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Approximate RootsPatri
k Popes
u-PampuUniversit�e Paris 7 Denis DiderotInstitut de Math�ematiques-UMR CNRS 7586Equipe \G�eom�etrie et Dynamique"Case 70122, pla
e Jussieu75251-Paris Cedex 05ppopes
u�math.jussieu.frAbstra
t. Given an integral domain A, a moni
 polynomial P of degreen with 
oeÆ
ients in A and a divisor p of n, invertible in A, there is aunique moni
 polynomial Q su
h that the degree of P �Qp is minimalfor varying Q. This Q, whose p-th power best approximates P , is 
alledthe p-th approximate root of P . If f 2 C[[X℄℄[Y ℄ is irredu
ible, thereis a sequen
e of 
hara
teristi
 approximate roots of f , whose orders aregiven by the singularity stru
ture of f . This sequen
e gives importantinformation about this singularity stru
ture. We study its properties inthis spirit and we show that most of them hold for the more general
on
ept of semiroot. We show then how this lo
al study adapts to givea proof of Abhyankar-Moh's embedding line theorem.1 Introdu
tionThe 
on
ept of approximate root was introdu
ed and studied in [2℄ in order toprove (in [3℄) what is now 
alled the Abhyankar-Moh-Suzuki theorem: it states thatthe aÆne line 
an be embedded in a unique way (up to ambient automorphisms)in the aÆne plane. More pre
isely, formulated algebrai
ally the theorem is:Theorem (Embedding line theorem)If C[X;Y ℄ ! C[T ℄ is an epimorphism of C-algebras, then there exists an iso-morphism of C-algebras C[U; V ℄ ! C[X;Y ℄ su
h that the 
omposed epimorphismC[U; V ℄ ! C[T ℄ is given by U = T; V = 0.This theorem, as well as other theorems about the group of automorphisms ofC[X;Y ℄, was seen to be an easy 
onsequen
e of the following one, in whi
h d(P )denotes the degree of the polynomial P :2000 Mathemati
s Subje
t Classi�
ation. Primary 32B30, 14B05; Se
ondary 14R15.
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u-PampuTheorem (Epimorphism theorem)If C[X;Y ℄ ! C[T ℄ is an epimorphism of C-algebras, given by X = P (T ); Y =Q(T ), with d(P ) > 0; d(Q) > 0, then d(P ) divides d(Q) or vi
e-versa.Sometimes in the literature the names of the two theorems are permuted. Theinitial proofs ([3℄) were simpli�ed in [5℄. Let us indi
ate their 
ommon startingpoint.In order to prove the embedding line theorem, Abhyankar and Moh introdu
edthe image 
urve of the embedding, whose equation is obtained by 
omputing aresultant: f(X;Y ) = ResT (P (T )�X;Q(T )� Y ). The 
urve f(X;Y ) = 0 has onlyone pla
e at in�nity (see the general algebrai
 de�nition in [5℄; in our 
ontext itmeans simply that the 
losure of the 
urve in the proje
tive plane has only onepoint on the line at in�nity and it is unibran
h at that point). The fa
t thatC[X;Y ℄ ! C[T ℄ is an epimorphism is equivalent with the existen
e of a relationT = 	(P (T ); Q(T )), where 	 2 C[X;Y ℄. This in turn is equivalent with theexisten
e of 	 su
h that the degree of 	(P (T ); Q(T )) is equal to 1. Now, when	 varies, those degrees form a semigroup. This semigroup was seen to be linkedwith a semigroup of the unique bran
h of 	 at in�nity, whi
h has a lo
al de�nition.That is how one passes from a global problem to a lo
al one.To des
ribe the situation near the point at in�nity, in [3℄ the aÆne plane wasnot seen geometri
ally as a 
hart of the proje
tive plane. The operation was donealgebrai
ally, making the 
hange of variable X ! 1X . So from the study of thepolynomial f one passed to the study of �(X;Y ) = f(X�1; Y ), seen as an elementof C((X))[Y ℄. That is why in [2℄ the lo
al study was made for meromorphi
 
urves,i.e., elements of C((X))[Y ℄. The 
lassi
al Newton-Puiseux expansions were gen-eralized to that situation (see the title of [2℄) as well as the notion of semigroup.In order to study this semigroup some spe
ial approximate roots of � were used,whi
h we 
all 
hara
teristi
 approximate roots. Their importan
e in this 
ontextlies in the fa
t that they 
an be de�ned globally in the plane, their lo
al versionsbeing obtained with the same 
hange of variable as before: X ! 1X .The proofs in [2℄ or in [5℄ of the lo
al properties of approximate roots dealtex
lusively with lo
ally irredu
ible meromorphi
 
urves. In [36℄ a generalization forpossibly redu
ible polynomials was a
hieved, over an arbitrary non-ar
himedeanvalued �eld.An introdu
tion to Abhyankar's philosophy on 
urves and to his notations 
anbe found in [9℄. A gradual presentation of the general path of the proof of theepimorphism theorem was tried at an undergraduate level in [4℄. See also thepresentation done in [39℄. Other appli
ations to global problems in the plane aregiven in [6℄. We quote here the following generalization of the embedding linetheorem:Theorem (Finiteness theorem)Up to isomorphisms of the aÆne plane, there are only �nitely many embeddingsof a 
omplex irredu
ible algebrai
 
urve with one pla
e at in�nity in the aÆne plane.The referen
e [6℄ also 
ontains some 
onje
tures in higher dimensions.Here we dis
uss mainly the lo
al aspe
ts of approximate roots. We work in lessgenerality, as suggested by the presentation of the subje
t made in [25℄. Namely,we 
onsider only polynomials in C[[X ℄℄[Y ℄. This framework has the advantage ofgiving more geometri
al insight, many 
omputations being interpreted in terms of



Approximate Roots 3interse
tion numbers (see also [17℄), a viewpoint that is la
king in the meromorphi

ase. This has also the advantage of allowing us to interpret the lo
al propertiesof approximate roots in terms of the minimal resolution of f , a 
on
ept whi
h hasno analog in the 
ase of meromorphi
 
urves. We de�ne the 
on
ept of semiroots,as being those 
urves that have the same interse
tion-theoreti
al properties as the
hara
teristi
 approximate roots, and we show that almost all the lo
al propertiesusually used for the 
hara
teristi
 roots are in fa
t true for semiroots.First we introdu
e the notations for Newton-Puiseux parameterizations of aplane bran
h in arbitrary 
oordinates, following [25℄. In se
tion 3 we introdu
e thegeneral notion of approximate roots. We explain the 
on
ept of semigroup of thebran
h and related notions in se
tion 4. In se
tion 5 we introdu
e the 
hara
teristi
approximate roots of the bran
h, we state their main interse
tion-theoreti
al lo
alproperties (Theorem 5.1) and we add some 
orollaries. In se
tion 6 we explain themain steps of the proof of Theorem 5.1. In se
tions 7 and 8 we give the proofsof Theorem 5.1, its 
orollaries and the auxiliary propositions stated in the text.We prefer to isolate the proofs from the main text, in order to help reading it. Inthe �nal se
tion we indi
ate the 
hanges one must make to the theory explainedbefore in order to deal with the meromorphi
 
urves and we sket
h a proof of theembedding line theorem.A forerunner of the 
on
ept of approximate root was introdu
ed in an arith-meti
al 
ontext in [32℄ and [33℄ (see also [28℄ for some histori
al remarks on thosepapers). The existen
e of approximate roots is the 
ontent of exer
ise 13, x1, in [13℄.The 
on
ept of semiroot is 
losely asso
iated with that of 
urve having maximal
onta
t with the given bran
h, introdu
ed in [29℄ and [30℄. More details on thislast 
on
ept are given in the 
omments following Corollary 5.6. Approximate rootsof elements of C[[X ℄℄[Y ℄ are also used in [12℄ to study the lo
al topology of plane
urves. The approximate roots of 
urves in positive 
hara
teristi
 are studied in[40℄ using Hamburger-Noether expansions and the epimorphism theorem is gener-alized to this 
ase under some restri
tions. The approximate roots of meromorphi

urves are used in [11℄ for the study of aÆne 
urves with only one irregular value.The proje
tivized approximate roots of a 
urve with one pla
e at in�nity are usedin [16℄ in order to obtain global versions of Zariski's theory of 
omplete ideals. In[23℄, the theorem 5.1 proved below and some of its 
orollaries are generalized to the
ase of quasi-ordinary singularities of hypersurfa
es.We would like to thank S.S.Abhyankar for the explanations he gave us in Saska-toon on approximate roots. We were also greatly helped in our learning of thesubje
t by the arti
le [25℄ of J.Gwo�zdziewi
z and A.P loski. We thank B.Teissier,E.Gar
��a Barroso and P.D.Gonz�alez P�erez for their 
omments on preliminary ver-sions of this work and S.Kuhlmann and F.V.Kuhlmann for the invitation to talkon this subje
t in Saskatoon. 2 NotationsIn what follows we do not 
are about maximal generality on the base �eld. Wework over C, the �eld of 
omplex numbers. By 00ajb00 we mean \a divides b", whosenegation we note 00a 6 jb00. The greatest 
ommon divisor of a1; :::; am is denotedg
d(a1; :::; am). If q 2 R, its integral part is denoted [q℄.We 
onsider f(X;Y ) 2 C[[X ℄℄[Y ℄, a polynomial in the variable Y , moni
 andirredu
ible over C[[X ℄℄, the ring of formal series in X :
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u-Pampuf(X;Y ) = Y N + �1(X)Y N�1 + �2(X)Y N�2 + � � �+ �N (X)where �1(0) = � � � = �N (0) = 0.If we embed C[[X ℄℄[Y ℄ ,! C[[X;Y ℄℄, the equation f(X;Y ) = 0 de�nes a germof formal (or algebro��d) irredu
ible 
urve at the origin - we 
all it shortly a bran
h- in the plane of 
oordinates X;Y . We denote this 
urve by Cf .Conversely, if a bran
h C ,! C2 is given, the Weierstrass preparation theoremshows that it 
an be de�ned by a unique polynomial of the type just dis
ussed, on
ethe ambient 
oordinates X;Y have been 
hosen, with the ex
eption of C = Y -axis.If we des
ribe like this a 
urve by a polynomial equation f with respe
t to thevariable Y , we 
all brie
y its degree N in Y the degree of f , and we denote it byd(f) or dY (f) if we want to emphasize the variable in whi
h it is polynomial. WhenC is transverse to the Y -axis (whi
h means that the tangent 
ones of C and of theY -axis have no 
ommon 
omponents), we have the equality d(f) = m(C), wherem(C) denotes the multipli
ity of C (see se
tion 4).From now on, ea
h time we speak about the 
urve C, we mean the 
urve Cf ,for the �xed f .The 
urve C 
an always be parameterized in the following way (see [20℄, [46℄,[9℄, [44℄, [45℄):(X = TNY = Pj�1 ajT j = � � �+ aB1TB1 + � � �+ aB2TB2 + � � �+ aBGTBG + � � � (2.1)with g
d(fNg [ fj; aj 6= 0g) = 1.The exponents Bj , for j 2 f1; :::; Gg are de�ned indu
tively:B1 := minfj; aj 6= 0; N 6 jjgBi := minfj; aj 6= 0; g
d(N;B1; :::; Bi�1) 6 jjg, for i � 2:The number G is the least one for whi
h g
d(N;B1; :::; BG) = 1.We de�ne also: B0 := N = d(f). Then (B0; B1; :::; BG) is 
alled the 
har-a
teristi
 sequen
e of Cf in the 
oordinates X;Y . The Bi's are the 
hara
teristi
exponents of Cf with respe
t to (X;Y ).A parameterization like (2.1) is 
alled a primitive Newton-Puiseux parameter-ization with respe
t to (X;Y ) of the plane bran
h C. Noti
e that X and Y 
annotbe permuted in this de�nition.Let us explain why we added the attribute \primitive". If we write T = UM ,where M 2 N�, we obtain a parameterization using the variable U . In the newparameterization, the greatest 
ommon divisor of the exponents of the series X(U)and Y (U) is no longer equal to 1. In this 
ase we say that the parameterization isnot primitive. When we speak only of a \Newton-Puiseux parameterization", wemean a primitive one.We de�ne now the sequen
e of greatest 
ommon divisors: (E0; E1; :::; EG) inthe following way: Ej = g
d(B0; :::; Bj) for j 2 f0; :::; Gg:In parti
ular: E0 = N; EG = 1. De�ne also their quotients:Ni = Ei�1Ei > 1; for 1 � i � G:This implies: Ei = Ni+1Ni+2 � � �NG; for 0 � i � G� 1:



