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Approximate RootsPatrik Popesu-PampuUniversit�e Paris 7 Denis DiderotInstitut de Math�ematiques-UMR CNRS 7586Equipe \G�eom�etrie et Dynamique"Case 70122, plae Jussieu75251-Paris Cedex 05ppopesu�math.jussieu.frAbstrat. Given an integral domain A, a moni polynomial P of degreen with oeÆients in A and a divisor p of n, invertible in A, there is aunique moni polynomial Q suh that the degree of P �Qp is minimalfor varying Q. This Q, whose p-th power best approximates P , is alledthe p-th approximate root of P . If f 2 C[[X℄℄[Y ℄ is irreduible, thereis a sequene of harateristi approximate roots of f , whose orders aregiven by the singularity struture of f . This sequene gives importantinformation about this singularity struture. We study its properties inthis spirit and we show that most of them hold for the more generalonept of semiroot. We show then how this loal study adapts to givea proof of Abhyankar-Moh's embedding line theorem.1 IntrodutionThe onept of approximate root was introdued and studied in [2℄ in order toprove (in [3℄) what is now alled the Abhyankar-Moh-Suzuki theorem: it states thatthe aÆne line an be embedded in a unique way (up to ambient automorphisms)in the aÆne plane. More preisely, formulated algebraially the theorem is:Theorem (Embedding line theorem)If C[X;Y ℄ ! C[T ℄ is an epimorphism of C-algebras, then there exists an iso-morphism of C-algebras C[U; V ℄ ! C[X;Y ℄ suh that the omposed epimorphismC[U; V ℄ ! C[T ℄ is given by U = T; V = 0.This theorem, as well as other theorems about the group of automorphisms ofC[X;Y ℄, was seen to be an easy onsequene of the following one, in whih d(P )denotes the degree of the polynomial P :2000 Mathematis Subjet Classi�ation. Primary 32B30, 14B05; Seondary 14R15.2002 Amerian Mathematial Soiety1



2 Patrik Popesu-PampuTheorem (Epimorphism theorem)If C[X;Y ℄ ! C[T ℄ is an epimorphism of C-algebras, given by X = P (T ); Y =Q(T ), with d(P ) > 0; d(Q) > 0, then d(P ) divides d(Q) or vie-versa.Sometimes in the literature the names of the two theorems are permuted. Theinitial proofs ([3℄) were simpli�ed in [5℄. Let us indiate their ommon startingpoint.In order to prove the embedding line theorem, Abhyankar and Moh introduedthe image urve of the embedding, whose equation is obtained by omputing aresultant: f(X;Y ) = ResT (P (T )�X;Q(T )� Y ). The urve f(X;Y ) = 0 has onlyone plae at in�nity (see the general algebrai de�nition in [5℄; in our ontext itmeans simply that the losure of the urve in the projetive plane has only onepoint on the line at in�nity and it is unibranh at that point). The fat thatC[X;Y ℄ ! C[T ℄ is an epimorphism is equivalent with the existene of a relationT = 	(P (T ); Q(T )), where 	 2 C[X;Y ℄. This in turn is equivalent with theexistene of 	 suh that the degree of 	(P (T ); Q(T )) is equal to 1. Now, when	 varies, those degrees form a semigroup. This semigroup was seen to be linkedwith a semigroup of the unique branh of 	 at in�nity, whih has a loal de�nition.That is how one passes from a global problem to a loal one.To desribe the situation near the point at in�nity, in [3℄ the aÆne plane wasnot seen geometrially as a hart of the projetive plane. The operation was donealgebraially, making the hange of variable X ! 1X . So from the study of thepolynomial f one passed to the study of �(X;Y ) = f(X�1; Y ), seen as an elementof C((X))[Y ℄. That is why in [2℄ the loal study was made for meromorphi urves,i.e., elements of C((X))[Y ℄. The lassial Newton-Puiseux expansions were gen-eralized to that situation (see the title of [2℄) as well as the notion of semigroup.In order to study this semigroup some speial approximate roots of � were used,whih we all harateristi approximate roots. Their importane in this ontextlies in the fat that they an be de�ned globally in the plane, their loal versionsbeing obtained with the same hange of variable as before: X ! 1X .The proofs in [2℄ or in [5℄ of the loal properties of approximate roots dealtexlusively with loally irreduible meromorphi urves. In [36℄ a generalization forpossibly reduible polynomials was ahieved, over an arbitrary non-arhimedeanvalued �eld.An introdution to Abhyankar's philosophy on urves and to his notations anbe found in [9℄. A gradual presentation of the general path of the proof of theepimorphism theorem was tried at an undergraduate level in [4℄. See also thepresentation done in [39℄. Other appliations to global problems in the plane aregiven in [6℄. We quote here the following generalization of the embedding linetheorem:Theorem (Finiteness theorem)Up to isomorphisms of the aÆne plane, there are only �nitely many embeddingsof a omplex irreduible algebrai urve with one plae at in�nity in the aÆne plane.The referene [6℄ also ontains some onjetures in higher dimensions.Here we disuss mainly the loal aspets of approximate roots. We work in lessgenerality, as suggested by the presentation of the subjet made in [25℄. Namely,we onsider only polynomials in C[[X ℄℄[Y ℄. This framework has the advantage ofgiving more geometrial insight, many omputations being interpreted in terms of



Approximate Roots 3intersetion numbers (see also [17℄), a viewpoint that is laking in the meromorphiase. This has also the advantage of allowing us to interpret the loal propertiesof approximate roots in terms of the minimal resolution of f , a onept whih hasno analog in the ase of meromorphi urves. We de�ne the onept of semiroots,as being those urves that have the same intersetion-theoretial properties as theharateristi approximate roots, and we show that almost all the loal propertiesusually used for the harateristi roots are in fat true for semiroots.First we introdue the notations for Newton-Puiseux parameterizations of aplane branh in arbitrary oordinates, following [25℄. In setion 3 we introdue thegeneral notion of approximate roots. We explain the onept of semigroup of thebranh and related notions in setion 4. In setion 5 we introdue the harateristiapproximate roots of the branh, we state their main intersetion-theoretial loalproperties (Theorem 5.1) and we add some orollaries. In setion 6 we explain themain steps of the proof of Theorem 5.1. In setions 7 and 8 we give the proofsof Theorem 5.1, its orollaries and the auxiliary propositions stated in the text.We prefer to isolate the proofs from the main text, in order to help reading it. Inthe �nal setion we indiate the hanges one must make to the theory explainedbefore in order to deal with the meromorphi urves and we sketh a proof of theembedding line theorem.A forerunner of the onept of approximate root was introdued in an arith-metial ontext in [32℄ and [33℄ (see also [28℄ for some historial remarks on thosepapers). The existene of approximate roots is the ontent of exerise 13, x1, in [13℄.The onept of semiroot is losely assoiated with that of urve having maximalontat with the given branh, introdued in [29℄ and [30℄. More details on thislast onept are given in the omments following Corollary 5.6. Approximate rootsof elements of C[[X ℄℄[Y ℄ are also used in [12℄ to study the loal topology of planeurves. The approximate roots of urves in positive harateristi are studied in[40℄ using Hamburger-Noether expansions and the epimorphism theorem is gener-alized to this ase under some restritions. The approximate roots of meromorphiurves are used in [11℄ for the study of aÆne urves with only one irregular value.The projetivized approximate roots of a urve with one plae at in�nity are usedin [16℄ in order to obtain global versions of Zariski's theory of omplete ideals. In[23℄, the theorem 5.1 proved below and some of its orollaries are generalized to thease of quasi-ordinary singularities of hypersurfaes.We would like to thank S.S.Abhyankar for the explanations he gave us in Saska-toon on approximate roots. We were also greatly helped in our learning of thesubjet by the artile [25℄ of J.Gwo�zdziewiz and A.P loski. We thank B.Teissier,E.Gar��a Barroso and P.D.Gonz�alez P�erez for their omments on preliminary ver-sions of this work and S.Kuhlmann and F.V.Kuhlmann for the invitation to talkon this subjet in Saskatoon. 2 NotationsIn what follows we do not are about maximal generality on the base �eld. Wework over C, the �eld of omplex numbers. By 00ajb00 we mean \a divides b", whosenegation we note 00a 6 jb00. The greatest ommon divisor of a1; :::; am is denotedgd(a1; :::; am). If q 2 R, its integral part is denoted [q℄.We onsider f(X;Y ) 2 C[[X ℄℄[Y ℄, a polynomial in the variable Y , moni andirreduible over C[[X ℄℄, the ring of formal series in X :



4 Patrik Popesu-Pampuf(X;Y ) = Y N + �1(X)Y N�1 + �2(X)Y N�2 + � � �+ �N (X)where �1(0) = � � � = �N (0) = 0.If we embed C[[X ℄℄[Y ℄ ,! C[[X;Y ℄℄, the equation f(X;Y ) = 0 de�nes a germof formal (or algebro��d) irreduible urve at the origin - we all it shortly a branh- in the plane of oordinates X;Y . We denote this urve by Cf .Conversely, if a branh C ,! C2 is given, the Weierstrass preparation theoremshows that it an be de�ned by a unique polynomial of the type just disussed, onethe ambient oordinates X;Y have been hosen, with the exeption of C = Y -axis.If we desribe like this a urve by a polynomial equation f with respet to thevariable Y , we all briey its degree N in Y the degree of f , and we denote it byd(f) or dY (f) if we want to emphasize the variable in whih it is polynomial. WhenC is transverse to the Y -axis (whih means that the tangent ones of C and of theY -axis have no ommon omponents), we have the equality d(f) = m(C), wherem(C) denotes the multipliity of C (see setion 4).From now on, eah time we speak about the urve C, we mean the urve Cf ,for the �xed f .The urve C an always be parameterized in the following way (see [20℄, [46℄,[9℄, [44℄, [45℄):(X = TNY = Pj�1 ajT j = � � �+ aB1TB1 + � � �+ aB2TB2 + � � �+ aBGTBG + � � � (2.1)with gd(fNg [ fj; aj 6= 0g) = 1.The exponents Bj , for j 2 f1; :::; Gg are de�ned indutively:B1 := minfj; aj 6= 0; N 6 jjgBi := minfj; aj 6= 0; gd(N;B1; :::; Bi�1) 6 jjg, for i � 2:The number G is the least one for whih gd(N;B1; :::; BG) = 1.We de�ne also: B0 := N = d(f). Then (B0; B1; :::; BG) is alled the har-ateristi sequene of Cf in the oordinates X;Y . The Bi's are the harateristiexponents of Cf with respet to (X;Y ).A parameterization like (2.1) is alled a primitive Newton-Puiseux parameter-ization with respet to (X;Y ) of the plane branh C. Notie that X and Y annotbe permuted in this de�nition.Let us explain why we added the attribute \primitive". If we write T = UM ,where M 2 N�, we obtain a parameterization using the variable U . In the newparameterization, the greatest ommon divisor of the exponents of the series X(U)and Y (U) is no longer equal to 1. In this ase we say that the parameterization isnot primitive. When we speak only of a \Newton-Puiseux parameterization", wemean a primitive one.We de�ne now the sequene of greatest ommon divisors: (E0; E1; :::; EG) inthe following way: Ej = gd(B0; :::; Bj) for j 2 f0; :::; Gg:In partiular: E0 = N; EG = 1. De�ne also their quotients:Ni = Ei�1Ei > 1; for 1 � i � G:This implies: Ei = Ni+1Ni+2 � � �NG; for 0 � i � G� 1:



