would get again a complete deformation. This shows that a
complete deformation is not necessarily versal. Nevertheless, the theorem stated before
is true with the previous definition of versality.

A very important property of versal deformations is that they remain versal if one
moves slightly the germ on which one concentrates when thinking about the flat family
as a deformation (see Pourcin [144] and Bingener [11]):

Theorem 4.3. (Openness of versality) Let f : X → S be a flat morphism of
complex spaces whose singular locus is finite over S. Then the set of points s ∈ S such
that f induces a versal deformation of the germ of the fiber over s at each of its singular
points is the complement of an analytic subspace of S.

Not all germs admit versal deformations. But those we are interested in do admit:

Theorem 4.4. (Schlessinger [151], Grauert [67]) Let (X, x) be an isolated singularity.
Then the miniversal deformation exists and is unique up to (non-unique) isomorphism.

Let us come back to the situation we were speaking about at the beginning of the
section, where a germ is seen as a limit of smooth spaces:

Definition 4.5. A smoothing of a singularity is a 1-parameter deformation whose
general fiber is smooth. A smoothing component is an irreducible component of the
reduced miniversal base space over which the generic fibers are smooth.

Isolated complete intersection singularities have a miniversal deformation (Y, y)
ψ
→

(S, s) such that both Y and S are smooth, therefore irreducible (see [158], [112]). In
general, the reduced miniversal base (Sred, s) may be reducible. The first example of this
phenomenon was discovered by Pinkham [136, Chapter 8] (see also [7, Section 3.3]):

Proposition 4.6. (Pinkham) The germ at the origin of the cone over the rational
normal curve of degree 4 in P4 has a reduced miniversal base space with two components,
both being smoothing ones.

Not all isolated singularities are smoothable. The most extreme case is attained with
rigid singularities, which are not deformable at all in a non-trivial way. For example,
quotient singularities of dimension ≥ 3 are rigid (Schlessinger [152]). For details about
these phenomena, one may consult Greuel & Steenbrink [70]. In subsection 6.1, I give a
new (as far as I know) purely topological obstruction to smoothability for singularities of
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dimension ≥ 3. In dimension 2 no such criterion is known in full generality. We say more
about this in the next subsection.

Let us look now at the topology of the generic fibers above a smoothing component.
We want to localize the study of the family in the same way as Milnor localized the study
of a function on Cn near a singular point. This is possible (see Looijenga [112]):

Theorem 4.7. Let (X, x) be an isolated singularity. Let (Y, y)
ψ
→ (S, s) be a miniversal

deformation of it. There exist (Milnor) representatives Yred and Sred of the reduced total
and base spaces of ψ such that the restriction ψ : ∂Yred∩ψ−1(Sred) → Sred is a trivial C∞-
fibration. Moreover, one may choose such representatives such that over each smoothing
component Si, one gets a locally trivial C∞-fibration ψ : Yred ∩ ψ−1(Si) → Si outside a
proper analytic subset.

Hence, for each smoothing component Si, the oriented diffeomorphism type of the
oriented manifold with boundary (π−1(s) ∩ Yred, π−1(s) ∩ ∂Yred) does not depend on the
choice of the generic element s ∈ Si: it is called the Milnor fiber of that component.
Moreover, its boundary is canonically identified with the boundary of (X, x) up to isotopy.
In particular, the Milnor fiber of a smoothing component is diffeomorphic to a Stein
filling of the contact boundary (∂(X, x), ξ(X, x)). Therefore, the following problem has a
meaning:

Given an isolated singularity (X, x), describe its Milnor fibers up to orientation-
preserving diffeomorphisms which extend the natural identifications on the boundaries
and identify them among the different Stein fillings of (∂(X, x), ξ(X, x)).

In dimension two, in order to get a topological invariant of the singularity, one may
look at the Milnor fibers of all normal surface singularities with a given topology. There
is no a priori well-defined identification up to isotopy of all their boundaries, excepted for
taut singularities (see Definition 3.24 of Chapter 3)). For them, one gets a finite number
of Milnor fibers up to diffeomorphisms, by Theorem 4.4. This motivates questions (4)
and (5) of Chapter 5.

4.2. The case of surfaces.
The notions about normal surface singularities used here are recalled in the section 3

of Chapter 3.
In dimension 2, I do not know purely topological obstructions to smoothability for

all normal singularities. But there exist such obstructions for special Gorenstein (see
definition 2.2 of Chapter 3) normal surface singularities (see also [169]), as a consequence
of:

Theorem 4.8. (Steenbrink [154]) Let (X, x) be a Gorenstein normal surface singu-
larity. If it is smoothable, then:

(4.9) µ− = 10pg(X, x) − b1(∂(X, x)) + (Z2
K + |I|).

In the preceding formula, µ− denotes the negative part of the index of the intersection
form on the second homology group of any Milnor fiber and b1(∂(X, x)) denotes the first



30 2. STEIN FILLINGS OF MILNOR FILLABLE MANIFOLDS

Betti number of the boundary of (X, x). It may be computed from any normal crossings
resolution with exceptional divisor E =

∑

i∈I Ei as:

b1(∂(X, x)) = b1(Γ) + 2
∑

i∈I

pi,

where pi denotes the genus of Ei and Γ denotes the dual graph of E. The term Z2
K + |I|

may also be computed using any normal crossings resolution, and is again a topological
invariant of the singularity.

The previous theorem implies that the expression in the right-hand side of (4.9) is
≥ 0, which gives non-trivial obstructions on the topology of special smoothable normal
Gorenstein singularities. For example, it shows that among simple elliptic singularities
(definition 3.22 of Chapter 3), the smoothable ones have minimal resolutions whose excep-
tional divisor is an elliptic curve with self-intersection ∈ {−9,−8, ...,−1}. More generally,
one gets like this constraints on the topology of smoothable minimally elliptic singularities,
a class determined by its topology (see Theorem 3.19 of Chapter 3).

In what precedes, we have spoken only about the negative part µ− of the index of
the intersection form on the second homology of any Milnor fiber. Denoting µ0 and µ+

the null, respectively positive part of that index, we have the following theorem, which
was proved first by Durfee [34] for isolated hypersurface singularities, then by Steenbrink
[154] in this full generality (see also [169]):

Theorem 4.10. (Durfee, Steenbrink) Any Milnor fiber of a normal surface singularity
(X, x) satisfies:

(4.11) µ0 + µ+ = 2pg(X, x).

Therefore, µ0+µ+ is not a topological invariant of the singularity, but it is an analytical
one (it does not depend on the smoothing component). In turn, µ0 is topological (see also
[169]):

Theorem 4.12. (Greuel & Steenbrink [70]) Any Milnor fiber of a normal surface
singularity (X, x) has vanishing first Betti number, which is equivalent to:

(4.13) µ0 = b1(∂(X, x)).

Combining (4.11) and (4.13), one gets the following constraint from the topology on
the geometric genus: 2pg(X, x) ≥ b1(∂(X, x)).

As the only Gorenstein rational singularities are the Kleinian ones (see Theorem 3.16 of
Chapter 3), we see that Theorem 4.8 tells us nothing about their possible non-smoothabi-
lity. In fact:

Theorem 4.14. (M. Artin [4]) All rational singularities are smoothable. Moreover,
any component of the reduced miniversal base space is a smoothing component.

Among the components of the reduced miniversal base space Sred of a rational surface
singularity, Artin showed that there is a distinguished one (later called the Artin com-
ponent) which is the image under the natural map of the miniversal base space of the
total space of the minimal resolution of the singularity. Its associated Milnor fiber is dif-
feomorphic to a compact tubular neighborhood of the exceptional divisor of the minimal
resolution of the singularity.
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As shown already by the example of cyclic quotient singularities, µ− may depend
on the chosen smoothing component (this happens for Pinkham’s example as stated in
Proposition 4.6). Therefore, the condition to be Gorenstein is absolutely necessary in
Theorem 4.8. We would like to emphasize that the phenomenon of existence of non-
diffeomorphic Milnor fibers appears only in dimension ≥ 2. Indeed, for reduced curve
singularities one has:

Theorem 4.15. (Buchweitz & Greuel [20]) Let (X, x) be a smoothable reduced curve
singularity with r ≥ 1 irreducible components. Then all its Milnor fibers are connected
and their first Betti number µ depends only on analytical invariants of (X, x):

µ = 2δ(X, x) − r + 1.

Let us come back to surfaces. In [144], Pinkham treated the deformation theory of
germs of surfaces endowed with a C∗-action. He looked in particular at the germs at their
vertices of the affine cones over all the rational normal curves (that is, the images of the
projective line P1 by all the Veronese embeddings). He showed that only for the cone over
the curve of degree 4 in P4, the miniversal base space is disconnected.

Seen from another viewpoint, the singularity of the rational normal curve of degree
n ≥ 2 is isomorphic to the cyclic quotient singularity (Xn,1, 0) (see Definition 3.17 of
Chapter 3). More generally, Christophersen [27] and Stevens [155] succeeded to determine
the exact number of components of the reduced miniversal base space of (Xp,q, 0) for any
p > q > 0. This number is defined combinatorially in a subtle way. In turn, their
result motivated Lisca to make a conjecture, which was seen by Némethi and myself as
the entrance to the general study of the topology of Milnor fibers of rational surface
singularities. In the next section I explain Lisca’s conjecture, as well as our proof of it.

5. The Milnor fibers of cyclic quotient singularities

For the needed background on continued fractions, one may consult section 4 of Chap-
ter 3. In all this section, we will denote simply by [x1, ..., xk] the HJ-continued fraction
[x1, ..., xk]

−, as we won’t use E-continued fractions.

5.1. Lisca’s conjecture.
In [109], Lisca announced a classification of the symplectic fillings of the standard

contact structure on lens spaces up to orientation-preserving diffeomorphisms. Detailed
proofs were given in [110]. He showed that there is a finite number of minimal fillings, all
of them diffeomorphic to Stein surfaces, and he parametrized them using a special kind of
sequences of integers. These sequences had appeared before in the works of Christophersen
and Stevens, parametrizing the irreducible components of the reduced miniversal base of
the corresponding cyclic quotient singularity. As each such component is a smoothing
component, the corresponding Milnor fiber gives a Stein filling of the lens space with the
standard contact structure. This motivated him to formulate the following conjecture:

Conjecture 5.1. (Lisca [110, page 768]) The Milnor fiber of an irreducible compo-
nent of the reduced miniversal base space of a cyclic quotient singularity is orientation-
preserving diffeomorphic to the Stein filling of its contact boundary parametrized by the
same sequence.
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This conjecture does not only claim that one gets all the Stein fillings from the Milnor
fibers, but it claims an explicit correspondence between them.

Let us explain now more precisely Lisca’s description of the minimal symplectic fillings
of (L(p, q), ξst) (see Definition 3.17 of Chapter 3). First, we have to define the finite pa-
rameter space he uses, composed of certain sequences of positive integers whose associated
HJ-continued fraction vanishes.

Definition 5.2. A sequence k = (k1, ..., kr) ∈ Nr is admissible if either r = 1 or
r ≥ 2, k ∈ (N \ 0)r, [k1, ..., ki] > 0 for all i ∈ {1, ..., r − 1} and [k1, ..., kr] ≥ 0. For r ≥ 1,
denote by:

(5.3) Kr := {k = (k1, . . . , kr) ∈ adm(Nr) | [k1, . . . , kr] = 0}

the set of admissible sequences which represent 0. For k = (k1, . . . , kr) ∈ Kr set
k′ := (kr, . . . , k1) ∈ Kr.

Note that the condition of admissibility in the definition of Kr is really restrictive. For
example, k = (2, 1, 1, 1, 1, 2) /∈ K6 although [k] = 0. By admissibility, if r > 1, then each
ki > 0. K1 has only one element, namely (0).

For two coprime integers p, q with p > q ≥ 1 and HJ-expansion p

p−q
= [a1, . . . , ar], set:

(5.4) Kr(
p

p−q
) = Kr(a) := {k ∈ Kr | k ≤ a} ⊂ Kr,

where k ≤ a means that ki ≤ ai for all i. Fix an element k ∈ Kr(a). Let L(k) be the
framed link of Figure 5.1 with s components and decorations k1, . . . , ks (i.e. the thick
components are neglected for a moment). Let N(k) be the closed, oriented 3-manifold
obtained by surgery on S3 along the framed link L(k). Using the slam-dunk operation on
rationally-framed links in S3 (see [63, page 163]), one sees that there exists an orientation-
preserving diffeomorphism:

(5.5) η : N(k) −→ S1 × S2.

Definition 5.6. [110, page 766] Consider the diffeomorphism η from (5.5) and denote
by L(a, k) ⊂ N(k) the image of the thick framed link drawn in Figure 5.1. Define Wp,q(k)
to be the smooth oriented 4-manifold with boundary obtained by attaching two-handles
to S1 × D3 along the framed link η(L(a, k)) ⊂ S1 × S2.

The manifold Wp,q(k) is therefore obtained by attaching index 2 handles to the 4-
ball along the whole framed link described in Figure 5.1, and replacing the sublevel of
a corresponding Morse function which contains the ball and the handles attached along
L(k) with the manifold S1 × D3. One may show that this construction does not depend
on the choice of the orientation-preserving diffeomorphism η.

Lisca’s classification theorem is:

Theorem 5.7. (Lisca [110])
(a) All the manifolds Wp,q(k) admit Stein structures which fill

(L(p, q), ξst), and any Stein filling (even minimal symplectic filling) of (L(p, q), ξst) is
diffeomorphic to one of the manifolds Wp,q(k).

(b) Wp,q1(k
1) is orientation-preserving diffeomorphic to Wp,q2(k

2) if and only if (q2, k2) =
(q1, k1) or (q2, k2) = ((q1)′, (k1)′), where qq′ ≡ 1 ( mod p) and (k1, ..., kr)

′ := (kr, ..., k1).



5. THE MILNOR FIBERS OF CYCLIC QUOTIENT SINGULARITIES 33

Particular cases of this theorem had been proved before by Eliashberg [42] (for S3)
and McDuff [116] (for the spaces L(p, 1), for all p ≥ 2). I find interesting to remark
that (L(p, 1), ξst) is the contact boundary of the singularity at the vertex of the cone
over the rational normal curve of degree p, which is a family of singularities especially
emphasized by Pinkham [144]. McDuff discovered the possiblity of existence of more
than one minimal symplectic fillings with the example of L(4, 1), which corresponds to
the singularity for which Pinkham had discovered the possibility of existence of more than
one smoothing components.

L(k)

L(a,k)

a1 − k1 a2 − k2 ar−1 − kr−1 ar − kr

k1 k2 kr−1 kr

−1 −1 −1 −1 −1 −1 −1 −1

. . .