Approximate Roots 5Let us introdu
e the notion of Newton-Puiseux series of C with respe
t to(X;Y ). It is a series of the form:�(X) =Xj�1 ajX jN (2.2)obtained from (2.1) by repla
ing T by X 1N . It is an element of C[[X 1N ℄℄. Onehas then the equality f(X; �(X)) = 0, so �(X) 
an be seen as an expression fora root of the polynomial equation in Y : f(X;Y ) = 0. All the other roots 
an beobtained from (2.2) by 
hanging X 1N to !X 1N , where ! is an arbitrary N -th root ofunity. This is a manifestation of the fa
t that the Galois group of the �eld extensionC((X)) ! C((X 1N )) is Z=NZ. From this remark we get another presentation ofthe 
hara
teristi
 exponents:Proposition 2.1 The set fB1N ; :::; BGN g is equal to the set:fvX(�(X)� �(X)); �(X) and �(X) are distin
t roots of fg:Here vX designates the order of a formal fra
tional power series in the variableX . Given a Newton-Puiseux series (2.2), de�ne for k 2 f0; :::; Gg:�k(X) = X1�j<Bk+1 ajX jN :It is the sum of the terms of �(X) of exponents stri
tly less than Bk+1N . We
all �k(X) a k-trun
ated Newton-Puiseux series of C with respe
t to (X;Y ). If theparameterization (2.1) is redu
ed, then �k(X) 2 C[[X EkN ℄℄ and there are exa
tlyNEk su
h series.Before introdu
ing the 
on
ept of approximate root, we give an example of anatural question about Newton-Puiseux parameterizations, whi
h will be answeredvery easily using that 
on
ept.Motivating exampleThere are algorithms to 
ompute Newton-Puiseux parameterizations of thebran
h starting from the polynomial f . If one wants to know only the beginningof the parameterization, one 
ould ask if it is enough to know only some of the
oeÆ
ients of the polynomial f . The answer is aÆrmative, as is shown by thefollowing proposition:Proposition 2.2 If f is irredu
ible with 
hara
teristi
 sequen
e (B0; :::; BG),then the terms of the k-trun
ated Newton-Puiseux series of f depend only on�1(X); :::; � NEk (X).The proof will appear to be very natural on
e we know the 
on
ept of ap-proximate root and Theorem 5.1. Let us illustrate the proposition by a 
on
rete
ase.Consider:f(X;Y ) = Y 4 � 2X3Y 2 � 4X5Y +X6 �X7.One of its Newton-Puiseux parameterizations is:
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u-Pampu(X = T 4Y = T 6 + T 7We get, using the proposition for k = 1, that every irredu
ible polynomial ofthe form: g(X;Y ) = Y 4 � 2X3Y 2 + �3(X)Y + �4(X)whose 
hara
teristi
 sequen
e is (4; 6; 7), has a Newton-Puiseux series of the type:Y = X 32 + 
(X);with vX(
) � 74 .It is now the time to introdu
e the approximate roots...3 The de�nition of approximate rootsLet A be an integral domain (a unitary 
ommutative ring without zero divisors).If P 2 A[Y ℄ is a polynomial with 
oeÆ
ients in A, we shall denote by d(P ) its degree.Let P 2 A[Y ℄ be moni
 of degree d(P ), and p a divisor of d(P ). In generalthere is no polynomial Q 2 A[Y ℄ su
h that P = Qp, i.e. there is no exa
t rootof order p of the polynomial P . But one 
an ask for a best approximation of thisequality. We speak here of approximation in the sense that the di�eren
e P �Qpis of degree as small as possible for varying Q. Su
h a Q does not ne
essarily exist.But it exists if one has the following 
ondition on the ring A, veri�ed for examplein the 
ase that interests us here, A = C[[X ℄℄: p is invertible in A.More pre
isely, one has the following proposition:Proposition 3.1 If p is invertible in A and p divides d(P ), then there is aunique moni
 polynomial Q 2 A[Y ℄ su
h that:d(P �Qp) < d(P )� d(P )p : (3.1)This allows us to de�ne:De�nition 3.2 The unique polynomial Q of the pre
eding proposition isnamed the p-th approximate root of P . It is denoted ppP .Obviously: d( ppP ) = d(P )p :Example: Let P = Y n + �1Y n�1 + � � �+ �n be an element of A[Y ℄. Then, if n isinvertible in A: npP = Y + �1n :We re
ognize here the Ts
hirnhausen transformation of the variable Y . That isthe reason why initially (see the title of [2℄) the approximate roots were seen asgeneralizations of the Ts
hirnhausen transformation.We give now a proposition showing that in some sense the notation ppP isadapted:Proposition 3.3 If p; q 2 N� are invertible in A, then qp ppP = pqpP .



Approximate Roots 7We see that approximate roots behave in this respe
t like usual d-th roots. Thefollowing 
onstru
tion shows another link between the two notions. We add it for
ompleteness, sin
e it will not be used in the sequel.Let P 2 A[Y ℄ be a moni
 polynomial. Consider P1 2 A[Z�1℄, P1(Z) = P (Z�1).If we embed the ring A[Z�1℄ into A((Z)), the ring of meromorphi
 series with
oeÆ
ients in A, the p-th root of P1 exists inside A((Z)). It is the unique series P2with prin
ipal term 1 � Z�np su
h that P p2 = P1. We note:P 1p1 := P2:Consider the purely meromorphi
 part M(P 1p1 ) of P 1p1 , the sum of the termshaving Z-exponents � 0.We have M(P 1p1 ) 2 A[Z�1℄, so:Q(Y ) = M(P 1p1 )(Y �1) 2 A[Y ℄:We 
an state now the proposition (see [35℄, [36℄):Proposition 3.4 If Q 2 A[Y ℄ is de�ned as before, then Q = ppP .4 The semigroup of a bran
hLet OC = C[[X ℄℄[Y ℄=(f) be the lo
al ring of the germ C at the origin. It is anintegral lo
al ring of dimension 1.Let OC ! OC be the morphism of normalization of OC , i.e., OC is the integral
losure of OC in its �eld of fra
tions. This new ring is regular (normalization is adesingularization in dimension 1), and so it is a dis
rete valuation ring of rank 1.Moreover, there exists an element T 2 OC , 
alled a uniformizing parameter, su
hthat OC ' C[[T ℄℄. Then the valuation is simply the T -adi
 valuation vT , whi
hasso
iates to ea
h element of OC , seen as a series in T , its order in T .De�nition 4.1 The semigroup �(C) of the bran
h C is the image by theT -adi
 valuation of the non zero elements of the ring OC :�(C) := vT (OC � f0g) � vT (OC � f0g) = N = f0; 1; 2; :::g:The set �(C) is indeed a semigroup, whi
h 
omes from the additivity propertyof the valuation vT :8�;  2 OC � f0g; vT (� ) = vT (�) + vT ( ):The previous de�nition is intrinsi
 and it does not depend on the fa
t that the
urve C is planar. Let us now turn to other interpretations of the semigroup.First, our 
urve is given with a �xed embedding in the plane of 
oordinates(X;Y ). On
e we have 
hosen a uniformizing parameter T , we have obtained aparameterization of the 
urve: � X = X(T )Y = Y (T ) .For example, a Newton-Puiseux parameterization would work.If f 0 2 OC � f0g, it 
an be seen as the restri
tion of an element of the ringC[[X ℄℄[Y ℄, whi
h we denote by the same symbol f 0. The 
urve C 0 de�ned by theequation f 0 = 0 has an interse
tion number with C at the origin. We note it (f; f 0),or (C;C 0), to insist on the fa
t that this number depends only on the 
urves, andnot on the 
oordinates or the de�ning equations. We have then the equalities:vT (f 0) = vT (f 0(X(T ); Y (T ))) = (f; f 0);
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u-Pampuwhi
h provides a geometri
al interpretation of the semigroup of the bran
h C:�(C) = f(f; f 0); f 0 2 C[[X ℄℄[Y ℄; f 6 jf 0g:From this viewpoint, the semigroup is simply the set of possible interse
tion num-bers with 
urves not 
ontaining the given bran
h.The minimal non-zero element of �(C) is the multipli
ity m(C), noted alsom(f) if C is de�ned by f . It is the lowest degree of a monomial appearing in theTaylor series of f , and therefore also the interse
tion number of C with smooth
urves passing through the origin and transverse to the tangent 
one of C.If p1; :::; pl are elements of �(C), the sub-semigroup Np1 + � � � + Npl theygenerate is denoted by: hp1; :::; pli:One has then the following result, expressing a set of generators of the semigroupin terms of the 
hara
teristi
 exponents:Proposition 4.2 The degree N of the polynomial f is an element of �(C),denoted B0. So, B0 = B0. De�ne indu
tively other numbers Bi by the followingproperty: Bi := minfj 2 �(C); j =2 hB0; :::; Bi�1ig:Then this sequen
e has exa
tly G+ 1 terms B0; :::; BG, whi
h verify the followingproperties for 0 � i � G (we 
onsider by de�nition that BG+1 = 1):1) Bi = Bi +Pi�1k=1 Ek�1�EkEi�1 Bk:2) g
d(B0; :::; Bi) = Ei:3)NiBi < Bi+1:A proof of this proposition is given in [49℄ for generi
 
oordinates (see the de�-nition below) and in [25℄ in this general setting. Other properties of the generatorsare given in [34℄, in the generi
 
ase (see the de�nition below). In fa
t the proof 
anbe better 
on
eptualized if one uses the notion of semiroot, more general than thenotion of 
hara
teristi
 root. This notion is explained in se
tion 6. When readingthe proof of Proposition 4.2, one should be
ome 
onvin
ed that there is no vi
ious
ir
le in the use of the Bk's.The point is that it appears easier to de�ne the Bk's by property 1) and then toprove the minimality property of the sequen
e. We have used the other way roundin the formulation of Proposition 4.2 be
ause at �rst sight the minimality de�nitionseems more natural. One should also read the 
omments pre
eding Proposition 9.1.The generators of the semigroup introdu
ed in this proposition depend on the
oordinates X;Y , but only in a loose way. Indeed, they are uniquely determinedby the semigroup on
e the �rst generator B0 is known. This generator, beingequal to the degree of the polynomial f , depends on X;Y . Geometri
ally, it is theinterse
tion number (f;X). It follows from this that for generi
 
oordinates, i.e.with the Y -axis transverse to the 
urve C, the generators are independent of the
oordinates.We 
an therefore speak of generi
 