Approximate Roots 5Let us introdue the notion of Newton-Puiseux series of C with respet to(X;Y ). It is a series of the form:�(X) =Xj�1 ajX jN (2.2)obtained from (2.1) by replaing T by X 1N . It is an element of C[[X 1N ℄℄. Onehas then the equality f(X; �(X)) = 0, so �(X) an be seen as an expression fora root of the polynomial equation in Y : f(X;Y ) = 0. All the other roots an beobtained from (2.2) by hanging X 1N to !X 1N , where ! is an arbitrary N -th root ofunity. This is a manifestation of the fat that the Galois group of the �eld extensionC((X)) ! C((X 1N )) is Z=NZ. From this remark we get another presentation ofthe harateristi exponents:Proposition 2.1 The set fB1N ; :::; BGN g is equal to the set:fvX(�(X)� �(X)); �(X) and �(X) are distint roots of fg:Here vX designates the order of a formal frational power series in the variableX . Given a Newton-Puiseux series (2.2), de�ne for k 2 f0; :::; Gg:�k(X) = X1�j<Bk+1 ajX jN :It is the sum of the terms of �(X) of exponents stritly less than Bk+1N . Weall �k(X) a k-trunated Newton-Puiseux series of C with respet to (X;Y ). If theparameterization (2.1) is redued, then �k(X) 2 C[[X EkN ℄℄ and there are exatlyNEk suh series.Before introduing the onept of approximate root, we give an example of anatural question about Newton-Puiseux parameterizations, whih will be answeredvery easily using that onept.Motivating exampleThere are algorithms to ompute Newton-Puiseux parameterizations of thebranh starting from the polynomial f . If one wants to know only the beginningof the parameterization, one ould ask if it is enough to know only some of theoeÆients of the polynomial f . The answer is aÆrmative, as is shown by thefollowing proposition:Proposition 2.2 If f is irreduible with harateristi sequene (B0; :::; BG),then the terms of the k-trunated Newton-Puiseux series of f depend only on�1(X); :::; � NEk (X).The proof will appear to be very natural one we know the onept of ap-proximate root and Theorem 5.1. Let us illustrate the proposition by a onretease.Consider:f(X;Y ) = Y 4 � 2X3Y 2 � 4X5Y +X6 �X7.One of its Newton-Puiseux parameterizations is:



6 Patrik Popesu-Pampu(X = T 4Y = T 6 + T 7We get, using the proposition for k = 1, that every irreduible polynomial ofthe form: g(X;Y ) = Y 4 � 2X3Y 2 + �3(X)Y + �4(X)whose harateristi sequene is (4; 6; 7), has a Newton-Puiseux series of the type:Y = X 32 + (X);with vX() � 74 .It is now the time to introdue the approximate roots...3 The de�nition of approximate rootsLet A be an integral domain (a unitary ommutative ring without zero divisors).If P 2 A[Y ℄ is a polynomial with oeÆients in A, we shall denote by d(P ) its degree.Let P 2 A[Y ℄ be moni of degree d(P ), and p a divisor of d(P ). In generalthere is no polynomial Q 2 A[Y ℄ suh that P = Qp, i.e. there is no exat rootof order p of the polynomial P . But one an ask for a best approximation of thisequality. We speak here of approximation in the sense that the di�erene P �Qpis of degree as small as possible for varying Q. Suh a Q does not neessarily exist.But it exists if one has the following ondition on the ring A, veri�ed for examplein the ase that interests us here, A = C[[X ℄℄: p is invertible in A.More preisely, one has the following proposition:Proposition 3.1 If p is invertible in A and p divides d(P ), then there is aunique moni polynomial Q 2 A[Y ℄ suh that:d(P �Qp) < d(P )� d(P )p : (3.1)This allows us to de�ne:De�nition 3.2 The unique polynomial Q of the preeding proposition isnamed the p-th approximate root of P . It is denoted ppP .Obviously: d( ppP ) = d(P )p :Example: Let P = Y n + �1Y n�1 + � � �+ �n be an element of A[Y ℄. Then, if n isinvertible in A: npP = Y + �1n :We reognize here the Tshirnhausen transformation of the variable Y . That isthe reason why initially (see the title of [2℄) the approximate roots were seen asgeneralizations of the Tshirnhausen transformation.We give now a proposition showing that in some sense the notation ppP isadapted:Proposition 3.3 If p; q 2 N� are invertible in A, then qp ppP = pqpP .



Approximate Roots 7We see that approximate roots behave in this respet like usual d-th roots. Thefollowing onstrution shows another link between the two notions. We add it forompleteness, sine it will not be used in the sequel.Let P 2 A[Y ℄ be a moni polynomial. Consider P1 2 A[Z�1℄, P1(Z) = P (Z�1).If we embed the ring A[Z�1℄ into A((Z)), the ring of meromorphi series withoeÆients in A, the p-th root of P1 exists inside A((Z)). It is the unique series P2with prinipal term 1 � Z�np suh that P p2 = P1. We note:P 1p1 := P2:Consider the purely meromorphi part M(P 1p1 ) of P 1p1 , the sum of the termshaving Z-exponents � 0.We have M(P 1p1 ) 2 A[Z�1℄, so:Q(Y ) = M(P 1p1 )(Y �1) 2 A[Y ℄:We an state now the proposition (see [35℄, [36℄):Proposition 3.4 If Q 2 A[Y ℄ is de�ned as before, then Q = ppP .4 The semigroup of a branhLet OC = C[[X ℄℄[Y ℄=(f) be the loal ring of the germ C at the origin. It is anintegral loal ring of dimension 1.Let OC ! OC be the morphism of normalization of OC , i.e., OC is the integrallosure of OC in its �eld of frations. This new ring is regular (normalization is adesingularization in dimension 1), and so it is a disrete valuation ring of rank 1.Moreover, there exists an element T 2 OC , alled a uniformizing parameter, suhthat OC ' C[[T ℄℄. Then the valuation is simply the T -adi valuation vT , whihassoiates to eah element of OC , seen as a series in T , its order in T .De�nition 4.1 The semigroup �(C) of the branh C is the image by theT -adi valuation of the non zero elements of the ring OC :�(C) := vT (OC � f0g) � vT (OC � f0g) = N = f0; 1; 2; :::g:The set �(C) is indeed a semigroup, whih omes from the additivity propertyof the valuation vT :8�;  2 OC � f0g; vT (� ) = vT (�) + vT ( ):The previous de�nition is intrinsi and it does not depend on the fat that theurve C is planar. Let us now turn to other interpretations of the semigroup.First, our urve is given with a �xed embedding in the plane of oordinates(X;Y ). One we have hosen a uniformizing parameter T , we have obtained aparameterization of the urve: � X = X(T )Y = Y (T ) .For example, a Newton-Puiseux parameterization would work.If f 0 2 OC � f0g, it an be seen as the restrition of an element of the ringC[[X ℄℄[Y ℄, whih we denote by the same symbol f 0. The urve C 0 de�ned by theequation f 0 = 0 has an intersetion number with C at the origin. We note it (f; f 0),or (C;C 0), to insist on the fat that this number depends only on the urves, andnot on the oordinates or the de�ning equations. We have then the equalities:vT (f 0) = vT (f 0(X(T ); Y (T ))) = (f; f 0);



8 Patrik Popesu-Pampuwhih provides a geometrial interpretation of the semigroup of the branh C:�(C) = f(f; f 0); f 0 2 C[[X ℄℄[Y ℄; f 6 jf 0g:From this viewpoint, the semigroup is simply the set of possible intersetion num-bers with urves not ontaining the given branh.The minimal non-zero element of �(C) is the multipliity m(C), noted alsom(f) if C is de�ned by f . It is the lowest degree of a monomial appearing in theTaylor series of f , and therefore also the intersetion number of C with smoothurves passing through the origin and transverse to the tangent one of C.If p1; :::; pl are elements of �(C), the sub-semigroup Np1 + � � � + Npl theygenerate is denoted by: hp1; :::; pli:One has then the following result, expressing a set of generators of the semigroupin terms of the harateristi exponents:Proposition 4.2 The degree N of the polynomial f is an element of �(C),denoted B0. So, B0 = B0. De�ne indutively other numbers Bi by the followingproperty: Bi := minfj 2 �(C); j =2 hB0; :::; Bi�1ig:Then this sequene has exatly G+ 1 terms B0; :::; BG, whih verify the followingproperties for 0 � i � G (we onsider by de�nition that BG+1 = 1):1) Bi = Bi +Pi�1k=1 Ek�1�EkEi�1 Bk:2) gd(B0; :::; Bi) = Ei:3)NiBi < Bi+1:A proof of this proposition is given in [49℄ for generi oordinates (see the de�-nition below) and in [25℄ in this general setting. Other properties of the generatorsare given in [34℄, in the generi ase (see the de�nition below). In fat the proof anbe better oneptualized if one uses the notion of semiroot, more general than thenotion of harateristi root. This notion is explained in setion 6. When readingthe proof of Proposition 4.2, one should beome onvined that there is no viiousirle in the use of the Bk's.The point is that it appears easier to de�ne the Bk's by property 1) and then toprove the minimality property of the sequene. We have used the other way roundin the formulation of Proposition 4.2 beause at �rst sight the minimality de�nitionseems more natural. One should also read the omments preeding Proposition 9.1.The generators of the semigroup introdued in this proposition depend on theoordinates X;Y , but only in a loose way. Indeed, they are uniquely determinedby the semigroup one the �rst generator B0 is known. This generator, beingequal to the degree of the polynomial f , depends on X;Y . Geometrially, it is theintersetion number (f;X). It follows from this that for generi oordinates, i.e.with the Y -axis transverse to the urve C, the generators are independent of theoordinates.We an therefore speak of generi harateristi exponents. They are a ompleteset of invariants for the equisingularity and the topologial type of the branh (see[49℄). For the other disrete invariants introdued before, we speak in the sameway of generi ones and we use lower ase letters to denote them, as opposed to



Approximate Roots 9apital ones for the invariants in arbitrary oordinates. Namely, we use the followingnotations for the generi invariants:n(b0; :::; bg)(e0; :::; eg)(n1; :::; ng)(b0; :::; bg) :This makes it easy to reognize in every ontext if we suppose the oordinates tobe generi or not.We all g the genus of the urve C.The exponent b0 is equal to the multipliity m(C) of C at the origin. When Dis a urve passing through 0, we have (C;D) = b0 if and only if D is smooth andtransverse to C at 0.The preeding proposition shows that in arbitrary oordinates the generatorsof the semigroup are determined by the harateristi exponents. But the rela-tions an be reversed, and show that onversely, the harateristi exponents aredetermined by the generators of the semigroup. From this follows the invarianeof the harateristi exponents with respet to the generi oordinates hosen forthe omputations. Moreover, like this one an easily obtain a proof of the lassialinversion formulae for plane branhes (see another proof in [1℄). Let us state it ina little extended form.Let (X;Y ) and (x; y) be two systems of oordinates, the seond one beinggeneri for C. We onsider the harateristi exponents (B0; :::; BG) of C withrespet to (X;Y ).Proposition 4.3 (Inversion formulae)The �rst harateristi exponent B0 an take values only in the setflb0; 1 � l � [ b1b0 ℄g [ fb1g. The knowledge of its value ompletely determines therest of the exponents in terms of the generi ones:1) B0 = b0 ) G = g and:(B0; :::; BG) = (b0; :::; bg):2) B0 = lb0 with 2 � l � [ b1b0 ℄ ) G = g + 1 and:(B0; :::; BG) = (lb0; b0; b1 + (1� l)b0; :::; bg + (1� l)b0):3) B0 = b1 ) G = g and:(B0; :::; BG) = (b1; b0; b2 + b0 � b1; b3 + b0 � b1; :::; bg + b0 � b1):Moreover, for k 2 f1; :::; gg, the k-trunations of the Newton-Puiseux serieswith respet to (x; y) depend only on the (k+ �)-trunation of the Newton-Puiseuxseries with respet to (X;Y ), where � = G� g 2 f0; 1g.The name given lassially to one form or another of this proposition omesfrom the fat it answers the question: what an we say about the Newton-Puiseuxseries with respet to (Y;X) if we know it with respet to (X;Y )? In this question,one simply inverts the oordinates.We prove the statement on trunations using, as in the ase of Proposition 4.2,the notion of semiroot, introdued in setion 6.



