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Introduction to Jung’s method of resolution of singularities

PATrICK POPESCU-PAMPU

Socrates: Now, Glaucon, let’s think about the ignorance of human
beings and their education in the form of an allegory. Imagine them
living underground in a kind of cave.... They see only the shadows the
light from the fire throws on the wall of the cave in front of them....
So, it’s obvious that for these prisoners the truth would be no more
than the shadows of objects.... Now let’s consider how they might be
released and cured of their ignorance. Imagine that one man is set
free and forced to turn around and walk toward the light. Looking at
the light will be painful....

(Plato: The Republic. Book Seven)
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1. Introduction

The present notes originated in the introductory course given at the Trieste
Summer School on Resolution of Singularities, in June 2006. They focus on the
resolution of complex analytic curves and surfaces by Jung’s method. They do not
contain detailed proofs, but mainly explanations of the central concepts and of their
interrelations, as well as heuristics.

If we have begun this text by a famous quotation from Plato, it is because we
believe that the citation is related to the general philosophical idea of resolution
of singularities. This idea corresponds to a desire which one can search to fulfil
in various contexts, mathematics being one of them. And inside mathematics, one
can search to fulfil it inside various of its branches, for various categories of objects.
A formulation of the desire could be:

(1) Given a complicated object, represent it as the image
of a less complicated one.
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FIGURE 1. An undesired crossing

FI1GURE 2. Construction of a cross-cap

As a very simple example, consider a well-known problem of elementary topol-
ogy. It asks to prove that, given three villages and three wells, one cannot construct
roads joining each village to each well, and such that the roads meet only at the vil-
lages or the wells. While dealing with the problem, one is naturally led to construct
diagrams as in Figure 1. In it, there is an undesired crossing at the point P. One
has to prove that such crossings are unavoidable. Or, reformulating the problem,
that one cannot embed the abstract graph drawn in Figure 1 into the plane. In
this drawing one has to imagine that the crossing point P is not present.

Now, a little introspection shows that we imagine very easily such an elim-
ination of crossing points, that this is in fact part of our automatic toolkit for
understanding images. For example, think of the perspective drawing of a cube, in
which the 3-dimensional object “jumps to the eyes”.

In the previous examples, we can isolate an elementary operation of local na-
ture, in which we imagine two lines crossing on the plane as the projections of two
uncrossing lines in space. This is the easiest example of resolution of singularities.
The singularity which is being resolved is the germ of the union of the two lines at
their meeting point P, their resolution is the union of the germs of the space lines
at the preimages of the point P.

Let us give now a 2-dimensional example. We start again with a topological
object, the projective plane. One can present it to beginners as the surface ob-
tained from a disc by identifying opposite points of its boundary. A way to do this
identification in 3-dimensional space is to divide first the boundary into four equal
arcs; secondly, to deform the disc till one glues two opposite arcs along a segment;
finally to glue the two remaining arcs along the same segment. One gets like this a
so-called cross-cap (see Figure 2).

Arrived at this point, one has to eliminate by the imagination this segment
of self-crossing of the surface in space, in order to get topologically the projective
plane. This is an exercise analogous to the one performed before with the graph of
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circles
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F1GURE 3. Why a cross-cap cannot be algebraic

Figure 1 in order to get rid of the crossing point P. But now it is more difficult
to imagine it, as in everyday life we do not interpret self-crossing surfaces in space
as projections of surfaces in a higher-dimensional space. In fact, the need to do
such interpretations was historically one of the driving forces of the elaboration of
a mathematical theory of higher-dimensional spaces.
For the moment we have constructed the cross-cap only as a topological space.
But one can give an algebraic model of it. Let us cite Hilbert & Cohn-Vossen [25,
VI1.47], who explain a particularly nice way to get a defining equation:
There is an algebraic surface of this form. Its equation is

(2) (kraz® + koy®) (2 + 9% + 2°) — 22(2® +4°) = 0.
This surface is connected with a construction in differential geometry.
On any surface F', we begin with a point P at which the curvature of
F' is positive. Then we construct all the circles of normal curvature
at P. This family of circles sweeps out [a cross-cap|, where the line of
self-intersection is a segment of the normal to the surface F' at P. The
equation given above is referred to the rectangular coordinate system
with P as origin and with the principal directions of F' at the point
P as z-axis and y-axis. k1 and ko are the principal curvatures of F’
at the point P.

Something is subtly wrong in the previous statements: the locus of points sat-
isfying equation (2) is not reduced to the cross-cap, but it contains also the entire
axis of the variable z. Notice that the intersection of the cross-cap and of the z-axis
is equal to the segment of self-intersection of the cross-cap (see Figure 3). This
shows that the cross-cap described by Hilbert and Cohn-Vossen is in fact a real
semi-algebraic surface, which means that it can be defined by a finite set of poly-
nomial equations and inequations. At this point, we cannot resist the temptation
of explaining why no (abstract) real algebraic surface can be homeomorphic to a
cross-cap. This is a consequence of the following theorem of Sullivan [45]:

THEOREM 1.1. Let X be a real algebraic set and O a point of X. Then the link
of O in X has even Euler characteristic.
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FIGURE 4. Whitney’s umbrella

The link of O in X is, by definition, the boundary of a regular neighborhood
of O in X, obtained by intersecting X with a sufficiently small ball centered at O,
after having embedded X in an ambient euclidean space. In our case, consider as a
point O the opposite of P on the cross-cap. The link of O is homeomorphic to an
oo-shaped curve, whose Euler characteristic is equal to —1. By Sullivan’s theorem,
this shows that a real algebraic surface containing the cross-cap must contain also
other points in the neighborhood of O. In this way, one understands better the
presence of the “stick” getting out of O.

There is a famous surface in the real 3-dimensional space, whose topology
captures precisely the local topology of the surface (2) in the neighborhood of the
point O. It is called Whitney’s umbrella, and is defined by the equation:

(3) 2 —zy? =0.

Here again the axis of the variable z is contained in the algebraic set defined by
the equation. The half-line where z < 0 appears separated from the points having
neighborhoods with topological dimension 2, which are precisely those verifying the
inequality z > 0 in addition of (3). That is why this half-line can be imagined as
the stick of a (curious) umbrella (see Figure 4). We will come back later to this
example, in Subsection 4.1.

Of course, the previous discussion deals with phenomena of real algebraic ge-
ometry. They do not occur in complex geometry. But we feel that it is important to
develop intuitions from visual representations of objects, in particular from models
of real algebraic surfaces, even if one is mainly interested in complex ones.

We introduced the cross-cap as a representation of the real projective plane.
This representation is not faithful, as one identifies like this distinct points of the
projective plane. It is a theorem of topology that the real projective plane cannot
be represented faithfully in space, in the sense that it cannot be embedded in
R3: indeed, it is non-orientable, and all properly embedded surfaces in R?® are
orientable. Therefore, if one wants to represent it in space, some singular points
are unavoidable, in the same way in which supplementary crossing points appear
when one represents in the plane the abstract graph which was mentioned at the
beginning of this section.
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One faces here a general question, which can be asked in any mathematical
category in which a convenient notion of embedding can be defined:

(4)

When the answer is negative, another thing can be asked, which leads to singularity-
theoretic questions:

(5)

For example, Figure 1 shows that the considered abstract graph can be mapped to
the plane by introducing only one crossing point of the simplest type. Regarding
the projective plane, the cross-cap is a more complicated object: it is an immer-
sion nearly everywhere, with the exception of the extremities of the segment of
self-intersection. A representation could be considered simpler if it is entirely an
immersion. Boy showed in his thesis [5], done under the supervision of Hilbert,
that the projective plane could be immersed in R? (see the photographs at the end
of [25, VI1.48]).

Let us pass now to another category of geometry, namely complex algebraic
geometry. A specialization of question (4) is: given a smooth complex projective
curve, is it possible to embed it algebraically in the complex projective plane? We
know that this is not always the case, as it is shown by the following classical
theorem:

Given two objects X and E,
18 it possible to represent faithfully X inside E?

Given two objects X and E,
how to represent X inside E with minimal distortion?

THEOREM 1.2. Let C be a smooth algebraic curve inside CP?. Then g =
W, where g is the genus and d is the degree of C'.

This theorem shows that a smooth projective curve whose genus is not of the
form W cannot be embedded in CP2. Theorem 3.5 below generalizes this
statement to possibly singular curves.

Starting from a smooth curve C' which cannot be embedded in CP?, one can
specialize question (5). Here one gets the following classical theorem:

THEOREM 1.3. Let C be a smooth projective curve. Then there exists an immer-
sion C' = CP? whose image has only normal crossings and which is an isomorphism,
over the complement of the singular points of w(C).

Here, w(C) is said to have normal crossings if its germ at any singular point
has only two irreducible components which are smooth and intersect transversely.
There is a a higher-dimensional version of this notion (see Definition 2.21). One
may prove the theorem by showing that, starting from any embedding of C' in a
projective space, a generic linear projection satisfies its conclusions.

What happens if instead of starting from a smooth curve, one starts from a
curve which admits singular points? Then one has first to ask a specialization of
the desire (1). An answer to this is the following:

THEOREM 1.4. Let C be a projective curve. Then there exists a smooth projec-
tive curve C and a morphism C — C which is an isomorphism over the complement
of the set of singular points of C'.