hara
teristi
 exponents. They are a 
ompleteset of invariants for the equisingularity and the topologi
al type of the bran
h (see[49℄). For the other dis
rete invariants introdu
ed before, we speak in the sameway of generi
 ones and we use lower 
ase letters to denote them, as opposed to
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apital ones for the invariants in arbitrary 
oordinates. Namely, we use the followingnotations for the generi
 invariants:n(b0; :::; bg)(e0; :::; eg)(n1; :::; ng)(b0; :::; bg) :This makes it easy to re
ognize in every 
ontext if we suppose the 
oordinates tobe generi
 or not.We 
all g the genus of the 
urve C.The exponent b0 is equal to the multipli
ity m(C) of C at the origin. When Dis a 
urve passing through 0, we have (C;D) = b0 if and only if D is smooth andtransverse to C at 0.The pre
eding proposition shows that in arbitrary 
oordinates the generatorsof the semigroup are determined by the 
hara
teristi
 exponents. But the rela-tions 
an be reversed, and show that 
onversely, the 
hara
teristi
 exponents aredetermined by the generators of the semigroup. From this follows the invarian
eof the 
hara
teristi
 exponents with respe
t to the generi
 
oordinates 
hosen forthe 
omputations. Moreover, like this one 
an easily obtain a proof of the 
lassi
alinversion formulae for plane bran
hes (see another proof in [1℄). Let us state it ina little extended form.Let (X;Y ) and (x; y) be two systems of 
oordinates, the se
ond one beinggeneri
 for C. We 
onsider the 
hara
teristi
 exponents (B0; :::; BG) of C withrespe
t to (X;Y ).Proposition 4.3 (Inversion formulae)The �rst 
hara
teristi
 exponent B0 
an take values only in the setflb0; 1 � l � [ b1b0 ℄g [ fb1g. The knowledge of its value 
ompletely determines therest of the exponents in terms of the generi
 ones:1) B0 = b0 ) G = g and:(B0; :::; BG) = (b0; :::; bg):2) B0 = lb0 with 2 � l � [ b1b0 ℄ ) G = g + 1 and:(B0; :::; BG) = (lb0; b0; b1 + (1� l)b0; :::; bg + (1� l)b0):3) B0 = b1 ) G = g and:(B0; :::; BG) = (b1; b0; b2 + b0 � b1; b3 + b0 � b1; :::; bg + b0 � b1):Moreover, for k 2 f1; :::; gg, the k-trun
ations of the Newton-Puiseux serieswith respe
t to (x; y) depend only on the (k+ �)-trun
ation of the Newton-Puiseuxseries with respe
t to (X;Y ), where � = G� g 2 f0; 1g.The name given 
lassi
ally to one form or another of this proposition 
omesfrom the fa
t it answers the question: what 
an we say about the Newton-Puiseuxseries with respe
t to (Y;X) if we know it with respe
t to (X;Y )? In this question,one simply inverts the 
oordinates.We prove the statement on trun
ations using, as in the 
ase of Proposition 4.2,the notion of semiroot, introdu
ed in se
tion 6.



10 Patri
k Popes
u-Pampu5 The main theoremAs before, the polynomial f 2 C[[X ℄℄[Y ℄ is supposed to be irredu
ible. To be
on
ise, we note in what follows: fk := Ekpf:Next theorem is the main one, (7.1), in [2℄. A di�erent proof is given in [5℄,(8.2). Here we give a proof inspired by [25℄.Theorem 5.1 The approximate roots fk for 0 � k � G, have the followingproperties:1) d(fk) = NEk and (f; fk) = Bk+1.2) The polynomial fk is irredu
ible and its 
hara
teristi
 exponents in these
oordinates are B0Ek ; B1Ek ; :::; BkEk .Theorem 5.1 gives properties of some of the approximate roots of f . One doesnot 
onsider all the divisors of N , but only some spe
ial ones, 
omputed fromthe knowledge of the 
hara
teristi
 exponents. For this reason, we name them the
hara
teristi
 approximate roots of f .We give now a list of 
orollaries. In fa
t these 
orollaries hold more generally forsemiroots, see the 
omments made after De�nition 6.4. The proofs of the theoremand of its 
orollaries are given in se
tion 7. Before that, in se
tion 6 we explain themain steps in the proof of Theorem 5.1Corollary 5.2 The irredu
ible polynomial f being given, one 
an 
omputere
ursively its 
hara
teristi
 approximate roots in the following way. Compute theN -th root f0 of f and put E0 = N . If fk was 
omputed, put (f; fk) = Bk+1. AsEk has already been 
omputed, take Ek+1 = g
d(Ek; Bk+1) and 
ompute fk+1 == Ek+1pf . One 
an then dedu
e the 
hara
teristi
 exponents from the 
hara
teristi
roots.This has been extended to the 
ase of meromorphi
 
urves in [10℄. The pre
ed-ing algorithm works only if f is irredu
ible. But it 
an be adapted to give a methodof de
iding whether a given f is indeed irredu
ible, as was done in [8℄. See alsothe more elementary presentation given in [7℄. A generalization of this 
riterion ofirredu
ibility to the 
ase of arbitrary 
hara
teristi
 is 
ontained in [19℄.Following the proof of the proposition, we add an example of appli
ation of thealgorithm.Corollary 5.3 For 0 � k � G, the polynomials f and fk have equal sets ofk-trun
ations of their Newton-Puiseux series.This, together with the remark following equation (8.1), gives an immediateproof of Proposition 2.2.Corollary 5.4 Every � 2 C[[X ℄℄[Y ℄ 
an be uniquely written as a �nite sum ofthe form: � = Xi0;:::;iG �i0:::iGf i00 f i11 � � � f iGGwhere iG 2 N, 0 � ik < Nk+1 for 0 � k � G � 1 and the 
oeÆ
ients �i0:::iG areelements of the ring C[[X ℄℄. Moreover:1) the Y -degrees of the terms appearing in the right-hand side of the pre-
eding equality are all distin
t.



Approximate Roots 112) the orders in T of the terms�i0:::iG�10(TN)f0(TN ; Y (T ))i0 � � � fG�1(TN ; Y (T ))iG�1are pairwise distin
t, where T ! (TN ; Y (T )) is a Newton-Puiseux parameterizationof f .There is no a priori bound on iG: this exponent is equal to [d(�)N ℄. The ordersin T appearing in 2) are the interse
tion numbers of f with the 
urves de�ned bythe terms of the sum whi
h are not divisible by f .This 
orollary is essential for the appli
ations of Theorem 5.1 to the proof ofthe embedding line theorem. Indeed, the point 2) allows one to 
ompute (f; �)in terms of the numbers (f; �i0:::iG�10f i00 f i11 � � � f iG�1G�1 ). But, as explained in theintrodu
tion, one is interested in the semigroup of f , 
omposed of the interse
tionnumbers (f; �) for varying �. This way of studying the semigroup of f is the onefo
used on in [2℄ and [5℄.Corollary 5.5 The images of X; f0; f1; :::; fG�1 into the graded ring grvTOCgenerate it as a C-algebra. If the 
oordinates are generi
, they form a minimalsystem of generators.We have de�ned generi
 
oordinates in the remark following Proposition 4.2.Here grvTOC is the graded ring of OC with respe
t to the valuation vT . This 
on
eptis de�ned in general, if A is a domain of integrity, F (A) its �eld of fra
tions and� a valuation of F (A) that is positive on A. In this situation, we de�ne �rst thesemigroup of values �(A) to be the image of A�f0g by the valuation. If p 2 �(A),we de�ne the following ideals of A:Ip := fx 2 A; �(x) � pg;I+p := fx 2 A; �(x) > pg:The graded ring of A with respe
t to the valuation � is de�ned in the following way:gr�A := Mp2�(A) Ip=I+p :This viewpoint on the approximate roots is fo
used on in [42℄ and [43℄, where thegeneral 
on
ept of generating sequen
e for a valuation is introdu
ed. This 
on
eptgeneralizes the sequen
e of 
hara
teristi
 approximate roots, introdu
ed before.In the 
ase of irredu
ible germs of plane 
urves, the spe
trum of grvT (OC) isthe so-
alled monomial 
urve asso
iated to C. It was used in [22℄ in order to showthat one 
ould understand better the desingularization of C by embedding it in aspa
e of higher dimension.Before stating the next 
orollary, let us introdu
e some other notions. For moredetails one 
an 
onsult [14℄, [31℄ and [42℄.An embedded resolution of C is a proper birational morphism � : � ! C2 su
hthat � is smooth and the total transform ��1(C) is a divisor with normal 
rossings.Su
h morphisms exist and they all fa
torize through a minimal one �m : �m ! C2whi
h 
an be obtained in the following way. Start from C ,! C2 and blow-up theorigin. Take the total transform divisor of C in the resulting surfa
e. All its pointsare smooth or with normal 
rossings, with the possible ex
eption of the point onthe stri
t transform of C. If at this point the divisor is not with normal 
rossing,
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Figure 1 The Dual Graphblow up the point. Then repeat the pro
ess. After a �nite number of steps, oneobtains the minimal embedded resolution of C.The redu
ed ex
eptional divisor E of �m is 
onne
ted, whi
h 
an be easilyseen from the previous des
ription by su

essive blowing-up. This phenomenon ismu
h more general, and known under the name \Zariski's 
onne
tedness theorem"or \Zariski's main theorem", see [47℄, [37℄ and [27℄. The 
omponents of E areisomorphi
 to CP1. We 
onsider the dual graph D(�m) of E , whose verti
es are inbije
tion with the 
omponents of E . Two verti
es are 
onne
ted by an edge if andonly if the 
orresponding 
omponents interse
t on �m. The graph D(�m) is thena tree like in Figure 1, in whi
h we represent only the underlying topologi
al spa
eof the graph and not its simpli
ial de
omposition.In this pi
ture there are exa
tly g verti
al segments, g being the genus of f(see its de�nition in the 
omments following Proposition 4.2). The �rst vertex onthe left of the horizontal segment 
orresponds to the 
omponent of E 
reated bythe �rst blowing-up. The vertex of atta
hment of the horizontal segment and ofthe right-hand verti
al segment 
orresponds to the 
omponent of E whi
h 
uts thestri
t transform of C.If we 
onsider also the stri
t transform of C on �m, we represent it by anarrow-head vertex 
onne
ted to the vertex of D(�m) whi
h represents the unique
omponent of E whi
h it interse
ts. We denote this new graph by D(�m; f).This graph as well as various numeri
al 
hara
ters of the 
omponents of E 
anbe 
omputed from a generi
 Newton-Puiseux series for f . The �rst to have linkedNewton-Puiseux series with the resolution of the singularity seems to be M.Noetherin [38℄. See also [20℄ for the viewpoint of the italian s
hool.Corollary 5.6 Let �m be the minimal embedded resolution of Cf . We 
onsiderthe 
hara
teristi
 approximate roots fk, for 0 � k � g with respe
t to generi

oordinates. Let us denote by Ck the 
urve de�ned by the equation fk = 0. Onehas evidently Cf = Cg . Let us also denote by C 0k the stri
t transform of Ck bythe morphism �m. Then the 
urves C 0k are smooth and transverse to a unique
omponent of the ex
eptional divisor of �m. The dual graph of the total transformof f0f1 � � � fg is represented in Figure 2.
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Figure 2 The Total Dual GraphThe previous 
orollary gives a topologi
al interpretation of the 
hara
teristi
approximate roots, showing how they 
an be seen as generalizations of smooth
urves having maximal 
onta
t with C.Su
h a generalization was already made in [29℄ and [30℄, where the notion ofmaximal 
onta
t with f was extended from smooth 
urves to singular 
urves havingat most as many generi
 
