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A CLASS OF NON-RATIONAL SURFACE

SINGULARITIES WITH BIJECTIVE NASH MAP

by Camille Plénat & Patrick Popescu-Pampu

Abstract. — Let (S, 0) be a germ of complex analytic normal surface. On its minimal
resolution, we consider the reduced exceptional divisor E and its irreducible compo-
nents Ei, i ∈ I. The Nash map associates to each irreducible component Ck of the
space of arcs through 0 on S the unique component of E cut by the strict transform
of the generic arc in Ck . Nash proved its injectivity and asked if it was bijective.
As a particular case of our main theorem, we prove that this is the case if E · Ei < 0
for any i ∈ I.

Résumé (Une classe de singularités non-rationnelles de surfaces ayant une application

de Nash bijective)
Soit (S, 0) un germe de surface analytique complexe normale. Nous considérons le

diviseur exceptionnel réduit E et ses composantes irréductibles Ei, i ∈ I sur sa réso-
lution minimale. L’application de Nash associe à chaque composante irréductible Ck

de l’espace des arcs passant par 0 sur S, l’unique composante de E rencontrée par
la transformée stricte de l’arc générique dans Ck . Nash a prouvé son injectivité et a
demandé si elle était bijective. Nous prouvons que c’est le cas si E · Ei < 0 pour
tout i ∈ I comme cas particulier de notre théorème principal.
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1. Introduction

Let (S, 0) be a germ of complex analytic normal surface. Let

πm : (S̃m, E) −→ (S, 0)

be its minimal resolution, where E is the reduced exceptional divisor of πm,
and let (Ei)i∈I be the irreducible components of E. A resolution is called good

if E has normal crossings and if all its components are smooth. It is important
to notice that, by Grauert’s Contractibility Theorem for surfaces [5], there exist
singularities whose minimal resolution is not good.

An arc through 0 on S is a germ of formal map (C, 0) → (S, 0).

We denote by (S, 0)∞ the space of arcs through 0 on S. It can be canonically
given the structure of a scheme over C, as the projective limit of schemes of
finite type obtained by truncating arcs at each finite order. So it makes sense
to speak about its irreducible components (Ck)k∈K . For each arc represented
by an element in Ck, one can consider the intersection point with E of its strict

transform on S̃m. For a generic element of Ck (in the Zariski topology), this
point is situated on a unique irreducible component of E. In this manner one
defines a map

N :
{
Ck | k ∈ K

}
−→

{
Ei | i ∈ I

}

which is called the Nash map associated to the germ (S, 0). It was defined by
Nash around 1966, in a preprint published later as [17]. He proved that the
map N is injective (which shows in particular that K is a finite set) and asked
the question:

Is the map N bijective?

This question is now called the Nash problem on arcs. No germ (S, 0) is
known for which the answer is negative. But the bijectivity of N was only
proved till now for special classes of singularities:

• for the germs of type (An)n≥1 by Nash himself in [17];

• for normal minimal singularities by Reguera [21]; different proofs were
given by Plénat [19] and by Fernández-Sánchez [4];

• for sandwiched singularities it was sketched by Reguera [22], using her
common work [15] with Lejeune-Jalabert on the wedge problem;

• for the germs of type (Dn)n≥4 by Plénat [19];

• for the germs with a good C∗-action such that the curve ProjS is not
rational, it follows immediately by combining results of Lejeune-Jalabert [13]
and Reguera [22].

With the exception of the last class, all the other ones consist only in rational

singularities and can be defined purely topologically.

Here we prove that the Nash map is bijective for a new class of surface
singularities (Theorem 5.1), whose definition depends only on the intersection
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matrix of the minimal resolution and not on the genera or possible singularities
of the components Ei. In particular, their minimal resolution may not be good,
which contrasts with the classes of singularities described before. The following
(Corollary 5.2) is a particular case of the main theorem:

If E · Ei < 0 for any i ∈ I, then the Nash map N is bijective.

We also show (Corollary 5.5) that the hypothesis of the previous corollary
are verified by an infinity of topologically pairwise distinct non-rational singu-
larities, which explains the title of the article.

The Nash map can also be defined in higher dimensions, over any field, for
not necessarily normal schemes which admit resolutions of their singularities.
It is always injective and the same question can also be asked. Ishii and Kollár
proved in [6] (a good source for everything we use about spaces of arcs and
the Nash map, as well as for references on related works) that it is not always
bijective. Indeed, they gave a counterexample in dimension 4, which can be im-
mediately transformed in a counterexample in any larger dimension. They left
open the cases of dimensions 2 and 3. . .