This theorem is historically the first result of resolution of singularities in alge-
braic geometry. It goes back to the construction by Riemann of the surfaces bearing
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nowadays his name, associated to any algebraic function of one variable (see the
explanations which follow Proposition 2.2).

In the sequel, we shall explain different proofs of this result, as well as of
the analogous result for surfaces. But instead of restricting to complex projective
varieties, we shall work with the more general notion of complex analytic spaces
(which we will call also shortly analytic spaces, or even spaces). General references
about them are e.g. the encyclopaedia [55], as well as the books of Fischer [13]
and Kaup & Kaup [29].

All the spaces we consider will be assumed reduced. We will explain everything
as intrinsically as possible, in order to emphasize the various morphisms used in
the constructions.

If X is an analytic space, we denote by Sing(X) its singular locus.

Section 2 contains the general notions necessary to understand the proofs of the
theorems concerning the existence of resolutions of curves and surfaces explained
in sections 3 and 4. In Section 5 we state some open problems.

2. Generalities about finite morphisms and modifications

2.1. Finite morphisms.

When we draw on a piece of paper a real surface situated in 3-dimensional
space, as we did before for the cross-cap and Whitney’s umbrella, we trace some
curves in the plane. Let us think for a moment about their relation with the surface.
Suppose that the drawing is done by cylindrical projection to the plane. For the
most economic drawings, as the one of Figure 4, one sees that the curves are of
three types:

(1) projections of curves drawn on the surface in order to cut a part of it;
(2) projections of the curves contained in the singular locus of the surface;
(3) apparent contours of the surface with respect to the chosen projection.

The reader is encouraged to recognize each of these types in Figure 4.

Moreover, there are other important aspects of the drawings done before: each
point of the plane was the image of only a finite number of points of the surface
and no point of the surface escapes to infinity. This type of projection is of great
importance in algebraic or analytic geometry:

DEFINITION 2.1. A morphism Y % x of reduced complex analytic spaces is
called finite if it is proper and with finite fibers.

LetY % X be a finite morphism. Suppose moreover that'Y is equidimensional
and that v is surjective. The degree deg(v) of ¥ is the mazimal number of points
in its fibers. The critical locus C(¢) CY of ¢ is the set of points p € Y such that
1 is not a local analytic isomorphism in the neighborhood of p. The discriminant
locus A(¢) C X is the image ¥(C(y)).

The cardinal of the fibers of ¢ is equal to deg(y) on the complement of a
nowhere dense analytic subset of X. It is important to understand that this subset
is contained in A(¢)), but that it is not necessarily equal to A(¢)). Think for example
of the normalization morphism of an irreducible germ of curve, a notion explained
in the next subsection.
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Already for curves, the notion of discriminant is extremely rich, having a lot
of avatars. We recommend Abhyankar’s fascinating journey [1] among them. We
mention also that a general program for studying discriminants in singularity theory
was described by Teissier [46] and a general framework for studying discriminants
in algebraic geometry was described by Gelfand, Kapranov & Zelevinsky in [18].

The name “discriminant locus” comes from the fact that for projections of
hypersurfaces, it is defined by the discriminant of a polynomial :

PROPOSITION 2.2. Let f € Clty,...,tnt1]. Denote by Y its vanishing locus in
C™1, by X the hyperplane of C"*1 defined by t,.1 = 0 and by v the restriction to
Y of the canonical projection of C**! onto X. Then v is finite if and only if f is
unitary with respect to the variable t, 11, and if this is the case, then the discrimi-
nant locus of 1 is defined by the vanishing of the discriminant of the polynomial f
with respect to the variable t,,41.

In the literature one also finds the names ramification locus instead of critical
locus and branch locus instead of discriminant locus.

If n = 1 in the previous proposition, then from the equation f(t1,t2) = 0
one can express ty as a (multivalued) function of ¢;. This kind of function was
called an algebraic function in the XIX-th century. Riemann [43] associated to
such a function a surface (called nowadays the Riemann surface of the function)
over which the function t¢2(t1) becomes univalued. This surface is smooth and
projects canonically onto the ¢;-axis. Riemann explained how one could construct
it by cutting adequately the plane along curves connecting the various points of the
discriminant locus, which in this case is a finite set of points on the t;-axis, and by
gluing adequately a finite number of copies of the trimmed surface. An important
point to understand is that this Riemann surface does not project canonically only
onto the affine line of the independent variable, but also on the affine curve of
equation f(t1,t2) = 0, by a map which is a resolution of the curve. This is the
reason why we stated in the introduction that Theorem 1.4 goes back to Riemann.

Returning to Definition 2.1, the discriminant locus of a finite surjective mor-
phism is in fact a closed analytic subset of the target space. Moreover, it can be
naturally endowed with a structure of (possibly non-reduced) complex space, whose
formation commutes with base change (see Teissier [46]).

One can construct purely algebraically a finite morphism, starting from a con-
venient sheaf of O x-algebras. In order to explain why, recall one of the fundamental
ideas of scheme theory: an affine algebraic variety is completely determined as a
topological space by its algebra of regular functions. This gives a procedure to
construct spaces by doing algebra: each time a new algebra (of finite type) is con-
structed, one gets automatically a new affine variety. More generally, this can be
done over a base which is not an algebraic variety, for example over a complex
analytic space X (see Peternell & Remmert [55, I1.3]). In this case, one gets a
new complex analytic space over the initial one X from a quasi-coherent sheaf A of
Ox-algebras of finite presentation. The new space is called the analytic spectrum
of the sheaf A, and is denoted Specan(.A). Denote also by w4 : Specan(A) — X
the canonical morphism associated with this construction. A particular case of it
is:

ProrosITION 2.3. If A is coherent as an Ox-module, then the morphism w4
is finite and (74)«Ogpecan(a) = A.
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Let us state now the property of the discriminant loci which relates them with
the discussion about the drawing of surfaces which took place at the beginning of
this subsection:

PROPOSITION 2.4. Suppose that Y %X s a finite surjective morphism between
equidimensional reduced complex analytic spaces and that X is smooth. Then its
discriminant locus is equal, set-theoretically, to the union of the image ¥ (Sing(Y"))
of the singular locus of Y and of the closure of the apparent contour (that is, the
set of critical values) of the restriction of ¥ to the smooth locus of Y.

2.2. The normalization morphism.

In the sequel, we shall examine desire (1) for reduced complex analytic spaces.
We consider that such a space X is “complicated” if it is singular. Then we would
like to represent it as the image of a non-singular one. But we have to decide first
what we want to understand by “image”. The most encompassing approach would
be to consider a surjective morphism from any complex analytic space onto X. But
as we consider that we are happy enough when a point is non-singular, it is natural
to ask the morphism to be an isomorphism over the set of smooth points. Such
morphisms are particular cases of those which are isomorphisms over dense open
subsets (see Peternell [55, Chapter VII]):

DEFINITION 2.5. Let X be a reduced complez space. A modification of X is a
proper surjective morphism 'Y B X such that there exists a nowhere dense complex
subspace F' of X with the property:

Y\p H(F) L X\ F is an isomorphism.

The minimal subspace Fund(p) with this property is called the fundamental locus
of the modification p. The preimage Exc(p) := p~'(Fund(p)) of the fundamental
locus is called the exceptional locus of p. If Z is a closed irreducible subspace of
X, not contained in the fundamental locus Fund(p), then its strict transform Z;
by the modification p is the closure of p~(Z \ Fund(p)) in Y.

In the literature, strict transforms are also called proper transforms.

Informally, to modify X means to take out a nowhere dense analytic subset F’
and to replace it by another analytic set . The important thing to remark is that
the isomorphism between the “unmodified” parts of the two spaces must extend to
an analytic morphism from the new space to the initial one.

If p is a modification, we can try to understand it by looking at its fibers,
which are compact analytic spaces (remember that we asked p to be proper!). The
simplest situation arises when all those fibers are finite from the set-theoretical
viewpoint, that is, when the modification is a finite morphism (see Definition 2.1).
Among such modifications, there is a unique one (up to unique isomorphism) which
dominates all the other ones, the normalization morphism. Before stating precisely
this result (see Theorem 2.10 below), we recall briefly the notion of normal analytic
space.

This concept was first introduced in algebraic geometry by Zariski [52], inspired
by the arithmetic notion of integral closure and by the notion of normal projective
variety used by the Italian geometers (see Zariski [52, Footnote 26] and Teissier
[47, Section 3.1]). It was extended to the complex analytic category in the years
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1950. Here we prefer to give a “transcendental” (that is, function-theoretical, non-
algebraic) definition, which has the advantage to allow us later on to construct very
easily holomorphic functions on normal varieties. At the end of the subsection, we
will briefly come back to Zariski’s algebraic viewpoint.

The following theorem was proved by Riemann. It allows one to show that
a function of one variable is holomorphic on a neighborhood of a point only by
knowing its behaviour outside the point.

THEOREM 2.6. (Riemann extension theorem) Let U be a neighborhood of
0 in C and f be a holomorphic and bounded function on U\ 0. Then f extends (in
a unique way) to a function holomorphic on U.