. . .

. . . . . . . . . . . .

Figure 5.1. The framed link L(a, k) ⊂ N(k)

In order to prove Conjecture 5.1, we wanted to identify the sequence k associated to the
Milnor fibers of (Xp,q, 0). We had to understand how Lisca reconstructed it from a given
Stein filling W of (L(p, q), ξst). He did it by homological computations, but not working
only with the pair (W, ∂W ). Instead, he first got a closed oriented 4-manifold by gluing W
along its boundary to another fixed 4-manifold. Seen from the side of this second manifold,
the boundary of W is orientation-preserving diffeomorphic to L(p, p− q). Therefore, one
has to choose a fixed filling of this lens space, which is the dual of L(p, q). An obvious
choice is Π(a), the oriented 4-manifold obtained by plumbing along the weighted dual
graph of the minimal resolution of the singularity Xp,p−q, dual to Xp,q (see the paragraph
which follows formulae (3.18) of Chapter 3).

Therefore, if W is a Stein filling of (L(p, q), ξst), denote by V the closed 4-manifold
obtained by gluing W and Π(a) via an orientation-preserving diffeomorphism φ : ∂W →

∂Π(a) of their boundaries and by µ : Π(a) →֒ V the inclusion morphism. Lisca’s recogni-
tion criterion is:

Proposition 5.8. (Lisca [110, §7]) Denote by {si}1≤i≤r the classes of 2-spheres
{Si}1≤i≤r in H2(Π(a)) (listed in the same order as {ai}1≤i≤r), and also their images via
the monomorphism µ∗ : H2(Π(a)) → H2(V ). Then for all i ∈ {1, . . . , r} one has:

(5.9) #{e ∈ H2(V ) | e2 = −1, si · e 6= 0, sj · e = 0 for all j 6= i} = 2(ai − ki)

for some k ∈ Kr(a). In this way one gets the pair (a, k), and W is orientation-preserving
diffeomorphic to Wp,q(k).
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5.2. The notion of ordered lens space.
Notice that, as {Si}1≤i≤r and {Sr−i}1≤i≤r cannot be distinguished, the method given

in Proposition 5.8 does not differentiate (a, k) from (a′, k′), hence Wp,q(k) from Wp,q′(k
′).

For this reason, when q = q′, one cannot distinguish the Stein fillings Wp,q(k) and
Wp,q(k

′). Therefore, in this case Conjecture 5.1 does not claim that there is a bijection
between the irreducible components of the reduced miniversal base space and the Stein
fillings: there is an involution of the set of the components (induced by the involution
k → k′ acting on the parameter set Kr(a)) such that the Milnor fibers are diffeomorphic
(if the conjecture is true) if and only if they correspond to an orbit of this involution.

Némethi and I wondered if a stronger conjecture could not be true: instead of looking
at the Milnor fibers only up to diffeomorphism, we could look only at diffeomorphisms
which in restriction to the boundary are isotopic to the natural diffeomorphisms of identifi-
cation (see Theorem 4.7). In order to manage the computations with continued fractions,
we wanted to see what supplementary structure on a Stein filling of (L(p, q), ξst) allowed
to recuperate k without any ambiguity in the spirit of Proposition 5.8. We saw that we
could get this result simply by fixing a supplementary structure on the bounding lens
space.

Bonahon [14] proved that each lens space contains up to isotopy a unique embedded
2-dimensional torus — a so-called splitting torus —, which bounds on each side a solid
torus. The set T of solid tori bounded by a splitting torus, identified modulo isotopies of
the ambient space, is a set of one or two elements. It has one element exactly when the
solid tori can be interchanged by an isotopy. This happens precisely when q ∈ {1, p− 1},
cf. [14, page 308].

Definition 5.10. An order of a lens space is a total order on the set T .

Clearly, if q ∈ {1, p − 1}, then this supports no additional information. In all other
cases the order distinguishes the first and the second of the two (non-isotopic) solid tori
bounded by any splitting torus.

The notion of order has a similar nature as the notion of orientation (T is analogous
to the set of connected components of the orientation bundle of a manifold), but it is
independent of it.

There is an ambiguity in the notation ‘L(p, q)’ for an oriented lens space: L(p, q′) is
orientation-preserving diffeomorphic to it. But if one fixes also an order, then one may
extract the pair (p, q) without any ambiguity from it. From now on, we consider that
‘L(p, q)’ denotes such an oriented lens space with a preferred order.

5.3. Christophersen’s and Stevens’ works on deformations of cyclic quo-
tients.

The set Kr(a) of admissible sequences representing zero and restricted by a appearing
in Lisca’s classification was introduced before by Christophersen [27].

Denote by Sred(p, q) the reduced miniversal base space of the cyclic quotient singularity
(Xp,q, 0). Inspired by Arndt’s work [1], Christophersen wrote for each k ∈ Kr(a) an explicit

system Ek of equations which define Xp,q, and an explicit deformation Ẽk of these equations
with smooth parameter space. Based in an essential way on the work [95] of Kollár &
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Shepherd-Barron, Stevens proved in [155] that one gets in this way all the irreducible
components of Sred(p, q).

Theorem 5.11. (Stevens) The reduced base space Sred(p, q) of the miniversal defor-
mation of Xp,q has exactly #Kr(a) irreducible components.

Through the equations of Christophersen and Stevens one has in fact an explicit bi-
jection between the set Kr(a) and the irreducible components of Sred(p, q). This precises
the meaning of Lisca’s conjecture.

We denote by SCSk the irreducible component which corresponds to k ∈ Kr(a).

The system Ek is best described using toric geometry. The singularity Xp,q may also
be seen as the germ at the zero-dimensional orbit of the toric variety Zσp,q

= Spec C[σ̌p,q∩
M ], where σp,q ⊂ NR is an oriented cone in N of type p

q
, and M := Hom(N,Z). The

functions (z0, . . . , zr+1) are the characters corresponding to the minimal generating set of
the semigroup σ̌p,q ∩M . Therefore, they satisfy the relations:

(5.12) zi−1zi+1 − zai

i = 0 for all i ∈ {1, . . . , r}.

The toric surface Zσp,q
may be embedded inside Cr+2 using the regular functions z0, . . . , zr+1.

Christophersen and Stevens write for each k ∈ Kr(a) the special system Ek of binomial
equations which defines the image Xp,q of Zσp,q

by this embedding. See [27, pages 83-84],
[155, pages 316-317] or [7, pages 8-11] for different presentations. Some of the equations,
including (5.12), are independent of k. Using the special form of the equations, one defines

their deformations Ẽk, see [27, 155].

5.4. The steps of the proof of Lisca’s conjecture.
Looking at the equations defining the systems Ẽk, Némethi and I searched the simplest

possible 1-parameter deformation which defines a smoothing associated to the component
SCSk . In fact, such a 1-parameter deformation is uniquely determined by the deformed
equations of (5.12) (cf. [27], [155, (2.2)]). These last are:

(5.13) zi−1zi+1 = zai

i + t · zki

i for all i ∈ {1, . . . , r},

where t ∈ C. Note that, although (5.12) did not depend on k, this is not the case for their
deformations (5.13). Let X t

k be the affine space determined by the equations E tk in Cr+2.

Lemma 5.14. The deformation t 7→ X t
k has negative weight and is a smoothing belong-

ing to the component SCSk . In particular, X t
k is a smooth affine space for t 6= 0.

The first statement just means that the weight of the added monomial zki

i is not larger
than the weight of zi−1zi+1 − zai

i , i.e. ki ≤ ai. By [167, (2.2)], this implies that:

(5.15) X t
k is diffeomorphic to the Milnor fiber of SCSk .

The special form of equations (5.13) implies that one may express from them each
variable zi rationally in terms of z0 and z1 (an idea we had by reading Balke’s paper [5]):

Lemma 5.16. For each i ∈ {1, . . . , r + 1}, on X t
k one has:

(5.17) zi = z
−Z(a2,...,ai−1)
0 Pi
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for some Pi ∈ Z[t, z0, z1]. The polynomials Pi satisfy the inductive relations:

(5.18) Pi−1 · Pi+1 = P ai

i + tP ki

i · z(ai−ki)·Z(a2,...,ai−1)
0

with P1 = z1 and with the convention P0 = 1.

In the previous formulae, Z(x1, ..., xk) := Z−(x1, ..., xk) is the family of polynomials
defined by the equations (4.2) of Chapter 3.

Therefore, the affine surface X t
k is the closure in Cr+2 of the graph of the rational

function (z0, z1) · · · → (z2, ..., zr+1), where z2, ..., zr+1 are given by the previous lemma.
Our strategy is then to identify the surface by eliminating the indeterminacies of the
previous map, seen as a rational map defined on P2 = C2 ∪ L∞. Denote also by L0 the
projective line whose equation in C2 is z0 = 0. The equations stated in the previous
lemma are sufficiently manipulable to allow us to show:

Theorem 5.19. Consider the lines L∞ and L0 on P2 as above. Blow up r − 1 +
∑r

i=1(ai−ki) infinitely close points of L0 in order to get the dual graph in Figure 5.2 of the
configuration of the total transform of L∞∪L0 (this procedure is unique topologically, and
its existence is guaranteed by the fact that k ∈ Kr(a)). Denote the space obtained by this
modification by BP2. Then the Milnor fiber X t

k of SCSk is diffeomorphic to BP2 \ (∪rj=0Vj).
Moreover, let T be a small open tubular neighbourhood of ∪rj=0Vj, and set Fp,q(k) =

BP2 \ T . Then Fp,q(k) is a representative of the Milnor fiber of SCSk as a manifold with
boundary whose boundary is L(p, q).

Furthermore, the marking {Vi}i as in the Figure 5.2, defines on the boundary of Fp,q(k)
an order. Then this ordered boundary is L(p, q).

1 1 − a1 −a2 −ar

−1 −1 −1 −1 −1 −1

L∞ = V0 L0 = V1 V2 Vr

a1 − k1 a2 − k2 ar − kr

. . . . . . . . .

Figure 5.2. Illustration for the Theorem (5.19)

Using Proposition 5.8 and Theorem 5.19, we get the following Theorem, which proves
a strong form of Lisca’s conjecture:

Theorem 5.20. Wp,q(k) is orientation-preserving diffeomorphic to Fp,q(k) by a dif-
feomorphism which preserves the orders of the boundaries.

5.5. Comparison with the approach of de Jong and van Straten.
On the other hand, in [89], de Jong and van Straten studied by an approach completely

different from Christophersen and Stevens the deformation theory of cyclic quotient singu-
larities (as a particular case of a deformation theory of so-called sandwiched singularities).
They also parametrized the Milnor fibers of Xp,q using the elements of the set Kr(

p

p−q
).

Therefore, one can formulate the previous conjecture for their parametrization as well.
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In [126], we proved that this analogous conjecture is also true in the strong sense. As
a consequence, we see that de Jong & van Straten parametrize in the same way by the
elements of Kr(a) the components of Sred(p, q) as Christophersen & Stevens.

5.6. Conclusions.
I state briefly below the contributions brought by our paper [126]:

• We introduce an additional structure associated with any (non-necessarily oriented)
lens space: the ‘order’. Its meaning in short is the following: geometrically it is a (total)
order of the two solid tori separated by the (unique) splitting torus of the lens space; in
plumbing language, it is an order of the two ends of the plumbing graph (provided that
this graph has at least two vertices). Then we show that the oriented diffeomorphism type
and the order of the boundary L(p, q), together with the parameter k ∈ Kr(a) determines
uniquely the filling, up to orientation-preserving diffeomorphisms fixed on the boundary.

• We endow in a natural way all the boundaries of the spaces involved (Lisca’s fill-
ings Wp,q(k), Christophersen-Stevens’ Milnor fibers Fp,q(k), and de Jong-van Straten’s
Milnor fibers W (a, k)) with orders. Then we prove that all these spaces are connected
by orientation-preserving diffeomorphisms which preserve the order of their boundaries:
Wp,q(k) ≃ Fp,q(k) ≃W (a, k). This is an even stronger statement than the result expected
by Lisca’s conjecture since it eliminates the ambiguities present in Lisca’s classification.

• In fact, we even provide a fourth description of the Milnor fibers: they are con-
structed by a minimal sequence of blow ups of the projective plane which eliminates the
indeterminacies of an explicit rational function defined only in terms of a and k.

• As a byproduct it follows that both Christophersen-Stevens and de Jong-van Straten
parametrized the components of the miniversal base space in the same way (a fact not
proved before, as far as we know).

• Moreover, we obtain that the Milnor fibers corresponding to the various irreducible
components of the miniversal space of deformations of Xp,q are pairwise non-diffeomorphic
by orientation-preserving diffeomorphisms whose restrictions to the boundaries preserve
the order.

Before our work, the only results identifying the Stein fillings obtainable as Milnor
fibers were obtained by Ohta & Ono [130, 131]. In [131], they showed that up to
diffeomorphisms, the only Stein fillings of the contact boundary of a Kleinian singularity
is given by its unique Milnor fiber. In [130] they showed that up to diffeomorphisms, the
only Stein fillings of the contact boundary of a simple elliptic singularity is given either
by one of their Milnor fibers or by a compact tubular neighborhood of the exceptional
divisor of the minimal resolution. We emphasize that in this case, as opposed to the
situation met for rational singularities and explained after Theorem 4.14, no Milnor fiber
is diffeomorphic to it.

In fact, the existence of such diffeomorphisms characterizes rational singularities, as
may be seen by combining Theorem 4.10 of this chapter and Theorem 3.1 of Chapter 3.
This motivates questions (6) and (7) of Chapter 5.

Note that for any non-smooth normal surface singularity, in spite of the fact that
no tubular neighborhood of the exceptional divisor of the minimal resolution is Stein,
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one may get Stein neighborhoods after an arbitrarily C0-small deformation of the com-
plex structure (see Bogomolov & de Oliveira [13]). Therefore, such neighborhoods are
orientation-preserving diffeomorphic to Stein fillings of the contact boundary.

6. The cohomology rings of holomorphically fillable manifolds

I explain in this section the results of my paper [142].
We have seen before various notions of fillability by holomorphic spaces: Stein filla-

bility, holomorphic fillability and Milnor fillability. I want to explain in this section that
in dimension ≥ 3, those notions are pairwise different even at the topological level, with-
out the need to appeal to invariants of contact structures. This will be a consequence
of structure theorems for the cohomology rings of fillable manifolds, for each notion of
fillability. The structure theorems all have the formal shape:

For a fillable manifold, the product of cohomology classes with coefficients in a ring
A, of small (explicit) degrees, vanishes whenever the degree of the product is (explicitly)
sufficiently big.