10 Patrik Popesu-Pampu5 The main theoremAs before, the polynomial f 2 C[[X ℄℄[Y ℄ is supposed to be irreduible. To beonise, we note in what follows: fk := Ekpf:Next theorem is the main one, (7.1), in [2℄. A di�erent proof is given in [5℄,(8.2). Here we give a proof inspired by [25℄.Theorem 5.1 The approximate roots fk for 0 � k � G, have the followingproperties:1) d(fk) = NEk and (f; fk) = Bk+1.2) The polynomial fk is irreduible and its harateristi exponents in theseoordinates are B0Ek ; B1Ek ; :::; BkEk .Theorem 5.1 gives properties of some of the approximate roots of f . One doesnot onsider all the divisors of N , but only some speial ones, omputed fromthe knowledge of the harateristi exponents. For this reason, we name them theharateristi approximate roots of f .We give now a list of orollaries. In fat these orollaries hold more generally forsemiroots, see the omments made after De�nition 6.4. The proofs of the theoremand of its orollaries are given in setion 7. Before that, in setion 6 we explain themain steps in the proof of Theorem 5.1Corollary 5.2 The irreduible polynomial f being given, one an omputereursively its harateristi approximate roots in the following way. Compute theN -th root f0 of f and put E0 = N . If fk was omputed, put (f; fk) = Bk+1. AsEk has already been omputed, take Ek+1 = gd(Ek; Bk+1) and ompute fk+1 == Ek+1pf . One an then dedue the harateristi exponents from the harateristiroots.This has been extended to the ase of meromorphi urves in [10℄. The preed-ing algorithm works only if f is irreduible. But it an be adapted to give a methodof deiding whether a given f is indeed irreduible, as was done in [8℄. See alsothe more elementary presentation given in [7℄. A generalization of this riterion ofirreduibility to the ase of arbitrary harateristi is ontained in [19℄.Following the proof of the proposition, we add an example of appliation of thealgorithm.Corollary 5.3 For 0 � k � G, the polynomials f and fk have equal sets ofk-trunations of their Newton-Puiseux series.This, together with the remark following equation (8.1), gives an immediateproof of Proposition 2.2.Corollary 5.4 Every � 2 C[[X ℄℄[Y ℄ an be uniquely written as a �nite sum ofthe form: � = Xi0;:::;iG �i0:::iGf i00 f i11 � � � f iGGwhere iG 2 N, 0 � ik < Nk+1 for 0 � k � G � 1 and the oeÆients �i0:::iG areelements of the ring C[[X ℄℄. Moreover:1) the Y -degrees of the terms appearing in the right-hand side of the pre-eding equality are all distint.



Approximate Roots 112) the orders in T of the terms�i0:::iG�10(TN)f0(TN ; Y (T ))i0 � � � fG�1(TN ; Y (T ))iG�1are pairwise distint, where T ! (TN ; Y (T )) is a Newton-Puiseux parameterizationof f .There is no a priori bound on iG: this exponent is equal to [d(�)N ℄. The ordersin T appearing in 2) are the intersetion numbers of f with the urves de�ned bythe terms of the sum whih are not divisible by f .This orollary is essential for the appliations of Theorem 5.1 to the proof ofthe embedding line theorem. Indeed, the point 2) allows one to ompute (f; �)in terms of the numbers (f; �i0:::iG�10f i00 f i11 � � � f iG�1G�1 ). But, as explained in theintrodution, one is interested in the semigroup of f , omposed of the intersetionnumbers (f; �) for varying �. This way of studying the semigroup of f is the onefoused on in [2℄ and [5℄.Corollary 5.5 The images of X; f0; f1; :::; fG�1 into the graded ring grvTOCgenerate it as a C-algebra. If the oordinates are generi, they form a minimalsystem of generators.We have de�ned generi oordinates in the remark following Proposition 4.2.Here grvTOC is the graded ring of OC with respet to the valuation vT . This oneptis de�ned in general, if A is a domain of integrity, F (A) its �eld of frations and� a valuation of F (A) that is positive on A. In this situation, we de�ne �rst thesemigroup of values �(A) to be the image of A�f0g by the valuation. If p 2 �(A),we de�ne the following ideals of A:Ip := fx 2 A; �(x) � pg;I+p := fx 2 A; �(x) > pg:The graded ring of A with respet to the valuation � is de�ned in the following way:gr�A := Mp2�(A) Ip=I+p :This viewpoint on the approximate roots is foused on in [42℄ and [43℄, where thegeneral onept of generating sequene for a valuation is introdued. This oneptgeneralizes the sequene of harateristi approximate roots, introdued before.In the ase of irreduible germs of plane urves, the spetrum of grvT (OC) isthe so-alled monomial urve assoiated to C. It was used in [22℄ in order to showthat one ould understand better the desingularization of C by embedding it in aspae of higher dimension.Before stating the next orollary, let us introdue some other notions. For moredetails one an onsult [14℄, [31℄ and [42℄.An embedded resolution of C is a proper birational morphism � : � ! C2 suhthat � is smooth and the total transform ��1(C) is a divisor with normal rossings.Suh morphisms exist and they all fatorize through a minimal one �m : �m ! C2whih an be obtained in the following way. Start from C ,! C2 and blow-up theorigin. Take the total transform divisor of C in the resulting surfae. All its pointsare smooth or with normal rossings, with the possible exeption of the point onthe strit transform of C. If at this point the divisor is not with normal rossing,



12 Patrik Popesu-Pampu

Figure 1 The Dual Graphblow up the point. Then repeat the proess. After a �nite number of steps, oneobtains the minimal embedded resolution of C.The redued exeptional divisor E of �m is onneted, whih an be easilyseen from the previous desription by suessive blowing-up. This phenomenon ismuh more general, and known under the name \Zariski's onnetedness theorem"or \Zariski's main theorem", see [47℄, [37℄ and [27℄. The omponents of E areisomorphi to CP1. We onsider the dual graph D(�m) of E , whose verties are inbijetion with the omponents of E . Two verties are onneted by an edge if andonly if the orresponding omponents interset on �m. The graph D(�m) is thena tree like in Figure 1, in whih we represent only the underlying topologial spaeof the graph and not its simpliial deomposition.In this piture there are exatly g vertial segments, g being the genus of f(see its de�nition in the omments following Proposition 4.2). The �rst vertex onthe left of the horizontal segment orresponds to the omponent of E reated bythe �rst blowing-up. The vertex of attahment of the horizontal segment and ofthe right-hand vertial segment orresponds to the omponent of E whih uts thestrit transform of C.If we onsider also the strit transform of C on �m, we represent it by anarrow-head vertex onneted to the vertex of D(�m) whih represents the uniqueomponent of E whih it intersets. We denote this new graph by D(�m; f).This graph as well as various numerial haraters of the omponents of E anbe omputed from a generi Newton-Puiseux series for f . The �rst to have linkedNewton-Puiseux series with the resolution of the singularity seems to be M.Noetherin [38℄. See also [20℄ for the viewpoint of the italian shool.Corollary 5.6 Let �m be the minimal embedded resolution of Cf . We onsiderthe harateristi approximate roots fk, for 0 � k � g with respet to generioordinates. Let us denote by Ck the urve de�ned by the equation fk = 0. Onehas evidently Cf = Cg . Let us also denote by C 0k the strit transform of Ck bythe morphism �m. Then the urves C 0k are smooth and transverse to a uniqueomponent of the exeptional divisor of �m. The dual graph of the total transformof f0f1 � � � fg is represented in Figure 2.
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Figure 2 The Total Dual GraphThe previous orollary gives a topologial interpretation of the harateristiapproximate roots, showing how they an be seen as generalizations of smoothurves having maximal ontat with C.Suh a generalization was already made in [29℄ and [30℄, where the notion ofmaximal ontat with f was extended from smooth urves to singular urves havingat most as many generi harateristi exponents as f . It was further studied in[15℄. Let us explain this notion.If D is a plane branh, let�(D) := 1m(D) supD0f(D;D0)g;where the supremum is taken over all the hoies of smooth D0. It is a �niterational number, with the exeption of the ase when D is smooth, whih implies�(D) = +1:Consider now the sequene of point blowing-ups whih desingularizes C. Fori 2 f0; :::; gg, let Di be the �rst strit transform of C that has genus g� i. One hasD0 = C. De�ne: �i(C) := �(Di):The sequene (�0(C); :::; �g(C)) was named in [29℄ the sequene of Newton oeÆ-ients of C. In harateristi 0 - for example when working over C, as we do inthis artile - its knowledge is equivalent to the knowledge of the harateristi se-quene. The advantage of the Newton oeÆients is that they are de�ned in anyharateristi.De�nition 5.7 If D is a branh of genus k 2 f0; :::; gg, we say that D hasmaximal ontat with C if �i(D) = �i(C) for every i 2 f0; :::; kg and (C;D) isthe supremum of the intersetion numbers of C with urves of genus k having theprevious property.It an be shown with the same kind of arguments as those used to prove Corol-lary 5.6, that for every k 2 f0; :::; gg, the urves having genus k and maximalontat with f are exatly the k-semiroots in generi oordinates.In order to understand better Corollary 5.6, let us introdue another onept:De�nition 5.8 Let L be some omponent of the redued exeptional divisorE . A branh D ,! C2 is alled a urvette with respet to L if its strit transformby �m is smooth and transversal to L at a smooth point of E .