The previous theorem, also known as Riemann’s removable singularity theorem,
was extended to higher dimensions (see Kaup & Kaup [29, chapter 7]):

THEOREM 2.7. (generalized Riemann extension theorem) Let U be a
neighborhood of 0 in C™, n > 1 and f be a holomorphic and bounded function on
U\ Z, where Z is a strict closed complex analytic subspace of U. Then f extends
(in a unique way) to a function holomorphic on U.

It is then natural to ask which complex analytic sets admit the same property
as C". In fact, at the beginning of the years 1950, some specialists of complex
analytic geometry took this property as a definition of a complex analytic set (see
Remmert [55, pages 30-31]). Later, as this name began to designate any set glued
analytically from subsets of C™ which are defined locally by a finite number of
analytic equations, sets with the Riemann extension property got a special name:

DEFINITION 2.8. Let X be a reduced complex analytic space. If U is an open
subspace of X, a weakly holomorphic function on U is a holomorphic and
bounded function defined on U \'Y, where Y is a nowhere dense closed subspace
of U. The space X is called normal if every weakly holomorphic function on U
extends in a unique way to a holomorphic function on U, and this must occur for
any open subset U of X.

We have presented the normal spaces as those which have in common with the
smooth ones, the truth of the generalized Riemann extension theorem. In the next
theorem we state other similarities between them:

THEOREM 2.9. A normal complex analytic space is locally irreducible and smooth
in codimension 1 (that is, its singular set has codimension > 2).

Not any complex analytic space is normal. However, any complex analytic set
can be canonically presented as the image of a normal one:

THEOREM 2.10. Let X be a reduced complex space. Then there exists a mod-
ification X = X such that: X is normal and v is a finite morphism. Moreover,
if v is a fized modification having these properties, then for any finite modification

X1 5 X, there exists a unique morphism X =5 X1 making the following diagram

commutative:

X
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DEFINITION 2.11. A morphism X < X as in the previous theorem is called
the normalization morphism of X.

Theorem 2.10 explains why we have used the article “the” instead of “a” : it im-
plies that a normalization morphism is unique up to unique isomorphism above X,
which is the greatest type of uniqueness in a category. In this way, one characterizes
the normalization morphism by a universal property.

As another consequence of Theorem 2.10, notice that the process of normaliza-
tion is of local nature, that is, the restriction of the normalization morphism of X
to an open set U C X is the normalization morphism of U.

The normalization morphism is a particular case of the construction of the
analytic spectrum (see Proposition 2.3), in which A := Oy, the sheaf of weakly
holomorphic function on X. This sheaf is coherent as an Ox-module and can be
defined algebraically, as was seen already by Riemann in the case of complex curves:

THEOREM 2.12. Let X be a reduced complex space. The sheaf Ox of weakly
holomorphic functions on X 1is coherent and equal to the sheaf of integral closures
of the local rings of Ox in their total rings of fractions. The morphism 74

Specan(Ox) — X is the normalization morphism of X .

The total ring of fractions Tot(A) of a given ring A is by definition the ring of
quotients in which all the elements of A which are not 0-divisors become invertible.
If the initial ring is integral, that is, without 0-divisors, then its total ring of fractions
is a field. If the ring is reduced but not integral, that is, the associated space is
reduced but not irreducible, then Tot(A) is canonically the direct product of the
fields of quotients of the rings associated to the irreducible components.

The previous theorem is the key for understanding why normalization has at
the same time an algebraic and a transcendental aspect.

The concept of normalization is essential when one is thinking about resolution
of singularities. Indeed, as shown by Theorem 2.9:

PROPOSITION 2.13. The normalization morphism of X separates the local an-
alytically irreducible components of X and resolves the singularities in codimen-
sion 1.

The last statement means that Sing(X) has codimension at least 2 in X.

Let us illustrate the proposition with a simple example, that of two smooth
plane curves intersecting transversely, met in a topological context at the begin-
ning of the introduction. Here we consider the union X of the two axes in the
complex affine plane C2, with coordinates z,y. Thus, the associated algebra is
A := Clz,y]/(zy). Consider the function f = x/(z+y) restricted to X. It is weakly
holomorphic, as it is holomorphic outside the origin and bounded in a neighbor-
hood of it. Theorem 2.12 shows that f becomes a holomorphic function on the
normalization of X. As f is constant outside the origin in restriction to both axes,
taking the values 0 and 1 respectively, we see that there are two possible limits at
the origin. Therefore f cannot be extended to a continuous function defined all
over X. The abstract construction Specan(OX) separates the lines, such that f
becomes a function holomorphic all over the new curve, which is isomorphic to the
disjoint union of the two axes.

To illustrate also Theorem 2.12, notice that f is indeed an element of the
integral closure of A in its total ring of fractions Tot(A): = + y is not a divisor of 0
and one has f2 — f = 0, which is a relation of integral dependence of f over A.
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For more details about normal varieties, one may consult Greco’s book [22].
For details about the more general notion of weakly normal complex spaces (in
which any continuous weakly holomorphic function is in fact holomorphic), one
may consult Adkins, Andreotti and Leahy’s book [2].

We conclude this subsection with a quotation from the introduction of Zariski’s
work [52]:

Here we introduce the concept of a normal variety, both in the affine
and in the projective space, and we are led to a geometric interpre-
tation of the operation of integral closure. The importance of normal
varieties is due to: ... the singular manifold of a normal V. is of
dimension < r — 2 (in particular a normal curve (V1) is free from
singularities)... There is a definite class of normal varieties associ-
ated with and birationally equivalent to a given variety V,.. This class
is obtained by a process of integral closure carried out in a suitable
fashion for varieties in projective spaces....

The special birational transformations effected by the operation
of integral closure, and the properties of normal surfaces, play an
essential role in our arithmetic proof for the reduction of singularities
of an algebraic surface.

2.3. Blowing-up points and subschemes.
Let us begin by a theorem of elementary geometry (see Figure 5):

PROPOSITION 2.14. Let ABC' be a triangle in the euclidean plane. For each
point P in the plane, consider the symmetric lines of PA, PB, PC with respect to
the bisectors of the angles /BAC, Z/CBA and ZACB respectively. Then these three
new lines intersect at another point s(P) and the transformation P — s(P) is an
involution.

The proposition can be easily proved using the classical theorem of Ceva. It is
also true that P and s(P) are the two foci of a conic tangent to the edges of the
triangle ABC (as an illustration of this fact, think at the inscribed circle, which is
a conic tangent to the three edges, and whose center I verifies I = s([I)).

But what interests us here more is the fact that the mapping s is not defined
everywhere. Indeed, it is not defined at the vertices of the triangle. By doing some
drawings, one sees experimentally why: if one tends to a vertex by remaining on
a line passing through it, then the limit of the transforms is well-defined, but it
depends on the chosen line. Moreover, by varying the line, one gets as limits all the
points situated on the line containing the opposite edge. Therefore, in a way:

s transforms each vertex into the opposite edge.

As the dimension increases like this from 0 to 1, one assists to a kind of “blowing-up”
of each vertex into a line. One has at the same time a phenomenon of “blowing-
down” of each edge of the triangle into the opposite vertex. Indeed, all the points
of the line containing an edge, with the only exception of the vertices, are sent by
s into the opposite vertex of the triangle.

This kind of examples led Zariski to introduce a general notion of “blowing-up”
and “blowing-down” in algebraic geometry. In order to explain it, let us first express
algebraically the transformation s.
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FIGURE 5. A birational involution of the plane

There are other points P for which s(P) is not defined, those for which the
three new lines are parallel. But in this case s(P) can be interpreted as a point
at infinity, which shows that it is better to think about s as a transformation of
the projective plane into itself. There is then a choice of coordinates which makes
the transformation particularly simple from the algebraical viewpoint: choose the
unique system of projective coordinates (X : Y : Z) such that the equations X =
0,Y = 0,7 = 0 define the edges of the triangle, and such that the center I of the
incircle is (1 : 1:1). Then the involution s can be written as:

11 1
X'Y Zz )

Since the same map can be expressed as (X : Y : Z)--- - (YZ : ZX : XY),
that is, as a map with quadratic polynomials as coordinates, one speaks about a
quadratic transformation of P2. For a deeper understanding of this vocabulary, we
refer the reader to the quotation from Zariski [53] at the end of this subsection.

We see that s can be expressed in projective coordinates using rational functions
of the coordinates. That is why one says that s is a rational map. Because its inverse

(6) (X:Y:2)-- = (

is also rational (as the map s is an involution), one says that the map P? - - Sy p2
is birational. Generally speaking:

DEFINITION 2.15. Let X and Y be two reduced and irreducible algebraic vari-
eties. A rational map Y 7 X ds an algebraic morphism U — X, where U is
a dense Zariski open set of Y. The indeterminacy locus of a rational map is
the complement of the mazximal possible such U.

A birational map Y -- °— X is a rational map which realizes an isomorphism
between dense open subsets of Y and X. A birational morphism is a birational
map which is defined everywhere.