hara
teristi
 exponents as f . It was further studied in[15℄. Let us explain this notion.If D is a plane bran
h, let�(D) := 1m(D) supD0f(D;D0)g;where the supremum is taken over all the 
hoi
es of smooth D0. It is a �niterational number, with the ex
eption of the 
ase when D is smooth, whi
h implies�(D) = +1:Consider now the sequen
e of point blowing-ups whi
h desingularizes C. Fori 2 f0; :::; gg, let Di be the �rst stri
t transform of C that has genus g� i. One hasD0 = C. De�ne: �i(C) := �(Di):The sequen
e (�0(C); :::; �g(C)) was named in [29℄ the sequen
e of Newton 
oeÆ-
ients of C. In 
hara
teristi
 0 - for example when working over C, as we do inthis arti
le - its knowledge is equivalent to the knowledge of the 
hara
teristi
 se-quen
e. The advantage of the Newton 
oeÆ
ients is that they are de�ned in any
hara
teristi
.De�nition 5.7 If D is a bran
h of genus k 2 f0; :::; gg, we say that D hasmaximal 
onta
t with C if �i(D) = �i(C) for every i 2 f0; :::; kg and (C;D) isthe supremum of the interse
tion numbers of C with 
urves of genus k having theprevious property.It 
an be shown with the same kind of arguments as those used to prove Corol-lary 5.6, that for every k 2 f0; :::; gg, the 
urves having genus k and maximal
onta
t with f are exa
tly the k-semiroots in generi
 
oordinates.In order to understand better Corollary 5.6, let us introdu
e another 
on
ept:De�nition 5.8 Let L be some 
omponent of the redu
ed ex
eptional divisorE . A bran
h D ,! C2 is 
alled a 
urvette with respe
t to L if its stri
t transformby �m is smooth and transversal to L at a smooth point of E .
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omponent of E 
reated by the blowing-up of 0 2 C2. For everyk 2 f1; :::; gg, let Lk be the 
omponent at the free end of the k-th verti
al segmentof D(�m). Let Lg+1 be the 
omponent interse
ting the stri
t transform of C.Corollary 5.9 A 
hara
teristi
 approximate root of f in arbitrary 
oordinatesis a 
urvette with respe
t to one of the 
omponents L0; L1; :::; Lg+1.This 
orollary is an improvement of Corollary 5.6, whi
h says this is true ingeneri
 
oordinates. This more general property is important for the geometri
alinterpretations of approximate roots given in [16℄. A deeper study of 
urvettes, forpossibly multi-bran
h 
urve singularities 
an be found in [31℄.6 The steps of the proofIn this se
tion we explain only the main steps in the proof of Theorem 5.1, aswell as a reformulation for the 
orollaries. The 
omplete proofs are given in se
tion7. First we have to introdu
e a new notion, fundamental for the proof, that ofthe expansion of a polynomial in terms of another polynomial. This is the notionmentioned in the title of [5℄.Let A be an integral domain and let P;Q 2 A[Y ℄ be moni
 polynomials su
hthat Q 6= 0. We make the Eu
lidean division of P by Q and we keep dividing theintermediate quotients by Q until we arrive at a quotient of degree < d(Q):8>>>><>>>>:P = q0Q+ r0q0 = q1Q+ r1...qt�1 = qtQ+ rt :Here qt 6= 0 and d(qt) < d(Q). Then we obtain an expansion of P in terms ofQ: P = qtQt+1 + rtQt + rt�1Qt�1 + � � �+ r0:All the 
oeÆ
ients qt; rt; rt�1; :::; r0 are polynomials in Y of degrees < d(Q). Thisis the unique expansion having this property:Proposition 6.1 One has a unique Q-adi
 expansion of P:P = a0Qs + a1Qs�1 + � � �+ as (6.1)where a0; a1; :::; as 2 A[Y ℄ and d(ai) < d(Q) for all i 2 f0; :::; sg.The Y -degreesof the terms aiQs�i in the right-hand side of equation (6.1) are all di�erent ands = [ d(P )d(Q) ℄. One has a0 = 1 if and only if d(Q) j d(P ). In this last situation,supposing that moreover s is invertible in A, one has a1 = 0 if and only if Q = spP .Remark: One should note the analogy with the expansion of numbers in abasis of numeration. To obtain that notion, one needs only to take natural numbersin spite of polynomials. Then the ai's are the digits of the expansion.De�nition 6.2 The polynomials P andQ are given as before, with d(Q) j d(P ).Let us suppose s = d(P )d(Q) is invertible in A. The Ts
hirnhausen operator �P of\
ompletion of the s-power" is de�ned by the formula:�P (Q) := Q+ 1sa1:



Approximate Roots 15Look again at the example given after De�nition 3.2. The usual expressionP = Y n + �1Y n�1 + � � � + �n is the Y -adi
 expansion of P and npP is exa
tly�P (Y ). The following proposition generalizes this observation.Proposition 6.3 Suppose P 2 A[Y ℄ is moni
 and p j d(P ), with p invertiblein A. The approximate roots 
an be 
omputed by iterating the Ts
hirnhausenoperator on arbitrary polynomials of the 
orre
t degree:ppP = �P Æ �P Æ ::: Æ �P| {z }d(P )=p (Q)for all Q 2 A[Y ℄ moni
 of degree d(P )p .The steps of the proof of Theorem 5.1 are:Step 1 Show that there exist polynomials verifying the 
onditions of Theorem5.1, point 1).Step 2 Show that those 
onditions are preserved by an adequate Ts
hirnhausenoperator.Step 3 Apply Proposition 6.3 to show indu
tively that the 
hara
teristi
 rootsalso satisfy those 
onditions.Step 4 Show that the point 2) of Theorem 5.1 is true for all polynomialssatisfying the 
onditions of point 1).This motivates us to introdu
e a spe
ial name for the polynomials verifying the
onditions of Theorem 5.1, point 1):De�nition 6.4 A polynomial qk 2 C[[X ℄℄[Y ℄ is a k-semiroot of f if it ismoni
 of degree d(qk) = NEk and (f; qk) = Bk+1.The term of \semiroot" is taken from [8℄.We show in fa
t that all the 
orollaries of the main theorem (Theorem 5.1),with the ex
eption of the �rst one, are true for polynomials that are k-semirootsof f . That is why we begin the proofs of the 
orollaries 5.3, 5.4, 5.5, 5.6 and 5.9by restating them in this greater generality. It is only in Corollary 5.2 that thepre
ise 
onstru
tion of approximate roots is useful. In our 
ontext, the value of theapproximate roots lies mainly in the fa
t that the de�nition is global and at thesame time gives lo
ally k-semiroots (see se
tion 9).We now formulate some propositions that are used in the proof of Theorem 5.1.The �rst one is attributed by some authors to M.Noether. Equivalent statementsin terms of 
hara
teristi
 exponents 
an be found in [41℄, [26℄, [18℄, [48℄, [34℄.Proposition 6.5 If � 2 C[[X ℄℄[Y ℄ is moni
, irredu
ible and K(f; �) :== maxfvX(�(X)� �(X)); �(X) and �(X) are Newton-Puiseux series of f and �gis the 
oin
iden
e exponent of f and �, then one has the formula:(f; �)d(�) = BkN1 � � �Nk�1 + N �K(f; �)�BkN1 � � �Nkwhere k 2 f0; :::; Gg is the smallest integer su
h that K(f; �) < Bk+1N .
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u-PampuThis proposition allows one to translate information about interse
tion num-bers into information about equalities of trun
ated Newton-Puiseux series and 
on-versely. For example, from De�nition 6.4 to Corollary 5.3, where in pla
e of fk we
onsider an arbitrary semiroot qk.Proposition 6.6 For ea
h k 2 f0; :::; Gg, the minimal polynomial �k of ak-trun
ated Newton-Puiseux series �k(X) of f is a k-semiroot.This gives us the Step 1 explained before.Proposition 6.7 If � 2 C[[X ℄℄[Y ℄ and d(�) < NEk , then (f; �) 2 hB0; :::; Bki:In other words, NEk is the minimal degree for whi
h one 
an obtain the valueBk+1 in the semigroup �(C).Proposition 6.8 If � is a k-semiroot and  is a (k�1)-semiroot, k 2 f1; :::; Gg,then ��( ) is a (k � 1)-semiroot of f .This gives Step 2 in the proof of Theorem 5.1.7 The proofs of the main theoremand of its 
orollariesProof of Theorem 5.11) The �rst equality d(fk) = NEk is 
lear from the de�nition of approximateroots.The main point is to prove that (f; fk) = Bk+1 for all k 2 f0; :::; Gg, whereBG+1 = 1. We shall prove it by des
ending indu
tion, starting from k = G. ThenfG = f and so (f; fG) = 1 = BG+1.Let us suppose that (f; fk) = Bk+1, with k 2 f1; :::; Gg. Then we have byProposition 3.3: fk�1 = Ek�1pf = NkEkpf = Nkq Ekpfand so: fk�1 = Nkpfk.By Proposition 6.3, we know that Nkpfk = �fk Æ � � � Æ �fk| {z }d(fk)=Nk (qk�1), where qk�1is an arbitrary polynomial of degree NEk�1 . We shall take for qk�1 an arbitrary(k � 1)-semiroot, whi
h exists by Proposition 6.6. By the indu
tion hypothesis, fkis a k-semiroot. By Proposition 6.8, if  is a (k � 1)-semiroot of f , then �fk ( )is again a (k � 1)-semiroot. Starting with �k�1 and applying the operator �fk
onse
utively d(fk)Nk = NEk�1 times, we dedu
e that Nkpfk is a (k � 1)-semiroot of f .The indu
tion step is 
ompleted, so we have proved the �rst part of the propo-sition.2)We show that this is true generally for an arbitrary k-semiroot qk. First weprove that qk is irredu
ible.Suppose this is not the 
ase. Then qk = Qmi=1 ri, where m � 2 andri 2 C[[X ℄℄[Y ℄ are moni
 polynomials of degree at least 1. So, for all i, d(ri) << d(qk) = NEk . By Proposition 6.7, (f; ri) 2 hB0; :::; Bki and so (f; qk) == Pmi=1(f; ri) 2 hB0; :::; Bki, whi
h 
ontradi
ts (f; qk) = Bk+1. This shows that qkis irredu
ible.