Acknowledgements. — We are grateful to the organizers of the Third
Franco-Japanese Symposium and School on Singularities, Hokkaido University
(Sapporo), September 13–17, 2004, during which the present collaboration
was started. We are also grateful to M. Lejeune-Jalabert, M. Morales and the
referee for their remarks.

2. A criterion for distinguishing components of the space of arcs

Consider a germ (S, 0) of normal surface and its minimal resolution mor-
phism

πm : (S̃m, E) −→ (S, 0).

If D is a divisor on S̃m, it can be uniquely written as the sum of a divisor
supported by E – called the exceptional part of D – and a divisor whose support
meets E in a finite number of points. If D consists only of its exceptional part,
we say that D is purely exceptional.

For each i ∈ I, let vEi
be the divisorial valuation defined by Ei on the

fraction field of the analytic local ring OS,0. Denote by mS,0 the maximal ideal
of this local ring. If f ∈ mS,0, the exceptional part of div(f ◦ πm) is precisely

∑

i∈I

vEi
(f)Ei.

For each component Ei of E, consider the arcs on S̃m whose closed points
are on Ei −

⋃
j 6=i Ej and which intersect Ei transversally. Consider the set of
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386 PLÉNAT (C.) & POPESCU-PAMPU (P.)

their images in (S, 0)∞ and denote its closure by V (Ei). The sets V (Ei) are
irreducible and (see Lejeune-Jalabert [14, Appendix 3])

(S, 0)∞ =
⋃

i∈I

V (Ei).

The following proposition is a special case of a general one proved by the first
author in [18] (see also [19]) for non-necessarily normal germs of any dimension
and for arbitrary resolutions. It generalizes an equivalent result proved by
Reguera [21, Thm. 1.10] for the case of rational surface singularities.

Proposition 2.1. — If there exists a function f ∈ mS,0 such that vEi
(f) <

vEj
(f), then V (Ei) * V (Ej).

Proof. — Let (S, 0) →֒ (Cn, 0) be an analytic embedding of the germ (S, 0).
Denote by (x1, . . . , xn) the coordinates of Cn. An arc φ ∈ (S, 0)∞ is then
represented by n formal power series

(
xk(t) =

∞∑

ℓ=1

ak,ℓ t
ℓ
)

1≤k≤n
,

where the coefficients (ak,ℓ)k,ℓ are subjected to algebraic constraints, coming
from the fact that the arc must lie on S.

For each j ∈ I, a Zariski open set Uf (Ej) in V (Ej) consists of the images

by πm of the arcs on S̃m which meet transversely Ej in a smooth point of
div(f ◦ πm). If φ ∈ Uf (Ej), we have

vEj
(f) = vt(f ◦ φ)

where vt(g) denotes the order in t of g ∈ C[[t]].

This shows that the first vEj
(f) − 1 coefficients of f ◦ φ, seen as elements

of C[ak,ℓ]k,ℓ, must vanish. Their vanishing defines a closed subscheme Zf,j of
(S, 0)∞. Therefore, Uf(Ej) ⊂ Zf,j , which implies that

V (Ej) ⊂ Zf,j.

As vEi
(f) < vEj

(f), we see that no element of Uf(Ei) is included in Zf,j ,
which shows that

V (Ei) * Zf,j .

The proposition follows.

3. Construction of functions with prescribed divisor

In this section, π : (S̃, E) → (S, 0) denotes any resolution of (S, 0).

Inside the free abelian group generated by (Ei)i∈I we consider the set

L(π) :=
{
D | D 6= 0, D · Ei ≤ 0, ∀i ∈ I

}
.
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It is a semigroup with respect to addition, which we call (following Lê [11, 3.2.5])
the Lipman semigroup associated to π (see Lipman [16, §18]). It is known that
it consists only of effective divisors (see Lipman [16, §18 (ii)]).

We call strict Lipman semigroup of π the subset:

L0(π) :=
{
D ∈ L(π) | D ·Ei < 0, ∀i ∈ I

}

of the Lipman semigroup of π. It is always non-empty.

The importance of the Lipman semigroup comes from the fact that the
exceptional parts of the divisors of the form div(f ◦ π), where f ∈ mS,0, are
elements of it. The converse is true for rational surface singularities, but this
is not the case for arbitrary surface singularities.

We give now a numerical criterion on a divisor D ∈ L(π) which allows one
to conclude that it is the exceptional part of a divisor of the form div(f ◦ π):

Proposition 3.1. — Let D be an effective purely exceptional divisor, such

that for any i, j ∈ I, one has the inequality:

(D + Ei +K eS
) · Ej + 2δji ≤ 0

where δji is Kronecker’s symbol. Then there exists a function f ∈ mS,0 such

that the exceptional part of div(f ◦ π) is precisely D.