In the previous statement, A is the ring of integers for Stein fillable manifolds and the
field of rationals for the two other notions of fillability.

6.1. The case of Stein fillable manifolds.
One has the following fundamental theorem about the homotopy type of a Stein man-

ifold (see [118]):

Theorem 6.1. (Thom, Bott, Andreotti & Frankel, Milnor) A Stein manifold has the
homotopy type of a CW-complex of dimension at most equal to its complex dimension.

I realised that this gives constraints on the cohomology rings of the boundaries of
compact Stein manifolds. More generally, one gets such constraints each time one has
upper bounds on the homotopical dimension of the manifold whose boundary is studied:

Theorem 6.2. Let W be a compact, connected, orientable manifold-with-boundary
of dimension m ≥ 4. Denote by N its boundary. Suppose that W is homotopically of
dimension ≤ h. Consider numbers i1, ..., ik ∈ {1, ..., m−2−h} such that i1+· · ·+ik ≥ h+1.
Then the morphism H i1(N)⊗ · · · ⊗H ik(N) −→ H i1+···+ik(N) induced by the cup-product
in cohomology with arbitrary coefficients vanishes identically.

Using Theorem 6.1, one deduces immediately:

Corollary 6.3. Let N be a Stein fillable manifold of dimension 2n−1 ≥ 5. Consider
numbers i1, ..., ik ∈ {1, ..., n − 2} such that i1 + · · · + ik ≥ n + 1. Then the morphism
H i1(N) ⊗ · · · ⊗H ik(N) −→ H i1+···+ik(N) induced by the cup-product in cohomology with
arbitrary coefficients vanishes identically.

Another consequence of Theorem 6.2 comes from the fact that a tubular neighborhood
of a subvariety of a complex manifold retracts by deformation on the subvariety, which
implies that its homotopical dimension is bounded above by the dimension of the subva-
riety. Applying this to the exceptional locus of the resolution of an isolated singularity,
one gets:
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Proposition 6.4. Let (X, x) be an irreducible, normal, isolated singularity of complex
dimension n. Denote by N its abstract boundary. If one can find numbers i1, ..., ik ∈
{1, ..., 2n−2−h} such that i1+· · ·+ik ≥ h+1 and the morphism H i1(N)⊗· · ·⊗H ik(N) −→
H i1+···+ik(N) induced by the cup-product does not vanish identically, then the exceptional
set of any resolution of (X, x) has complex dimension at least (h+ 1)/2.

I explain now a simple illustration of this criterion. Consider the cone over the Segre
embedding of P1 × P1 in P3. As explained at the end of subsection 2.2 of Chapter 3,
its singularity at 0 admits small resolutions. This singularity may also be seen as the
result of contraction of the zero-section in the total space of the line bundle O(−1) on
P1 × P1, induced by the Segre embedding. Consider instead any other line bundle of the
form O(−n), for n ≥ 2. Then Proposition 6.4 shows that the singularity obtained by
contracting its zero-section cannot admit a small resolution.

As another consequence of Theorem 6.2, one gets the following topological obstruction
to smoothability (this uses the fact that a Milnor fiber of a smoothing is a Stein filling of
the boundary of the considered singularity):

Proposition 6.5. Let (X, x) be an irreducible, normal, isolated, singularity of com-
plex dimension n. Denote by N its abstract boundary. If one can find numbers i1, ..., ik ∈
{1, ..., n−2} such that i1 + · · ·+ ik ≥ n+1 and the morphism H i1(N)⊗· · ·⊗H ik(N) −→
H i1+···+ik(N) induced by the cup-product does not vanish identically, then N is not Stein
fillable. In particular, (X, x) is not smoothable.

As a special case, we have:

Corollary 6.6. Let (X, x) be the isolated singularity obtained by contracting the 0-
section of an anti-ample line bundle on an abelian variety Σ of complex dimension ≥ 2,
and whose first Chern class is not primitive in H2(Σ,Z). Then the boundary of (X, x) is
not Stein fillable. In particular, (X, x) is not smoothable.

This answers partially the concluding question asked by Biran in [12].
For other obstructions to smoothability, one may consult Hartshorne [76] and Greuel

& Steenbrink [70].

6.2. The case of Milnor fillable manifolds.
As a consequence of Mumford’s work [121], boundaries of normal surface singularities

are graph manifolds. But not all graph-manifolds may be obtained like this. Indeed,
Sullivan [157] showed:

Theorem 6.7. (Sullivan) Let N be the boundary of a normal surface singularity. Then
the triple cup product H1(N,Q)∧3 → Q vanishes identically.

He proved this theorem by seeing N as the boundary of a tubular neighborhood W of
a resolution of the singularity under consideration, and used the fact that the associated
intersection form is negative definite (see Theorem 3.1 of Chapter 3). This implies that the
morphism H1(W ) → H1(N) is surjective and that H2(W ) → H2(N) vanishes identically,
which is enough to conclude.

As an immediate consequence of Theorem 6.7, one gets:

Corollary 6.8. The 3-dimensional torus is not Milnor-fillable.
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When Etienne Ghys asked me if I could generalize this result to higher dimensions,
as it was normal I thought to generalize Sullivan’s proof. But I knew no result analogous
to the negative-definiteness of the intersection form valid in higher dimensions. I asked
a few famous specialists of algebraic geometry about such an analog, without any result.
Finally, in September 2007, listening to a talk by Jan Schepers, I learnt about a theorem of
de Cataldo & Migliorini giving Hodge-theoretical constraints on the exceptional divisors
of resolutions of isolated singularities in any dimension. This indication was enough to
make me arrive, surfing through the literature, at the following purely topological result:

Theorem 6.9. (Goresky & MacPherson [65]) Let W be a divisorial resolution of a
Milnor representative of a normal isolated singularity of complex dimension n ≥ 2 and
N be its boundary. Then (cohomology groups being considered with rational coefficients
and all the morphisms being induced by inclusions), the morphisms H i(W ) → H i(N) are
surjective for i ∈ {0, ..., n− 1} and vanish identically for i ∈ {n, ..., 2n− 1}.

Goresky & MacPherson deduced their theorem as a consequence of a deep decompo-
sition theorem in intersection homology theory proved by Beilinson, Bernstein, Deligne &
Gabber [8, Theorem 6.2.5, page 163]. See [142] for other equivalent forms of the theorem
and instances of the formulation of some of these equivalent forms in the literature.

As noted in [65, page 123], for any compact oriented manifold W with boundary N ,
the kernel of the morphism H•(N) → H•(W ) between the total homologies, induced by
the inclusion N →֒W , is half-dimensional inside H•(N). The previous theorem describes
this kernel when W is a divisorial resolution of an isolated singularity: it is exactly
⊕2n−1
i=n Hi(N).

In the case of a germ of surface (X, x), the previous theorem is equivalent to the non-
degeneracy of this intersection form, as can be easily seen using some diagram chasing
in the cohomology long exact sequence of the pair (W,N), Poincaré-Lefschetz duality
for the manifold-with-boundary W , and the fact that W retracts by deformation on E.
Therefore, Goresky & MacPherson’s theorem is a generalization of the non-degeneracy of
the intersection form associated to a resolution of a normal surface singularity.

Using Theorem 6.9 and standard manipulations of singular cohomology, I got a new
proof of:

Theorem 6.10. (Durfee & Hain [39]) Let N be a (2n−1)-dimensional Milnor fillable
manifold, where n ≥ 2. Consider numbers i1, ..., ik ∈ {1, ..., n−1} such that i1 + · · ·+ ik ≥
n. Then the morphism H i1(N)⊗· · ·⊗H ik(N) −→ H i1+···+ik(N) induced by the cup-product
in cohomology with rational coefficients vanishes identically.

When I proved the previous theorem, I was not aware that it had already been proved.
It was Looijenga who told me this a little later in Utrecht. What is strange is that since its
announcement in [37], it was almost never quoted; the same remark applies to Goresky &
MacPherson’s theorem. These results seem to have remained confined to the consciousness
of specialists of mixed Hodge theory.

As a very concrete application of theorem 6.10, one gets the following generalization
of corollary 6.8:

Corollary 6.11. For all n ≥ 2, the torus T2n−1 is not Milnor-fillable.
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6.3. The case of holomorphically fillable manifolds.
Let N be a holomorphically fillable manifold. Then, one may identify it with the

strongly pseudoconvex boundary of a compact complex manifold. After contracting the
maximal compact analytic set, one gets a Stein space with isolated singularities. One
may construct on it a spsh Morse function having local minima at all the singular points
and the boundary as a level set. This allows to use Theorem 6.10 near each singular
point, then Poincaré-Lefschetz duality for the complement of Milnor neighborhoods of
the singularities, to get:

Theorem 6.12. (Bungart [21]) Suppose that n ≥ 3. Let N be a holomorphically
fillable manifold of dimension 2n − 1. Consider numbers i1, ..., ik ∈ {1, ..., n − 2} such
that i1 + · · ·+ ik ≥ n + 1. Then the morphism H i1(N) ⊗ · · · ⊗H ik(N) −→ H i1+···+ik(N)
induced by the cup-product in cohomology with rational coefficients vanishes identically.

When I obtained the previous theorem, a short time after Theorem 6.10, I was again
not conscious that it was already known. But once I discovered the reference [39], a
careful examination of the literature led me to discover [21]. Bungart’s proof follows the
same way as the one I found, once one knows Theorem 6.10.

As an immediate application of Theorem 6.12, one gets the following generalization
of Corollary 6.11:

Corollary 6.13. For all n ≥ 3, the torus T2n−1 is not holomorphically fillable.

By a theorem of Bourgeois [15] (which uses in an essential way Giroux’s theory of the
relation between contact structures and open books), if a closed orientable manifold M
admits a contact structure, then M ×T2 does too. This implies that all odd-dimensional
tori admit contact structures, as T3 does (see the next paragraph). The previous corollary
shows that a contact structure on a torus of dimension at least 5 cannot be holomorphically
fillable.

The 3-dimensional torus T3, however, is holomorphically fillable: it can be realized
as a strongly pseudoconvex boundary of a tubular neighborhood of S1 × S1 standardly
embedded in C2 (see Eliashberg [44]). By the theorem of Sullivan quoted in the previous
section and generalized in Theorem 6.10, T3 is not Milnor fillable. In a similar way, we
get using Theorem 6.10:

Proposition 6.14. For any n ≥ 2, the product Tn × Sn−1 is holomorphically fillable
but not Milnor fillable.

Combining Corollary 6.6 and Proposition 6.14, we see that in all odd dimensions ≥ 5,
the classes of Stein, Milnor or holomorphically fillable manifolds are pairwise distinct.





CHAPTER 3

Contributions to the topology of normal surface singularities

1. Motivations

When I began to think about Lisca’s conjecture, I first read carefully his paper classi-
fying the symplectic fillings of the standard contact structure on lens spaces. Part of my
difficulty to understand that paper came from much use of Hirzebruch-Jung continued
fractions. I knew rather well those continued fractions from my previous work on quasi-
ordinary singularities, but here they were used in a new context. I felt the necessity to
clarify this, and I started comparing the various occurrences of computations done with
continued fractions in singularity theory and 3-manifold topology.

This is how I realised that all the computations I was conscious about could be ex-
plained geometrically in a unified way, using a very elementary duality of plane supple-
mentary cones with respect to a lattice. I discovered later that this duality was already
known, under equivalent more algebraic formulations, but its role in unifying computa-
tions with continued fractions seemed not to have been emphasized. As I felt that this
unification brought a real economy of thought and a more global viewpoint, I decided to
explain it carefully, and I wrote [141].

While I was writing that paper, I realised that the geometric duality I was empha-
sizing allowed also to strenghten an important theorem of Neumann [127], stating that
the weighted dual graph of the minimal resolution with normal crossings of a normal
surface singularity could be reconstructed from the topology of its abstract boundary.
Namely, I proved that the plumbing structure corresponding to that resolution is actually
reconstructible up to isotopy. As I saw this result as potentially useful in future work
on contact boundaries, I decided to include in [141] also a survey about the topology
of normal surface singularities (plumbing structures, graph structures, Seifert structures)
and the use of continued fractions in relating them.

A very intriguing question about the topology of normal surface singularities is to
characterize the topological types of isolated surface singularities in C3. The only known
restriction on this topology I am conscious of comes from the fact that such a surface sin-
gularity is Gorenstein and smoothable. But arbitrary complete intersection singularities
are also Gorenstein and smoothable, therefore one gets like this no special attribute of
hypersurface singularities among them.

In 2007 I started talking with José Seade about this problem. During his stay in
Paris in autumn 2007, we did a kind of brainstorming on this problem, nourished from
a careful examination of various classes of examples. Suddenly emerged a very opti-
mistic conjecture: that once the arithmetic genera of the components of the exceptional
divisor of the minimal resolution are fixed, there are a finite number of possibilities

43
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for the self-intersections which could originate from a hypersurface/complete intersec-
tion/Gorenstein/numerically Gorenstein normal surface singularity (we did not know at
that moment which choice could be correct). We did not believe very much in this con-
jecture, and as stated it is indeed false. But not very false: in fact we could prove in
[143] a finiteness result of this kind for the canonical cycle of the minimal resolution for
the largest possible category among the ones listed before: that of numerically Goren-
stein singularities. Moreover, we described precisely the possible non-finiteness of the
self-intersections. Our proof is very short but surprised us a lot: we got a contradiction
from a passage to the limit in an infinite sequence of decorated graphs, a type of argument
we did not see before in singularity theory.

Section 2 is dedicated to general notions about singularities in all dimensions: Cohen-
Macaulay, Gorenstein, normal, quotient singularities and resolutions of singularities. Sec-
tion 3 is dedicated to general facts about the resolutions and classifications of normal
surface singularities. The content of those sections is also useful for the understand-
ing of the previous chapter. Section 4 explains the duality of supplementary cones and
its application to singularities. Section 5 explains the finiteness theorem on numerically
Gorenstein singularities.

2. General notions on singularities in arbitrary dimensions

2.1. Special classes of singularities.
According to common usage among singularity theorists, we say that a germ (X, x) of

complex analytic space is a complex analytic singularity, and this even if the closed point
x of the germ is smooth on it. From time to time (for example, when working with points
near x), we will work with representatives of the singularity.

When we speak about an n-fold singularity, we understand a reduced, equidimensional
germ of dimension n. In particular, a surface singularity is a germ of reduced equidimen-
sional space of complex dimension 2.