Birational geometry is the study of algebraic varieties up to birational isomor-
phism. It seems to have begun as a conscious domain of research with Riemann’s
definition [44, chapter XII] of the birational equivalence of plane algebraic curves,
which we quote here:

We shall consider now, as pertaining to a same class, all the irreducible
algebraic equations between two variable magnitudes, which can be
transformed the ones into the others by rational substitutions.
The notion of modification (see Definition 2.5) was introduced in complex an-
alytic geometry in order to extend to it the notion of birational morphism, and to

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



INTRODUCTION TO THE RESOLUTION OF SINGULARITIES 413

create an analog of the birational geometry, the so-called bimeromorphic geometry.
To understand this, notice that a proper birational morphism Y — X between
complex algebraic varieties is a modification of the underlying complex analytic
space of X.

By definition, the difference between the concepts of rational map and rational
morphism is that for the first one we allow the presence of points of indeterminacy,
while this is forbidden for the second notion. There is a general way to express a
rational map in terms of rational morphisms. One simply considers the closure of
the graph of the rational map. As this closure lives in the product space, it can be
naturally projected onto the factor spaces, which are the source and the target of
the initial map. But these two projections are now morphisms:

(7) Graph(s) =Y xX

/\

The first one Graph(s) 2% Y is a birational morphism and the second one is
also a morphism, but not necessarily birational. The map s can be expressed as the
composition s = px o p;l. If X is complete (that is, its underlying analytic space is
compact), then py is proper, and therefore py is a modification of the underlying
analytic space of Y (see Definition 2.5).

As a very important example, let us consider the canonical projection map from
a vector space V of dimension n > 2 to its projectivization P(V):

(8) Bo(V) =V xP(V)
1% N P(V)

One can study this diagram using a fixed coordinate system. Start from a basis
of V, which determines an isomorphism between V and C", and the associated
canonical covering of P(V) with n affine charts isomorphic to C*~!. This gives a
covering of V x P(V) with n charts isomorphic to C?"~!. Being the roles of the
different coordinates completely symmetric, one sees that it is enough to study the
modification py inside one of these charts. One proves in this way:

PROPOSITION 2.16. 1)The algebraic variety Bo(V') is smooth.

2)The indeterminacy locus of the modification py is the point 0 and its excep-
tional locus is sent isomorphically to P(V') by the morphism ppeyy. Moreover, this
second morphism is canonically isomorphic to the projection map of the total space
of the tautological line bundle Op(yy(—1).

3) Ify; := 7=, Vi € {1,...,n—1} are the coordinates of the canonical chart U,

P(V)\{z, = O} ofIE”( ), then the canonical projection of the affine space V xU,, with

coordinates T1, ..., Tn, Y1, -, Yn—1 0onto the space with coordinates yi,...,Yn—_1,Tn IS
an isomorphism when restricted to By(V).
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B,(V)
FIGURE 6. Blowing-up the origin in a real plane

4) In terms of the coordinates 1, ...,Tp, Y1,y Yn—1 of Bo(V)N(V x U,) and
T1, ..., Ty of V, the modification py is expressed as:

(9) T1 =Yl Tny ooy Tn—-1=Yn "Tn, Tn = Tn-

This proposition shows that one has modified V' by replacing the origin with the
projective space of all the directions of lines passing through the origin. Therefore,
the origin has been “blown-up” into a higher dimensional space:

DEFINITION 2.17. The birational morphism Bo(V) ®% V' of diagram (8) is called
the blowing-up of the origin in V.

In Figure 6 we have represented the blowing-up of the origin in a real plane, by
drawing its restriction over a disc centered at the origin. It is an excellent exercise
to understand why one gets like this a M&bius band. We have represented also
the strict transforms L. of four segments L; passing through the origin. Please
contemplate how they become disjoint on the blown-up disc!

The construction of the blowing-up of a point may be extended from an ambient
vector space to an arbitrary complex manifold. One may blow-up a point of it
by choosing a system of local coordinates and by identifying like this the point
with the origin of the vector space defined by that coordinate system. Different
coordinate systems lead to blown-up spaces which are canonically isomorphic over
the initial manifold, which shows that the blow-up exists and is unique up to unique
isomorphism.

Roughly speaking, one blows-up a point of a smooth surface by replacing it
with a rational curve whose points correspond to the projectified algebraic tangent
plane of the surface at that point. In the same way, one blows-up a point in
a complex manifold by replacing it with the projectified tangent space at that
point. More generally, one can blow-up a submanifold by replacing it with its
projectified normal bundle. But one can still generalize this construction, and
blow-up a non-necessarily smooth and even non-necessarily reduced subspace. The
following theorem, characterizing blowing-ups by a universal property, was proved
by Hironaka [26]:

THEOREM 2.18. Let X be a (not necessarily reduced) complex analytic space.
Let Y be a subspace of X, defined by the ideal sheaf T. Then there exists a modifi-

cation By (X) XY X such that:
e the preimage ideal sheaf BQ}YI 18 locally invertible;
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e for any morphism B ﬁ) X such that ST is locally invertible, there exists a
unique morphism v such that the following diagram is commutative:

Y

B By (X)

N

X
DEFINITION 2.19. A modification By (X) XY X as in the previous theorem is
called the blowing-up of Y (or with center Y, or of T) in X.

In algebraic geometry, blowing-ups are also known as monoidal transforms (see
the quotation from Zariski at the end of this subsection) and in analytic geometry
as o-processes.

Not all the modifications can be obtained by blowing-up a subspace. Those
which can are precisely the projective modifications. Moreover, a blowing-up does
not determine the ideal sheaf 7 used to define it. In fact, a blowing-up in the sense
of Hironaka [26] is the couple (Y, Bx,y). Notice that the ideal sheaf Z giving birth
to it has been forgotten.

Let us consider again the example of the birational involution (6). We have
seen that its indeterminacy locus in the projective plane is the set of vertices of the
initial triangle. Moreover, we saw that the indeterminacy was caused by the fact
that when one tends to a vertex along different lines passing through the vertex,
one gets different limits of their images by the involution. This suggests that, by
replacing each vertex with a curve parametrizing the lines passing through it, that
is by blowing-up the three vertices, one modifies the projective plane in such a way
that now the rational map is defined everywhere. This is indeed the case, as shown
by the following quotations from the article [53] in which Zariski introduced the
operation of blowing-up under the name of “monoidal transformation”:

With some non-essential modifications, and without their projective
trimmings, the space Cremona transformations, known as monoidal
transformations, are monoidal transformations in our sense.... A qua-
dratic transformation is a special case of a monoidal transformation,
the center is in that case a point.... A quadratic Cremona transfor-
mation is not at all a quadratic transformation in our sense. Our
quadratic transformation has only one ordinary fundamental point
and its inverse has no fundamental points at all, while a plane qua-
dratic transformation and its inverse both have three fundamental
points, which in special cases may be infinitely near points.... Of
course, an ordinary quadratic transformation between two planes
and 7’ can be expressed as a product of quadratic transformations in
our sense, or more precisely as the product of 3 successive quadratic
transformations and of 3 inverses of quadratic transformations.

2.4. The definitions of resolution and embedded resolution.

Coming back to the desire (1), one could think that it is fulfilled for complex
analytic spaces if one finds a modification whose initial space is smooth. Such
modifications have a special name:
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DEFINITION 2.20. Let X be a reduced space. A resolution (or resolution of
the singularities) of X is a morphism X 5 X such that:

e 7w is a modification of X ;

e X is smooth;

o the restriction X \ 7~ (Sing(X)) & X \ Sing(X) is an isomorphism.

In some cases, people skip the last condition in the definition of a resolution.
Other terms which were used in the literature are “reduction of the singularities” (see
Walker [49] or the quotation at the end of Subsection 2.2) and “desingularization”.

In the previous definition, if X is embedded in a smooth ambient space, one
needs sometimes to get a resolution as a restriction of a modification of the ambient
space. It is also important to have a modification in which the subspaces of interest
are as simple as possible from a local viewpoint. The subspaces we are speaking
about are the exceptional locus of the modification and the strict transform of the
space X (see Definition 2.5). As the ambient space is supposed to be smooth, it
can be shown that the exceptional locus is necessarily of codimension 1. The usual
condition of local simplicity for a hypersurface is that of being a divisor with normal
crossings, and for the union of a hypersurface and a subvariety of possibly lower
dimension, of crossing normally:

DEFINITION 2.21. Let M be a complex manifold and D a divisor of M. Denote
by |D| the underlying reduced hypersurface of D.

One says that D is a divisor with normal crossings if for each point p € | D),
there is a system of local coordinates centered at p such that in some neighborhood
of p the hypersurface |D| is the union of some hyperplanes of coordinates.

If V is a reduced subvariety of M of a possibly lower dimension, one says that
D crosses V normally if for each point p € |D| NV, there is a system of local
coordinates centered at p such that in some neighborhood of p the hypersurface |D|
is the union of some hyperplanes of coordinates and V is the intersection of some
of the remaining hyperplanes of coordinates.

In order to understand this definition, remark that if one takes as the hyper-
surface |D| the union of two of the coordinate hyperplanes in C?, then no line
intersecting them only at the origin crosses them normally. But after blowing-up
the intersection of the two planes, the total transform of their union and the strict
transform of the line cross normally.

In the previous definition, we do not suppose that each irreducible component
of D is smooth. If this is moreover the case, one says usually that D is a strict
normal crossings divisor.