14 Patrik Popesu-PampuLet L0 be the omponent of E reated by the blowing-up of 0 2 C2. For everyk 2 f1; :::; gg, let Lk be the omponent at the free end of the k-th vertial segmentof D(�m). Let Lg+1 be the omponent interseting the strit transform of C.Corollary 5.9 A harateristi approximate root of f in arbitrary oordinatesis a urvette with respet to one of the omponents L0; L1; :::; Lg+1.This orollary is an improvement of Corollary 5.6, whih says this is true ingeneri oordinates. This more general property is important for the geometrialinterpretations of approximate roots given in [16℄. A deeper study of urvettes, forpossibly multi-branh urve singularities an be found in [31℄.6 The steps of the proofIn this setion we explain only the main steps in the proof of Theorem 5.1, aswell as a reformulation for the orollaries. The omplete proofs are given in setion7. First we have to introdue a new notion, fundamental for the proof, that ofthe expansion of a polynomial in terms of another polynomial. This is the notionmentioned in the title of [5℄.Let A be an integral domain and let P;Q 2 A[Y ℄ be moni polynomials suhthat Q 6= 0. We make the Eulidean division of P by Q and we keep dividing theintermediate quotients by Q until we arrive at a quotient of degree < d(Q):8>>>><>>>>:P = q0Q+ r0q0 = q1Q+ r1...qt�1 = qtQ+ rt :Here qt 6= 0 and d(qt) < d(Q). Then we obtain an expansion of P in terms ofQ: P = qtQt+1 + rtQt + rt�1Qt�1 + � � �+ r0:All the oeÆients qt; rt; rt�1; :::; r0 are polynomials in Y of degrees < d(Q). Thisis the unique expansion having this property:Proposition 6.1 One has a unique Q-adi expansion of P:P = a0Qs + a1Qs�1 + � � �+ as (6.1)where a0; a1; :::; as 2 A[Y ℄ and d(ai) < d(Q) for all i 2 f0; :::; sg.The Y -degreesof the terms aiQs�i in the right-hand side of equation (6.1) are all di�erent ands = [ d(P )d(Q) ℄. One has a0 = 1 if and only if d(Q) j d(P ). In this last situation,supposing that moreover s is invertible in A, one has a1 = 0 if and only if Q = spP .Remark: One should note the analogy with the expansion of numbers in abasis of numeration. To obtain that notion, one needs only to take natural numbersin spite of polynomials. Then the ai's are the digits of the expansion.De�nition 6.2 The polynomials P andQ are given as before, with d(Q) j d(P ).Let us suppose s = d(P )d(Q) is invertible in A. The Tshirnhausen operator �P of\ompletion of the s-power" is de�ned by the formula:�P (Q) := Q+ 1sa1:



Approximate Roots 15Look again at the example given after De�nition 3.2. The usual expressionP = Y n + �1Y n�1 + � � � + �n is the Y -adi expansion of P and npP is exatly�P (Y ). The following proposition generalizes this observation.Proposition 6.3 Suppose P 2 A[Y ℄ is moni and p j d(P ), with p invertiblein A. The approximate roots an be omputed by iterating the Tshirnhausenoperator on arbitrary polynomials of the orret degree:ppP = �P Æ �P Æ ::: Æ �P| {z }d(P )=p (Q)for all Q 2 A[Y ℄ moni of degree d(P )p .The steps of the proof of Theorem 5.1 are:Step 1 Show that there exist polynomials verifying the onditions of Theorem5.1, point 1).Step 2 Show that those onditions are preserved by an adequate Tshirnhausenoperator.Step 3 Apply Proposition 6.3 to show indutively that the harateristi rootsalso satisfy those onditions.Step 4 Show that the point 2) of Theorem 5.1 is true for all polynomialssatisfying the onditions of point 1).This motivates us to introdue a speial name for the polynomials verifying theonditions of Theorem 5.1, point 1):De�nition 6.4 A polynomial qk 2 C[[X ℄℄[Y ℄ is a k-semiroot of f if it ismoni of degree d(qk) = NEk and (f; qk) = Bk+1.The term of \semiroot" is taken from [8℄.We show in fat that all the orollaries of the main theorem (Theorem 5.1),with the exeption of the �rst one, are true for polynomials that are k-semirootsof f . That is why we begin the proofs of the orollaries 5.3, 5.4, 5.5, 5.6 and 5.9by restating them in this greater generality. It is only in Corollary 5.2 that thepreise onstrution of approximate roots is useful. In our ontext, the value of theapproximate roots lies mainly in the fat that the de�nition is global and at thesame time gives loally k-semiroots (see setion 9).We now formulate some propositions that are used in the proof of Theorem 5.1.The �rst one is attributed by some authors to M.Noether. Equivalent statementsin terms of harateristi exponents an be found in [41℄, [26℄, [18℄, [48℄, [34℄.Proposition 6.5 If � 2 C[[X ℄℄[Y ℄ is moni, irreduible and K(f; �) :== maxfvX(�(X)� �(X)); �(X) and �(X) are Newton-Puiseux series of f and �gis the oinidene exponent of f and �, then one has the formula:(f; �)d(�) = BkN1 � � �Nk�1 + N �K(f; �)�BkN1 � � �Nkwhere k 2 f0; :::; Gg is the smallest integer suh that K(f; �) < Bk+1N .



16 Patrik Popesu-PampuThis proposition allows one to translate information about intersetion num-bers into information about equalities of trunated Newton-Puiseux series and on-versely. For example, from De�nition 6.4 to Corollary 5.3, where in plae of fk weonsider an arbitrary semiroot qk.Proposition 6.6 For eah k 2 f0; :::; Gg, the minimal polynomial �k of ak-trunated Newton-Puiseux series �k(X) of f is a k-semiroot.This gives us the Step 1 explained before.Proposition 6.7 If � 2 C[[X ℄℄[Y ℄ and d(�) < NEk , then (f; �) 2 hB0; :::; Bki:In other words, NEk is the minimal degree for whih one an obtain the valueBk+1 in the semigroup �(C).Proposition 6.8 If � is a k-semiroot and  is a (k�1)-semiroot, k 2 f1; :::; Gg,then ��( ) is a (k � 1)-semiroot of f .This gives Step 2 in the proof of Theorem 5.1.7 The proofs of the main theoremand of its orollariesProof of Theorem 5.11) The �rst equality d(fk) = NEk is lear from the de�nition of approximateroots.The main point is to prove that (f; fk) = Bk+1 for all k 2 f0; :::; Gg, whereBG+1 = 1. We shall prove it by desending indution, starting from k = G. ThenfG = f and so (f; fG) = 1 = BG+1.Let us suppose that (f; fk) = Bk+1, with k 2 f1; :::; Gg. Then we have byProposition 3.3: fk�1 = Ek�1pf = NkEkpf = Nkq Ekpfand so: fk�1 = Nkpfk.By Proposition 6.3, we know that Nkpfk = �fk Æ � � � Æ �fk| {z }d(fk)=Nk (qk�1), where qk�1is an arbitrary polynomial of degree NEk�1 . We shall take for qk�1 an arbitrary(k � 1)-semiroot, whih exists by Proposition 6.6. By the indution hypothesis, fkis a k-semiroot. By Proposition 6.8, if  is a (k � 1)-semiroot of f , then �fk ( )is again a (k � 1)-semiroot. Starting with �k�1 and applying the operator �fkonseutively d(fk)Nk = NEk�1 times, we dedue that Nkpfk is a (k � 1)-semiroot of f .The indution step is ompleted, so we have proved the �rst part of the propo-sition.2)We show that this is true generally for an arbitrary k-semiroot qk. First weprove that qk is irreduible.Suppose this is not the ase. Then qk = Qmi=1 ri, where m � 2 andri 2 C[[X ℄℄[Y ℄ are moni polynomials of degree at least 1. So, for all i, d(ri) << d(qk) = NEk . By Proposition 6.7, (f; ri) 2 hB0; :::; Bki and so (f; qk) == Pmi=1(f; ri) 2 hB0; :::; Bki, whih ontradits (f; qk) = Bk+1. This shows that qkis irreduible.



Approximate Roots 17We have to prove now the laim onerning its harateristi exponents. Weapply Proposition 6.5, whih expresses (f;qk)d(qk) in terms of the oinidene exponentof f and qk.First, we have diretly by the property of being a k-semiroot: (f;qk)d(qk) = Bk+1d(qk) == Bk+1N1���Nk . So, by Proposition 6.5, one has K(f; qk) = Bk+1, whih implies thatthe k-trunated Newton-Puiseux series of f and qk are equal. This means that the�rst k terms of the harateristi sequene of qk are lB0Ek ; lB1Ek ; :::; lBkEk , with l 2 N�.So d(qk) = lB0Ek = l NEk . But we know that d(qk) = NEk , and this implies that l = 1,whih in turn implies that qk has no more harateristi exponents. �Proof of Corollary 5.2The point here is to ompute the harateristi approximate roots and theharateristi sequene without previously omputing trunated Newton-Puiseuxparameterizations.The algorithm given in the statement works beausegd(B0; :::; Bk) = gd(B0; :::; Bk) = Ek;whih is part of Proposition 4.2.One the harateristi roots have been omputed, by-produts of the algorithmare the sequenes (B0; :::; BG) and (E0; :::; EG). From the point 1 of Proposition4.2 one dedues then the harateristi sequene (B0; :::; BG). �Example: Take:f(X;Y ) = Y 4 � 2X3Y 2 � 4X5Y +X6 �X7;an example already onsidered to illustrate Proposition 2.2. We suppose here we donot know a Newton-Puiseux parameterization for it. We suppose it is irreduible- indeed it is, and the elaborations of the algorithm alluded to in the text wouldshow it - so we apply the algorithm:N = B0 = B0 = E0 = 4f0 = 4pf = Y(f; f0) = 6E1 = gd(4; 6) = 2f1 = 2pf = �f Æ �f (Y 2) = Y 2 �X3(f; f1) = 13E2 = gd(E1; B2) = gd(2; 13) = 1G = 2N1 = E1E2 = 2B2 = B1 +B2 �N1B1 = 6 + 13� 2 � 6 = 7:So: (B0; B1; B2) = (4; 6; 7):Proof of Corollary 5.3The more general formulation is: If qk is a k-semiroot, f and qk have equalk-trunated Newton-Puiseux series. The proof is ontained in that of Theorem 5.1,point 2, where it was seen that K(f; qk) = Bk+1. �Proof of Corollary 5.4We give �rst the more general formulation whih we prove in the sequel:



18 Patrik Popesu-PampuLet q0; :::; qG 2 C[[X ℄℄[Y ℄ be moni polynomials suh that for all i, d(qi) = NEi .Then every � 2 C[[X ℄℄[Y ℄ an be uniquely written in the form:� = Xfinite �i0:::iGqi00 qi11 � � � qiGGwhere iG 2 N, 0 � ik < Nk+1 for 0 � k � G � 1 and the oeÆients �i0:::iG areelements of the ring C[[X ℄℄. Moreover:1) the Y -degrees of the terms appearing in the right-hand side of the pre-eding equality are all distint.2) if for every k 2 f0; :::; Gg, qk is a k-semiroot, then the orders in T ofthe terms �i0:::iG�1(TN)q0(TN ; Y (T ))i0 � � � qG�1(TN ; Y (T ))iG�1are pairwise distint, where T ! (TN ; Y (T )) is a Newton-Puiseux parameterizationof f .Take �rst the qG-adi expansion of �:� = X0�iG�[ d(�)d(qG) ℄�iGqiGG :Here �iG 2 C[[X ℄℄[Y ℄ and d(�iG) < d(qG) = NEG = N:Take now the qG�1-adi expansion of every oeÆient �iG :�iG =X�iG�1iGqiG�1G�1 :The oeÆients �iG�1iG 2 C[[X ℄℄[Y ℄ have degrees d(�iG�1iG) < d(qG�1) and thesum is over iG�1 < NG.Proeeding in this manner we get an expansion with the required properties.Before proving the uniity, we prove point 1), namely the inequality of the degrees.Suppose there exist (i0; :::; iG) 6= (j0; :::; jG) andd(�i0 :::iGqi00 qi11 � � � qiGG ) = d(�j0:::jGqj00 qj11 � � � qjGG ) 6= 1:This means: GXk=0 ik � NEk = GXk=0 jk � NEk :Let us de�ne p 2 f0; :::; Gg suh that ik = jk for k � p + 1 and ip < jp. Ifsuh a p does not exist, simply interhange (i0; :::; iG) and (j0; :::; jG), then applythe preeding de�nition. We obtain:p�1Xk=0(ik � jk) NEk = (jp � ip) NEp :But jp � ip � 1 and j ik � jk j� Nk+1 � 1, so:NEp �Pp�1k=0(Nk+1 � 1) NEk = Pp�1k=0( EkEk+1 � 1) NEk == Pp�1k=0( NEk+1 � NEk ) = NEp � 1whih is a ontradition.Now, this property of the degrees shows that 0 2 C[[X ℄℄[Y ℄ has only the trivialexpansion, and this in turn shows the uniity.



Approximate Roots 19Let us move to point 2). From now on, qk is a k-semiroot. By the properties ofintersetion numbers realled in setion 4, vT (qk(TN ; Y (T ))) = (f; qk) = Bk+1: So:vT (�i0:::iG�10(TN )q0(TN ; Y (T ))i0 � � � qG�1(TN ; Y (T ))iG�1 ) = G�1Xk=�1 ikBk+1:Here i�1 = vX(�i0:::iG�10(X)) 2 N.Let us suppose we have (i0; :::; iG�1) 6= (j0; :::; jG�1) suh that: PG�1k=�1 ikBk+1= PG�1k=�1 jkBk+1. As before, we take p 2 f0; :::; G�1gwith ik = jk for k � p+1 andip < jp. So: (jp � ip)Bp+1 =Pp�1k=�1(ik � jk)Bk+1 whih gives: Ep j (jp � ip)Bp+1:But Ep+1 = gd(Ep; Bp+1), by Proposition 4.2, and we get: Np+1 = EpEp+1 j (jp�ip).As 0 < jp � ip < Np+1, we get a ontradition.With this, point 2) is proved. �Proof of Corollary 5.5We prove the following fat:If q0; :::; qG are semiroots of f , the images of (X; q0; :::; qG�1) in the graded ringgrvT (OC) generate it. If the oordinates are generi, they form a minimal systemof generators.We take the notations explained in setion 5, with A = OC . For every p 22 �(C); dimC(Ip=I+p ) = 1. The vetor spae Ip=I+p is generated by an arbitraryelement � 2 OC suh that vT (�) = p. We obtain:grvT (OC) ' Mfp2�(C)gCT p:We have: vT (X) = N and vT (qk) = Bk+1, for k 2 f0; :::; G � 1g. To show thatthe images of X; q0; :::; qG�1 generate grvT (OC) is equivalent with the fat thatevery ! 2 grvT (OC) an be expressed as a polynomial P!(TN ; TB1 ; :::; TBG). Thisomes in turn from Proposition 4.2. Indeed, it is shown that hB0; B1; :::; BGi == �(C) and so every p 2 �(C) an be written as p = PG�1k=�1 ikBk+1, whih impliesT p = (TN )i�1(TB1)i0 � � � (TBG)iG�1 . An arbitrary ! 2 grvT (OC) is then a linearombination of suh terms.Another proof an use Corollary 5.4.In ase the oordinates are generi, B0 = m(C), the multipliity of C at theorigin, and this is the smallest non-zero value in �(C). Then (b0; :::; bg) is a minimalsystem of generators of �(C). Indeed, what prevented (B0; :::; BG) from beingminimal was the possibly non minimal value of B0 in �(C) � f0g (see Proposition4.2).Now, the minimality for the algebra grvT (OC) omes from the minimality forthe semigroup �(C). �Remark: An equivalent statement (using the notion of maximal ontat ex-plained after Corollary 5.6, rather than the notion of semiroot), was proved by M.Lejeune-Jalabert. See the paragraph 1.2.3 in the Appendix of [49℄.Proof of Corollary 5.6Instead of the harateristi roots we onsider arbitrary semiroots qk and weshow that the Corollary is also true in this greater generality. We sketh threeproofs of the Corollary. The �rst one uses adequate oordinate systems to follow



20 Patrik Popesu-Pamputhe strit transforms of Cf and Cqk during the proess of blowing-ups. The seondand third one are more intrinsi.1) Let us onsider generi oordinates (X;Y ) and Newton-Puiseux series �(X);�k(X) for f , respetively qk. We have:�(X) = Xj�n ajX jn :If 1 : S1 ! C2 is the blow-up of 0 2 C2, the strit transform C1f of Cf in S1passes through the origin of a hart of oordinates (X1; Y1) suh that:(X = X1Y = X1(an + Y1) :The strit transform C1f of Cf has in the oordinates (X1; Y1) a Newton-Puiseuxseries of the form: �(1)(X1) = Xj�n+1 ajX jn�11 :The oordinates (X1; Y1) are generi for it if and only if [ b1n ℄ � 2. If this is thease, one desribes the restrition of the next blowing-up to the hart ontainingthe strit transform of Cf by the hange of variables:(X1 = X2Y1 = X2(a2n + Y2) :One ontinues like this s1 := [ b1n ℄ times till one arrives in the hart (Xs1 ; Ys1)at a strit transform Cs1f with Newton-Puiseux series:�(s1)(Xs1) = Xj�b1 ajX jn�s1s1 :Now for the �rst time the oordinates are not generi with respet to the series.Let us look also at the strit transform Cs1q0 of Cq0 . By Corollary 5.3, the branhCq0 has a Newton-Puiseux series �0(X) suh that:�0(X) = Xj�1 a0jX jnwith a0j = aj for j < b1 and n j j for all j 2 N�.The strit transform Cs1q0 then has a Newton-Puiseux series of the form:�s10 (Xs1) = Xj�b1 a0jX jn�s1s1 :The series in the right-hand side has integral exponents, whih shows that Cs1q0is smooth - whih was evident, as Cq0 was already smooth. But, more important,Cs1q0 is not tangent to Xs1 = 0. This shows that it is transverse to Cs1f and tothe only omponent of the exeptional divisor passing through (Xs1 ; Ys1) = (0; 0),whih is de�ned by the equation: Xs1 = 0.The next blowing-up separates the strit transforms of Cf and Cq0 . The urveC(s1+1)q0 passes through a smooth point of the newly reated omponent of theexeptional divisor.This shows that the dual graph of the total transform of f � f0 is as drawn inFigure 3.
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Figure 3 The Dual Graph of the ProdutTo ontinue, one needs to hange oordinates after s1 blowing-ups. Insteadof onsidering the ordered oordinates (Xs1 ; Ys1), we look at (Ys1 ; Xs1). We nowuse the inversion formulae explained in Proposition 4.3. They allow to expressthe harateristi exponents of Cs1f with respet to (Ys1 ; Xs1) in terms of thosewith respet to (Xs1 ; Ys1). Moreover, it follows from the property of trunationsstated in Proposition 4.3 that, if one inverts simultaneously the strit transformsof Cf ; Cq0 ; :::; Cqg�1 , they keep having oiniding Newton-Puiseux series up to on-trolled orders. Repeating this proess, one shows that after a number of inversionsequal to the number of terms in the ontinuous fration expansion of b1n , the initialsituation is repeated, but with a urve having genus (g�1). The strit transform ofthe semiroot qk, for k 2 f1; :::; gg will be a (k� 1)-semiroot for the strit transformof f , in the natural oordinates resulting from the proess of blowing-ups. So, onean iterate the analysis made for q0 and get the orollary. �2) Given two branhes at the origin, from the knowledge of their harateristiexponents and of their oinidene exponent (see Proposition 6.5), one an onstrutthe dual graph of resolution of their produt. This is explained in [31℄ and provedin detail, as well as in the ase of an arbitrary number of branhes, in [21℄. In ourase this shows that the minimal embedded resolution of f , where qk is an arbitrarysemiroot for generi oordinates, is also an embedded resolution of f �qk. Moreover,the extended dual graph is obtained from the dual graph D(�m; f) attahing anarrow-head vertex at the end of the k-th vertial segment (see the explanationsgiven after Corollary 5.6). We get from it the orollary. �3) If l 2 C[[X;Y ℄℄ is of multipliity 1, let ��m(l) be its total transform divisoron �m. If L is a omponent of E , the exeptional divisor of �m, let �(L) be itsmultipliity in ��m(l). Let also �(L) be its multipliity in ��m(f). These multipliitiesan be omputed indutively, following the order of reation of the omponents inthe proess of blowing-ups. In partiular, if Lk is the omponent represented at theend of the k-th vertial segment of the dual graph, �(Lk) = nek�1 for k 2 f1; :::; gg,and �(Lk) = bk (folklore).Let us onsider now the branh Cqk�1 . We know that (f; qk�1) = bk andm(qk�1) = nek�1 , where n = m(f). Then (f;qk�1)m(qk�1) = ek�1bkn and the lemma on thegrowth of oeÆients of insertion in [31℄ shows that the strit transform of Cqk�1neessarily meets a omponent of the k-th vertial segment of D(�m). If C 0qk�1 is