Approximate Roots 17We have to prove now the 
laim 
on
erning its 
hara
teristi
 exponents. Weapply Proposition 6.5, whi
h expresses (f;qk)d(qk) in terms of the 
oin
iden
e exponentof f and qk.First, we have dire
tly by the property of being a k-semiroot: (f;qk)d(qk) = Bk+1d(qk) == Bk+1N1���Nk . So, by Proposition 6.5, one has K(f; qk) = Bk+1, whi
h implies thatthe k-trun
ated Newton-Puiseux series of f and qk are equal. This means that the�rst k terms of the 
hara
teristi
 sequen
e of qk are lB0Ek ; lB1Ek ; :::; lBkEk , with l 2 N�.So d(qk) = lB0Ek = l NEk . But we know that d(qk) = NEk , and this implies that l = 1,whi
h in turn implies that qk has no more 
hara
teristi
 exponents. �Proof of Corollary 5.2The point here is to 
ompute the 
hara
teristi
 approximate roots and the
hara
teristi
 sequen
e without previously 
omputing trun
ated Newton-Puiseuxparameterizations.The algorithm given in the statement works be
auseg
d(B0; :::; Bk) = g
d(B0; :::; Bk) = Ek;whi
h is part of Proposition 4.2.On
e the 
hara
teristi
 roots have been 
omputed, by-produ
ts of the algorithmare the sequen
es (B0; :::; BG) and (E0; :::; EG). From the point 1 of Proposition4.2 one dedu
es then the 
hara
teristi
 sequen
e (B0; :::; BG). �Example: Take:f(X;Y ) = Y 4 � 2X3Y 2 � 4X5Y +X6 �X7;an example already 
onsidered to illustrate Proposition 2.2. We suppose here we donot know a Newton-Puiseux parameterization for it. We suppose it is irredu
ible- indeed it is, and the elaborations of the algorithm alluded to in the text wouldshow it - so we apply the algorithm:N = B0 = B0 = E0 = 4f0 = 4pf = Y(f; f0) = 6E1 = g
d(4; 6) = 2f1 = 2pf = �f Æ �f (Y 2) = Y 2 �X3(f; f1) = 13E2 = g
d(E1; B2) = g
d(2; 13) = 1G = 2N1 = E1E2 = 2B2 = B1 +B2 �N1B1 = 6 + 13� 2 � 6 = 7:So: (B0; B1; B2) = (4; 6; 7):Proof of Corollary 5.3The more general formulation is: If qk is a k-semiroot, f and qk have equalk-trun
ated Newton-Puiseux series. The proof is 
ontained in that of Theorem 5.1,point 2, where it was seen that K(f; qk) = Bk+1. �Proof of Corollary 5.4We give �rst the more general formulation whi
h we prove in the sequel:
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u-PampuLet q0; :::; qG 2 C[[X ℄℄[Y ℄ be moni
 polynomials su
h that for all i, d(qi) = NEi .Then every � 2 C[[X ℄℄[Y ℄ 
an be uniquely written in the form:� = Xfinite �i0:::iGqi00 qi11 � � � qiGGwhere iG 2 N, 0 � ik < Nk+1 for 0 � k � G � 1 and the 
oeÆ
ients �i0:::iG areelements of the ring C[[X ℄℄. Moreover:1) the Y -degrees of the terms appearing in the right-hand side of the pre-
eding equality are all distin
t.2) if for every k 2 f0; :::; Gg, qk is a k-semiroot, then the orders in T ofthe terms �i0:::iG�1(TN)q0(TN ; Y (T ))i0 � � � qG�1(TN ; Y (T ))iG�1are pairwise distin
t, where T ! (TN ; Y (T )) is a Newton-Puiseux parameterizationof f .Take �rst the qG-adi
 expansion of �:� = X0�iG�[ d(�)d(qG) ℄�iGqiGG :Here �iG 2 C[[X ℄℄[Y ℄ and d(�iG) < d(qG) = NEG = N:Take now the qG�1-adi
 expansion of every 
oeÆ
ient �iG :�iG =X�iG�1iGqiG�1G�1 :The 
oeÆ
ients �iG�1iG 2 C[[X ℄℄[Y ℄ have degrees d(�iG�1iG) < d(qG�1) and thesum is over iG�1 < NG.Pro
eeding in this manner we get an expansion with the required properties.Before proving the uni
ity, we prove point 1), namely the inequality of the degrees.Suppose there exist (i0; :::; iG) 6= (j0; :::; jG) andd(�i0 :::iGqi00 qi11 � � � qiGG ) = d(�j0:::jGqj00 qj11 � � � qjGG ) 6= 1:This means: GXk=0 ik � NEk = GXk=0 jk � NEk :Let us de�ne p 2 f0; :::; Gg su
h that ik = jk for k � p + 1 and ip < jp. Ifsu
h a p does not exist, simply inter
hange (i0; :::; iG) and (j0; :::; jG), then applythe pre
eding de�nition. We obtain:p�1Xk=0(ik � jk) NEk = (jp � ip) NEp :But jp � ip � 1 and j ik � jk j� Nk+1 � 1, so:NEp �Pp�1k=0(Nk+1 � 1) NEk = Pp�1k=0( EkEk+1 � 1) NEk == Pp�1k=0( NEk+1 � NEk ) = NEp � 1whi
h is a 
ontradi
tion.Now, this property of the degrees shows that 0 2 C[[X ℄℄[Y ℄ has only the trivialexpansion, and this in turn shows the uni
ity.



Approximate Roots 19Let us move to point 2). From now on, qk is a k-semiroot. By the properties ofinterse
tion numbers re
alled in se
tion 4, vT (qk(TN ; Y (T ))) = (f; qk) = Bk+1: So:vT (�i0:::iG�10(TN )q0(TN ; Y (T ))i0 � � � qG�1(TN ; Y (T ))iG�1 ) = G�1Xk=�1 ikBk+1:Here i�1 = vX(�i0:::iG�10(X)) 2 N.Let us suppose we have (i0; :::; iG�1) 6= (j0; :::; jG�1) su
h that: PG�1k=�1 ikBk+1= PG�1k=�1 jkBk+1. As before, we take p 2 f0; :::; G�1gwith ik = jk for k � p+1 andip < jp. So: (jp � ip)Bp+1 =Pp�1k=�1(ik � jk)Bk+1 whi
h gives: Ep j (jp � ip)Bp+1:But Ep+1 = g
d(Ep; Bp+1), by Proposition 4.2, and we get: Np+1 = EpEp+1 j (jp�ip).As 0 < jp � ip < Np+1, we get a 
ontradi
tion.With this, point 2) is proved. �Proof of Corollary 5.5We prove the following fa
t:If q0; :::; qG are semiroots of f , the images of (X; q0; :::; qG�1) in the graded ringgrvT (OC) generate it. If the 
oordinates are generi
, they form a minimal systemof generators.We take the notations explained in se
tion 5, with A = OC . For every p 22 �(C); dimC(Ip=I+p ) = 1. The ve
tor spa
e Ip=I+p is generated by an arbitraryelement � 2 OC su
h that vT (�) = p. We obtain:grvT (OC) ' Mfp2�(C)gCT p:We have: vT (X) = N and vT (qk) = Bk+1, for k 2 f0; :::; G � 1g. To show thatthe images of X; q0; :::; qG�1 generate grvT (OC) is equivalent with the fa
t thatevery ! 2 grvT (OC) 
an be expressed as a polynomial P!(TN ; TB1 ; :::; TBG). This
omes in turn from Proposition 4.2. Indeed, it is shown that hB0; B1; :::; BGi == �(C) and so every p 2 �(C) 
an be written as p = PG�1k=�1 ikBk+1, whi
h impliesT p = (TN )i�1(TB1)i0 � � � (TBG)iG�1 . An arbitrary ! 2 grvT (OC) is then a linear
ombination of su
h terms.Another proof 
an use Corollary 5.4.In 
ase the 
oordinates are generi
, B0 = m(C), the multipli
ity of C at theorigin, and this is the smallest non-zero value in �(C). Then (b0; :::; bg) is a minimalsystem of generators of �(C). Indeed, what prevented (B0; :::; BG) from beingminimal was the possibly non minimal value of B0 in �(C) � f0g (see Proposition4.2).Now, the minimality for the algebra grvT (OC) 
omes from the minimality forthe semigroup �(C). �Remark: An equivalent statement (using the notion of maximal 
onta
t ex-plained after Corollary 5.6, rather than the notion of semiroot), was proved by M.Lejeune-Jalabert. See the paragraph 1.2.3 in the Appendix of [49℄.Proof of Corollary 5.6Instead of the 
hara
teristi
 roots we 
onsider arbitrary semiroots qk and weshow that the Corollary is also true in this greater generality. We sket
h threeproofs of the Corollary. The �rst one uses adequate 
oordinate systems to follow
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u-Pamputhe stri
t transforms of Cf and Cqk during the pro
ess of blowing-ups. The se
ondand third one are more intrinsi
.1) Let us 
onsider generi
 
oordinates (X;Y ) and Newton-Puiseux series �(X);�k(X) for f , respe
tively qk. We have:�(X) = Xj�n ajX jn :If 
1 : S1 ! C2 is the blow-up of 0 2 C2, the stri
t transform C1f of Cf in S1passes through the origin of a 
hart of 
oordinates (X1; Y1) su
h that:(X = X1Y = X1(an + Y1) :The stri
t transform C1f of Cf has in the 
oordinates (X1; Y1) a Newton-Puiseuxseries of the form: �(1)(X1) = Xj�n+1 ajX jn�11 :The 
oordinates (X1; Y1) are generi
 for it if and only if [ b1n ℄ � 2. If this is the
ase, one des
ribes the restri
tion of the next blowing-up to the 
hart 
ontainingthe stri
t transform of Cf by the 
hange of variables:(X1 = X2Y1 = X2(a2n + Y2) :One 
ontinues like this s1 := [ b1n ℄ times till one arrives in the 
hart (Xs1 ; Ys1)at a stri
t transform Cs1f with Newton-Puiseux series:�(s1)(Xs1) = Xj�b1 ajX jn�s1s1 :Now for the �rst time the 
oordinates are not generi
 with respe
t to the series.Let us look also at the stri
t transform Cs1q0 of Cq0 . By Corollary 5.3, the bran
hCq0 has a Newton-Puiseux series �0(X) su
h that:�0(X) = Xj�1 a0jX jnwith a0j = aj for j < b1 and n j j for all j 2 N�.The stri
t transform Cs1q0 then has a Newton-Puiseux series of the form:�s10 (Xs1) = Xj�b1 a0jX jn�s1s1 :The series in the right-hand side has integral exponents, whi
h shows that Cs1q0is smooth - whi
h was evident, as Cq0 was already smooth. But, more important,Cs1q0 is not tangent to Xs1 = 0. This shows that it is transverse to Cs1f and tothe only 
omponent of the ex
eptional divisor passing through (Xs1 ; Ys1) = (0; 0),whi
h is de�ned by the equation: Xs1 = 0.The next blowing-up separates the stri
t transforms of Cf and Cq0 . The 
urveC(s1+1)q0 passes through a smooth point of the newly 
reated 
omponent of theex
eptional divisor.This shows that the dual graph of the total transform of f � f0 is as drawn inFigure 3.
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Figure 3 The Dual Graph of the Produ
tTo 
ontinue, one needs to 
hange 
oordinates after s1 blowing-ups. Insteadof 
onsidering the ordered 
oordinates (Xs1 ; Ys1), we look at (Ys1 ; Xs1). We nowuse the inversion formulae explained in Proposition 4.3. They allow to expressthe 
hara
teristi
 exponents of Cs1f with respe
t to (Ys1 ; Xs1) in terms of thosewith respe
t to (Xs1 ; Ys1). Moreover, it follows from the property of trun
ationsstated in Proposition 4.3 that, if one inverts simultaneously the stri
t transformsof Cf ; Cq0 ; :::; Cqg�1 , they keep having 
oin
iding Newton-Puiseux series up to 
on-trolled orders. Repeating this pro
ess, one shows that after a number of inversionsequal to the number of terms in the 
ontinuous fra
tion expansion of b1n , the initialsituation is repeated, but with a 
urve having genus (g�1). The stri
t transform ofthe semiroot qk, for k 2 f1; :::; gg will be a (k� 1)-semiroot for the stri
t transformof f , in the natural 
oordinates resulting from the pro
ess of blowing-ups. So, one
an iterate the analysis made for q0 and get the 
orollary. �2) Given two bran
hes at the origin, from the knowledge of their 
hara
teristi
exponents and of their 
oin
iden
e exponent (see Proposition 6.5), one 
an 
onstru
tthe dual graph of resolution of their produ
t. This is explained in [31℄ and provedin detail, as well as in the 
ase of an arbitrary number of bran
hes, in [21℄. In our
ase this shows that the minimal embedded resolution of f , where qk is an arbitrarysemiroot for generi
 