DEFINITION 2.22. Let X be a closed reduced subspace of a complex manifold
M. An embedded resolution of X in M is a morphism M = M such that:

e 7w is a modification of M;

e M is smooth;

o the restriction M \ 7~ (Sing(X)) & M \ Sing(X) is an isomorphism;

e the strict transform X| is smooth;

e the exceptional locus of m has normal crossings and also crosses normally the
strict transform XL of X by the modification 7.
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2.5. The special case of surfaces.

From now on, we will restrict our considerations to surfaces. Inside them, it
will be important to consider also various curves and their intersection numbers.
That is why we recall first basic facts about intersection theory of curves on smooth
surfaces. For more details, one may consult Hartshorne’s book [23, Chapter V.1].

Let C; and C5 be two (not necessarily reduced) properly embedded curves (that
is, effective divisors) contained on a (possibly non-compact) smooth surface M. Let
P be a common point of C; and Cs. Suppose that their analytic germs at P have
no common components. Then their intersection number at P may be defined by
the formula:

(Ci - Cy)p :=dimc On,p/(f1, f2) > 0,
where f; € Oy p denotes a holomorphic function defining the curve C; in a neigh-
borhood of P on M. This definition is independent of the choice of the functions
fi, fa.

If ¢y is compact (but not necessarily Cs), then one may define the global in-
tersection number:

(Cy - C3) := deg On(C2)lcy
where Oj;(C3) denotes the line bundle generated by the divisor Cy on M and
O (C2)|e, denotes its restriction to Cy. This number depends only on the germ of
C5 along C;. If both Cy and Cy are compact, then one has : (Cy - C3) = (Cq - C1).

By bilinearity, one may extend the definition of intersection number to the case
where C7 and Cy are possibly non-effective compact divisors on the surface M.

If C; and C3 have no common components, then they have only a finite set of
common points and:

(Cr-Co)= > (C1:-Cy)p.
PeCiNCy
This shows that, with the previous hypothesis, (C; - C3) > 0 whenever C; N Cy is
non-empty.

This positivity result is no longer necessarily true if C7 and Cs have common
components, for example if Cy = C3. The simplest example is provided by the
self-intersection number of the exceptional curve created by blowing-up a point on
a smooth surface, which is equal to —1 (see below).

If M is a smooth complex surface and D is a compact reduced curve in M, one
associates to it an abstract unoriented weighted dual graph T'(D). Its vertices v; cor-
respond bijectively to the irreducible components D; of D and its edges correspond
bijectively to the unordered pairs of distinct vertices {v;,v;} whose corresponding
irreducible components D;, D; intersect. Each vertex v; is weighted by the self-
intersection number e; := D? of the corresponding component and each edge by
the intersection number of the components associated to its vertices. Denote by
ei,j = €j; := D; - D; the weight of the edge joining v; and v;. Therefore, if there is
no edge between v; and v;, one has e; ; = 0.

One may associate to the curve D the intersection form on the free abelian
group of the divisors supported by D, given by the intersection number. This
intersection form depends only on the associated dual graph I'(D). Indeed, if
>; xiD; is a divisor supported by D, then its self-intersection number is :

§ : 2 §
€;T; +2 €i,jLiTj.
i

{i.g] i#5}
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One can particularize the previous constructions to the case where D is the
exceptional divisor of a resolution of a normal surface singularity. The divisors
appearing like this are very special, as is shown by the following theorem. Point 1)
was proved by Du Val [48] and Mumford [36], and point 2) was proved by Grauert
[21].

THEOREM 2.23. 1) Let D be the exceptional locus of a resolution of a complex
analytic normal surface singularity. Then D is a connected curve whose intersection
form is negative definite.

2) Let D be a reduced divisor with compact support in a smooth complex an-
alytic surface. If the intersection form of D is negative definite, then there exists
a neighborhood of D which is the resolution of a normal surface having only one
singular point, such that D is the exceptional divisor of this resolution.

When the hypothesis of point 2) are satisfied, one says that D can be contracted.

For more details about dual graphs and intersection matrices, one can consult
Laufer [31], Némethi [37] or Popescu-Pampu [42].

Let us consider again the blowing-up of a point on a smooth surface, which is
illustrated in Figure 6 for the case of real surfaces. As a particular case of point 2) of
Proposition 2.16, one shows that its exceptional locus E is a smooth rational curve
of self-intersection number E? = —1. Such a curve passing only through smooth
points of a surface is called classically an exceptional curve of the first kind. More
generally, an exceptional curve is a reduced divisor which can be contracted. It
can be shown that an exceptional curve of the first kind must contract to a smooth
point of the new normal surface.

Moreover, it is a classical theorem of Castelnuovo that if one starts from a
(not necessarily smooth) projective surface, then the surface obtained after having
contracted an exceptional curve of the first kind is again projective. This is to
be contrasted with the general case, when the contraction of an exceptional curve
cannot be always done in the projective category, or even in the category of schemes
(see an example of Nagata in Badescu [4, chapter 3]).

Let (S, s) be a normal surface singularity. In Section 4 we explain a proof of
Theorem 4.1, which says in particular that a resolution of (S, s) always exists. It
is then natural to try to compare all possible resolutions. We have the following
theorem concerning them:

THEOREM 2.24. Let (S, s) be a germ of normal surface. There exists a minimal

resolution Spin % S of (S, s), in the sense that any other resolution 8" = S can
be factored through a composition v of blowing-ups of points:

P

The minimal resolution can be characterized by the property that no irreducible
component of Epn is exceptional of the first kind.

y
S/ > Smin
- in

S

The previous theorem is specific to surfaces: it is no longer true in higher
dimensions.
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3. Resolutions of curve singularities

3.1. Abstract resolution.
Using theorems 2.9 and 2.10, we get immediately:

THEOREM 3.1. If C' is a reduced analytic curve, then its normalization mor-
phism is a resolution of C'.

Analytically, a normalization of a germ of curve (C,c) is given by a set of
parametrizations (C,0) 2% C; of the irreducible components of C, with the con-
dition that each parametrization realizes a homeomorphism onto its image. If an
irreducible germ of curve is embedded in some space (C",0), such a parametriza-
tion is given by n convergent power series x1(t), ..., z,(t) in a variable ¢, with the
restriction that one cannot write them as convergent power series of a new variable
w, with w a convergent power series of ¢ of order > 2.

Let us explain how one can deduce the existence of a normalization of an
analytically irreducible germ of curve with topological arguments, in the spirit of
Riemann. Consider an embedding of the germ in a smooth space, and choose local
coordinates (1, ..., Z, ) in this space such that the canonical projection onto the axis
of the first coordinate z; is finite (which means that the curve is not contained in the
hyperplane of the other coordinates). Denote by (C,¢) = (C,0) the restriction of
this projection to the curve. Look at the induced morphism of fundamental groups
71 (U\c) =% 711 (V'\0), where U and V are neighborhoods of ¢ in a representative of
C and of 0 in C, which are homeomorphic to discs. Since the covering is finite and
has a connected total space, the image group a.(m1(U \ ¢)) C 71 (V' \ 0) is infinite
cyclic and has a finite index m > 1. Notice that m can also be interpreted as the
degree of the finite morphism «.

Consider then another copy of C, with parameter ¢, and the morphism C, =
C,, defined by the equation 1 = t™. By construction, a. (71 (U\¢)) = 7. (m1(C\0)),
which shows that the map 7 can be lifted to a homeomorphism v from a pointed
neighborhood of the origin in C; to U \ ¢. Compose this morphism v with the
ambient coordinate functions (x1,...,x,) at the target. By construction, all the
functions x; o v are holomorphic and bounded on a pointed neighborhood of 0.
By Riemann’s extension theorem 2.7, all of them can be extended to functions
holomorphic also at the origin. This shows that v extends to a map holomorphic
all over the chosen neighborhood of 0 in C;:

(10) (Cy,0) —— (C, )

b

(Cs,,0)
The map v constructed in this way is the normalization morphism of (C, c).

The problem with this resolution process by the normalization morphism is
that, given a fixed embedding of the curve, it does not extend naturally to a mod-
ification of the ambient space. But in many applications, and in particular for
Jung’s method of resolution of surfaces presented in Section 4, it is important to
resolve the curve by a morphism which is the restriction of an ambient one.
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Let us consider this second problem in the case of plane curves. At first, Max
Noether simplified the singularities of plane curves by doing sequences of quadratic
transforms of the type (6), with respect to conveniently chosen triangles (see [38]
and the obituary [10] by Castelnuovo, Enriques & Severi). If we used the term
“simplified” and not “resolved” in the previous sentence, it is because he did not
really resolve them with the modern definition 2.20. He proved instead the theorem:

THEOREM 3.2. Let C be a plane curve. Then one can transform the curve C
into another curve C' which has only ordinary multiple points, by a sequence of
involutions isomorphic to the involution (6).

An ordinary multiple point designates a point of the curve at which its ana-
lytically irreducible components are smooth and pairwise transverse. The strategy
to prove the previous theorem was to iterate the following steps, given the curve
C C P? we want to simplify:

1) Choose a singular point ¢ of C' which is not an ordinary multiple point.

2) Choose a triangle having a vertex at ¢, and whose edges are transverse to C
(that is, they cross it normally) outside the set of its vertices.