22 Patrik Popesu-Pamputhe strit transform of qk�1 by �m, we have:(f; qk�1) = (��m(f); C 0qk�1 ) = XL �(L)(L;C 0qk�1 )the sum being taken over all the omponents of E whih meet C 0qk�1 . Now it an beeasily seen that � stritly grows on a vertial segment of D(�m), from the end to thepoint of ontat with the horizontal segment. This omes from the fat that thoseomponents of the exeptional divisor are reated in this order - but not neessarilyonseutively. As �(Lk) = bk and (f; qk�1) = bk, we see that:bk =XL �(L)(L;C 0qk�1 ) �XL �(L)m(C 0qk�1 ) � �(Lk) � 1 = bk:This means that the inequalities are in fat equalities and shows that C 0qk�1 issmooth, meets Lk transversely and meets no other omponent of E . �Proof of Corollary 5.9We prove:A semiroot qk of f in arbitrary oordinates is a urvette with respet to one ofthe omponents Lk; Lk+1.We analyze suessively the three ases introdued in Proposition 4.3, usingalso some results of its proof.1) B0 = b0:This is the ase of generi oordinates. The aÆrmation is the same as Corollary5.6. We get that qk is a urvette with respet to Lk+1, for all k 2 f0; :::; gg.2) B0 = lb0; with 2 � l � [ b1b0 ℄:Then, by Proposition 4.3, G = g + 1.The urve q0 is smooth and so m(q0) = 1.Moreover, by the de�nition of semiroots, (f; q0) = B1 = b0 = m(f):This shows that q0 is smooth and transversal to f and so it is a urvette withrespet to L0.If k 2 f1; :::; Gg, where by Proposition 4.3, G = g + 1, we have:m(qk) = b0(qk) = B1(qk) = B1Ek = b0ek�1 ;(f; qk) = Bk+1 = bk:We have noted by b0(qk) the orresponding harateristi exponent of qk.So, for k 2 f1; :::; G � 1g, the urve qk is a (k � 1)-semiroot with respet togeneri oordinates and by Corollary 5.6, it is a urvette with respet to Lk.3) B0 = b1By Proposition 4.3, we have G = g.Again q0 is smooth. Using Proposition 4.3 we obtain:(f; q0) = B1 = b0 = m(f):As in the preeding ase, q0 is a urvette with respet to L0.If k 2 f1; :::; Gg, where G = g, we have:m(qk) = b0(qk) = B1(qk) = B1Ek = b0ek ;(f; qk) = Bk+1 = bk+1:
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Figure 6 B0 = b1So qk is a k-semiroot with respet to generi oordinates, and by Corollary 5.6,it is a urvette with respet to Lk+1.Let us summarize this study by drawing for eah of the three ases the dualgraph of the total transform of the produt q0 � � � qG. As in the statement of Corol-lary 5.6, we denote by C 0k the strit transform of qk. We obtain the situationsindiated in Figures 4, 5, 6. �



24 Patrik Popesu-Pampu8 The proofs of the propositionsProof of Proposition 2.1The series �(X) an be obtained from �(X) by replaing X 1N by !X 1N , where! 2 �N , the group of N -th roots of unity. One has the inlusions of yli groups:� NE0 � � NE1 � � � � � � NEG = �N : Let k 2 f0; :::; Gg be suh that ! 2 � NEk � � NEk�1 .Then: vX(�(X)� �(X)) = (1; if k = 0EkN ; if k 2 f1; :::; Gg : �Proof of Proposition 2.2We start from f = Y N + �1(X)Y N�1 + �2(X)Y N�2 + � � � + �N (X). Let usonsider the approximate root fk = Ekpf .As is seen from equation (8.1) in the proof of Proposition 3.1, its oeÆientsdepend only on �1(X); :::; � NEk (X).Corollary 5.3 shows that f and fk have equal k-trunated Newton-Puiseuxseries. Combining these fats we see that the k-trunated Newton-Puiseux seriesof f depend only on �1(X); :::; � NEk (X). �Proof of Proposition 3.1Let us put Q = Y np + a1Y np�1 + � � �+ anp :The inequality d(P � Qp) < d(P ) � d(P )p means that the oeÆients of Y n;Y n�1; :::; Y n�np in the polynomial P �Qp are equal to 0. This gives the system ofequalities:8>>>>>>><>>>>>>>:�1 = pa1�2 = pa2 + p2 ! a21...�k = pak +Pi1+2i2+���+(k�1)ik�1=k i1:::ik�1ai11 � � � aik�1k�1 ; 1 � k � np (8.1)
Here the oeÆients i1:::ik�1 are integers, easily expressible in terms of binomialoeÆients: i1:::ik�1 = � pi1 + � � �+ ik�1 � (i1 + � � �+ ik�1)!i1! � � � ik�1! :We see that from the relations (8.1) one an ompute suessively a1; a2; :::; anp .One has only to divide at eah step by p. That is the reason why in the de�nitionof the approximate root we asked p to be invertible.So a1; a2; :::; anp exist and are uniquely determined. Moreover, they dependonly on �1; :::; �np . �Proof of Proposition 3.3Let us note Q := ppP and R := qpQ.



Approximate Roots 25We want to show that R = pqpP , i.e. that d(P �Rpq) < d(P )� d(P )pq .If S := Q � Rq, we know that d(S) < d(Q) � d(Q)q = d(P )p � d(P )pq : Then:P �Qp = P � (Rq + S)p = (P �Rpq)�Ppk=1 � pk �SkRq(p�k), and so:P �Rpq = (P �Qp) + pXk=1� pk �SkRq(p�k)whih implies:d(P �Rpq) � max(fd(P �Qp)g [ fd(SkRq(p�k)); 1 � k � pg):We know that d(P �Qp) < d(P )� d(P )p , and for 1 � k � p we have:d(SkRq(p�k)) = kd(S) + q(p� k)d(R) << k(d(P )p � d(P )pq ) + q(p� k)d(P )pq == k d(P )p � k d(P )pq + d(P )� k d(P )p == d(P )� k d(P )pq � d(P )� d(P )pq :So �nally:d(P �Rpq) < maxfd(P )� d(P )p ; d(P )� d(P )pq g = d(P )� d(P )pqwhih shows that R = pqpP : �Proof of Proposition 3.4If P (Y ) = Y n + �1Y n�1 + �2Y n�2 + � � �+ �n, then :P1(Z) = Z�n(1 + �1Z + � � �+ �nZn)and so: P 1p1 (Z) = Z�np (1 +Xk�1 kZk) = M(P 1p1 ) +H(P 1p1 )where: M(P 1p1 ) := Z�np + 1Z1�np + � � �+ np ;H(P 1p1 ) := Xk�1 k+npZk:Here the oeÆients k are elements of A, uniquely determined polynomiallyby the oeÆients of P . We get:Q(Y ) = Y np + 1Y np�1 + � � �+ np :Let us onsider: R(Y ) := P (Y )�Q(Y )p:



26 Patrik Popesu-PampuWe want to show that d(R) < n�np , whih is equivalent to vZ(R(Z�1)) � �n+np+1,vZ designating the order of a series in A((Z)). But:R(Z�1) = P (Z�1)�Q(Z�1)p == P1(Z)� (M(P 1p1 ))p == P1 � (P 1p1 �H(P 1p1 ))p == Ppk=1(�1)k+1� pk �P p�kp1 Sk:where we have noted S := H(P 1p1 ). We obtain:vZ(R(Z�1)) � min1�k�pfvZ(P p�kp1 Sk)g = min1�k�pf�n�p� kp +k�1g = �n+np+1whih is the inequality we wanted to prove.So d(P (Y )�Q(Y )p) < n� np , and this shows that Q = ppP . �Proof of Proposition 4.2The degree d(f) an be obtained as an intersetion number: N = d(f) =vT (f(0; T )) = (f;X). So N 2 �(C).We now de�ne bk by the relation given in point 2) of the proposition. We provethat the numbers de�ned in this way are indeed elements of the semigroup �(C)and verify the minimality property used to de�ne them in the text.The important fat is that Proposition 6.5 is proved only using the formulasof the Bk's in terms of the Bk's. That is the reason why we an apply it in whatfollows.Consider the minimal polynomials �k of the k-trunated Newton-Puiseux series�k(X), for k 2 f0; :::; G � 1g (see Proposition 6.6 and its proof). Then d(�k) == NEk = N1 � � �Nk and K(f; �k) = Bk+1N , so Proposition 6.5 gives: (f;�k)d(�k) = Bk+1N1���Nk .We get: (f; �k) = Bk:This shows that Bk 2 �(C).Consider now an arbitrary element g 2 C[[X ℄℄[Y ℄ and expand it in terms of(�0; :::; �G) as explained in the proof of Corollary 5.4. Indeed, (�0; :::; �G) aresemiroots of f and we show in the proof that the orollary is true in this greatergenerality. Notie that the ontent of this orollary is true in our ase, beause weuse only point 2) of Proposition 4.2 whih, as well as point 3), results from point 1).From Corollary 5.4 we get:(f; g)= min(i0;:::;iG�1)fvT (�i0:::iG�10(TN )�0(TN ; Y (T ))i0 � � ��G�1(TN ; Y (T ))iG�1)g= min(i0;:::;iG�1)fi�1N + i0B1 + � � �+ iG�1BGgwhere i�1 = vX(�i0:::iG�10).This shows that �(C) = hB0; :::; BGi.Now, for every k 2 f1; :::; Gg, we have Bk =2 hB0; :::; Bk�1i, beause Ek�1 doesnot divide Bk.Suppose l 2 �(C) and l =2 hB0; :::; Bk�1i. We already know that l 2 hB0; :::; BGi,so l = i�1N + i0B1 + � � � + iG�1BG with ij 2 N for j 2 f�1; :::; G � 1g: As



Approximate Roots 27l =2 hB0; :::; Bk�1i, we dedue that for some j � k, we have ij > 0; whih impliesl � Bj � Bk. This proves the equality we were seeking:Bk = minfj 2 �(C); j =2 hB0; :::; Bk�1ig: �Proof of Proposition 4.3In what follows we look at the funtions as elements of ÔC2;0. If the loaloordinates X;Y are hosen, one obtains a natural isomorphism ÔC2;0 ' C[[X;Y ℄℄.If f 2 C[[X ℄℄[Y ℄, by de�nition (see setion 4), B0 = d(f) = (f;X). Now, X is aregular funtion at the origin. We take other oordinates, x; y 2 ÔC2 generi forthe funtions f and X . By the impliit funtion theorem, we have CX = Ch, where:h(x; y) := y � (x);with  2 C[[x℄℄. Take a Newton-Puiseux parameterization of Cf :(x = T b0y = y(T ) :Then: B0 = (f;X) = (f; h) = vT (h(T b0 ; y(T ))) = vT (y(T )� (T b0)).The �rst exponent in y(T ) whih is not divisible by b0 is b1. So, when we varythe hoie of , we annot obtain a value vT (y(T )� (T b0)) greater than b1. Thevalue b1 an be obtained if the trunations of Y1(T ) and (T b0) oinide up to theorder b1 (not inluding it). When  varies, we an also obtain all the values lb0,with lb0 < b1, i.e., with l � [ b1b0 ℄:One we know the degree B0, by Proposition 4.2 we know that B0 = B0and that all the numbers B1; :::; BG are uniquely determined by the minimalityproperty from the semigroup, whih is independent of the oordinates. Then onean ompute, in this order, the sequenes (E0; E1; :::; EG) and (N1; :::; NG) and�nally obtain all the sequene (B0; :::; BG).Let us treat suessively the three ases distinguished in the statement of theproposition.1) B0 = b0.This means that the Y -axis is transverse to Cf . Then it is immediate thatG = g and (B0; :::; BG) = (b0; :::; bg). So:(B0; :::; BG) = (b0; :::; bg):2) B0 = l � b0, with l 2 f2; :::; [ b1b0 ℄g:This means that the Y -axis is tangent to Cf but has not maximal ontat withit (see the de�nition of this notion given after Corollary 5.6). Then B0 = lb0. Asb0 is the minimal element of �(C) � f0g and b0 < B0, we see that B1 = b0. ThenE1 = b0 and so B2 = b1. Continuing like this we get:G = g + 1(B0; B1; B2; :::; BG) = (lb0; b0; b1; :::; bg)(E0; E1; E2; :::; EG) = (le0; e0; e1; :::; eg)(N1; N2; N3; :::; NG) = (l; n1; n2; :::; ng):By proposition 4.2, point 1), we get : Bk � Bk�1 = Bk � Nk�1Bk�1 == bk�1 �Nk�1bk�2, for all k 2 f1; :::; Gg.