oordinates, is also an embedded resolution of f �qk. Moreover,the extended dual graph is obtained from the dual graph D(�m; f) atta
hing anarrow-head vertex at the end of the k-th verti
al segment (see the explanationsgiven after Corollary 5.6). We get from it the 
orollary. �3) If l 2 C[[X;Y ℄℄ is of multipli
ity 1, let ��m(l) be its total transform divisoron �m. If L is a 
omponent of E , the ex
eptional divisor of �m, let �(L) be itsmultipli
ity in ��m(l). Let also �(L) be its multipli
ity in ��m(f). These multipli
ities
an be 
omputed indu
tively, following the order of 
reation of the 
omponents inthe pro
ess of blowing-ups. In parti
ular, if Lk is the 
omponent represented at theend of the k-th verti
al segment of the dual graph, �(Lk) = nek�1 for k 2 f1; :::; gg,and �(Lk) = bk (folklore).Let us 
onsider now the bran
h Cqk�1 . We know that (f; qk�1) = bk andm(qk�1) = nek�1 , where n = m(f). Then (f;qk�1)m(qk�1) = ek�1bkn and the lemma on thegrowth of 
oeÆ
ients of insertion in [31℄ shows that the stri
t transform of Cqk�1ne
essarily meets a 
omponent of the k-th verti
al segment of D(�m). If C 0qk�1 is
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u-Pamputhe stri
t transform of qk�1 by �m, we have:(f; qk�1) = (��m(f); C 0qk�1 ) = XL �(L)(L;C 0qk�1 )the sum being taken over all the 
omponents of E whi
h meet C 0qk�1 . Now it 
an beeasily seen that � stri
tly grows on a verti
al segment of D(�m), from the end to thepoint of 
onta
t with the horizontal segment. This 
omes from the fa
t that those
omponents of the ex
eptional divisor are 
reated in this order - but not ne
essarily
onse
utively. As �(Lk) = bk and (f; qk�1) = bk, we see that:bk =XL �(L)(L;C 0qk�1 ) �XL �(L)m(C 0qk�1 ) � �(Lk) � 1 = bk:This means that the inequalities are in fa
t equalities and shows that C 0qk�1 issmooth, meets Lk transversely and meets no other 
omponent of E . �Proof of Corollary 5.9We prove:A semiroot qk of f in arbitrary 
oordinates is a 
urvette with respe
t to one ofthe 
omponents Lk; Lk+1.We analyze su

essively the three 
ases introdu
ed in Proposition 4.3, usingalso some results of its proof.1) B0 = b0:This is the 
ase of generi
 
oordinates. The aÆrmation is the same as Corollary5.6. We get that qk is a 
urvette with respe
t to Lk+1, for all k 2 f0; :::; gg.2) B0 = lb0; with 2 � l � [ b1b0 ℄:Then, by Proposition 4.3, G = g + 1.The 
urve q0 is smooth and so m(q0) = 1.Moreover, by the de�nition of semiroots, (f; q0) = B1 = b0 = m(f):This shows that q0 is smooth and transversal to f and so it is a 
urvette withrespe
t to L0.If k 2 f1; :::; Gg, where by Proposition 4.3, G = g + 1, we have:m(qk) = b0(qk) = B1(qk) = B1Ek = b0ek�1 ;(f; qk) = Bk+1 = bk:We have noted by b0(qk) the 
orresponding 
hara
teristi
 exponent of qk.So, for k 2 f1; :::; G � 1g, the 
urve qk is a (k � 1)-semiroot with respe
t togeneri
 
oordinates and by Corollary 5.6, it is a 
urvette with respe
t to Lk.3) B0 = b1By Proposition 4.3, we have G = g.Again q0 is smooth. Using Proposition 4.3 we obtain:(f; q0) = B1 = b0 = m(f):As in the pre
eding 
ase, q0 is a 
urvette with respe
t to L0.If k 2 f1; :::; Gg, where G = g, we have:m(qk) = b0(qk) = B1(qk) = B1Ek = b0ek ;(f; qk) = Bk+1 = bk+1:
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Figure 6 B0 = b1So qk is a k-semiroot with respe
t to generi
 
oordinates, and by Corollary 5.6,it is a 
urvette with respe
t to Lk+1.Let us summarize this study by drawing for ea
h of the three 
ases the dualgraph of the total transform of the produ
t q0 � � � qG. As in the statement of Corol-lary 5.6, we denote by C 0k the stri
t transform of qk. We obtain the situationsindi
ated in Figures 4, 5, 6. �
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u-Pampu8 The proofs of the propositionsProof of Proposition 2.1The series �(X) 
an be obtained from �(X) by repla
ing X 1N by !X 1N , where! 2 �N , the group of N -th roots of unity. One has the in
lusions of 
y
li
 groups:� NE0 � � NE1 � � � � � � NEG = �N : Let k 2 f0; :::; Gg be su
h that ! 2 � NEk � � NEk�1 .Then: vX(�(X)� �(X)) = (1; if k = 0EkN ; if k 2 f1; :::; Gg : �Proof of Proposition 2.2We start from f = Y N + �1(X)Y N�1 + �2(X)Y N�2 + � � � + �N (X). Let us
onsider the approximate root fk = Ekpf .As is seen from equation (8.1) in the proof of Proposition 3.1, its 
oeÆ
ientsdepend only on �1(X); :::; � NEk (X).Corollary 5.3 shows that f and fk have equal k-trun
ated Newton-Puiseuxseries. Combining these fa
ts we see that the k-trun
ated Newton-Puiseux seriesof f depend only on �1(X); :::; � NEk (X). �Proof of Proposition 3.1Let us put Q = Y np + a1Y np�1 + � � �+ anp :The inequality d(P � Qp) < d(P ) � d(P )p means that the 
oeÆ
ients of Y n;Y n�1; :::; Y n�np in the polynomial P �Qp are equal to 0. This gives the system ofequalities:8>>>>>>><>>>>>>>:�1 = pa1�2 = pa2 + p2 ! a21...�k = pak +Pi1+2i2+���+(k�1)ik�1=k 
i1:::ik�1ai11 � � � aik�1k�1 ; 1 � k � np (8.1)
Here the 
oeÆ
ients 
i1:::ik�1 are integers, easily expressible in terms of binomial
oeÆ
ients: 
i1:::ik�1 = � pi1 + � � �+ ik�1 � (i1 + � � �+ ik�1)!i1! � � � ik�1! :We see that from the relations (8.1) one 
an 
ompute su

essively a1; a2; :::; anp .One has only to divide at ea
h step by p. That is the reason why in the de�nitionof the approximate root we asked p to be invertible.So a1; a2; :::; anp exist and are uniquely determined. Moreover, they dependonly on �1; :::; �np . �Proof of Proposition 3.3Let us note Q := ppP and R := qpQ.



Approximate Roots 25We want to show that R = pqpP , i.e. that d(P �Rpq) < d(P )� d(P )pq .If S := Q � Rq, we know that d(S) < d(Q) � d(Q)q = d(P )p � d(P )pq : Then:P �Qp = P � (Rq + S)p = (P �Rpq)�Ppk=1 � pk �SkRq(p�k), and so:P �Rpq = (P �Qp) + pXk=1� pk �SkRq(p�k)whi
h implies:d(P �Rpq) � max(fd(P �Qp)g [ fd(SkRq(p�k)); 1 � k � pg):We know that d(P �Qp) < d(P )� d(P )p , and for 1 � k � p we have:d(SkRq(p�k)) = kd(S) + q(p� k)d(R) << k(d(P )p � d(P )pq ) + q(p� k)d(P )pq == k d(P )p � k d(P )pq + d(P )� k d(P )p == d(P )� k d(P )pq � d(P )� d(P )pq :So �nally:d(P �Rpq) < maxfd(P )� d(P )p ; d(P )� d(P )pq g = d(P )� d(P )pqwhi
h shows that R = pqpP : �Proof of Proposition 3.4If P (Y ) = Y n + �1Y n�1 + �2Y n�2 + � � �+ �n, then :P1(Z) = Z�n(1 + �1Z + � � �+ �nZn)and so: P 1p1 (Z) = Z�np (1 +Xk�1 
kZk) = M(P 1p1 ) +H(P 1p1 )where: M(P 1p1 ) := Z�np + 
1Z1�np + � � �+ 
np ;H(P 1p1 ) := Xk�1 
k+npZk:Here the 
oeÆ
ients 
k are elements of A, uniquely determined polynomiallyby the 
oeÆ
ients of P . We get:Q(Y ) = Y np + 
1Y np�1 + � � �+ 
np :Let us 
onsider: R(Y ) := P (Y )�Q(Y )p:
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k Popes
u-PampuWe want to show that d(R) < n�np , whi
h is equivalent to vZ(R(Z�1)) � �n+np+1,vZ designating the order of a series in A((Z)). But:R(Z�1) = P (Z�1)�Q(Z�1)p == P1(Z)� (M(P 1p1 ))p == P1 � (P 1p1 �H(P 1p1 ))p == Ppk=1(�1)k+1� pk �P p�kp1 Sk:where we have noted S := H(P 1p1 ). We obtain:vZ(R(Z�1)) � min1�k�pfvZ(P p�kp1 Sk)g = min1�k�pf�n�p� kp +k�1g = �n+np+1whi
h is the inequality we wanted to prove.So d(P (Y )�Q(Y )p) < n� np , and this shows that Q = ppP . �Proof of Proposition 4.2The degree d(f) 
an be obtained as an interse
tion number: N = d(f) =vT (f(0; T )) = (f;X). So N 2 �(C).We now de�ne bk by the relation given in point 2) of the proposition. We provethat the numbers de�ned in this way are indeed elements of the semigroup �(C)and verify the minimality property used to de�ne them in the text.The important fa
t is that Proposition 6.5 is proved only using the formulasof the Bk's in terms of the Bk's. That is the reason why we 
an apply it in whatfollows.Consider the minimal polynomials �k of the k-trun
ated Newton-Puiseux series�k(X), for k 2 f0; :::; G � 1g (see Proposition 6.6 and its proof). Then d(�k) == NEk = N1 � � �Nk and K(f; �k) = Bk+1N , so Proposition 6.5 gives: (f;�k)d(�k) = Bk+1N1���Nk .We get: (f; �k) = Bk:This shows that Bk 2 �(C).Consider now an arbitrary element g 2 C[[X ℄℄[Y ℄ and expand it in terms of(�0; :::; �G) as explained in the proof of Corollary 5.4. Indeed, (�0; :::; �G) aresemiroots of f and we show in the proof that the 
orollary is true in this greatergenerality. Noti
e that the 
ontent of this 
orollary is true in our 
ase, be
ause weuse only point 2) of Proposition 4.2 whi
h, as well as point 3), results from point 1).From Corollary 5.4 we get:(f; g)= min(i0;:::;iG�1)fvT (�i0:::iG�10(TN )�0(TN ; Y (T ))i0 � � ��G�1(TN ; Y (T ))iG�1)g= min(i0;:::;iG�1)fi�1N + i0B1 + � � �+ iG�1BGgwhere i�1 = vX(�i0:::iG�10).This shows that �(C) = hB0; :::; BGi.Now, for every k 2 f1; :::; Gg, we have Bk =2 hB0; :::; Bk�1i, be
ause Ek�1 doesnot divide Bk.Suppose l 2 �(C) and l =2 hB0; :::; Bk�1i. We already know that l 2 hB0; :::; BGi,so l = i�1N + i0B1 + � � � + iG�1BG with ij 2 N for j 2 f�1; :::; G � 1g: As