Concretely, singularities may be defined by the vanishing of a set of convergent power
series. The simplest case is that of hypersurfaces, when one takes only one power series.
More generally, one has complete intersections, which may be defined by the same number
of power series as their codimension in the ambient smooth space. One may show that
such a sequence of power series (f1, ..., fk) satisfies the fact that at each step, if one looks
at the germ defined by the first few of them, then the next one is not a zero-divisor in
restriction to it: one says that the sequence is regular. One may show then that complete
intersections are a particular case of Cohen-Macaulay singularities, which are maximal
from the view-point of existence of regular sequences:

Definition 2.1. A singularity (X, x) is called Cohen-Macaulay if its maximal ideal
has a regular sequence with dimC(X, x) elements.

But complete intersections are still more particular inside the class of Cohen-Macaulay
singularities, they are Gorenstein:

Definition 2.2. A Cohen-Macaulay singularity (X, x) is Gorenstein if its dualising
module ωX,x is free (as an OX,x-module).
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For details about the notions of dualising (or canonical) module and Gorenstein sin-
gularities, one may consult Eisenbud [40] and Reid [148]. The dualising module is the
germ at x of the dualising sheaf ωX , which is well-defined on any Cohen-Macaulay space
(a space all of whose germs are Cohen-Macaulay). In restriction to the smooth locus
X \SingX, the dualising sheaf ωX is simply the sheaf of holomorphic differential forms of
maximal degree. It is more complicated to understand what it means along the singular
locus. But when X is normal, the situation is simpler:

Proposition 2.3. Suppose that X is a normal complex analytic space. Then:

ωX ≃ i∗ωX\SingX

where X\SingX
i
→֒ X denotes the inclusion morphism. In particular, if the germ (X, x) is

normal, then it is Gorenstein if and only if there exists a nowhere-vanishing holomorphic
form of maximal degree defined on the smooth locus of some neighborhood of x.

Recall that a reduced complex analytic space is called normal if the Riemann extension
theorem (true over a smooth space) is also true over it:

Definition 2.4. Let X be a reduced complex analytic space. If U is an open subspace
of X, a weakly holomorphic function on U is a holomorphic and bounded function
defined on U \ Y , where Y is a nowhere dense closed subspace of U . The space X is
called normal if every weakly holomorphic function on U extends in a unique way to a
holomorphic function on U , and this must occur for any open subset U of X.

Each reduced space X may be normalized: a normalizationX of it is a normal analytic
space endowed with a finite surjective morphism X

ν
→ X of degree 1. Such a morphism

is unique up to unique isomorphism over X.

A class of singularities defined in all dimensions is that of quotient singularities:

Definition 2.5. A quotient singularity is a germ analytically isomorphic to a germ
of space obtained as a quotient of a smooth space by a finite group.

Quotient singularities are normal by the general construction of quotient spaces (see
[112] or [7]). By a local linearization theorem, one may show that in all dimensions
quotient singularities are isomorphic to germs of the form Cn/G, where G is a finite
subgroup of GL(n,C). Say that an element of the general linear group is a complex
reflection if it fixes pointwise a hyperplane. By a theorem of Chevalley [26], the quotient
of Cn by a finite group generated by complex reflections is again isomorphic to Cn. Now,
if G ⊂ GL(n,C) is an arbitrary finite group, its subgroup Gc generated by complex
reflections is a normal subgroup, therefore one may construct the quotient Cn/G as a
two-step quotient (Cn/Gc)/(G/Gc). One can show that the linearized action of G/Gc

contains no non-trivial complex reflections: it is a so-called small linear group.
We see that any quotient singularity is obtainable as the germ at 0 of the quotient of

Cn by a small finite linear group. Moreover, Prill [145] proved that the corresponding
linear representation is encoded in the analytical structure of the corresponding quotient
singularity.
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2.2. Resolutions of singularities.
One of the ways to study singularities is to look at them as images of projections of

smooth spaces. A priori one could look for such spaces in arbitrary higher dimensions,
but the most studied projections are restricted in the following way:

Definition 2.6. Let X be a reduced complex analytic space. A resolution of sin-
gularities of X is a morphism X̃

π
→ X such that:

• X̃ is smooth;
• π is proper;
• π is bimeromorphic;
• X̃ \ π−1(Sing X)

π
→ X \ Sing X is an isomorphism.

The exceptional locus Exc(π) of π is the compact subspace π−1(Sing X) of X̃.

I mention that some writers do not impose the last condition in the definition of
a resolution of singularities. Its presence has the advantage that the boundary of a
tubular neighborhood of the singular set may be canonically identified up to an isotopy
to the boundary of a tubular neighborhood of the exceptional set, which helps a lot in its
topological study. I also mention that some writers call exceptional only the components
of π−1(Sing X) whose image by π has a strictly smaller dimension.

By a fundamental theorem of Hironaka [78], all algebraic varieties admit resolutions of
singularities, obtainable moreover by sequences of blow-ups of smooth centers. His proof
extends readily to complex analytic germs, but with much more effort to complex analytic
spaces.

When (X, x) is a germ of curve, the normalization morphism resolves the singularity.
This is no longer true in higher dimensions, but normalization destroys nevertheless the
singular locus in codimension 1; that is, the singular locus of a normal space is of codi-
mension ≥ 2. If X is normal, then the exceptional locus of any resolution of singularities
has everywhere dimension ≥ 1. Therefore, when dimX = 2, it is a divisor of X̃. In
general, we say that the resolution is divisorial if the exceptional locus is a divisor.

Starting from dimension 3, there exist singularities admitting non-divisorial resolu-
tions, and even resolutions with exceptional sets having everywhere codimension ≥ 2 (we
will call them small resolutions). The simplest example is given by the singularity at the
origin 0 of the cone X over the Segre embedding of P1 × P1 in P3. This last surface is a
smooth quadric in P3, therefore it is doubly ruled. Select one of the rulings, say, by the

fibers of the first projection P1 × P1 p1→ P1. One may consider the rational map:

X · · · → P1

x · · · → p1[x]

where [x] denotes the point of the quadric corresponding to the generator of the cone
passing through x. This map is well-defined outside 0. Denote by X̃ the closure of its
graph in X×P1 and by X̃

π
→ X the natural projection on the first factor. One may show

that this morphism is a resolution of singularities of X, with exceptional locus isomorphic
(through the projection on the second factor) with P1.
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3. Surface singularities

3.1. Objects associated to a resolution of surface singularity.
Let (X, x) be a germ of normal complex analytic surface. It has a well-defined (up to

unique isomorphism over (X, x)) minimal resolution, through which any other resolution
factors.

Denote by (X̃, E)
π
→ (X, x) any resolution, where E denotes the reduced fibre over

0. Therefore E can be seen as a connected reduced effective divisor in X̃, called the
exceptional divisor of π. The divisor E has not necessarily normal crossings. But by
blowing-up the points at which E has not a normal crossing or at which its components
are singular, one obtains canonically starting from π a strict normal crossings resolution,
that is, one with normal crossings divisor having smooth irreducible components. If one
starts this process from the minimal resolution, one obtains the canonical strict normal
crossings resolution.

Denote by Γ the dual (intersection) graph of E: its vertices correspond bijectively
to the components of E and between two distinct vertices i and j there are as many
(unoriented) edges as the intersection number eij := Ei · Ej ≥ 0 of the corresponding
components. In particular, Γ has no loops. We weight each vertex i of Γ by the number
ei, where −ei := E2

i is the self-intersection number of the associated component Ei inside
the smooth surface X̃.

Denote by V (Γ) the set of vertices of Γ and by e ∈ ZV (Γ) the function which asso-
ciates to each vertex its weight. To the weighted graph (Γ, e) is associated a canonical
quadratic form on the real vector space RV (Γ), called the intersection form associated to
the resolution π:

Q(Γ,e)(x) :=
∑

i∈V (Γ)

(−eix
2
i +

∑

j∈V (Γ)

j 6=i

eijxixj) =
∑

i∈V (Γ)

xi(−eixi +
∑

j∈V (Γ)

j 6=i

eijxj).

One has the following characterization of weighted graphs coming from singularities
(see subsection 3.3 of Chapter 4 for the notion of contractibility in arbitrary dimension):

Theorem 3.1.
1) (Du Val [164], Mumford [121]) The intersection form Q(Γ,e) is negative definite.

In particular, ei > 0 for all i ∈ V (Γ).
2) (Grauert [66]) If the intersection form associated to a reduced compact effective

divisor E on a smooth surface is negative definite, then E can be contracted to a normal
singular point of an analytic surface.

For the following considerations on arithmetic genera, the adjunction formula and the
anti-canonical cycle, we refer to Reid [148] and Barth, Hulek, Peters & Van de Ven [6].

If D is an effective divisor on X̃ supported on E, then it may be interpreted as a (non-
necessarily reduced) compact curve, with associated structure sheaf OD. Its arithmetic
genus pa(D) is by definition equal to 1 − χ(OD). It satisfies the adjunction formula:

(3.2) pa(D) := 1 +
1

2
(D2 +KX̃ ·D)
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where KX̃ is any canonical divisor on X̃. The previous formula allows to extend the
definition to any divisor supported on E, not necessarily an effective one.

For all i ∈ V (Γ), denote by pi the arithmetic genus of the curve Ei, and by gi the
arithmetic genus of its normalization, equal to its topological genus. Both genera are
related by the following formula:

(3.3) pi = gi +
∑

P∈Ei

δ(Ei, P )

where δ(Ei, P ) ≥ 0 denotes the delta-invariant of the point P of Ei, equal to the number
of ordinary double points concentrated at P , and defined more generally for arbitrary
curve singularities (X, x) by the formula:

(3.4) δ(X, x) := dimC(OX/OX)

where X
ν
→ X is the normalization of X (therefore, X is a multi-germ). One has

δ(Ei, P ) > 0 if and only if P is singular on Ei.
We deduce from (3.3) that pi = 0 if and only if Ei is a smooth rational curve.
At this point, we have two weightings for the vertices of the graph Γ, the collection e

of self-intersections and the collection p of arithmetic genera of the associated irreducible
components. If π is a strict normal crossings resolution, then the doubly weighted graph
(Γ, e, p) determines the embedded topology of E in X̃ (see Mumford [121]). In general this
is not the case, because these numerical data do not determine the types of singularities
of E. Nevertheless, they determine them, and consequently the embedded topology of E,
up to a finite ambiguity. Indeed, there are a finite number of embedded topological types
of germs of reduced plane curves (C, c) having a given value of δ(C, c) (see Wall [170,
page 151]).

As the singularity (X, x) was supposed to be normal, one has π∗OX̃ = OX , that is,
a holomorphic function on X \ x extends to a holomorphic function on X if and only
if its lift to X̃ extends there as a holomorphic function. Therefore, one may construct
holomorphic functions on X by working on some resolution.

Start from f ∈ mX,x. Then, denoting by (π∗f)e the exceptional part of the principal
divisor (π∗f), that is, the part of the divisor of zeroes of π∗f which is supported by the
exceptional divisor E of π, the intersection number between (π∗f) and each component
Ei vanishes, which shows that:

(π∗f)e · Ei ≤ 0, for all i ∈ I.

In fact −(π∗f)e · Ei = (π∗f)s · Ei, where (π∗f)s denotes the strict transform on X̃ of the
divisor (f).

Therefore one is led to introduce the Lipman semigroup L(π) of π, defined purely
numerically as:

L(π) := {D ∈
∑

i∈I

ZEi |D · Ei ≤ 0, for all i ∈ I}.

This set is a semigroup for the addition of divisors. On it we consider the partial order
relation:

D1 ≥ D2 ⇔ D1 −D2 is effective .
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It is a nice exercice to show that all the elements of the Lipman semigroup are effective
divisors.

We have seen that the exceptional part of any holomorphic function belongs to this
semigroup. The converse is not true in general, excepted for rational singularities.

As shown by M. Artin [3], the Lipman semigroup has a unique non-vanishing minimal
element Znum, called the fundamental cycle or the numerical cycle of π. This cycle may
be computed algorithmically:

Proposition 3.5. (Laufer [98]) Start from Z0 := 0. If Zj is defined and there exists
i ∈ I such that Zj · Ei > 0, then define Zj+1 := Zj + Ei. Then this process stops after a
finite number of steps and the last element in the sequence Z0, Z1, ... is the fundamental
cycle of π.

We will also need to manipulate another cycle associated to the resolution π and
defined, as the fundamental cycle, in a purely numerical way. As the quadratic form Q(Γ,e)

is negative definite, there exists a unique divisor with rational coefficients ZK supported
on E such that:

(3.6) ZK · Ei = −KX̃ · Ei , for all i ∈ V (Γ).

Indeed, by the adjunction formulae (3.2), one has the following system of equations:

(3.7) 2pa(Ei) − 2 = E2
i − ZK · Ei, for all i ∈ I

which is a square system of affine equations with unknowns the coefficients of ZK such
that a matrix of the associated homogeneous system is a matrix of the intersection form
of (Γ, e).

The sign in the previous definition is motivated by the following result:

Proposition 3.8. Assuming that the resolution is minimal, ZK is an effective divisor.

We call ZK the anti-canonical cycle of E (or of the resolution π). The name is
motivated by the fact that whenever (X, x) is Gorenstein, −ZK is a canonical divisor on
X̃. Indeed, if the singularity (X, x) is Gorenstein, consider a non-vanishing holomorphic

form defined in a pointed neighborhood of x. Therefore its lift to X̃ is meromorphic and
its locus of zeros and poles is contained in E. This locus, considered with multiplicities, is
by construction a canonical divisor on X̃. Therefore, it is exactly −ZK , which shows that
for Gorenstein singularities, ZK has integral coefficients. This property being numeric
(that is, depending only on intersection-theoretical properties) and common to all normal
Gorenstein singularities, it motivates:

Definition 3.9. The singularity (X, x) is called numerically Gorenstein if ZK is
an integral divisor. As the coefficients of ZK depend only on the decorated graph (Γ, p, e),
we also say that this graph is numerically Gorenstein.

It is unknown whether each numerically Gorenstein graph may be realised by a Goren-
stein singularity.
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3.2. The topology of normal surface singularities.
For details about the material presented here, one may consult [127] or [141].
Let (X, x) be a normal surface singularity. Consider its abstract boundary ∂(X, x).

It is a connected, compact, naturally oriented 3-manifold. The study of the topology of
such 3-manifolds started with Mumford’s article [121], in which he proved that one could
recognize that a point on a normal surface was smooth from the topology of its boundary:

Theorem 3.10. (Mumford) If the boundary of a normal surface singularity (X, x) is
simply connected, then x is a smooth point of X.