28 Patrik Popesu-PampuFor k = 2, B2 �B1 = b1 � lb0 = b1 � lb0 whih gives:B2 = b1 + (1� l)b0:For k � 3, Nk�1 = nk�2 and so:Bk �Bk�1 = bk�1 � nk�2bk�2 = bk�1 � bk�2:We obtain by indution:(B0; :::; BG) = (lb0; b0; b1 + (1� l)b0; :::; bg + (1� l)b0):3) B0 = b1.This means that the Y -axis has maximal ontat with the branh Cf . Thesame kind of analysis as before shows that:G = g(B0; B1; B2; :::; BG) = (b1; b0; b2; :::; bg)(E0; E1; E2; :::; EG) = (b1; e1; e2; :::; eg)(N1; N2; N3; :::; NG) = ( b1e1 ; n2; n3; :::; ng)(B0; :::; BG) = (b1; b0; b2 + b0 � b1; :::; bg + b0 � b1):In order to deal with trunations we use Proposition 6.5. Sine we have twosystems of oordinates, we note by K(X;Y )(f; �) the oinidene exponent of f and� in the oordinates (X;Y ). See Proposition 6.5 for its de�nition.Let �k+� be the (k + �)-semiroot of f with respet to (X;Y ) whih is equalto the minimal polynomial of a (k + �)-trunated Newton-Puiseux series of f (seeProposition 6.6). Then we look at f and �k+� in the oordinates (x; y) and weompute K(x;y)(f; �k+�) using Proposition 6.5. This shows that some preisely de-termined trunations of their Newton-Puiseux series in these oordinates oinide.As �k+� is determined only by the (k+ �)-trunation of the Newton-Puiseux seriesof f with respet to (X;Y ), the omputations done in eah of the three ases givethe result.We give as an example only the treatment of the seond ase (B0 = lb0):In this ase � = 1. Let us onsider k � 1 and the semiroot �k+1. We know,by Theorem 5.1, that (X;�k+1) = d(�k+1) = NEk+1 and (f; �k+1) = Bk+2. Then:(x; �k+1) = m(�k+1) = B1B0 � NEk+1 = B1Ek+1 = b0ek : So:(f; �k+1)(x; �k+1) = Bk+2ekb0 = bk+1ekb0 = bk+1n1 � � �nkand Proposition 6.5 applied in the oordinate system (x; y) gives the equalityK(x;y)(f; �k+1) = bk+1n , whih shows that f and �k+1 have oiniding k-trunatedNewton-Puiseux series in the oordinates (x; y). �Proof of Proposition 6.1We onsider expansions of the type (6.1):P = a0Qs + a1Qs�1 + � � �+ aswith d(ai) < d(Q) for all i 2 f0; :::; sg.Let us show that in suh an expansion, the degrees of the terms are all di�erent.More preisely, we show that:d(aiQs�i) > d(ajQs�j) for i < j: (8.2)



Approximate Roots 29Indeed, we have:d(aiQs�i)� d(ajQs�j) = d(ai)� d(aj) + (j � i)d(Q) � d(ai)� d(aj) + d(Q) > 0:From this property of the degrees, one dedues that a Q-adi expansion of0 2 A[Y ℄ is neessarily trivial, whih in turn gives the uniity of the expansion forall moni P 2 A[Y ℄.Moreover, identifying the leading oeÆients in both sides of equation (6.1),we see that a0 is moni.Then we have also: d(P ) = d(a0Qs) = d(a0) + sd(Q), whih implies:d(P )d(Q) = s+ d(a0)d(Q) :But 0 � d(a0)d(Q) < 1, whih gives the equality s = [ d(P )d(Q) ℄. Also, sine a0 is moni,d(Q) j d(P ) , d(a0) = 0 , a0 = 1.Let us suppose now we are in the ase when d(Q) j d(P ). We have just seenthat in this situation a0 = 1. Then:P �Qs = sXi=1 aiQs�iand, by the growth property of the degrees (8.2), we get:d(P �Qs) � d(a2Qs�2) , a1 = 0:But d(a2Qs�2) = d(a2) + (s � 2)d(Q) < (s � 1)d(Q) = d(P ) � d(P )d(Q) andd(a1Qs�1) � (s� 1)d(Q) if a1 6= 0, whih implies:d(P �Qs) < d(P )� d(P )d(Q) , a1 = 0:By the de�nition of approximate roots, we see that a1 = 0 if and only ifQ = spP . �Proof of Proposition 6.3Let us take for Q a moni polynomial, d(Q) = d(P )p . The Q-adi expansion ofP is of the form: P = Qp + a1Qp�1 + � � �+ apwith d(ai) < d(Q) for 1 � i � p.We onsider also the �P (Q)-adi expansion of P :P = �P (Q)p + a01�P (Q)p�1 + � � �+ a0p:We shall prove that if a1 6= 0, we have d(a01) < d(a1). This will show that afteriterating �P at most d(a1)+1 times, we arrive at the situation a1 = 0, in whih ase�P (Q) = Q = ppP . But d(a1) + 1 � d(Q) = d(P )p , whih proves the proposition.So, let us suppose a1 6= 0. Then:P = (Q+ 1pa1)p + pXk=2 akQp�k � pXk=2� pk � 1pk ak1Qp�k: (8.3)We study now the �P (Q)-adi expansion of P � �P (Q)p starting from equation(8.3). First, for 2 � k � p, we have:d(akQp�k) < d(Q) + (p� k)d(Q) � (p� 1)d(Q)



30 Patrik Popesu-Pampud(ak1Qp�k) < kd(Q) + (p� k)d(Q) = p � d(Q):But d(�P (Q)) = d(Q) and Proposition 6.1 shows that the �P (Q)-adi expansionof akQp�k has non-zero terms of the form j�P (Q)j with j � p� 2 and the �P (Q)-adi expansion of ak1Qp�k of the form j�P (Q)j with j � p� 1.Let (k)0 �P (Q)p�1 be the term orresponding to �P (Q)p�1 in the �P (Q)-adiexpansion of ak1Qp�k. It is possible that (k)0 = 0. Then:d((k)0 �P (Q)p�1) � d(ak1Qp�k)and so: d((k)0 ) � k � d(a1)� k � d(Q) + d(Q) � 2d(a1)� d(Q) � d(a1)� 1:But the polynomial a01 is a linear ombination with oeÆients in A of thepolynomials (k)0 , whih shows the announed inequality:d(a01) � d(a1)� 1:With this the proof is omplete. �Proof of Proposition 6.5As stated in setion 6, this result is lassial. Reent proofs are ontained in [34℄(for generi oordinates) and [24℄ (for arbitrary oordinates). We give here a ratherdetailed proof in order to explain the origin of the formula for Bk in Proposition4.2. Let N = d(f);M = d(�). Deompose � 2 C[[X ℄℄[Y ℄ as a produt of terms ofdegree 1: �(X;Y ) = MYi=1(Y � �i(X))where the �i(X) are all the Newton-Puiseux series of � with respet to (X;Y ).Let T ! (TN ; Y (T )) be a parameterization of f , obtained from a �xed Newton-Puiseux series �(X). As T = X 1N , we have: Y (T ) = �(X). Then, using the rulesexplained in setion 4:(f; �) = vT (�(TN ; Y (T ))) = vT (QMi=1(Y (T )� �i(TN))) == vX 1N (QMi=1(�(X)� �i(X))) = NvX(QMi=1(�(X)� �i(X))) == NPMi=1 vX(�(X)� �i(X)))Now we look at the possible values of vX (�(X)� �i(X))) when i varies, and fora �xed value we look how many times it is obtained.If k is minimal suh that K(f; �) < Bk+1N , we get:� the value BiN is obtained M � Ei�1�EiN times, for i 2 f1; :::; kg.� the value K(f; �) is obtained M � EkN times.So: (f; �) = N [ kXi=1M � Ei�1 � EiN � BiN +M � EkN �K(f; �)℄whih implies: (f; �)M = kXi=1(Ei�1 �Ei)BiN +Ek �K(f; �):



Approximate Roots 31Now reall the formula for Bk given in Proposition 4:Bk = Bk + k�1Xi=1 Ei�1 �EiEk�1 Bi; (8.4)whih gives: k�1Xi=1 Ei�1 �EiBi = Ek�1Bk �EkBk:We get: (f; �)M = Ek�1BkN � EkBkN +EkK(f; �);whih is the desired formula. �Remark: We had nothing to know about the relation of Bk with the semigroup�(C). We only needed the fat it is given by formula (8.4). See also the ommentsmade in the proof of Proposition 4.2.Proof of Proposition 6.6Let �k(X) = hk(X EkN ). Then hk(T ) 2 C[[T ℄℄ and:(X = T NEkY = hk(T )is a primitive Newton-Puiseux parameterization of (�k = 0). So we have:d(�k) = NEk :Now, using Proposition 6.5, sine K(f; �k) = Bk+1N , we have:(f; �k)d(�k) = Bk+1N1 � � �Nk ) (f; �k) = NEk � Bk+1N1 � � �Nk = Bk+1:We have obtained: d(�k) = NEk and (f; �k) = Bk+1, whih shows that �k is ak-semiroot. �Proof of Proposition 6.7We prove the proposition by indution on k.For k = 0, we have � 2 C[[X ℄℄, and so �(X) = XMu(X), where u(0) 6= 0, so:(f; �) = M � (f; x) = M � d(f) 2 hB0i = hB0i.Suppose now the proposition is true for k 2 f0; :::; G�1g. We prove it for k+1.Consider � 2 C[[X ℄℄[Y ℄; d(�) < NEk+1 and take a k-semiroot qk of f , whihexists by Proposition 6.6. Make the qk-adi expansion of �:� = a0qsk + a1qs�1k + � � �+ as:We prove that the intersetion numbers (f; aiqs�ik ) are all distint. Suppose byontradition that 0 � j < i � s and (f; aiqs�ik ) = (f; ajqs�jk ). Then (i�j)(f; qk) == (f; ai)� (f; aj) 2 hB0; :::; Bki, by the indution hypothesis. So: Ek j (i�j)Bk+1.But Ek+1 = gd(Ek; Bk+1), and so we obtain: EkEk+1 j (i � j). Now, EkEk+1 = Nk+1and i � j � s = [ d(�)d(qk) ℄. As d(�)d(qk) = EkN � d(�) < EkN � NEk+1 = Nk+1, we see thats < Nk+1, whih gives a ontradition.