Approximate Roots 27l =2 hB0; :::; Bk�1i, we dedu
e that for some j � k, we have ij > 0; whi
h impliesl � Bj � Bk. This proves the equality we were seeking:Bk = minfj 2 �(C); j =2 hB0; :::; Bk�1ig: �Proof of Proposition 4.3In what follows we look at the fun
tions as elements of ÔC2;0. If the lo
al
oordinates X;Y are 
hosen, one obtains a natural isomorphism ÔC2;0 ' C[[X;Y ℄℄.If f 2 C[[X ℄℄[Y ℄, by de�nition (see se
tion 4), B0 = d(f) = (f;X). Now, X is aregular fun
tion at the origin. We take other 
oordinates, x; y 2 ÔC2 generi
 forthe fun
tions f and X . By the impli
it fun
tion theorem, we have CX = Ch, where:h(x; y) := y � 
(x);with 
 2 C[[x℄℄. Take a Newton-Puiseux parameterization of Cf :(x = T b0y = y(T ) :Then: B0 = (f;X) = (f; h) = vT (h(T b0 ; y(T ))) = vT (y(T )� 
(T b0)).The �rst exponent in y(T ) whi
h is not divisible by b0 is b1. So, when we varythe 
hoi
e of 
, we 
annot obtain a value vT (y(T )� 
(T b0)) greater than b1. Thevalue b1 
an be obtained if the trun
ations of Y1(T ) and 
(T b0) 
oin
ide up to theorder b1 (not in
luding it). When 
 varies, we 
an also obtain all the values lb0,with lb0 < b1, i.e., with l � [ b1b0 ℄:On
e we know the degree B0, by Proposition 4.2 we know that B0 = B0and that all the numbers B1; :::; BG are uniquely determined by the minimalityproperty from the semigroup, whi
h is independent of the 
oordinates. Then one
an 
ompute, in this order, the sequen
es (E0; E1; :::; EG) and (N1; :::; NG) and�nally obtain all the sequen
e (B0; :::; BG).Let us treat su

essively the three 
ases distinguished in the statement of theproposition.1) B0 = b0.This means that the Y -axis is transverse to Cf . Then it is immediate thatG = g and (B0; :::; BG) = (b0; :::; bg). So:(B0; :::; BG) = (b0; :::; bg):2) B0 = l � b0, with l 2 f2; :::; [ b1b0 ℄g:This means that the Y -axis is tangent to Cf but has not maximal 
onta
t withit (see the de�nition of this notion given after Corollary 5.6). Then B0 = lb0. Asb0 is the minimal element of �(C) � f0g and b0 < B0, we see that B1 = b0. ThenE1 = b0 and so B2 = b1. Continuing like this we get:G = g + 1(B0; B1; B2; :::; BG) = (lb0; b0; b1; :::; bg)(E0; E1; E2; :::; EG) = (le0; e0; e1; :::; eg)(N1; N2; N3; :::; NG) = (l; n1; n2; :::; ng):By proposition 4.2, point 1), we get : Bk � Bk�1 = Bk � Nk�1Bk�1 == bk�1 �Nk�1bk�2, for all k 2 f1; :::; Gg.
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u-PampuFor k = 2, B2 �B1 = b1 � lb0 = b1 � lb0 whi
h gives:B2 = b1 + (1� l)b0:For k � 3, Nk�1 = nk�2 and so:Bk �Bk�1 = bk�1 � nk�2bk�2 = bk�1 � bk�2:We obtain by indu
tion:(B0; :::; BG) = (lb0; b0; b1 + (1� l)b0; :::; bg + (1� l)b0):3) B0 = b1.This means that the Y -axis has maximal 
onta
t with the bran
h Cf . Thesame kind of analysis as before shows that:G = g(B0; B1; B2; :::; BG) = (b1; b0; b2; :::; bg)(E0; E1; E2; :::; EG) = (b1; e1; e2; :::; eg)(N1; N2; N3; :::; NG) = ( b1e1 ; n2; n3; :::; ng)(B0; :::; BG) = (b1; b0; b2 + b0 � b1; :::; bg + b0 � b1):In order to deal with trun
ations we use Proposition 6.5. Sin
e we have twosystems of 
oordinates, we note by K(X;Y )(f; �) the 
oin
iden
e exponent of f and� in the 
oordinates (X;Y ). See Proposition 6.5 for its de�nition.Let �k+� be the (k + �)-semiroot of f with respe
t to (X;Y ) whi
h is equalto the minimal polynomial of a (k + �)-trun
ated Newton-Puiseux series of f (seeProposition 6.6). Then we look at f and �k+� in the 
oordinates (x; y) and we
ompute K(x;y)(f; �k+�) using Proposition 6.5. This shows that some pre
isely de-termined trun
ations of their Newton-Puiseux series in these 
oordinates 
oin
ide.As �k+� is determined only by the (k+ �)-trun
ation of the Newton-Puiseux seriesof f with respe
t to (X;Y ), the 
omputations done in ea
h of the three 
ases givethe result.We give as an example only the treatment of the se
ond 
ase (B0 = lb0):In this 
ase � = 1. Let us 
onsider k � 1 and the semiroot �k+1. We know,by Theorem 5.1, that (X;�k+1) = d(�k+1) = NEk+1 and (f; �k+1) = Bk+2. Then:(x; �k+1) = m(�k+1) = B1B0 � NEk+1 = B1Ek+1 = b0ek : So:(f; �k+1)(x; �k+1) = Bk+2ekb0 = bk+1ekb0 = bk+1n1 � � �nkand Proposition 6.5 applied in the 
oordinate system (x; y) gives the equalityK(x;y)(f; �k+1) = bk+1n , whi
h shows that f and �k+1 have 
oin
iding k-trun
atedNewton-Puiseux series in the 
oordinates (x; y). �Proof of Proposition 6.1We 
onsider expansions of the type (6.1):P = a0Qs + a1Qs�1 + � � �+ aswith d(ai) < d(Q) for all i 2 f0; :::; sg.Let us show that in su
h an expansion, the degrees of the terms are all di�erent.More pre
isely, we show that:d(aiQs�i) > d(ajQs�j) for i < j: (8.2)



Approximate Roots 29Indeed, we have:d(aiQs�i)� d(ajQs�j) = d(ai)� d(aj) + (j � i)d(Q) � d(ai)� d(aj) + d(Q) > 0:From this property of the degrees, one dedu
es that a Q-adi
 expansion of0 2 A[Y ℄ is ne
essarily trivial, whi
h in turn gives the uni
ity of the expansion forall moni
 P 2 A[Y ℄.Moreover, identifying the leading 
oeÆ
ients in both sides of equation (6.1),we see that a0 is moni
.Then we have also: d(P ) = d(a0Qs) = d(a0) + sd(Q), whi
h implies:d(P )d(Q) = s+ d(a0)d(Q) :But 0 � d(a0)d(Q) < 1, whi
h gives the equality s = [ d(P )d(Q) ℄. Also, sin
e a0 is moni
,d(Q) j d(P ) , d(a0) = 0 , a0 = 1.Let us suppose now we are in the 
ase when d(Q) j d(P ). We have just seenthat in this situation a0 = 1. Then:P �Qs = sXi=1 aiQs�iand, by the growth property of the degrees (8.2), we get:d(P �Qs) � d(a2Qs�2) , a1 = 0:But d(a2Qs�2) = d(a2) + (s � 2)d(Q) < (s � 1)d(Q) = d(P ) � d(P )d(Q) andd(a1Qs�1) � (s� 1)d(Q) if a1 6= 0, whi
h implies:d(P �Qs) < d(P )� d(P )d(Q) , a1 = 0:By the de�nition of approximate roots, we see that a1 = 0 if and only ifQ = spP . �Proof of Proposition 6.3Let us take for Q a moni
 polynomial, d(Q) = d(P )p . The Q-adi
 expansion ofP is of the form: P = Qp + a1Qp�1 + � � �+ apwith d(ai) < d(Q) for 1 � i � p.We 
onsider also the �P (Q)-adi
 expansion of P :P = �P (Q)p + a01�P (Q)p�1 + � � �+ a0p:We shall prove that if a1 6= 0, we have d(a01) < d(a1). This will show that afteriterating �P at most d(a1)+1 times, we arrive at the situation a1 = 0, in whi
h 
ase�P (Q) = Q = ppP . But d(a1) + 1 � d(Q) = d(P )p , whi
h proves the proposition.So, let us suppose a1 6= 0. Then:P = (Q+ 1pa1)p + pXk=2 akQp�k � pXk=2� pk � 1pk ak1Qp�k: (8.3)We study now the �P (Q)-adi
 expansion of P � �P (Q)p starting from equation(8.3). First, for 2 � k � p, we have:d(akQp�k) < d(Q) + (p� k)d(Q) � (p� 1)d(Q)
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u-Pampud(ak1Qp�k) < kd(Q) + (p� k)d(Q) = p � d(Q):But d(�P (Q)) = d(Q) and Proposition 6.1 shows that the �P (Q)-adi
 expansionof akQp�k has non-zero terms of the form 
j�P (Q)j with j � p� 2 and the �P (Q)-adi
 expansion of ak1Qp�k of the form 
j�P (Q)j with j � p� 1.Let 
(k)0 �P (Q)p�1 be the term 
orresponding to �P (Q)p�1 in the �P (Q)-adi
expansion of ak1Qp�k. It is possible that 
(k)0 = 0. Then:d(
(k)0 �P (Q)p�1) � d(ak1Qp�k)and so: d(
(k)0 ) � k � d(a1)� k � d(Q) + d(Q) � 2d(a1)� d(Q) � d(a1)� 1:But the polynomial a01 is a linear 
ombination with 
oeÆ
ients in A of thepolynomials 
(k)0 , whi
h shows the announ
ed inequality:d(a01) � d(a1)� 1:With this the proof is 
omplete. �Proof of Proposition 6.5As stated in se
tion 6, this result is 
lassi
al. Re
ent proofs are 
ontained in [34℄(for generi
 
oordinates) and [24℄ (for arbitrary 
oordinates). We give here a ratherdetailed proof in order to explain the origin of the formula for Bk in Proposition4.2. Let N = d(f);M = d(�). De
ompose � 2 C[[X ℄℄[Y ℄ as a produ
t of terms ofdegree 1: �(X;Y ) = MYi=1(Y � �i(X))where the �i(X) are all the Newton-Puiseux series of � with respe
t to (X;Y ).Let T ! (TN ; Y (T )) be a parameterization of f , obtained from a �xed Newton-Puiseux series �(X). As T = X 1N , we have: Y (T ) = �(X). Then, using the rulesexplained in se
tion 4:(f; �) = vT (�(TN ; Y (T ))) = vT (QMi=1(Y (T )� �i(TN))) == vX 1N (QMi=1(�(X)� �i(X))) = NvX(QMi=1(�(X)� �i(X))) == NPMi=1 vX(�(X)� �i(X)))Now we look at the possible values of vX (�(X)� �i(X))) when i varies, and fora �xed value we look how many times it is obtained.If k is minimal su
h that K(f; �) < Bk+1N , we get:� the value BiN is obtained M � Ei�1�EiN times, for i 2 f1; :::; kg.� the value K(f; �) is obtained M � EkN times.So: (f; �) = N [ kXi=1M � Ei�1 � EiN � BiN +M � EkN �K(f; �)℄whi
h implies: (f; �)M = kXi=1(Ei�1 �Ei)BiN +Ek �K(f; �):