3) Choose a quadratic transformation of the plane whose reference triangle is
the fixed one, then take the transform of the curve C under this map.

The theorem is deduced from the fact that one can arrive, after a finite number
of iterations, at a curve having only ordinary multiple points as singularities. The
fact that one cannot obtain only ordinary double points as singularities comes from
step 2).

Once the elementary operation of blowing-ups of points was isolated, it was
possible to deduce immediately the following theorem from the previous one:

THEOREM 3.3. Let C be a reduced curve embedded in a smooth surface S. Then
C can be resolved by a finite sequence of blowing-ups of points. At each step of the
algorithm, one simply blows-up the singular points of the strict transform of C'.

Why is Theorem 3.3 a consequence of Theorem 3.27 To understand this, look
at step 3) of the previous iteration. In it, the singular point ¢ of the curve is blown
up. At the same time other things happen to the plane, well described in Zariski’s
quotation at the end of subsection 2.3. But if one concentrates one’s attention in
the neighborhood of the point ¢, the effect on the germ (C,c¢) is the same as if
one had only blown up that point. As it can be shown that any germ of reduced
analytic curve embedded in a smooth surface can be embedded in the projective
plane, one sees that the study done during the proof of Theorem 3.2 allows one to
prove Theorem 3.3.

Let us be more explicit. The explanations which led to diagram (10) show that
if (C,¢) C S is an irreducible germ of curve in a smooth complex surface, then
there are local coordinates (x,y) on S centered at ¢, such that (C,c) is given by a
parametrization of the form:

x =t"
11
(1) { S

where a;, € C, Vk > n,a, # 0 and min(m, n) is equal to the multiplicity of C at c.
A parametrization of the form (11) is called a Puiseux parametrization or a Newton-
Puiseux parametrization. Such parametrizations are of the utmost importance in
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the detailed study of singularities of plane curves (see e.g. Brieskorn & Knérrer [7],
Teissier [47], Wall [50]).

It is possible to show that if ¢ is a singular point of C, that is, if m > 2, then
the choice of local coordinates can be done such that n > m and n is not divisible
by m. Then, as a consequence of Proposition 2.16, one can show that the strict
transform of C' by the blowing-up of ¢ on S can be parametrized in suitable local
coordinates by:

xry = t™m
{ Y1 = Ean aktk_m

Continuing like this, we see that after exactly [] blowing-ups on the strict trans-
form of C, one arrives at a strict transform with multiplicity strictly less than m.
Therefore, multiplicity can be dropped by doing blowing-ups. In the same way, one
can show that the intersection number of two germs of curves embedded in a surface
diminishes strictly after one blowing-up of their intersection point. The theorem is
a direct consequence of these two facts.

In the previous theorem it is not essential to suppose that the curve can be
embedded, even locally, in a smooth surface. One has in general:

THEOREM 3.4. Let (C,c) be a germ of reduced curve. Then it can be resolved
by a finite sequence of blowing-ups of points. At each step of the algorithm, one
simply blows-up the singular points of its strict transform.

Let us sketch a more intrinsic proof (that is, which does not work with local
coordinates) for the case when the germ is irreducible. Consider the normalization
morphism (C,¢) % (C,c). One has the inclusion of the corresponding local rings:
Oc¢,c C Og ;. Denote by F' their common field of fractions. Denote by (Cr,cr) ==
(C,c), k > 1 the composition of the first & blowing-ups of the germ (C,¢) or of its
strict transforms. Denote by Oy the local ring of the germ (Cj, ¢x). By Theorem
2.10, the normalization morphism v can be factored through the morphism my,
which shows that one has the sequence of inclusions:

OQCCOlCOQC"'COg’ECF.

As v is a finite morphism, one deduces that (95,5/ Oc¢,c is a finite dimensional C-
vector space, which shows that one has to arrive at an index p > 1 such that
O, = Opy1. By Proposition 2.16, point 3), one sees that Opy1 = (’)p[z—f, ceny %],
where y1, ..., ¥, are generators of the maximal ideal of the local ring O,,, chosen such
that y; has the smallest multiplicity when we look at the generators as functions

on the germ (C,¢). The equality O, = 0,1 implies then that

y—Q, ey Ir ¢ O,

Y1 h
which shows that the maximal ideal (y1, ..., y»)O, is principal, and generated by y;.
But this shows that the local ring O, is regular, that is, the germ (C), ¢;,) is smooth.
Again by Theorem 2.10, we deduce that 7, is the normalization morphism of (C, c).
As a consequence, one has desingularized the germ (C, ¢) after p blowing-ups.

When (C, ¢) is not irreducible, the total ring of fractions of O¢ . is no more a

field, but a direct product of fields. At some steps of the blowing-ups irreducible
components may be separated, but the overall analysis remains the same.
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For a careful proof written in the language of commutative algebra and for many
details on abstract singularities of not necessarily plane curves, one can consult
Castellanos & Campillo’s book [8].

The next theorem is a generalization of Theorem 1.2. It shows how the finite
dimension of the quotient 5070/ Oc,c used in the previous proof appears in the
computation of the genus of the normalization. By O¢ . we denote the integral
closure of O¢ . in its total ring of fractions, that is (see Theorem 2.12), the direct
sum of the local rings of the normalization C at the preimages of the point c.

THEOREM 3.5. Let C be a reduced algebraic curve inside CP?. Then the genus
of its normalization C is equal to W — >20(C,c), where the sum is done
over the singular points of C, and at such points §(C,c) := dimc O¢ ./ Oc.c.

For many more details about possibly singular plane curves, we recommend the
leisurely introduction done in Brieskorn & Knérrer [7].

3.2. Embedded resolution of plane curves.

Let us consider again Theorem 3.3. If 7 denotes the composition of the blowing-
ups which resolves the curve C, one knows by the definition of resolution that the
strict transform C is smooth. But the total transform 7~!(C) has not necessarily
only normal crossings. Nevertheless, by blowing-up more, one can arrive at an
embedded resolution:

THEOREM 3.6. Let C — S be a reduced curve embedded in a smooth complex
analytic surface. Start from the identity morphism Sy = S 3 S. Then the following
algorithm stops after a finite number of steps:

o If S;, T8 S is given and the total transform W;l(C) has more complicated
singularities than normal crossings inside the surface Sy, then blow-up each point of

7, 1(C) at which its irreducible components do not cross normally. The composition

of mr and of these blowing-ups is by definition Sk41 g,
o If wgl(C’) has normal crossings inside the surface Sy, then STOP.

Moreover, the embedded resolution obtained in this way can be distinguished
among all embedded resolutions by a minimality property, to be compared with the
one stated in Theorem 2.24:

THEOREM 3.7. Let Spin =% S be the embedded resolution of the curve C
obtained by the algorithm 3.6. Then Ty s minimal among all the embedded

resolutions of C, in the sense that any other resolution S’ 5 S factorizes as S’ %
Spmin ¢S where 1) is a composition of blowing-ups of points.

One can use the previous theorem as a way to analyze the structure of a singular
point of a curve embedded in a smooth surface. More precisely, one can look at
various aspects of the resolution 7,,;, and of the sequence of blowing-ups leading
to it:

(a) The sequence of multiplicities of the strict transforms of the germ.

(b) The dual graph of the total transform of (C,¢), each vertex being deco-
rated by the order of vanishing of the preimage of the maximal ideal Og .
on the corresponding component.
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(¢) The dual graph of the total transform of (C,¢), each vertex being deco-
rated by the self-intersection number of the corresponding component.

(d) A graph which represents the strict transforms of the components of the
curve (C,c) at each step of the process of blowing-ups, and whose edges
are drawn in such a way as to remember if the strict transform passes or
not through a smooth point of the exceptional locus.

It can be shown that all these encodings are equivalent. They are also equivalent
with information readable on Newton-Puiseux parametrizations of the germ (C, ¢)
(that is, parametrizations of the type (11)). Furthermore, all the encodings describe
completely the embedded topological type of the germ. For the state of the art around
2004 on the relations with the embedded topology of germs, see Wall [50].

The comparison between information readable on Newton-Puiseux expansions
and on sequences of blowing-ups (in fact quadratic transformations, as we explained
before) seems to have been started by Max Noether in [39]. It was carefully explored
by Enriques & Chisini [12], who introduced the viewpoint (d) of the previous list.
A recent textbook emphasizing the usefulness of such graphs (called nowadays
Enriques diagrams) in the study of plane curve singularities is Casas-Alvero [9].

A detailed comparison between the viewpoint (b) and information readable on
Newton-Puiseux expansions was done in Garcia Barroso [15].

The four viewpoints (a)-(d) are also compared in Campillo & Castellanos [8],
where some of them are extended to arbitrary reduced germs, not necessarily em-
beddable in smooth surfaces.

A common aspect of all the comparisons is the use of expansions of rational
numbers into continued fractions. In [42] we made a detailed study of the convex
geometry lying behind the use of continued fractions, and of its applications via
toric geometry to the study of singularities of curves and surfaces.

4. Resolution of surface singularities by Jung’s method

4.1. Strategy.

Our aim in this section is to prove the following:
THEOREM 4.1. Any reduced complex surface admits a resolution.