32 Patrik Popesu-PampuThis shows that the numbers (f; aiqs�ik ) are all distint and so:(f; �) = minif(f; aiqs�ik )g = minif(f; ai) + (s� i)(f; qk)g:But (f; ai) 2 hB0; :::; Bki by the indution hypothesis and (f; �) = Bk+1, so:(f; �) 2 hB0; :::; Bk+1i. With this, the step of indution is ompleted. �Proof of Proposition 6.8If � is a k-semiroot and  a (k�1)-semiroot, then d(�) = NEk and d( ) = NEk�1 .So the  -expansion of � is of the form:� =  Nk + a1 Nk�1 + � � �+ aNk : (8.5)We have ��( ) =  + 1Nk a1.We are going to show that: (f;  ) < (f; a1):This will give (f; ��( )) = (f;  ) = Bk: But d(a1) < d( ) and so d(��( )) == d( ), whih shows that ��( ) is also a (k � 1)-semiroot.Exatly as in the proof of Proposition 6.7, we have that the intersetion numbers(f; ai Nk�i) are all distint, for i 2 f1; :::; Nkg: Using equation (8.5) we dedue:(f; ��  Nk) = min1�i�Nkf(f; ai Nk�i)g � (f; a1 Nk�1):But, by Proposition 4.2, (f; �) = Bk+1 > NkBk = (f;  Nk) and so:(f; ��  Nk) = (f;  Nk). We obtain:(f; a1) + (Nk � 1)(f;  ) � Nk(f;  )whih gives: (f;  ) � (f; a1):On the other hand, d(a1) < d( ) = NEk�1 , and Proposition 6.7 shows that(f; a1) 2 hB0; :::; Bk�1i. But (f;  ) = Bk =2 hB0; :::; Bk�1i, whih shows that weannot have the equality (f;  ) = (f; a1).Thus, we have proven the inequality (f;  ) < (f; a1) and with it the proposition.�9 The approximate rootsand the embedding line theoremWe present the ideas of the proofs of the epimorphism theorem and of theembedding line theorem as they are given in [5℄.It is in order to do these proofs that is developed in [5℄ the theory of Newton-Puiseux parameterizations and of loal semigroups for elements of C((X))[Y ℄, themeromorphi urves. This framework is more general than the one presented before,whih onerned elements of C[[X ℄℄[Y ℄, the entire urves. We have hosen to givebefore all the proofs for entire urves, �rst beause they are in general used for theloal study of plane urves and seond in order to point out in this �nal setion thedi�erenes between the two theories. A third type of urves, the purely meromorphiones, will prove to be of the �rst importane.Proof of the Epimorphism TheoremWe onsider an epimorphism � : C[X;Y ℄ ! C[T ℄ and we note:P (T ) := �(X); Q(T ) := �(Y );



Approximate Roots 33N := dT (P );M := dT (Q):We suppose that both degrees are non zero. The ideal ker(�) is of height onein C[X;Y ℄, so it is generated by one element. A privileged generator is given by:F (X;Y ) = ResT (P (T )�X;Q(T )� Y ):Here ResT denotes the resultant of the two polynomials, seen as polynomialsin the variable T .From the determinant formula for the resultant, we obtain:dX(F ) = M;dY (F ) = Nand that F is moni if we see it as a polynomial in X or in Y .Let us onsider the set:�(F ) := fdT (G(P (T ); Q(T ))); G 2 C[X;Y ℄� (F )g:The set �(F ) is a sub-semigroup of (N;+). The morphism � is an epimorphismif and only if T 2 im(�), whih is equivalent to 1 2 �(F ), or �(F ) = N.Make now the hange of variables: x = X�1; y = Y . Take:f(x; y) := F (x�1; y) 2 C[x�1℄[y℄:The polynomial f is moni in y, of degree d(f) = N . By de�nition, the elementsof C[x�1℄[y℄ are alled purely meromorphi urves (notation of [5℄). As we have theembedding of rings C[x�1℄ ,! C((x)), we an also look at f as being a meromorphiurve, i.e. an element of C((x))[y℄. The theory of Newton-Puiseux expansions anbe generalized to elements of C((x))[y℄, and so f has assoiated Newton-Puiseuxseries �(x) 2 C((x 1N )) and Newton-Puiseux parameterizations of the form: x =�N ; y = y(�) 2 C((�)): It is important here that the exponent of � in x(�) is takenpositive (see below).From suh a primitive Newton-Puiseux parameterization (see the de�nition insetion 2), one an obtain a harateristi sequene of integers (B0; :::; BG), wherewe put B0 = �N and the otherBi's are de�ned reursively as in the ase ofC[[x℄℄[y℄,treated before. At the same time we de�ne the sequene of greatest ommon divisors(E0; :::; EG), whih are elements of N�, and the sequenes (N1; :::; NG); (B0; :::; BG),as in setion 2. Notie that (B0; :::; BG) is again a stritly inreasing sequene, butnot neessarily (B0; :::; BG).If � 2 C((x))[y℄, f 6 j�, we de�ne:(f; �) := vx(Resy(f; �)):This onstrution extends the de�nition of the intersetion number fromC[[x℄℄[y℄ to C((x))[y℄. It is again true with this de�nition that:(f; �) = v� (�(�N ; y(�)));if � ! (�N ; y(�)) is a Newton-Puiseux parameterization of f (we understand herewhy it is important to take x = �N and not x = ��N ).We de�ne now: �C[x�1℄(f) := f(f; �); � 2 C[x�1℄[y℄; f 6 j�g:The set �C[x�1℄(f) is a sub-semigroup of (Z;+). In fat we an say more.Indeed, if �(X;Y ) = �(X�1; Y ) 2 C[X;Y ℄, we have:dT (�(P (T ); Q(T ))) = �(f; �);



34 Patrik Popesu-Pampuwhih shows that: �C[x�1℄(f) = ��(F ):We see in partiular that the semigroup �C[x�1℄(f) onsists only of negativenumbers.As � is an epimorphism, we get:�C[x�1℄(f) = Z�:Remark: If we onsider intersetions with elements of C((x))[y℄, we an de�nea seond semigroup �C((x))(f). We have obviously the inlusion �C[x�1℄ � �C((x)),but in general this is not an equality.Consider for example f = y2 � x�1. A Newton-Puiseux parameterization of fis � ! (�2; ��1). Take � = y2 � (x�1 � x) 2 C((x))[y℄�C[x�1℄[y℄. Compute theirintersetion number: (f; �) = v� (�(�2; ��1)) = 2 =2 Z� = �C[x�1℄(f):Suppose now by ontradition that we are in a ase where neither N j Mnor M j N . This implies easily that B1 = �M . Indeed, v� (y) = (f; y) == �dT (Y (P (T ); Q(T ))) = �dT (Q(T )) = �M: Sine N 6 jM we dedue by thede�nition of B1 that B1 = v� (y) = �M:Sine �C[x�1℄(f) = Z�, we get in partiular �E1 2 �C[x�1℄(f).The ontradition is got in [5℄ from the properties:B0 = �N; B1 = �M; �E1 2 �C[x�1℄(f):Here is the plae in the proof where the approximate roots make their appear-ane. As in the ase of C[[X ℄℄, from the sequenes (B0; :::; BG) and (E0; :::; EG) onean de�ne indutively a sequene (B0; :::; BG) by the relations given in Proposition4.2. They are elements of �C((x))(f), as they an be obtained by interseting f witharbitrary semiroots of f , for example the ones got by trunating a Newton-Puiseuxseries of f (Proposition 6.6 generalizes to this ontext).But, more important, (B0; :::; BG) are elements of �C[x�1℄(f). Indeed, fk == Ekpf 2 C[x�1℄[Y ℄. Theorem 5.1 generalizes to this ontext and so: (f; fk) == Bk+1, for k 2 f0; :::; Gg.What is again true is that (B0; :::; BG) form a system of generators of �C[x�1℄(f).As �C[x�1℄(f) is omposed of negative numbers, we annot speak any more abouta minimal system of generators, as in Proposition 4.2. What remains true is thatthey are a strit system of generators (see [5℄) in the following sense:Proposition 9.1 Every element  of �C[x�1℄(f) an be expressed in a uniqueway as a sum:  = i�1B0 + � � �+ iG�1BGwhere i�1 2 N and 0 � ik < Nk+1 for k 2 f1; :::; G� 1g:To get this proposition, one proves �rst an analog of Corollary 5.4, obtainedby replaing C[[X ℄℄ by C[x�1℄. The proof follows the same path.Now write the property �E1 2 �C[x�1℄(f) in terms of this strit sequene ofgenerators: �E1 = i�1B0 + � � �+ iG�1BG:Take p := maxfk 2 f0; :::; Gg; ik�1 6= 0g: So:E1 = i�1 j B0 j + � � �+ ip�1 j Bp j;



Approximate Roots 35with ip�1 6= 0.If p � 2, we get: Ep�1 j (E1 � i�1 j B0 j � � � � � ip�2 j Bp�1 j) and so:Ep�1 j (ip�1 j Bp j): Sine Ep = gd(Ep�1; j Bp j), we get Np = Ep�1Ep j ip�1, whihontradits the inequality 0 < ip�1 < Np.So we obtain p � 1 and:E1 = i�1 j B0 j +i0 j B1 j :This implies: 1 = i�1 jB0jE1 + i0 jB1jE1 , whih shows that jB0jE1 = 1 or jB1jE1 = 1. But,by the reursive relations giving the Bi's, B0 = B0 = �N and B1 = B1 = �M , so:N(M;N) = 1 or M(M;N) = 1:We get: M j N or N j M , whih ontradits our hypothesis. The theorem isproved. �Remark: One an also give a proof without using ontradition. In this aseone annot suppose from the beginning that N 6 jM , and so it is not neessarilytrue that B1 = �M . As one annot hope to express in this ase B1 in terms of Nand M , the preeding proof appears to get in trouble. This an be arranged if onemodi�es the de�nition of the harateristi sequene, taking for B1 the minimalexponent appearing in y(�), without imposing that it should not be divisible by N .This is the de�nition of harateristi sequene taken in a majority of Abhyankar'swritings on urves, in partiular [5℄, where the preeding proof is given with thismodi�ed de�nition.Proof of the Embedding Line TheoremIf the epimorphism � : C[X;Y ℄ ! C[T ℄ is given by X = P (T ); Y = Q(T ), putN := dT (P );M := dT (Q) and write:P (T ) = �0TN + �1TN�1 + � � �+ �N ;Q(T ) = �0TM + �1TM�1 + � � �+ �M :(we onsider here that dT (0) = 0).Suppose one of the degrees M;N is zero, for example M = 0. Then: Q(T ) == �0 2 C.For all G 2 C[X;Y ℄, dT (G(P (T ); Q(T )) 2 NN: If � is an epimorphism, thereexists suh a G with dT (G(P (T ); Q(T )) = 1, and this implies N = 1. So:(P (T ) = �0T + �1; �0 6= 0Q(T ) = �0 :Consider the isomorphism of C-algebras �1 : C[U; V ℄ ! C[X;Y ℄, given by:(U = 1�0X � �1�0V = Y � �0 :Then � Æ �1 : C[U; V ℄ ! C[T ℄ is given by:(U = TV = 0and the theorem is proved in this ase.
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