In particular, as the boundary of a germ of surface at a smooth point is diffeomorphic
to S3, this showed that one could not get a counterexample to Poincaré’s conjecture by
taking the boundary of a surface singularity.

Mumford started by describing the boundary as the result of gluing elementary 3-
manifolds by an operation he called plumbing, the list of such 3-manifolds and the in-
structions for gluing being determined by the weighted dual graph (Γ, p, e) of any strict
normal crossings resolution. In order to see that the dual graph determines a decomposi-
tion of the boundary, one looks at ∂(X, x) as boundary of a tubular neighborhood of the
exceptional divisor E of the chosen resolution.

Such a tubular neighborhood W may be constructed as the union of tubular neighbor-
hoods Wi of the irreducible components Ei of E. Therefore one obtains a first plumbing
procedure for the gluing of these elementary tubular neighborhoods, which are simply
oriented disc bundles. More precisely, the neighborhood Wi of Ei is a disc bundle of Euler
number −ei < 0 over the surface Ei. Whenever two vertices of the dual graph Γ are
joined by an edge, one glues trivialized restrictions to discs in their respective bases of
the bundles corresponding to the two vertices by switching the fibers and the sections.

The way one gets the boundary of the 4-manifold W from the boundaries of the 4-
manifolds Wi may be described by restricting the preceding procedure to the boundaries
of the Wi. Namely, one starts from oriented circle bundles over Ei with Euler numbers
−ei, and whenever two vertices are joined by an edge of Γ, one takes out saturated
and trivialized solid tori from the corresponding circle bundles and glues the trivialized
tori which are created like this by switching fibers and meridians: this is the plumbing
operation for circle bundles over surfaces.

Therefore, the boundaries of normal surface singularities are particular 3-manifolds,
obtained by plumbing circle bundles over surfaces following a weighted graph. For this
reason, such 3-manifolds were named graph-manifolds. Their theory was started by Wald-
hausen [168]. He looked at the collection of tori one gets in a graph manifold as images
of the tori which were identified after taking out solid tori from the total spaces of the
circle bundles. The connected components of their complement are total spaces of circle
bundles. Moreover, the fibers arrive from both sides of a torus such that their intersection
number is always ±1. He considered then more general families of tori, by asking only
that the complement be fiberable by circles, but forgetting the condition about intersec-
tion numbers. The class of 3-manifolds which admit such a graph structure is the same as
before, but one has more possibilities of simplification: each time one finds two parallel
tori, that is, 2-tori which cobound a thick torus [0, 1]×T2, one can eliminate one of them,
and obtain again a graph structure on the same 3-manifold. Waldhausen proved that,
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when the initial 3-manifold is irreducible, that is, indecomposable as a connected sum of
two other 3-manifolds non-diffeomorphic to the 3-sphere, a minimal such collection of tori
is in general a topological invariant of the 3-manifold:

Theorem 3.11. (Waldhausen) With the exception of a finite explicit list of 3-mani-
folds, a minimal collection of tori which correspond to a graph structure on an irreducible
closed 3-manifold is unique up to isotopy.

He described also a graph-notation for graph structures and characterized using it
the graph structures corresponding to the minimal collections of tori. His work was
the starting point of a calculus elaborated by Neumann [127] for plumbing structures.
Neumann did not leave the realm of plumbing structures in order to enter the more general
realm of graph structures. This allowed a non-ambiguous encoding of the structure by
plumbing graphs. Neumann applied his calculus to give an algorithm which allowed to
determine if a given plumbing graph describes or not a singularity boundary. Using this
algorithm, he showed:

Theorem 3.12. (Neumann) The boundary of a normal surface singularity is irre-
ducible. Its oriented topological type determines the weighted dual graph (Γ, e, p) of the
minimal strict normal crossings resolution up to isomorphism.

Therefore, one may encode the oriented topological type of the singularity boundary
by this graph. Moreover, one has an algorithmic way, given an oriented graph manifold,
to determine if it is diffeomorphic to a singularity boundary or not.

Before that, the first example of a graph manifold which was not a singularity boundary
had been given by Sullivan [157] (see Corollary 6.8 of the previous chapter).

Waldhausen’s structure theorem for graph manifolds was extended later by Jaco &
Shalen [87] and Johannson [88] into a structure theorem for any irreducible 3-manifolds.
Namely, any such manifold contains a well-defined and unique up to isotopy family of
pairwise disjoint and non-parallel incompressible tori, minimal for the property that the
components of their complement are either Seifert-fiberable or do not contain new incom-
pressible tori (which are not boundary-parallel). Such a family is now called a JSJ-family
of tori. These theorems were the starting point of Thurston’s geometrization conjecture.

3.3. Rational and minimally elliptic surface singularities.
For details about the classification of surface singularities, I recommend Némethi’s

surveys [123], [125] as well as Reid [148] and Wall [169].
Since Clebsch called genus the measure of complexity associated by Abel and Rie-

mann to an algebraic curve, differentiating themselves from Descartes who measured this
complexity in terms of the degree, the term genus flourished as a measure of various
complexities in algebraic geometry. This happened also in singularity theory:

Definition 3.13. Let (X, x) be a normal surface singularity. Its geometric genus
is defined as:

pg(X, x) := dimCR
1π∗OX̃

where π : X̃ → X is any resolution of singularities. Its arithmetic genus is defined as:

pa(X, x) := sup
Z≥0

pa(Z)
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where Z varies among the effective divisors supported by the exceptional divisor Exc(π).

One may show that if U is a Stein representative of (X, x) and Ũ is its preimage by the
chosen resolution, then pg(X, x) = dimC H

1π∗OŨ . It is a theorem that both definitions
are independent of the chosen resolution (see [166, Section 1] or [7, Section 2.3]). One
has always:

pg(X, x) ≥ pa(X, x) ≥ pa(Znum) ≥ 0.

By analogy with the fact that among smooth connected compact analytic curves, those
of smallest genus are called rational, Michael Artin [3] introduced the same terminology
for surface singularities:

Definition 3.14. A normal surface singularity (X, x) is called rational if its geo-
metric genus vanishes.

An essential property of rational singularities is that there are topological criteria of
rationality:

Theorem 3.15. (M. Artin [2], [3]) A normal surface singularity is rational if and
only if one of the following facts happen:

(1) One has pa(X, x) = 0.
(2) One has pa(Znum) = 0.

Using Laufer’s algorithm [98], we see that point (2) allows to determine readily from
the knowledge of the weighted graph of a resolution whether a singularity is rational.

Rational surface singularities have the property that their minimal resolution coincides
with their minimal normal crossings resolution. Moreover, their dual graph is a tree of
rational curves (p = 0), as was shown by Artin [3].

Another important property of them is that any element of the Lipman semigroup
associated to any resolution of singularities may be realised as the exceptional part of a
principal divisor. Moreover, a germ D of effective divisor in the neighborhood of E is
principal if and only if D · Ei = 0 for all i ∈ I.

Quotient singularities constitute the simplest class of rational singularities. Among
quotient singularities, the most famous are those described in the following theorem:

Theorem 3.16. Let (X, x) be a normal germ of surface. The following are equivalent:

(1) (X, x) is analytically isomorphic to the germ (C2/G, 0), where G is a finite sub-
group of SU(2,C) (one says that it is a Kleinian singularity).

(2) The canonical cycle of the minimal resolution is trivial (one says that is is a Du
Val singularity).

(3) (X, x) is rational of multiplicity 2 (one says that it is a rational double point).
(4) (X, x) is rational and numerically Gorenstein.

In fact there are many more characterizations of those singularities (see Hazewinkel
et al. [77], Durfee [35], Slodowy [153], Cassens & Slodowy [22], Brieskorn [19] for vari-
ous viewpoints on them). They appeared historically in different contexts under different
aspects, some of those contexts having led to the names emphasized in the previous theo-
rem. More precisely, Klein [91] was studying the theory of invariants of finite subgroups
of GL(2,C), Du Val [163] was studying the isolated singularities of surfaces in CP3 which
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do not affect the conditions of adjunction, that is, such that the holomorphic 2-forms
defined outside the singular point extended to holomorphic 2-forms on any resolution of
the singular point, Artin [3] showed that any singularity having the same dual graph as
those of Du Val’s list (even without assuming that they were of embedding dimension 3),
were rational of multiplicity 2 and embedding dimension 3.

One has the following classification of Kleinian singularities:

An xn+1 + y2 + z2 = 0 (n ≥ 1)
Dn xn−1 + xy2 + z2 = 0 (n ≥ 4)
E6 x4 + y3 + z2 = 0
E7 x3y + y3 + z2 = 0
E8 x5 + y3 + z2 = 0

The dual graph of the minimal resolution is each time a tree of smooth rational curves
with self-intersections −2 (that is, p = 0 and e = 2), the number of vertices of the graph
associated to Xn being n, and the shape of the graph being the same as the one of the
Coxeter diagram of the root lattice of the simple complex Lie algebra with the same name.
In the sequel we will call also such weighted graphs Kleinian graphs.

Let us pass now to the quotient singularities which are not Kleinian. They were
classified by Brieskorn [18] (see also Matsuki [115, Chapter 4.6]). The simplest ones are
the quotients by cyclic groups:

Definition 3.17. Let p, q be coprime integers such that p > q > 0. The cyclic
quotient (or Hirzebruch-Jung) singularity (Xp,q, 0) is the germ at the image of the
origin in C2 of the quotient Xp,q of C2 by the action (x, y) → (ξx, ξqy) of the cyclic group
{ξ ∈ C , ξp = 1} ≃ Z/pZ. Its oriented boundary is the (oriented) lens space L(p, q).

The alternative name ‘Hirzebruch-Jung’ for cyclic quotient singularities comes from
the fact that those singularities appear naturally in the Hirzebruch-Jung method (originat-
ing in Jung [90] and Hirzebruch [79]) of resolution of surface singularities by preliminary
embedded resolution of the discriminant curve of a projection on a smooth surface: they
are the singularities of the normalization of a surface having a projection whose discrim-
inant has normal crossings (see Laufer [97], Lipman [108] or Barth et al. [6] for details).

In order to describe the geometry of the minimal resolution of such singularities as well
as the algebra of the minimal embedding, one needs to introduce the following Hirzebruch-
Jung continued fraction expansions (see Definition 4.1):

(3.18)







p

q
= [b1, ..., bs]

−

p

p− q
= [a1, ..., ar]

−
.

The weighted dual graph of the minimal resolution of (Xp,q, 0) is a segment with s
vertices (including its extremities), weighted by e = b and p = 0. Denote by Π(b) a
tubular neighborhood of the exceptional set. It is a plumbed 4-manifold whose plumbing
graph is the weighted graph of the minimal resolution.
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The embedding dimension of (Xp,q, 0) is equal to r + 2, and there exists a minimal
system of generators z0, ..., zr+1 of the maximal ideal such that zi−1zi+1 = zai

i , for all
i ∈ {1, ..., r}.

The best way to understand these facts is to see the cyclic quotient singularities as
toric singularities. In fact, they are precisely the germs of normal toric surfaces (see
Oda [129] or Fulton [53]). More precisely, (Xp,q, 0) ≃ (Z(σp,q, N), 0), where Z(σp,q, N)
denotes the normal affine toric surface defined by a 2-dimensional rational cone of type
p

q
(that is, isomorphic to the cone generated by (1, 0) and (−q, p), with N = Z2). Then

the components of the exceptional divisor of the minimal resolution correspond to the
minimal generating set of the semi-group σp,q ∩ N , with the exception of the generators
of the edges of σp,q, while a minimal generating set of the maximal ideal is formed by
the characters corresponding to the minimal generating set of the semi-group σ̌p,q ∩ N∗.
This shows that the HJ-continued fractions of equation (3.18) are in some sense dual. I
will explain in section 4 that this is one manifestation of a very simple geometric duality
between supplementary cones, which makes that not only the sequences b and a are dual,
but that also internal structures of them correspond dually.

Rational surface singularities are the simplest surface singularities, if one takes the
arithmetic genus as a measure of complexity. The next class in terms of this complexity
are therefore the singularities (X, x) with pa(X, x) = 1. Wagreich [166] started their study
and called them elliptic singularities, by analogy with elliptic curves, whose topological
genus is 1. Unlike in the case of rational singularities, this class contains germs with
arbitrary high geometric genus. Laufer discovered that there exists a subclass which
is also defined topologically, and which has many properties in common with rational
singularities. Namely, in [100, Theorems 3.4 and 3.10], he proved:

Theorem 3.19. (Laufer) Let (X, x) be a normal surface singularity. Working with
its minimal resolution, the following facts are equivalent:

(1) One has pa(Znum) = 1 and pa(D) < 1 for all 0 < D < Znum.
(2) The fundamental and anticanonical cycles are equal: Znum = ZK.
(3) One has pa(Znum) = 1 and any connected proper subdivisor of E contracts to a

rational singularity.
(4) pg(X, x) = 1 and (X, x) is Gorenstein.

Laufer introduced a special name (making reference to condition (3)) for the singular-
ities satisfying one of the previous conditions:

Definition 3.20. A normal surface singularity satisfying one of the equivalent con-
ditions stated in Theorem 3.19 is called a minimally elliptic singularity.

One sees from the previous theorem that one may determine from the topology of
(X, x) whether it is minimally elliptic or not. Moreover, all the singularities realising
that topology are necessarily Gorenstein. For rational singularities, we saw that only
the Kleinian ones are Gorenstein. Kleinian singularities are moreover taut (see definition
3.24), which is not the case for all the minimally elliptic ones. Nevertheless, Laufer saw
that the union of the class of Kleinian singularities and minimally elliptic singularities
could be characterized in a subtle way using Gorensteinness:
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Theorem 3.21. (Laufer) Let us fix a topological type of normal surface singularities.
Then the singularities realising that type are generically Gorenstein if and only if the
topological type corresponds either to a Kleinian singularity or to a minimally elliptic
singularity.

It is not clear a priori what means a generic property of the singularities with given
topological type. Laufer gives the following meaning to it: a property is generic for a given
topological type of singularities if, on the base of the miniversal space of deformations
with fixed topological type, the singularities having that property form a dense open set.

Let us introduce the following particular types of minimally elliptic singularities:

Definition 3.22. A normal surface singularity is a simple elliptic singularity if it is
obtained by contracting a smooth elliptic curve with negative self-intersections embedded
in a smooth surface. It is a cusp singularity if the weighted dual graph of its minimal
strict normal crossings resolution is a circle and p = 0.