Unlike for the case of plane curves, the normalization morphism is no longer
always a resolution. Indeed, the world of normal surface singularities is huge and
fascinating. For example, all isolated surface singularities of complete intersections
are normal. But as the normalization morphism exists and it is an isomorphism
over the smooth locus, one can reduce the proof of Theorem 4.1 to the task of
proving it for normal surfaces, although this is not much of a simplification.

Many methods to prove Theorem 4.1 have been proposed, sometimes for special
types of surfaces (projective surfaces in P3, arbitrary projective surfaces, algebraic
surfaces, analytic surfaces, arithmetic surfaces, etc.) For the first approaches on the
problem, one can consult Gario’s papers [16], [17]. For the state of the art around
1935, see Zariski’s book [51]. For the progresses made up to the year 2000, one can
consult Hauser’s index [24]. We recommend also Lipman’s survey [33], Cutkosky’s
book [11] and Kollar’s book [30]. In these last two references, one may find detailed
proofs of the existence of resolution of singularities of complex algebraic varieties
in arbitrary dimension.
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We will now explain one of the methods, usually known as Jung’s method. It is
probably the most amenable one to computations by hand on examples defined by
explicit equations. For special types of singularities, other methods could be more
suitable. For example, if the surface admits a C*-action, then one knows how to
describe equivariantly a resolution (see Orlik & Wagreich [40] or Miiller [35]).

From a very general viewpoint, one could express the fundamental idea of this
method by the injunction:

In order to represent an object as the image of a simpler one
(12) first choose an image of the object
then simplify this image.

Given a reduced complex analytic surface, Jung’s method consists in analysing
its structure in a neighborhood of one of its singular points by projecting it to a
plane and by considering an embedded resolution of the discriminant curve. It was
introduced by Jung [28] as a way to uniformize locally a surface, and extended by
Walker [49] in order to prove resolution of singularities of algebraic surfaces. This
second paper was considered by Zariski [51, Chapter 1] to be the first complete
proof of the resolution of singularities for surfaces. Hirzebruch [27]| used again
the method in order to prove the resolution of singularities for complex analytic
surfaces (for an excellent summary of Hirzebruch’s work on singularities we refer
to Brieskorn [6]). Here we will explain Hirzebruch’s proof (see also Laufer [31,
Chapter II] and Lipman [33]).

Before starting our explanation, we would like to emphasize that Hirzebruch’s
motivation was to extend to the case of 2 complex variables Riemann’s construction
of a smooth (real) surface associated to a multivalued analytic function of one
variable. We quote from the introduction of [27]:

The «algebroid» function elements of a multivalued function f(z1, 22)
defined in a complex manifold (with two complex dimensions) can
be easily associated to the points of a Hausdorff space of dimension
4, which covers part of M, and which we will call the Riemann do-
main of the function f. But this Riemann domain is not in general a
topological manifold....

The main steps of Jung’s method of resolution of reduced complex analytic
surfaces are:

(A) Take a germ of the given surface and consider a finite morphism to a germ
of smooth surface.

(B) Consider an embedded resolution of the discriminant curve of this mor-
phism, and pull-back the initial germ by this resolution morphism.

(C) Normalize the surface obtained by this pull-back.

(D) Resolve explicitly the singularities of the new normal surface, by using
the fact that they admit a finite morphism to a smooth surface whose
discriminant curve has normal crossings.

(E) Glue together all the previous constructions to get a global resolution of
the initial surface.

Let us explain the previous steps with more details. We emphasize that the
surface S is not supposed to be normal.
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(A) Let S be the given reduced surface. Consider one of its points s € S, and
the germ (S,s). Denote by (S,s) = (R,7) a finite morphism, where (R,r) is a
germ of smooth surface. Consider its discriminant locus A(a)) C R. Three different
situations may occur: either it is empty, either it is the point r, either it is a germ
of curve.

(B) When A(«) is empty, « is a local isomorphism, which shows that S is
smooth at s.

When A(a) = 7, the normalization morphism [](S;,5;) = (S, s), whose total
space is a multigerm, is also a resolution. Indeed, each restriction (S}, 3;) 20X (R,T)
is unramified outside 7, and as 71 (V \ r) = 0 for each polydisc representative of R,
one sees that a finite representative of o o x is a trivial covering over V' \ r. The
generalized Riemann extension theorem 2.7 implies that « o x is an isomorphism,
which shows that each (S;,3;) is smooth.

Let us suppose finally that (A(a),r) C (R,r) is a germ of curve. Take an

embedded resolution (R, E) % (R,r) of the germ, then the pull-back ¥*(«) of the
morphism «. One gets like this the following diagram of analytic morphisms:

(13) 3,7 —=Y (5,5

w*wl la

(R, E) ——— (R,7)

As the mapping v is a proper modification, one deduces that a*(¢) is also a
proper modification.

By construction, ¥ ~'(A(a)) is a curve with normal crossings inside R and
v H(A(a)) = EUA(a)y, where A(a);, denotes the strict transform of A(a) by the
modification .

Note that the discriminant locus A(¢*(a)) of the morphism ¢*(«) is con-
tained in 1~ '(A()). Therefore the germs of the surface S at the points of
F = (a*(¥)))~!(s) have a special property: they can be projected by finite mor-
phisms (the localization of ¥*(a)) to a smooth surface, such that the discriminant
locus has normal crossings. In many ways such germs are much more tractable
than arbitrary germs of surfaces, that is why they received a special name:

DEFINITION 4.2. Let (X, x) be a germ of reduced equidimensional complex sur-
face. The germ (X, x) is called quasi-ordinary if there exists a finite morphism ¢
from (X, x) to a germ of smooth surface, whose discriminant locus is contained in
a curve with normal crossings. Such a morphism ¢ is also called quasi-ordinary.

An example of quasi-ordinary germ is the germ at the origin of Whitney’s
umbrella defined by equation (3). A quasi-ordinary morphism associated to it is
the restriction of the canonical projection of the ambient space to the plane of
coordinates (y,z). Please contemplate how this is visible in Figure 4, where the
discriminant curve is the union of two lines, one being the projection of the singular
locus and the other one being the apparent contour. At this point, recall also the
comments about the drawing of surfaces from the beginning of Subsection 2.1.

The name “quasi-ordinary” was probably introduced in reference to the previ-
ously named “ordinary” singularities. In [51, page 18], Zariski says that a surface
in the projective space has an ordinary singularity at a point if either it is locally
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isomorphic at this point to a singular normal crossings divisor, or to an “ordinary
cuspidal point”, defined geometrically. In fact these last germs are isomorphic to
the germ at the origin of Whitney’s umbrella.

In many respects, quasi-ordinary germs are more amenable to study than arbi-
trary singularities, because one can extend to them by analogy many constructions
done first for curves. For example, in what concerns resolution of singularities,
Gonzalez Pérez [20] gave two methods for finding embedded resolutions of quasi-
ordinary germs of hypersufaces in arbitrary dimensions, by developing a method
analogous to the one proposed for the case of curves by Goldin & Teissier [19]. As
an introduction to quasi-ordinary singularities in arbitrary dimensions, we recom-
mend Lipman’s foundational work [34].

(C) Coming back to the diagram (13), let us normalize the surface S. Denote

by S % § the normalization morphism. One gets the diagram:

(14)

(R, E)

(R,7)

By definition, @ := *(a) ov and 9 := a*(¢)) o v. As normalization morphisms
are finite modifications, we see that @ is finite and 1 is a modification. Moreover,
the discriminant locus A(@) of @ is contained in the discriminant locus of ¥*(a),
which shows that A(@) has again normal crossings. Therefore, the singularities of

S are still more special than those of S. They are the so-called Hirzebruch-Jung
singularities:

DEFINITION 4.3. A Hirzebruch-Jung germ (or singularity) of complex sur-
face is a normal quasi-ordinary germ of surface.

(D) We explain in the next subsection how one can use Definition 4.3 directly
in order to give an explicit resolution of any Hirzebruch-Jung singularity. For the
moment, please accept the fact that Hirzebruch-Jung singularities admit resolu-
tions. _

As the surface S has only this special kind of singularities, one sees that it
can be resolved. Denote by T % S a resolution of S. Then o* (Y)ovopisa
modification of (S, s), being a composition of three modifications. Moreover, its
source is smooth and it is an isomorphism over the smooth locus of S, which shows
that it is a resolution of the germ (S, s).

(E) Once the germ (.5, s) was fixed, the finite morphism « used to project it on
a smooth surface was arbitrary. One can choose then a representative U — V of
the germ of morphism « which is a finite morphism of analytic surfaces, and such
that the germ (A(«), r) admits a closed representative in V' which is smooth outside
r. Then the composed morphism a*(¢) o v o p is by construction a normalization
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of U\ s (recall that s is not necessarily an isolated singular point of .S). Indeed,
its source is smooth, it is proper and bimeromorphic as a composition of proper
and bimeromorphic morphisms, and its only possible fiber of positive dimension
lies over the point r. We use then Theorem 2.10 to complete the argument.