Proof. — We use the following Grauert-Riemenschneider type vanishing the-
orem, proved by Laufer [9] for analytic germs and by Ramanujam [20] for
algebraic ones (see also Bădescu [1, 4.1]):

If L is a divisor on S̃ such that L ·Ej ≥ K eS
·Ej for all j ∈ I, then

H1
(
O eS

(L)
)

= 0.

We apply the theorem to L = −D − Ei, for any i ∈ I. Our hypothesis
implies thatH1(O eS

(−D−Ei)) = 0. Then, from the exact cohomology sequence
associated to the short exact sequence of sheaves

0 → O eS
(−D − Ei) −→ O eS

(−D)
ψi
−→ OEi

(−D) → 0

we deduce the surjectivity of the restriction map

ψi∗ : H0
(
O eS

(−D)
)
−→ H0

(
OEi

(−D)
)
.

By Serre duality on the irreducible (possibly singular) curve Ei (see Reid
[23, 4.10]), we get

h1
(
OEi

(−D)
)

= h0
(
OEi

(K eS
+ Ei +D)

)
= 0.

For the last equality we have used the hypothesis (D+Ei+K eS
) ·Ei ≤ −2 < 0,

which shows that the line bundle OEi
(K eS

+Ei +D) cannot have a non-trivial
section.
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By applying the Riemann-Roch theorem and the adjunction formula for the
irreducible curve Ei of arithmetic genus pa(Ei) (see Reid [23, 4.11]), we get

h0
(
OEi

(−D)
)

= h0(OEi
(−D)

)
− h1

(
OEi

(−D)
)

= χ
(
OEi

(−D)
)

= 1 − pa(Ei) −D ·Ei

≥ 1 − pa(Ei) + (K eS
+ Ei) · Ei + 2

= 1 − pa(Ei) + 2pa(Ei) − 2 + 2 = 1 + pa(Ei) > 0.

This shows that there exists a non-identically zero section si ∈ H0(OEi
(−D)).

The surjectivity of ψi∗ implies that there exists σi ∈ H0(O eS
(−D)) such that

ψi∗(σi) = si. As (S, 0) is normal, there exists fi ∈ mS,0 with σi = fi ◦ π. If we
write D =

∑
j∈I ajEj , we see that vEi

(fi) = ai and vEj
(fi) ≥ aj , for all j 6= i.

We deduce that any generic linear combination f =
∑

i∈I λifi of the functions
so constructed verifies:

vEi
(f) = ai, ∀i ∈ I.

The proposition is proved.

Remark 3.2
a) The proof follows the same line as the one of Proposition 3.1 of [3] and 4.1

of [2], proved by Caubel, Némethi and Popescu-Pampu. The difference here is
that we no longer deal with a good resolution of (S, 0) and we do not ask for a
precise knowledge of the topological type of the total transform of f .

b) As Morales informed us, Laufer [10, 3.1] proved a related statement
when π is the minimal resolution of (S, 0):

If L is a line bundle on S̃m with L · Ei ≥ 2K eSm
· Ei, for all i ∈ I, then L

has no base points on M .

This implies immediately, by taking L = O eSm
(−D), that the conclusion of

Proposition 3.1 is true with the hypothesis (D+2K eSm
)·Ei ≤ 0, for all i ∈ I. As

in the sequel we work only with the minimal resolution, we could have chosen
to use Laufer’s criterion. By looking at the way we use Proposition 3.1 in the
proof of Proposition 4.3, one sees that this would have been enough in order
to prove our main Theorem 5.1. Nevertheless, we think that Proposition 3.1
has independent interest. Indeed, neither Laufer’s hypothesis nor ours implies
the other one. In order to see it, consider first a singularity whose minimal
resolution has an irreducible exceptional divisor E which is smooth, of genus 2
and with E2 = −1: then D = 4E verifies our hypothesis, but not Laufer’s.
Secondly, by considering another singularity with E = E1 + E2, pa(E1) =
pa(E2) = 0, E2

1 = −4, E2
2 = −2, E1 · E2 = 2, one sees that D = 4E1 + 4E2

verifies Laufer’s hypothesis but not ours.
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4. The conditions (*) and (**)

From now on, we deal again with the minimal resolution πm of the
germ (S, 0).

Inside the real vector space with basis (Ei)i∈I , we consider the open half-
spaces {∑

i∈I

aiEi | ai < aj

}
,

for each i 6= j. We call them the fundamental half-spaces of πm.