Simple elliptic singularities were introduced by K. Saito [150] as the simplest elliptic
singularities in the sense of Wagreich and cusp singularities received their name from
the fact that they are the singularities obtained by compactifying the cusps of the Hilbert
modular surfaces (see Hirzebruch [80]). They have a common characterization with cyclic
quotient singularities:

Theorem 3.23. (Neumann, [127]) If one changes the orientation of the boundary of a
normal surface singularity, the resulting 3-manifold is no more orientation-preserving dif-
feomorphic to the boundary of an isolated surface singularity, excepted for cyclic quotient
singularities and cusp-singularities.

The previous two classes of singularities, as well as all Kleinian singularities have
moreover the property that their topology determines their analytical type:

Definition 3.24. A normal surface singularity or a weighted dual graph is called
taut if its topology determines its analytical type.

In [98], Laufer classified all the taut weighted graphs.

4. A duality for supplementary cones with respect to a lattice

4.1. The geometric duality.
Continued fraction expansions appear naturally when one resolves germs of plane

curves by sequences of plane blowing-ups, or cyclic quotient surface singularities by toric
modifications.

They also appear when one passes from the natural plumbing decomposition of the
abstract boundary of a normal surface singularity to its minimal JSJ decomposition. In
this case it is very important to keep track of natural orientations. In general (see Theorem
3.23), if one changes the orientation of the boundary, the resulting 3-manifold is no more
orientation-preserving diffeomorphic to the boundary of an isolated surface singularity.
The only exceptions are cyclic quotient singularities and cusp-singularities. For both
classes of singularities, one gets an involution on the set of analytical isomorphism types
of the singularities in the class, by changing the orientation of the boundary. From the
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viewpoint of computations, Hirzebruch saw that both types of singularities have structures
which can be encoded in continued fraction expansions of positive integers, and that the
previous involution manifests itself in a duality between such expansions.

In the computations with continued fractions alluded to before, there appear in fact
two kinds of continued fraction expansions:

Definition 4.1. If x1, ..., xn are variables, we consider two kinds of continued fractions
associated to them:

[x1, ..., xn]
+ := x1 +

1

x2 +
1

· · · +
1

xn

[x1, ..., xn]
− := x1 −

1

x2 −
1

· · · −
1

xn
We call [x1, ..., xn]

+ a Euclidean continued fraction (abbreviated E-continued
fraction) and [x1, ..., xn]

− a Hirzebruch-Jung continued fraction (abbreviated HJ-
continued fraction).

The first name is motivated by the fact that E-continued fractions are closely related
to the Euclidean algorithm: if one applies this algorithm to a couple of positive integers
(a, b) and the successive quotients are q1, ..., qn, then a/b = [q1, ..., qn]

+.
The second name is motivated by the fact that HJ-continued fractions appear naturally

in the Hirzebruch-Jung method of resolution of singularities, originating in Jung [90] and
Hirzebruch [79] (see also [97] and [108]).

Define two sequences (Z±(x1, ..., xn))n≥1 of polynomials with integer coefficients, by
the initial data:

Z±(∅) = 1, Z±(x) = x

and the recurrence relations:

(4.2) Z±(x1, ..., xn) = x1Z
±(x2, ..., xn) ± Z±(x3, ..., xn), ∀ n ≥ 2.

Then one proves immediately by induction on n the following equality of rational
fractions:

(4.3) [x1, ..., xn]
± =

Z±(x1, ..., xn)

Z±(x2, ..., xn)
, ∀ n ≥ 1.

There is a simple formula, also attributed to Hirzebruch, which allows to pass from
one type of continued fraction expansion of a number to the other one ((2)a denotes the
constant sequence with a terms equal to 2):

Proposition 4.4. (Hirzebruch) If (an)n≥1 is a (finite or infinite) sequence of positive
integers, then:

[a1, ..., a2n]
+ = [a1 + 1, (2)a2−1, a3 + 2, (2)a4−1, ..., (2)a2n−1]−
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[a1, ..., a2n+1]
+ = [a1 + 1, (2)a2−1, a3 + 2, (2)a4−1, ..., (2)a2n−1, a2n+1 + 1]−

[a1, a2, a3, a4, ...]
+ = [a1 + 1, (2)a2−1, a3 + 2, (2)a4−1, a5 + 2, (2)a6−1, ...]−.

If (L, σ) is a pair consisting of a 2-dimensional lattice L and a strictly convex cone σ
in the associated real vector space, P (σ) denotes the boundary of the convex hull of the
set of lattice points situated inside σ and different from the origin.

Both types of expansions have geometric interpretations in terms of polygonal lines
P (σ). For Euclidean continued fractions this interpretation is attributed to Klein [92],
while for the Hirzebruch-Jung ones it is attributed to Cohn [28]. Let λ > 1 and λ =
[l1, l2, ...]

+ = [n1, n2, ...]
−. Then:

• (Klein’s interpretation) Consider a basis (e1, e2) of L and a half-line h of slope
λ with respect to it, contained in the interior of the cone bounded by R+e1 and R+e2.
Denote by σ1 and σ2 the cones bounded by the half-line h and R+e1, respectively R+e2.
Then the odd-indexed numbers l1, l3, ... are the integral length of the edges of the polygonal
line P (σ1) and the analog for the relation between l2, l4, ... and P (σ2).

• (Cohn’s interpretation) Consider a basis (e1, e2) of L and a half-line h of slope λ
with respect to (−e1, e2). Denote by σ the cone bounded by −e1 and the half-line h. Then,
consider in order all the lattice points u0, u1, ... situated on P (σ), starting from −e1. Then
one has the relations ui−1 + ui+1 = niui, for all i ≥ 1.

It is natural to try to understand how both geometric interpretations fit together. By
superimposing the corresponding drawings, I was led to consider two supplementary cones
in a real plane, in the presence of a lattice. By supplementary cones, I mean two closed
strictly convex cones which have a common edge and whose union is a half-plane.

From another side, I understood that the algebraic duality between continued frac-
tions described by Hirzebruch has, as geometric counterpart, a duality between two such
supplementary cones. This duality is easiest to express in the case when the edges of the
cones are irrational:

Suppose that the edges of the supplementary cones σ and σ′ are irrational. Then the
edges of each polygonal line P (σ) and P (σ′) correspond bijectively in a natural way to the
vertices of the other one: a vertex of P (σ′) is a primitive element of the parallel to the
dual edge traced through the origin.

Moreover, if one associates to each edge its integral length (as in Klein’s interpretation)
and to each vertex its weight (as in Cohn’s interpretation), then:

(weight of a vertex) = (length of the dual edge) + 2.

When at least one of the edges of σ is rational, the correspondence is slightly more
complicated: there is a defect of bijectivity near the intersection points of the polygonal
lines with the edges of the cones (the curious reader may find it by looking carefully at
Figure 4.1. It is this correspondence which gives a geometric interpretation of the formulae
stated in Proposition 4.4.

The duality between supplementary cones is not new; it has already appeared from
time to time under equivalent formulations (for a list, one can consult [142]). What I
believe is new in my presentation is the conscience of its unifying role in singularity theory,
as I explain in the next subsection.
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0

Figure 4.1. An example of duality between supplementary cones

4.2. Applications to curve and surface singularities.
The duality between supplementary cones gives a simple way to think about the

relation between the pair (L, σ) and its dual pair (Ľ, σ̌), and in particular about the
relations between various invariants of toric surfaces. Indeed:

The supplementary cone of σ is canonically isomorphic over the integers with the dual
cone σ̌, once an orientation of L is fixed.

Computations with continued fractions appear also when one passes from the canonical
plumbing structure on the boundary of a normal surface singularity to its minimal graph
structure. Using this, Neumann [127] showed that the topological type of the minimal
good resolution of the germ is determined by the topological type of the link. In fact all
continued fractions appearing in Neumann’s work are the algebraic counterpart of pairs
(L, σ) canonically determined by the topology of the boundary. Using this remark, I
proved the stronger statement (see [141]):

Theorem 4.5. The plumbing structure on the boundary of a normal surface singularity
associated to the minimal normal crossings resolution is determined up to isotopy by the
oriented ambient manifold. In particular, it is invariant up to isotopy under the group of
orientation-preserving self-diffeomorphisms of the boundary.

In the proof of this theorem I treated separately the boundaries of Hirzebruch-Jung
and cusp singularities. In both cases, I showed that the oriented boundary determines
naturally a pair (L, σ) as before. If one changes the orientation of the boundary, one gets a
supplementary cone. In this way, the involution defined on both sets of (taut) singularities
by changing the orientation of the boundary is a manifestation of the geometric duality
between supplementary cones.

Start now from a germ of plane curve (X, 0) →֒ (C2, 0). One may canonically get
an embedded resolution by iteratively blowing-up points on the smooth ambient surface.
At the end, one gets the dual graph of the total transform of (X, 0), which encodes the
topology of (C2, X, 0) (see [170]). This graph may be constructed by gluing elementary
pieces corresponding to the Newton-Puiseux exponents of the irreducible components of
(X, 0) and to some other exponents measuring the contacts between the various com-
ponents. Such elementary graphs correspond to the embedded resolutions of monomial
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plane curves, with equations of the form xa − yb = 0. I showed that the previous duality
allowed also to understand their structure.

Summarizing the previous facts:

Theorem 4.6. The duality of plane supplementary cones with respect to a lattice
allows to think geometrically about the following aspects of curve and surface singularities:

(1) The structure of the dual graph of the minimal embedded resolution of a plane
monomial curve.

(2) The relation between the dual graph of a cyclic quotient singularity and the min-
imal monomial generating set of its algebra.

(3) The duality among cyclic quotient singularities, and the one among cusp singu-
larities.

For me, the moral of the story I told in [141] about the duality of supplementary
cones is:

If one meets computations with either Euclidean or Hirzebruch-Jung continued frac-
tions in a geometrical problem, it means that somewhere behind are present a natural
2-dimensional lattice L and a couple of lines in its associated real vector space. One has
first to choose one of the two pairs of opposite cones determined by the two lines and
secondly an ordering of the edges of those cones. These choices may be dictated by choices
of orientations of the manifolds which led to the construction of the lattice and the cones.
Therefore, in order to think geometrically about the computations with continued fractions,
recognize the lattice, the lines and the orientation choices.

5. A finiteness result for the topology of numerically Gorenstein singularities

An important problem, studied by several authors (see for instance Yau [173] and
Laufer [102]), is:

Describe the negative definite dual graphs (Γ, e, p) corresponding to hypersurface sin-

gularities in C3.

As far as I know, the only general obstruction on such graphs discovered so far comes
from the fact that hypersurface singularities are smoothable and Gorenstein, which allows
to apply Theorem 4.8 of Chapter 2. This gives a constraint on the topology in all cases
where one knows that the geometric genus is determined by it (for example for minimally
elliptic singularities, as shown by Theorem 3.19).

Together with José Seade, starting from the previous problem, we looked at the fol-
lowing weaker question (see Definition 3.9):

Describe the dual graphs corresponding to numerically Gorenstein surface singularities.

Precising Proposition 3.8, it results from the adjunction system (3.7) that, with the
exception of the Kleinian singularities (when ZK = 0), the anticanonical cycle ZK =
∑

i∈I ziEi of the minimal resolution of a numerically Gorenstein singularity has as support
the whole exceptional divisor E.

In the sequel, we suppose that (Γ, p, e) is not one of the Kleinian graphs. Therefore,
zi ≥ 1 for all i ∈ V (Γ). Let us introduce new variables, for simplicity:
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(5.1)



















ni := zi − 1 ≥ 0 ,

vi :=
∑

j∈V (Γ)

j 6=i

eij ≥ 0,

qi := vi + 2pi − 2 ≥ −2.

Then the adjunction system (3.7) becomes:

(5.2) {eini = qi +
∑

j∈V (Γ)

j 6=i

eijnj}i∈V (Γ).

If i ∈ V (Γ), vi is the valency of i, that is, the number of edges connecting it to other
vertices.

Our main theorem in the paper [143] says that, given a weighted graph (Γ, p), there is
a finite number of possible anticanonical cycles one can obtain by adding weights e such
that (Γ, p, e) becomes numerically Gorenstein. This is an immediate consequence of:

Theorem 5.3. Consider a graph Γ decorated with weights q ∈ ZV (Γ), and the system

of equations in the unknowns (n, e) ∈ (N)V (Γ) × (N∗)V (Γ):

(5.4) {eini = qi +
∑

j∈V (Γ)

j 6=i

eijnj}i∈V (Γ).

Then there exist at most finitely many weights n which can be extended to solutions (n, e)
of the previous system, such that the quadratic form Q(Γ,e) is negative definite.

By contrast, the possible values of e making (Γ, p, e) numerically Gorenstein do not
necessarily form a finite set. For example, if Γ is topologically a circle and p = 0 (that is,
if one has a cusp-graph), then for any choice e such that ei ≥ 2 for all i ∈ I and ei ≥ 3 for
at least one i ∈ I, one gets a numerically Gorenstein graph. But we describe completely
the obstruction to get a finite number of possibilities. Namely, if the graph (Γ, p) is not
a cusp-graph, then one can get an infinite number of values ei only for vertices such that
pi = 0 and vi = 1, that is, for smooth rational leaves of the graph.

We were very surprised by the proof we found: by contradiction, we started from an
infinite sequence of weights (e(k))k∈N making (Γ, p, e) numerically Gorenstein such that

the associated n(k) are pairwise distinct. Then, dividing each equation of the system

(5.2) by the maximal n
(k)
i and passing to the limit in a convenient subsequence, we got a

non-trivial subgraph of some (Γ, e(k)) which could not be negative definite.
Such a proof is non-constructive, which led us to question (8) of Chapter 5.



CHAPTER 4

Constructions of singularities with bijective Nash map

1. Motivations

In September 2004, I participated in a conference in singularity theory in Sapporo.
There I presented some of the results on contact boundaries I had obtained at that time
and Camille Plénat presented her results on the Nash map. We began discussing and
we saw that a suitable version of Theorem 3.4 of Chapter 2 could be combined with a
criterion proved in her thesis, in order to construct new examples of surface singularities
with bijective Nash map.

This gave our first paper [139], in which we introduced a class of surface singularities,
defined only using a property of the intersection form of the minimal resolution with
respect to its canonical basis, such that all the members of this family have bijective
Nash map. We had obtained the first non-trivial examples of non-rational normal surface
singularities with bijective Nash map, with the exception of some quasi-homogeneous
singularities studied by Monique Lejeune-Jalabert.

Before that work I had never thought about the Nash map. I knew about it only from
various talks I had listened to, and it was Plénat who taught me the fundamentals in
this field of research. I got interested for two reasons: because it brought an application
to a variant of a theorem proved for the study of the contact boundaries of singularities
and because I saw it as a path towards a better understanding of the so-called essential
components of the exceptional locus of a resolution of singularities in dimension at least
three. I believe that much progress on higher-dimensional analogs of questions discussed
in the previous chapters for surface singularities passes through an improvement of our
understanding of such components.