This shows that the set of points of the surface (S, s) which do not have neigh-
borhoods resolved by the normalization of S is discrete. If 3(S) is this set, choose
neighborhoods (Us)sex(s) which are pairwise disjoint and which are at the same
time sources of finite morphisms as explained in the previous paragraph. Apply
then the previous process for each one of them, getting like this resolution mor-
phisms Ty — U for any s € X(.5). If one considers also the normalization morphism
of S\ X(9), all these modifications of open sets which form a covering of the surface
S agree on overlaps. This implies that they can be glued into a resolution of the
entire surface S.

Examples of applications of this method are given in Laufer [31], Lé & Weber
[32] and Némethi [37]. In this last reference are described the dual graphs of the
resolutions obtained by this method for the germs of surfaces defined by equations
of the form z" + f(z,y) = 0, where f is reduced. The description is done in terms
of the embedded resolution of the curve f(z,y) =0 and the integer n > 1.

We see that the application of the injunction (12) depends heavily on the pos-
sibility to do an embedded resolution of curves contained in smooth surfaces. Nev-
ertheless, this does not lead to an embedded resolution of a surface, only to an
abstract one. If the method could be adapted to give an embedded resolution, then
the same strategy would prove the resolution of 3-folds, and then one could try to
get on these lines an inductive resolution in all dimensions. Untill now, this strategy
was not succesfull (see Problem (1) in Section 5).

4.2. Resolution of Hirzebruch-Jung singularities.
The aim of this section is to explain a proof of the following theorem:

THEOREM 4.4. Let (S,s) be a Hirzebruch-Jung singularity. Then it can be
resolved. Moreover, the exceptional divisor of its minimal resolution has mormal
crossings, its components are smooth rational curves and its dual graph is a segment.

The method we will present is a generalization of the one used to construct
topologically a normalization morphism for an irreducible germ of curve (see the
explanations which precede diagram (10)). We saw there that one could work in
convenient local coordinates with a morphism defined by x; = ¢™. Similarly, one
can resolve Hirzebruch-Jung surface singularities using only morphisms defined by
monomials in two variables. There is a branch of algebraic geometry which studies
intrinsically such morphisms, called toric geometry. In what follows we will explain
how it appears in our context. For an introduction to toric geometry, one may
consult Fulton [14].

Let (S,s) be a Hirzebruch-Jung singularity and (S,s) = (R,r) be a finite
morphism whose discriminant locus has normal crossings. Choose local coordinates
in the neighborhood of the point » € R such that the discriminant curve is contained
in the union of the coordinate axis. Therefore, from now on we suppose that R = C?
and that « is unramified over (C*)2.

Choose a finite representative U = V where V is a polycylinder in the coordi-
nates (x,y). Denote by V* the complement of the axis of coordinates and by U*
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the preimage o' (V*). Then the restricted morphism U* % V* is a finite (unram-
ified) covering with connected source (because (S, s) was supposed to be normal).
Consider the associated morphism of fundamental groups 71 (U*) %5 7 (V*). As
V' was chosen to be a polycylinder, V* is the product of two pointed discs, which
shows that N := 71 (V*) is a free abelian group of rank 2. Therefore all its fi-
nite index subgroups are also free abelian of rank 2. In particular this holds for
N(a) := a(m1(U*)). Notice that the abelianity of those groups implies that we do
not have to worry about base points.

Let us look at the multiplicative semigroup of Laurent monomials z%y® which
are regular in a neighborhood of the origin of C2, which means that a > 0,b > 0.
One can think about them as functions (C*)? — C* and restrict them to the loops
which represent the elements of N(«). One associates like this to each pair (a,b) a
map from an oriented circle to C*, map whose degree (its linking coefficient with the
origin) is a well-defined integer. Consider the elements of N(a) whose associated
degree is non-negative. They form a sub-semigroup of (N(«a),+). Denote by o
the closed convex cone generated by its elements inside the associated real vector
space N(a)r := N(a) ®z R. As N(«) has finite index in N, one has a canonical
identification N(a)gr = Ng. Therefore, o may also be seen as the cone in Ng. It is
precisely the first quadrant !

The pair (N(«),0) determines a two-dimensional normal affine toric surface
X(N(«),0) and the inclusion N(«) < N induces a canonical toric morphism:

X(N(a),0) "7 €% = X(N,0).

One sees then that the morphism of fundamental groups induced over (C*)? has
N(a) as its image. From this, one concludes that vx.n(a) can be lifted over (C*)?
to a morphism with target space (S, s). By construction, this lift is bounded in a
neighborhood of the special point 0 of X' (N («), o) (its unique closed orbit under the
torus action). As this last variety is normal, one deduces that it can be extended
to a morphism g defined on a neighborhood of 0 € X(N(«), o). Thus, one gets a
diagram:

(15) (X(N(a),0),0) —— (S, 5)

[e3

(C2,0)

By construction, 4 is a finite morphism which is an isomorphism over (C*)2. As
both its source and target are normal, one deduces that y is an isomorphism. This
shows that a Hirzebruch-Jung singularity is analytically isomorphic to a germ of
toric surface.

But the singularities of normal toric surfaces admit explicit minimal resolutions,
which can be deduced from the geometry of the pair (N(«),o0). They verify the
properties listed in Theorem 4.4.

When Hirzebruch did his work [27], toric geometry did not exist. Neverthe-
less, he gave an explicit resolution of Hirzebruch-Jung singularities in a way which
nowadays can be recognized to be toric, by gluing affine planes through monomial
maps. We recommend Brieskorn’s article [6] for comments on this approach, as
well as on other contributions by Hirzebruch to singularity theory.
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Py B e —— =

(x=0)" b -b, by {x=0)
FIGURE 7. Total transform of z122 =0

It was one of our contributions to the study of Hirzebruch-Jung singularities
to construct the affine toric surface X'(N(a),0). Our motivation was to be able
to compute the normalizations of explicit quasi-ordinary singularities. We showed
that in arbitrary dimensions the normal quasi-ordinary singularities could be char-
acterized as the germs of normal affine toric varieties defined by a simplicial cone.
Moreover, we gave an algorithm of normalization for hypersurface quasi-ordinary
germs in arbitrary dimensions (see [41]).

As a particular case of this normalization algorithm, one gets the following
lemma, which is needed when one applies steps (C) and (D) described in Section
4.1 to concrete examples (as the ones presented in Laufer [31], Lé & Weber [32]
and Némethi [37]):

LEMMA 4.5. Let (S,s) < C3 be the quasi-ordinary irreducible singular-

T1,%2,Y
P1 P2
ity corresponding to the algebraic function with two variables y := x{* 4>, where

ged(p1, q1) = ged(p2, q2) = 1 and p1,q1,p2,q2 € N*. Denote d := ged(q1, q2), j1 =

Loand let ky € {0,1,...,q1 — 1} be the unique number in this set which satisfies the

congruence equation kipy + jip2 = 0 (mod q1). Denote also:
;o ¢ . k1
q = , k= .
ng(Q1a kl) ng(q17 kl)

Consider & = by — 1/(be —1/(-+- = b)), the decomposition of Z—% as a Hirzebruch-

kl T
Jung continued fraction (that is, b; > 2, Vi € {1,...,r}). Then:
(1) (S, s) has the same normalization over C2, . as the surface (S, s) defined
by the algebraic function
a9k
xfll T 4

(2) The total transform of the function (z172)|(s,s) by the minimal resolution
of (S, ) has a dual graph as drawn in Figure 7, where {x; = 0}’ denotes
the strict transform of x; = 0.

The important point to notice is the way the strict transforms of the germs
of curves defined by z; = 0 and zo = 0 intersect the exceptional divisor of the
minimal resolution of (S, s). Be careful not to permute z; and 5!

We conclude this section with a theorem which characterizes Hirzebruch-Jung
surface singularities from many different viewpoints. References can be found in
[3], [41] and [42].

THEOREM 4.6. Hirzebruch-Jung surface singularities can be characterized among
normal singularities by the following equivalent properties:

(1) They are quasi-ordinary.
(2) They are singularities of toric surfaces.
(3) They are cyclic quotient singularities.
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(4) The exceptional divisor of their minimal resolution has normal crossings,
its components are smooth rational curves and its dual graph is a segment.

(5) Their link is a lens space.

(6) The fundamental group of their link is abelian.

5. Open problems

(1) Adapt Jung’s method to get embedded resolution of germs of surfaces in
c3.

(2) Use Jung’s method to get obstructions on the topology of germs of surfaces
with isolated singularities in C3.

(3) If (S,s) is a germ of a normal surface and (S,s) = (C2,0) is a finite
morphism, one gets by Jung’s method an associated resolution of (S, s).
In general, one gets more components of the exceptional divisor than
in the minimal resolution. Denote by md(S,s) the minimum number of
supplementary components when one varies a, the germ (S, s) being fixed
(‘md’ being the initials of ‘minimal difference’). Is md(S,s) bounded
from above when one varies (5,s) among the normal germs with fixed
topology ?

By construction, md(S, s) attains a minimal value when one varies

(S, s) like this. Compute it in terms of the weighted dual graph of the
minimal good resolution of (S, s) (which encodes the topology of (S, s),
as ensured by a theorem of Neumann).

Acknowledgements: I am grateful to Angelica Cueto, Eleonore Faber, Camille
Plénat, Jawad Snoussi and Dmitry Stepanov for their pertinent remarks on a pre-
vious version of this paper.
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