We introduce two conditions on the normal singularity (S, 0):

(*) the intersection of L0(πm) with each fundamental half-space is non-empty;

(**) E ∈ L0(πm).

Notice that both conditions depend only on the intersection matrix of E.
In particular, they are purely topological.

Lemma 4.1. — The germs which verify condition (**) form a strict subset of

those which verify condition (*).

Proof. — Let (S, 0) verify condition (**). Then, for n ∈ N∗ big enough (in fact
for n > maxi,j∈I{Ei ·Ej/|E · Ei|}), one sees from the definition of the strict
Lipman semigroup that nE+Ej ∈ L0(πm), for all j ∈ I. But each fundamental
half-space contains at least one of the divisors nE+Ej , which shows that (S, 0)
verifies condition (*).

Consider then any normal singularity (S, 0) whose minimal resolution has
the same intersection matrix as a singularity of type An (that is, E =

∑n

i=1 Ei
with E2

i = −2, for all i ∈ {1, . . . , n}, Ei · Ei+1 = 1, for all i ∈ {1, . . . , n− 1}
and Ei ·Ej = 0, for all i, j ∈ {1, . . . , n} such that |i − j| /∈ {0, 1}), the com-
ponents Ei having otherwise arbitrary genera and singularities. Take n ≥ 3.
Then E · Ei = 0, for all i ∈ {2, . . . , n − 1}, which shows that E /∈ L0(πm).
That is, the germ (S, 0) does not verify condition (**).

Define

αk := nk −
(k − 1)k

2
for any k ∈ {1, . . . , n}. Then it is immediate to see from the definitions that the
divisors D :=

∑n

k=1 αkEk and D′ :=
∑n

k=1 αn+1−kEk are in the strict Lipman
semigroup and that each fundamental half-space contains exactly one of them.
Therefore, the germ (S, 0) verifies condition (*). This shows that the inclusion
stated in the lemma is strict.

Remark 4.2
a) We choose to distinguish inside the class of singularities which verify

condition (*) those which verify condition (**) for computational convenience,
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because this second condition is more readily verified on a given intersection
matrix.

b) An-type singularities are the only rational double points which verify
condition (*). This illustrates the difficulty of dealing with Dn-type singularities
(see Plénat [19]).

The motivation to introduce condition (*) comes from the following propo-
sition:

Proposition 4.3. — Suppose that (S, 0) verifies condition (*). Then, for any

pair of distinct indices i, j ∈ I, there exists a function f ∈ mS,0 such that

vEi
(f) < vEj

(f).

Proof. — Let i, j ∈ I satisfy i 6= j. As (S, 0) verifies condition (*), there exists
D =

∑
ℓ∈I aℓEℓ ∈ L0(πm) such that ai < aj . Then, for n ∈ N∗ big enough,

one has (nD + Ek + K eS
) · Eℓ + 2δℓk ≤ 0, for all k, ℓ ∈ I. By Proposition 3.1,

there exists f ∈ mS,0 such that div(f ◦ πm) = nD, which shows that vEi
(f) =

nai < naj = vEj
(f).

Remark 4.4. — The referee suggests us the following alternative proof of
the previous proposition. Let D =

∑
ℓ∈I aℓEℓ ∈ L0(πm) such that ai < aj .

Then O eSm
(−D) is ample (see Lipman [16, 10.4 and proof of 12.1 (iii)]). Thus

there exists n ∈ N∗ such that O eSm
(−nD) is generated by its global sections.

Therefore there exists f ∈ mS,0 such that the exceptional part of div(f ◦ π) is
precisely nD. For such an f , we have of course vEi

(f) < vEj
(f).

5. The proof of the main theorem

Our main theorem is:

Theorem 5.1. — Suppose that (S, 0) verifies condition (*). Then the Nash

map N is bijective.

Proof. — By combining Proposition 2.1 and Proposition 4.3, we deduce that
V (Ei) * V (Ej) for any i 6= j. As (S, 0)∞ =

⋃
i∈I V (Ei), we deduce that

the schemes (V (Ei))i∈I are precisely the irreducible components (Ck)k∈K
of (S, 0)∞. As the Nash map N is injective, this shows its surjectivity. The
theorem is proved.

Using Lemma 4.1, we get as an immediate corollary:

Corollary 5.2. — Suppose that (S, 0) verifies condition (**). Then the Nash

map N is bijective.
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We denote by Γ(E) the dual graph of E, whose vertices correspond bijec-
tively to the components (Ei)i∈I , the vertex Ei being weighted by E2

i and the
vertices Ei, Ej being joined by Ei ·Ej vertices, for any i 6= j. Let γ(Ei) denote
the number of edges which start from the vertex Ei (so, each loop based at the
vertex Ei counts for 2).