After having written [139], we got interested in the problem of generalization of our
class of examples to higher dimensions, where there were still less examples with bijective
Nash map, and all the non-trivial ones had toric normalizations. The idea of this gener-
alization came from a common remark of M. Lejeune-Jalabert and of the referee of our
first paper: what was essential in our work was that a certain line bundle was ample. I
knew that ampleness was a concept existing in all dimensions, therefore this was the key-
concept to study. Like this we succeeded our desired generalization and we got the first
non-trivial examples of higher dimensional normal non-toric singularities with bijective
Nash map (see [140]).

61
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2. Nash’s problem on arcs

2.1. The space of arcs and Nash’s map.
Let X be a reduced complex algebraic variety. Its complex points are simply the

maps from the unique reduced irreducible complex algebraic variety of dimension zero
Spec(C) (the algebro-geometric point) to X. Following Grothendieck’s philosophy, one
can consider more general A-valued points for any C-algebra A, which are by definition
the maps:

Spec(A) → X.

When A = C[[t]], Spec(A) is by definition the complex abstract formal arc and a C[[t]]-
valued point of X is a (formal) arc contained in X.

In a preprint written around 1966, published later as [122], Nash defined the associated
arc space X∞ of X, whose points represent the arcs contained in X. By looking at the
Taylor expansions of the functions on X with respect to the parameter t and to their
truncations at all the orders, Nash constructed this space as a projective limit of algebraic
varieties of finite type over X.

If one associates to a formal arc the point of X where it is based, one gets a natural
map:

α : X∞ → X

If Y is a closed subvariety of X, denote by:

(X, Y )∞ := α−1(Y )

the space of arcs on X based at Y .
Nash was thinking of the spaces X∞ and (X, Y )∞ for varying Y ⊂ Sing(X) as tools

for studying the structure of X in the neighborhood of its singular set. Indeed, the
main object of his paper was to state a program for comparing the various resolutions
of the singularities of X. Such resolutions always exist, as had recently been proven by
Hironaka [78], but unlike in the case of surfaces, minimal ones do not necessarily exist.
We quote from the introduction of [122] the two main problems formulated by Nash in
this direction:

i) For surfaces it seems possible that there are exactly as many families of arcs as-
sociated with a point as there are components of the image of the point in the minimal
resolution of the singularities of the surface.

ii) In higher dimensions, the arc families associated with the singular set correspond
to“essential components” which must appear in the image of the singular set in all reso-
lutions. We do not know how complete is the representation of essential components by
arc families.

The first problem is a local one, as it deals with the structure of X only in a neigh-
borhood of one of its (closed) points. The second one is more global, as it deals with the
structure of X in the neighborhood of its entire singular set.

Following Nash’s paper, the foundations for his program were worked with more detail
by Lejeune-Jalabert [106], Nobile [128] and Ishii & Kollár [86]. They also extended the
program to other categories of spaces. For example, Ishii & Kóllar [86] considered schemes
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over arbitrary fields, Lejeune-Jalabert [106] and Nobile [128] considered formal germs of
varieties. Their treatment extends readily to germs of complex analytic varieties.

For such germs, the space (X, Sing(X))∞ of arcs based at the singular locus of X can
be canonically given the structure of a relative scheme over X, as the projective limit of
relative schemes of finite type obtained by truncating arcs at each finite order.

In the sequel we will restrict to the case where (X, x) is a germ of a complex analytic
variety and Sing(X) = {x}.

The space (X, x)∞ of arcs on X based at x is a relative subscheme over X of X∞. As it
projects onto x, we see that it is in fact a true scheme (but not of finite type over C). This
implies that it makes sense to speak of the set C(X, x)∞ of its irreducible components.

Denote by π : X̃ → X a resolution of X. The exceptional set Exc(π) := π−1(x) is not
assumed to be of pure codimension 1, that is, the resolution is not necessarily divisorial.

To an irreducible subvariety (not necessarily a component) E of Exc(π) corresponds
a divisorial valuation vE of the fraction field Frac(OX,x) of OX,x, which simply associates
to any f ∈ Frac(OX,x) the vanishing multiplicity of π∗(f) at the generic point of E.
Conversely, to each surjective divisorial valuation v : Frac(OX,x) → Z ∪ ∞ corresponds
an irreducible component (even of codimension 1, that is a divisor) on some resolution
of (X, x). Such divisorial valuations may be seen as the birationally invariant versions
of the irreducible subvarieties over x in some resolution. Namely, if E is an irreducible
subvariety of Exc(π), its birational transform on the total space of any other resolution is
simply the center there of its associated valuation vE .

An irreducible component of Exc(π) is called an essential component of π if it corre-
sponds to an irreducible component of the exceptional set of any other resolution of X.
In other words, if its birational transform is an irreducible component of the exceptional
set in any resolution. An equivalence class of such essential components over all the reso-
lutions of X is called an essential divisor over (X, x). If we denote by E(X, x) the set of
essential divisors over (X, x), the essential components of the given resolution morphism
π are in a canonical bijective correspondence with the elements of E(X, x).

Let K be an element of C(X, x)∞, that is, an irreducible component of the space of
arcs based at x, which is what Nash called a family of arcs. For each arc represented by a
point of K, one can consider the intersection point with Exc(π) of its strict transform on
X̃. For an arc generic with respect to the Zariski topology of K, this intersection point
is situated on a unique irreducible component of Exc(π); moreover, this component is
essential (Nash [122]). In this manner one defines a map:

NX,x : C(X, x)∞ → E(X, x)

which is called the Nash map associated to (X, x). Nash proved that the map NX,x is
always injective (which shows in particular that C(X, x)∞ is a finite set). In our context,
one can reformulate question ii) above:

When is the map NX,x bijective?

This question is also known as the Nash problem on arcs. More generally, one
may consider germs which are not necessarily normal, with isolated singularity, or ir-
reducible. Then one may differentiate a local Nash map defined as before from a global
one N

X,Sing(X)
, where x is replaced by all Sing(X), and ask the same question as before.
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2.2. The results known before our papers.
The Nash map is of course bijective for trivial reasons when there exists a resolution

whose exceptional set is irreducible. When I spoke about non-trivial examples in the
introduction of this chapter, I was alluding to this fact.

The bijectivity of NX,x was proved before the paper [139] done in collaboration with
Plénat for the following special classes of normal surface singularities:

• for the germs of type (An)n≥1 by Nash himself in [122];
• for normal minimal singularities by Reguera [146]; different proofs were given by

Plénat [137] and by Fernández-Sánchez [52];
• for sandwiched singularities it was sketched by Reguera [147], using her common

work [107] with Lejeune-Jalabert on the wedge problem.
• for the germs of type (Dn)n≥4 by Plénat [138];
• for the germs with a good C∗-action such that the curve Proj X is not rational, it

follows immediately by combining results of Lejeune-Jalabert [105] and Reguera [147].
With the exception of the last class, all the other ones consist only in rational singu-

larities and can be defined purely topologically.
Our paper inspired Morales’ work [120].

In arbitrary dimensions, the bijectivity of NX,x or of the analogous map N
X,Sing(X)

was

proved before the second paper [140] done in collaboration with Plénat for the following
classes of germs with not necessarily normal or isolated singularities:

• for the germs which have resolutions with irreducible exceptional set, for trivial
reasons;

• for germs of normal toric varieties by Ishii and Kollár in [86]; in this case, one can
distinguish two types of Nash problems, as was done by Ishii [85]; Ishii [84] solved the
Nash problem also for all (not necessarily normal) toric varieties;

• for various classes of not necessarily irreducible germs whose normalizations are
disjoint unions of normal toric germs by Ishii [84], [85], Petrov [134] and González Pérez
[64].

No surface or 3-fold is known for which the Nash map is not bijective. But Ishii and
Kollár proved in [86] that it is not always bijective for algebraic varieties of dimension at
least 4. Indeed, they gave a counterexample in dimension 4, which can be immediately
transformed into a counterexample (with non-isolated singularity) in any larger dimension.

As one sees, only very particular classes of singularities are known to have a bijec-
tive Nash map. Therefore it is interesting to find new examples, in order to get more
experimental material. This search motivated us in both papers [139] and [140].

3. A numerical criterion of bijectivity

3.1. Plénat’s criterion.
The only class of normal singularities for which the essential divisors are completely

known is that of germs of normal toric varieties. Indeed, Bouvier [16] determined com-
binatorially the essential divisors of all normal toric germs. Her work was based on
preliminary results of Bouvier & González-Sprinberg [17]. Ishii [84] characterized the
essential divisors also in the case of not necessarily normal toric varieties.
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The following criteria ensure that a 1-codimensional component of the exceptional
locus of a given resolution is essential (see Ishii & Kollár [86, Examples 2.4, 2.5, 2.6]):

Proposition 3.1. Let π : X̃ → X be a resolution of X. Let F be an irreducible
component of Exc(π), which is of codimension 1 in X̃.

1) (Nash [122]) If F is not birationally ruled, then F is essential.
2) If (X, x) is a canonical singularity and F is crepant, then F is essential.
Moreover, in both cases the birational transform of F on any other resolution has

again codimension 1.

The notion of canonical singularity generalizes to arbitrary dimensions the notion of
Du Val surface singularity (see Theorem 3.16 of Chapter 3). We don’t give the exact
definition here, as we won’t need it in the sequel.

As follows from Nash’s paper, if F is now a component of Exc(π) of arbitrary codi-
mension, its membership to the image of the Nash map ensures that it is essential. This
theoretical criterion needs in its turn criteria to check the said membership.

For each irreducible component F of Exc(π), consider the smooth arcs on X̃ whose
closed points are on F \ ∪G 6=FG, where G varies among the irreducible components of
Exc(π), and which intersect F transversally (that is, such that their tangent line and the
tangent space to F at their intersection point are direct summands). Consider the set of
their images in (X, x)∞ and denote the closure of this set by V (F ).

Nash [122] proved that V (F ) is an irreducible subvariety of (X, x)∞ and that (X, x)∞
is the union of these subvarieties, when F varies among all the irreducible components of
Exc(π). Therefore, one finds among them the irreducible components of (X, x)∞. Such
components are characterized among (V (F ))F by the fact that they are maximal for the
partial order defined by inclusion, and they are precisely those components of Exc(π)
which are contained in the image of the Nash map. Therefore:

Proposition 3.2. If a component F of Exc(π) satisfies that V (F ) * V (G) for any
other component G of Exc(π), then it is contained in the image of the Nash map.

One needs therefore a criterion to check non-inclusions of the type V (F ) * V (G).
Such a criterion was proven by Plénat in [137, 2.2], as a generalization of Reguera [146,
Theorem 1.10], who considered only the class of rational surface singularities. It appears
also implicitely in the toric case in Ishii [83, Proposition 4.8]. It is an essential ingredient
of all the criteria explained here.

Proposition 3.3. (Plénat [137]) Let v1 and v2 be exceptional divisors over (X, x).
If there exists a function f ∈ mX,x such that v1(f) < v2(f), then V (v1) * V (v2).

In order to apply concretely this criterion, one needs to be able to prove the existence
of holomorphic functions with controlled vanishing on the irreducible components of some
resolution. In particular, in view of Proposition 3.2, one gets the following criterion of
bijectiveness of the Nash map:

Proposition 3.4. (Plénat [137]) Let (X, x) be a normal isolated singularity. Suppose

that there exists a divisorial resolution π : (X̃,Exc(π)) → (X, x) such that for each pair
of distinct components F and G of Exc(π), there exists f ∈ mX,x with vF (f) < vG(f).
Then NX,x is bijective.
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3.2. The strategy.
I explain now the strategy of construction of examples of singularities with bijective

Nash maps using the previous criterion, followed first for surfaces [139] and then for
higher dimensional singularities [140].

Suppose that one starts from a divisorial resolution π : (X̃,Exc(π)) → (X, x). The
pull-back to X̃ of an element of mX,x is a holomorphic function defined in a neighborhood
of Exc(π) and vanishing along the exceptional divisor. Conversely, such a function is the
pull-back of a function of mX,x, by the hypothesis of normality of (X, x). Therefore, it is

enough to construct functions on X̃ which vanish in a controlled way along Exc(π).
If D is the part supported by the exceptional divisor of the divisor of the function g

defined in a neighborhood of Exc(π), then g is an element of H0(OX̃(−D)). Conversely,
an element of this space of global sections vanishes at least as much as D along Exc(π),
but not necessarily exactly to the order D. It will do so if we know that the invertible
sheaf OX̃(−D) of the germs of functions vanishing at least as much as D is generated by
its global sections.

Therefore, what is sufficient to know, in order to apply the criterion 3.4, is that for
each pair of distinct components F and G of the exceptional divisor, there is an effective
divisor D supported by Exc(π) in which the multiplicity of F is strictly less than the
multiplicity of G, and such that OX̃(−D) is generated by its global sections.

Notice then that in fact it is enough to know that such divisors D exist with the
property that OX̃(−D) is relatively ample with respect to π. Indeed, then some multiple
of it is very ample with respect to π, which ensures that it is generated by its global
sections. Moreover, the inequalities of multiplicities of its components are preseved ! The
advantage of ampleness with respect to global generation is that for it there is a numerical
criterion, that is, a way to check it only by computing intersection numbers.

For singularities of dimension at least 3, very few classes are known with explicit divi-
sorial resolutions. And when such resolutions are known, the information is not available
in a form adapted to check ampleness of line bundles. Fortunately, one has a charac-
terization proved by Grauert [66] of the divisors which come from resolutions of normal
isolated singularities. For surfaces it says simply that the intersection form of the divisor
is negative definite. In higher dimensions it has again to do with negativity properties of
the normal bundle of the divisor, which are expressed in terms of ampleness.

In the next subsection I explain the required notions about ampleness, Kleiman’s
criterion of ampleness, and Grauert’s criterion for a divisor to be the exceptional divisor
of some resolution of singularities. Then I explain the precise realisation of the previous
strategy.

3.3. Ampleness and contractibility criteria.
Consider a hyperplane in a projective space. One can move it all around, making it

avoid any point and, after constraining it to pass through a point, making it have any
given tangent direction at that point. Therefore, if one considers a subvariety of the
projective space, its hyperplane sections will have the same properties: intuitively, one
feels that it is possible to do very ample movements with them.

If one extracts the subvariety from its ambient projective space, one may remember
the embedding by remembering the linear system of its hyperplane sections. This is a
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sublinear system of the complete linear system of all sections of the associated line bundle.
But if one may do very ample movements inside a given linear system, they are a fortiori
ampler in a larger linear system. This motivates:

Definition 3.5. A line bundle on a reduced variety is very ample if it is isomorphic
to the pull-back by an embedding into a projective space of the associated hyperplane
line-bundle O(1).

An analogous definition may be given for a line bundle on the total space of a morphism
and relative to this morphism, corresponding to the possibility of embedding the morphism
in a relative projective space over its base space.

The previous notion is very clear geometrically, but it is difficult to check whether a
given line bundle is very ample or not. The more general notion of ample line bundle is
better behaved from this view-point:

Definition 3.6. A line bundle on a reduced compact complex analytic variety is
ample if some positive power of it is very ample.

If the line bundle associated to an effective Cartier divisor on a variety is ample, this
does not necessarily imply that one can move the divisor in a linear system at all. It only
says that some multiple of the divisor becomes very ample. More generally, and this may
be taken as an alternative definition of ampleness, the line bundle L is ample if and only
if for any coherent sheaf F , there exists a positive power Ln of L such that Ln ⊗ F is
generated by its global sections.

The numerical criterion of ampleness we use says, in intuitive terms, that a line bundle
is ample if and only if its degree on any curve and on any limit of curves is positive. In
order to give a precise formulation, we need to give some definitions which allow to speak
about limits of curves at the homological level.

Let Y be a complete algebraic variety. Let Z1(Y )R be the R-vector space of real one-
cycles on X, consisting of all finite R-linear combinations of irreducible algebraic curves on
Y . Two elements γ1 and γ2 of Z1(Y )R are numerically equivalent if one has the equality
of intersection numbers:

D · γ1 = D · γ2

for every D ∈ Div(Y ) ⊗Z R, where Div(Y ) denotes the group of Cartier divisors on Y .
The corresponding vector space of numerical equivalence classes of one-cycles is written
N1(Y )R.

Definition 3.7. Let Y be a complete algebraic variety. The cone of curves

NE(Y ) ⊂ N1(Y )R

is the cone R+−spanned by the classes of all effective one-cycles on Y . Its closure
NE(Y ) ⊂ N1(Y )R is the closed cone of curves or Kleiman-Mori cone of Y .

One has in this language:

Theorem 3.8. (Kleiman’s criterion of ampleness) Let Y be a projective variety.
A Cartier divisor D on Y is ample if and only if D · z > 0 for all non zero z ∈ NE(Y ).
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For details, we refer to Debarre [32] and Lazarsfeld [103].
In our case we need to check ampleness on an exceptional divisor, which is not nec-

essarily irreducible. But ampleness on a reducible variety can be tested on its irreducible
components (see for example Lazarsfeld [103, proposition 1.2.16]):

Proposition 3.9. Let Y be a projective variety and L a line bundle on Y . Then L
is ample on Y if and only if the restriction of L to each irreducible component of Y is
ample.

We pass now to the characterization of the exceptional divisors of the resolutions of
singularities. More generally, we look at the compact subspaces which may be contracted
analytically to a point:

Definition 3.10. Let Y be a reduced complex space and E ⊂ Y a compact nowhere
discrete and nowhere dense analytic set. E is called exceptional (in Y ) if there is a
complex space Z and a proper surjective holomorphic map φ : Y → Z such that:

(1) φ(E) is a finite set;
(2) φ : Y \ E → Z \ φ(E) is biholomorphic;
(3) φ∗(OY ) = OZ .
Then one says that φ contracts E (in Y ).

One can show that a map φ which contracts E in Y is unique in the following sense:
if φk : Y → Zk, k ∈ {1, 2} both contract E in Y , then there exists a unique analytic
isomorphism u : Z1 → Z2 such that φ2 = u ◦ φ1.

One should note that in the minimal model theory of algebraic varieties, one considers
more general contractions, which are not necessarily birational maps. We won’t deal with
such generalizations here.

Grauert proved a fundamental criterion of contractibility (Grauert [66], see also Pe-
ternell [133, theorem 2.12]). A particular case of it is sufficient for our purposes:

Theorem 3.11. (Grauert’s criterion of contractibility) Let Y be a complex man-
ifold and let E be a reduced projective (not necessarily smooth or irreducible) hypersurface
in Y . Suppose that there exists an effective divisor A whose support is E, such that
the restriction OE(−A) of the line bundle OY (−A) to E is ample. Then the analytic
hypersurface E is exceptional in Y .

If Y is a surface, the converse of the theorem is also true. In this case, the hypothesis
about the existence of A is equivalent to the fact that the intersection form of E is negative
definite. For surfaces, the hypothesis of Grauert’s criterion of contractibility is usually
expressed in this last manner.

The converse of Theorem 3.11 is not true in a naive form if dimCY ≥ 3, as shown by
examples of Laufer [101] (see also Peternell [133, Example 2.14]). Nevertheless, there
exists a converse if one replaces the search of an ample line bundle by that of a coherent
sheaf I such that supp(OY /I) = E and I/I2 is positive (see Peternell [133, Theorem
2.15]).
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3.4. From ampleness to the bijectivity of the Nash map.
Now that the notion of ampleness is explained, we can state precisely the results

obtained using the strategy presented in subsection 3.2. We suppose again that π :
(X̃,Exc(π)) → (X, x) is a divisorial resolution of the normal isolated singularity (X, x).

Let:

L(π) :=
⊕

F

ZF

be the lattice freely generated by the irreducible components F of Exc(π), that is, the
lattice of divisors on X̃ supported by Exc(π). Inside the associated real vector space
LR(π), consider the closed regular cone:

σ(π) :=
⊕

F

R+F

of the effective R-divisors on X̃ supported by Exc(π).
For each pair of distinct irreducible components F,G, consider the closed convex sub-

cone σF,G(π) of σ(π) defined by:

σF,G(π) := {
∑

F ′

a(F ′)F ′ ∈ σ(π) | a(F ) ≤ a(G)}

the sum being done over the irreducible components F ′ of Exc(π).

Theorem 3.12. Fix an irreducible component F of Exc(π). Suppose that for each
other component G, the cone σF,G(π) contains in its interior an integral divisor D such
that OX̃(−D) is generated by its global sections. Then V (F ) is in the image of the Nash
map NX,x. In particular, F is an essential component of π.

As a corollary, we get:

Corollary 3.13. Fix an irreducible component F of Exc(π). Suppose that for each
other component G, the cone σF,G(π) contains an integral divisor D such that OX̃(−D) is
ample when restricted to each component of Exc(π). Then V (F ) is in the image of NX,x

and F is an essential component of π.

As another corollary, we get the announced computable criterion of bijectivity of the
Nash map:

Corollary 3.14. Suppose that for each pair of distinct irreducible components F,G
of Exc(π), the cone σF,G(π) contains an integral divisor D such that OX̃(−D) is ample
when restricted to each component of Exc(π). Then the components of Exc(π) are precisely
the essential components over x and the Nash map NX,x is bijective.

In our first paper [139], restricted to the case of surfaces, we had obtained this theorem
through another route, through a version of Theorem 3.4 of Chapter 2. We did not state
it in terms of ampleness. As explained in the introduction to this chapter, it was our
understanding of the fact that the notion of ampleness was the fundamental one in its
proof, that made us arrive at this formulation, valid in all dimensions. The techniques of
the paper [139] were in the meantime extended by Morales [120].
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In the next section I explain how we applied this last theorem to construct non-trivial
examples of normal 3-dimensional non-toric isolated singularities with bijective Nash map.
The same techniques should work in higher dimensions (see Question (9) in Chapter 5).

4. Applications

Corollary 3.14 gives a method to construct examples of singularities (X, x) for which
the Nash map NX,x is bijective. Namely, one starts from a divisorial resolution of a germ
such that the components of the exceptional locus have closed cones of curves of finite
type. The condition on an effective divisor supported by the exceptional set to have an
ample opposite in restriction to the exceptional set translates then into a finite system
of linear inequalities. If this system has solutions inside all the cones considered in the
corollary then, using the corollary, one has an example with bijective Nash map.

One could try to start from germs defined explicitly by equations and to use one of
the available algorithms of resolution. Nevertheless, those algorithms do not allow to
compute the closed cone of curves of a component of the exceptional set.

For this reason we decided to work differently. The strategy we followed was to start
from a finite collection (F ) of smooth projective varieties, with cones of curves which
are closed and of finite type. Then choose line bundles over the varieties F with ample
duals and glue analytically the total spaces of those line bundles along neighborhoods of
suitable hypersurfaces of the F . Of course, the first thing to adjust in order to do such a
gluing, is to make a pairing of the chosen hypersurfaces and to fix isomorphisms between
the elements in each pair.

If the gluing succeeds, one gets a smooth analytic variety X which contains a divisor F
obtained topologically by identifying the chosen pairs of hypersurfaces of the varieties F .
The choices should be done in order to make F exceptional in X, in the sense of Definition
3.10. This should be checkable using Grauert’s criterion of contractibility. Then try to
construct the divisors D verifying the conditions of Corollary 3.14. The hypothesis on the
finiteness of the cones of curves ensures, as explained before, that this search amounts to
the resolution of a finite system of inequalities.

Concretely, we gave the simplest possible illustration of the previous strategy. Namely:
• we worked in the smallest interesting dimension, that is, in dimension 3;
• we started with the smallest possible number of divisors which would give a non-

trivial example, that is, 2;
• we worked with the simplest possible surfaces which would necessarily give non-toric

singularities, that is, with irrational ruled surfaces;
• we looked at their simplest possible embeddings in an ambient smooth 3-fold, that

is, in the total spaces of line bundles;
• we chose those line bundles in the simplest way for the gluing of their total spaces

to be done by an algebraic plumbing.
The details are explained in [140], where we show also that the obtained singularities

are normal and non-toric. As a consequence, they provide new examples of germs with
bijective Nash map for non-trivial reasons.

Suppose now that one has proved for some surface singularity that the Nash map is
bijective. We would like then to answer question (10) of Chapter 5.



CHAPTER 5

Perspectives

In this final short chapter, I list the main questions and problems which occurred while
doing the research presented before. They keep nourishing my reflection.

(1) (C. Caubel) Let (X, x) be a normal isolated singularity of complex analytic space
of dimension at least 3. If its contact boundary is contactomorphic to the stan-
dard contact sphere, is X necessarily smooth at x?

(2) (C. Caubel, A. Némethi and myself) Is the standard contact structure on the
boundary of a normal surface singularity invariant (up to isotopy) by any orien-
tation-preserving diffeomorphism? This is known to be true when the boundary
is a rational homology sphere, see [24].

(3) Characterize the standard contact structure among the different Stein fillable
contact structures on the oriented boundary of a normal surface singularity.

(4) Do contact rational homology 3-spheres have only a finite number of Stein fillings,
up to orientation-preserving diffeomorphisms ? If this is false in such a generality,
does it become true for Milnor fillable ones ?

(5) Fix a topological type of normal surface singularity. Is there only a finite number
of Milnor fibers (up to orientation-preserving diffeomorphisms) when one varies
the analytical structure which realizes the fixed topological type?

(6) Determine the class of taut rational surface singularities for which the Milnor
fibers are, up to orientation-preserving diffeomorphisms which induce on the
boundary the canonical identification, all the Stein fillings of the associated con-
tact boundary.

(7) As an extension of the previous problem, determine the class of topological types
of rational surface singularities for which the Milnor fibers of the various analyt-
ical realisations are, up to orientation-preserving diffeomorphisms, all the Stein
fillings of the associated contact boundary.

(8) (J. Seade and myself) Given a connected graph weighted with arithmetic gen-
era, is there always a numerically Gorenstein surface singularity whose minimal
resolution realises it?

(9) Construct examples of normal isolated singularities of arbitrary dimension with
bijective Nash map, such that the number of essential components is arbitrarily
big and that all the essential components are birationally ruled. This should be
possible using the techniques of Chapter 4.

(10) Consider a normal surface singularity with bijective Nash map. Is it possible to
reconstruct the dual graph of the minimal resolution from the structure of the
space of arcs based at the singular point ?
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von zwei komplexen Veränderlichen. Math. Ann. 126, 1-22 (1953).

[80] Hirzebruch, F. Hilbert modular surfaces. Enseignem. Math. 19 (1973), 183-281.
[81] Honda, K. On the classification of tight contact structures I. Geom. Topol. 4 (2000), 309-368.
[82] Honda, K. On the classification of tight contact structures II. J. Differential Geom. 55 (2000), 83-143.
[83] Ishii, S. The arc space of a toric variety. J. of Algebra 278 (2004), 666-683.
[84] Ishii, S. Arcs, valuations and the Nash map. J. Reine Angew. Math. 588 (2005), 71-92.



76 BIBLIOGRAPHY

[85] Ishii, S. The local Nash problem on arc families of singularities. Ann. Inst. Fourier (Grenoble) 56

(2006), no. 4, 1207-1224.
[86] Ishii, S., Kollár, J. The Nash problem on arc families of singularities. Duke Math. Journal 120, 3

(2003), 601-620.
[87] Jaco, W.H., Shalen, P.B. Seifert Fibered Spaces in Three-manifolds. Memoirs of the AMS vol.21,

220, 1979.
[88] Johannson, K. Homotopy Equivalences of 3-Manifolds with Boundaries. LNM 761, Springer-Verlag,

1979.
[89] de Jong, T., van Straten, D. Deformation theory of sandwiched singularities. Duke Math. Journal

95, No. 3 (1998), 451-522.
[90] Jung, H.W.E. Darstellung der Funktionen eines algebraischen Körpers zweier unabhängigen

Veränderlichen x,y in der Umgebung einer Stelle x=a, y=b. J. Reine Angew. Math. 133 (1908),
289-314.

[91] Klein, F. Lectures on the icosahedron and the solution of equations of the fifth degree. Dover Publ.,
INC., 2003. First German edition: 1884.
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eds., World Scientific, 1995.
[154] Steenbrink, J. Mixed Hodge structures associated with isolated singularities. Proc. of Symposia in

Pure Maths. 40 (1983), Part 2, 513-536.
[155] Stevens, J. On the versal deformation of cyclic quotient singularities. In Singularity theory and its

applications. Warwick 1989, Part I, D. Mond, J. Montaldi eds., LNM 1462, Springer, 1991.
[156] Stevens, J. Deformations of singularities. Springer LNM 1811, 2003.
[157] Sullivan, D. On the intersection ring of compact three manifolds. Topology 14 (1975), 275-277.
[158] Teissier, B. The hunting of invariants in the geometry of discriminants. In Real and complex singu-

larities. (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), 565-678. Sijthoff
and Noordhoff, 1977.
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