The next proposition characterizes rational singularities among those which
verify condition (**).

Proposition 5.3. — A singularity which verifies condition (**) is rational if

and only if the following conditions are simultaneously verified:

(i) Γ(E) is a tree;

(ii) Ei ≃ P1, for all i ∈ I;

(iii) |E2
i | > γ(Ei), for all i ∈ I.

Proof. — First of all, notice that conditions (i) and (ii) imply that πm is a
good resolution.

Suppose that (S, 0) is rational and verifies condition (**). Then conditions
(i) and (ii) are verified, as general properties of rational singularities (see Băde-
scu [1, 3.32.3]). As E ·Ei = −|E2

i | + γ(Ei), condition (iii) is also verified.
Conversely, suppose that the conditions (i), (ii) and (iii) are verified. By a

result of Spivakovsky [24, II] (see also Lê [12, 5.3]), this shows that (S, 0) is a
normal minimal singularity, and in particular it is rational. Consult the refer-
ences above for the notion of minimal surface singularity, as well as Kollár [7],
where this notion was introduced in arbitrary dimensions.

Remark 5.4
a) Normal minimal surface singularities are precisely those whose minimal

good resolution verifies conditions (i), (ii) and

(iii)′: |E2
i | ≥ γ(Ei), for all i ∈ I.

The stronger condition (iii) is equivalent to the fact that the minimal res-
olution can be obtained by blowing-up once the origin (see Spivakovsky [24,
II], Lê [12, 6.1]): one says that the singularity is superisolated. Thus, Propo-
sition 5.3 is equivalent to the fact that the rational surface singularities which
verify condition (**) are precisely the superisolated minimal ones (a remark we
owe to Lejeune-Jalabert).

b) There are rational singularities which verify condition (*) but do not
verify condition (**). Consider for example a germ of normal surface whose
minimal resolution πm is good and has a reduced exceptional divisor E with
four components of genus 0 such that

E2
1 = E2

2 = E2
3 = −n ≤ −5, E2

4 = −2,

E1E4 = E2E4 = E3E4 = 1, E1E2 = E2E3 = E3E1 = 0.
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Then it is immediate to verify that the divisors

(2n+ 1)(E1 + E2 + E3) + 4nE4,

(2n2 − 2n+ 3)E1 + 3n(E2 + E3) + (n2 + 3n)E4

as well as those obtained by permuting E1, E2, E3 are in L0(πm) and that each
fundamental half-space contains at least one of them. So, the germ verifies
condition (*). But, as E.E4 > 0, the germ does not verify condition (**).
Moreover, the dual graph Γ(E) is a subgraph of the dual graph associated
to the resolution of a plane curve singularity (attach n − 1 vertices to E1,
n− 2 vertices to E2 and n − 3 vertices to E3, all of them weighted by −1).
Using Lê [12, 4.8] (see also Spivakovsky [24, II]), we see that the singularity is
sandwiched, and in particular it is rational.

As condition (iii) in the Proposition 5.3 is equivalent with condition (**),
we see immediately that any (abstract) graph is the dual graph of the minimal
resolution of a singularity which verifies condition (**), once the weights of the
vertices are negative enough. Then, if one of the conditions (i) or (ii) is not
satisfied, we are in presence of a non-rational singularity. This shows:

Corollary 5.5. — There exists an infinity of pairwise topologically distinct

normal non-rational surface singularities which verify condition (**), and con-

sequently for which the Nash map is bijective.
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[5] Grauert (H.) – Über Modifikationen und exzeptionnelle analytische Men-

gen, Math. Ann., t. 146 (1962), pp. 331–368.

[6] Ishii (S.) & Kollár (J.) – The Nash problem on arc families of singu-

larities, Duke Math. J., t. 120 (2003), pp. 601–620.

[7] Kollár (J.) – Toward moduli of singular varieties, Comp. Math., t. 56
(1985), pp. 369–398.

tome 134 – 2006 – no 3



THE NASH MAP FOR SURFACE SINGULARITIES 393

[8] Laufer (H.) – Normal two-dimensional Singularities, Princeton Univ.
Press, 1971.

[9] , On rational singularities, Amer. J. Math., t. 94 (1972), pp. 597–
608.

[10] , Weak simultaneous resolution for deformations of Gorenstein sur-

face singularities, Part 2, Proc. Symp. Pure Math., t. 40 (1983), pp. 1–29.
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