Approximate Roots 31Now re
all the formula for Bk given in Proposition 4:Bk = Bk + k�1Xi=1 Ei�1 �EiEk�1 Bi; (8.4)whi
h gives: k�1Xi=1 Ei�1 �EiBi = Ek�1Bk �EkBk:We get: (f; �)M = Ek�1BkN � EkBkN +EkK(f; �);whi
h is the desired formula. �Remark: We had nothing to know about the relation of Bk with the semigroup�(C). We only needed the fa
t it is given by formula (8.4). See also the 
ommentsmade in the proof of Proposition 4.2.Proof of Proposition 6.6Let �k(X) = hk(X EkN ). Then hk(T ) 2 C[[T ℄℄ and:(X = T NEkY = hk(T )is a primitive Newton-Puiseux parameterization of (�k = 0). So we have:d(�k) = NEk :Now, using Proposition 6.5, sin
e K(f; �k) = Bk+1N , we have:(f; �k)d(�k) = Bk+1N1 � � �Nk ) (f; �k) = NEk � Bk+1N1 � � �Nk = Bk+1:We have obtained: d(�k) = NEk and (f; �k) = Bk+1, whi
h shows that �k is ak-semiroot. �Proof of Proposition 6.7We prove the proposition by indu
tion on k.For k = 0, we have � 2 C[[X ℄℄, and so �(X) = XMu(X), where u(0) 6= 0, so:(f; �) = M � (f; x) = M � d(f) 2 hB0i = hB0i.Suppose now the proposition is true for k 2 f0; :::; G�1g. We prove it for k+1.Consider � 2 C[[X ℄℄[Y ℄; d(�) < NEk+1 and take a k-semiroot qk of f , whi
hexists by Proposition 6.6. Make the qk-adi
 expansion of �:� = a0qsk + a1qs�1k + � � �+ as:We prove that the interse
tion numbers (f; aiqs�ik ) are all distin
t. Suppose by
ontradi
tion that 0 � j < i � s and (f; aiqs�ik ) = (f; ajqs�jk ). Then (i�j)(f; qk) == (f; ai)� (f; aj) 2 hB0; :::; Bki, by the indu
tion hypothesis. So: Ek j (i�j)Bk+1.But Ek+1 = g
d(Ek; Bk+1), and so we obtain: EkEk+1 j (i � j). Now, EkEk+1 = Nk+1and i � j � s = [ d(�)d(qk) ℄. As d(�)d(qk) = EkN � d(�) < EkN � NEk+1 = Nk+1, we see thats < Nk+1, whi
h gives a 
ontradi
tion.
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u-PampuThis shows that the numbers (f; aiqs�ik ) are all distin
t and so:(f; �) = minif(f; aiqs�ik )g = minif(f; ai) + (s� i)(f; qk)g:But (f; ai) 2 hB0; :::; Bki by the indu
tion hypothesis and (f; �) = Bk+1, so:(f; �) 2 hB0; :::; Bk+1i. With this, the step of indu
tion is 
ompleted. �Proof of Proposition 6.8If � is a k-semiroot and  a (k�1)-semiroot, then d(�) = NEk and d( ) = NEk�1 .So the  -expansion of � is of the form:� =  Nk + a1 Nk�1 + � � �+ aNk : (8.5)We have ��( ) =  + 1Nk a1.We are going to show that: (f;  ) < (f; a1):This will give (f; ��( )) = (f;  ) = Bk: But d(a1) < d( ) and so d(��( )) == d( ), whi
h shows that ��( ) is also a (k � 1)-semiroot.Exa
tly as in the proof of Proposition 6.7, we have that the interse
tion numbers(f; ai Nk�i) are all distin
t, for i 2 f1; :::; Nkg: Using equation (8.5) we dedu
e:(f; ��  Nk) = min1�i�Nkf(f; ai Nk�i)g � (f; a1 Nk�1):But, by Proposition 4.2, (f; �) = Bk+1 > NkBk = (f;  Nk) and so:(f; ��  Nk) = (f;  Nk). We obtain:(f; a1) + (Nk � 1)(f;  ) � Nk(f;  )whi
h gives: (f;  ) � (f; a1):On the other hand, d(a1) < d( ) = NEk�1 , and Proposition 6.7 shows that(f; a1) 2 hB0; :::; Bk�1i. But (f;  ) = Bk =2 hB0; :::; Bk�1i, whi
h shows that we
annot have the equality (f;  ) = (f; a1).Thus, we have proven the inequality (f;  ) < (f; a1) and with it the proposition.�9 The approximate rootsand the embedding line theoremWe present the ideas of the proofs of the epimorphism theorem and of theembedding line theorem as they are given in [5℄.It is in order to do these proofs that is developed in [5℄ the theory of Newton-Puiseux parameterizations and of lo
al semigroups for elements of C((X))[Y ℄, themeromorphi
 
urves. This framework is more general than the one presented before,whi
h 
on
erned elements of C[[X ℄℄[Y ℄, the entire 
urves. We have 
hosen to givebefore all the proofs for entire 
urves, �rst be
ause they are in general used for thelo
al study of plane 
urves and se
ond in order to point out in this �nal se
tion thedi�eren
es between the two theories. A third type of 
urves, the purely meromorphi
ones, will prove to be of the �rst importan
e.Proof of the Epimorphism TheoremWe 
onsider an epimorphism � : C[X;Y ℄ ! C[T ℄ and we note:P (T ) := �(X); Q(T ) := �(Y );



Approximate Roots 33N := dT (P );M := dT (Q):We suppose that both degrees are non zero. The ideal ker(�) is of height onein C[X;Y ℄, so it is generated by one element. A privileged generator is given by:F (X;Y ) = ResT (P (T )�X;Q(T )� Y ):Here ResT denotes the resultant of the two polynomials, seen as polynomialsin the variable T .From the determinant formula for the resultant, we obtain:dX(F ) = M;dY (F ) = Nand that F is moni
 if we see it as a polynomial in X or in Y .Let us 
onsider the set:�(F ) := fdT (G(P (T ); Q(T ))); G 2 C[X;Y ℄� (F )g:The set �(F ) is a sub-semigroup of (N;+). The morphism � is an epimorphismif and only if T 2 im(�), whi
h is equivalent to 1 2 �(F ), or �(F ) = N.Make now the 
hange of variables: x = X�1; y = Y . Take:f(x; y) := F (x�1; y) 2 C[x�1℄[y℄:The polynomial f is moni
 in y, of degree d(f) = N . By de�nition, the elementsof C[x�1℄[y℄ are 
alled purely meromorphi
 
urves (notation of [5℄). As we have theembedding of rings C[x�1℄ ,! C((x)), we 
an also look at f as being a meromorphi

urve, i.e. an element of C((x))[y℄. The theory of Newton-Puiseux expansions 
anbe generalized to elements of C((x))[y℄, and so f has asso
iated Newton-Puiseuxseries �(x) 2 C((x 1N )) and Newton-Puiseux parameterizations of the form: x =�N ; y = y(�) 2 C((�)): It is important here that the exponent of � in x(�) is takenpositive (see below).From su
h a primitive Newton-Puiseux parameterization (see the de�nition inse
tion 2), one 
an obtain a 
hara
teristi
 sequen
e of integers (B0; :::; BG), wherewe put B0 = �N and the otherBi's are de�ned re
ursively as in the 
ase ofC[[x℄℄[y℄,treated before. At the same time we de�ne the sequen
e of greatest 
ommon divisors(E0; :::; EG), whi
h are elements of N�, and the sequen
es (N1; :::; NG); (B0; :::; BG),as in se
tion 2. Noti
e that (B0; :::; BG) is again a stri
tly in
reasing sequen
e, butnot ne
essarily (B0; :::; BG).If � 2 C((x))[y℄, f 6 j�, we de�ne:(f; �) := vx(Resy(f; �)):This 
onstru
tion extends the de�nition of the interse
tion number fromC[[x℄℄[y℄ to C((x))[y℄. It is again true with this de�nition that:(f; �) = v� (�(�N ; y(�)));if � ! (�N ; y(�)) is a Newton-Puiseux parameterization of f (we understand herewhy it is important to take x = �N and not x = ��N ).We de�ne now: �C[x�1℄(f) := f(f; �); � 2 C[x�1℄[y℄; f 6 j�g:The set �C[x�1℄(f) is a sub-semigroup of (Z;+). In fa
t we 
an say more.Indeed, if �(X;Y ) = �(X�1; Y ) 2 C[X;Y ℄, we have:dT (�(P (T ); Q(T ))) = �(f; �);
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u-Pampuwhi
h shows that: �C[x�1℄(f) = ��(F ):We see in parti
ular that the semigroup �C[x�1℄(f) 
onsists only of negativenumbers.As � is an epimorphism, we get:�C[x�1℄(f) = Z�:Remark: If we 
onsider interse
tions with elements of C((x))[y℄, we 
an de�nea se
ond semigroup �C((x))(f). We have obviously the in
lusion �C[x�1℄ � �C((x)),but in general this is not an equality.Consider for example f = y2 � x�1. A Newton-Puiseux parameterization of fis � ! (�2; ��1). Take � = y2 � (x�1 � x) 2 C((x))[y℄�C[x�1℄[y℄. Compute theirinterse
tion number: (f; �) = v� (�(�2; ��1)) = 2 =2 Z� = �C[x�1℄(f):Suppose now by 
ontradi
tion that we are in a 
ase where neither N j Mnor M j N . This implies easily that B1 = �M . Indeed, v� (y) = (f; y) == �dT (Y (P (T ); Q(T ))) = �dT (Q(T )) = �M: Sin
e N 6 jM we dedu
e by thede�nition of B1 that B1 = v� (y) = �M:Sin
e �C[x�1℄(f) = Z�, we get in parti
ular �E1 2 �C[x�1℄(f).The 
ontradi
tion is got in [5℄ from the properties:B0 = �N; B1 = �M; �E1 2 �C[x�1℄(f):Here is the pla
e in the proof where the approximate roots make their appear-an
e. As in the 
ase of C[[X ℄℄, from the sequen
es (B0; :::; BG) and (E0; :::; EG) one
an de�ne indu
tively a sequen
e (B0; :::; BG) by the relations given in Proposition4.2. They are elements of �C((x))(f), as they 
an be obtained by interse
ting f witharbitrary semiroots of f , for example the ones got by trun
ating a Newton-Puiseuxseries of f (Proposition 6.6 generalizes to this 
ontext).But, more important, (B0; :::; BG) are elements of �C[x�1℄(f). Indeed, fk == Ekpf 2 C[x�1℄[Y ℄. Theorem 5.1 generalizes to this 
ontext and so: (f; fk) == Bk+1, for k 2 f0; :::; Gg.What is again true is that (B0; :::; BG) form a system of generators of �C[x�1℄(f).As �C[x�1℄(f) is 
omposed of negative numbers, we 
annot speak any more abouta minimal system of generators, as in Proposition 4.2. What remains true is thatthey are a stri
t system of generators (see [5℄) in the following sense:Proposition 9.1 Every element 
 of �C[x�1℄(f) 
an be expressed in a uniqueway as a sum: 
 = i�1B0 + � � �+ iG�1BGwhere i�1 2 N and 0 � ik < Nk+1 for k 2 f1; :::; G� 1g:To get this proposition, one proves �rst an analog of Corollary 5.4, obtainedby repla
ing C[[X ℄℄ by C[x�1℄. The proof follows the same path.Now write the property �E1 2 �C[x�1℄(f) in terms of this stri
t sequen
e ofgenerators: �E1 = i�1B0 + � � �+ iG�1BG:Take p := maxfk 2 f0; :::; Gg; ik�1 6= 0g: So:E1 = i�1 j B0 j + � � �+ ip�1 j Bp j;



Approximate Roots 35with ip�1 6= 0.If p � 2, we get: Ep�1 j (E1 � i�1 j B0 j � � � � � ip�2 j Bp�1 j) and so:Ep�1 j (ip�1 j Bp j): Sin
e Ep = g
d(Ep�1; j Bp j), we get Np = Ep�1Ep j ip�1, whi
h
ontradi
ts the inequality 0 < ip�1 < Np.So we obtain p � 1 and:E1 = i�1 j B0 j +i0 j B1 j :This implies: 1 = i�1 jB0jE1 + i0 jB1jE1 , whi
h shows that jB0jE1 = 1 or jB1jE1 = 1. But,by the re
ursive relations giving the Bi's, B0 = B0 = �N and B1 = B1 = �M , so:N(M;N) = 1 or M(M;N) = 1:We get: M j N or N j M , whi
h 
ontradi
ts our hypothesis. The theorem isproved. �Remark: One 
an also give a proof without using 
ontradi
tion. In this 
aseone 
annot suppose from the beginning that N 6 jM , and so it is not ne
essarilytrue that B1 = �M . As one 
annot hope to express in this 
ase B1 in terms of Nand M , the pre
eding proof appears to get in trouble. This 
an be arranged if onemodi�es the de�nition of the 
hara
teristi
 sequen
e, taking for B1 the minimalexponent appearing in y(�), without imposing that it should not be divisible by N .This is the de�nition of 
hara
teristi
 sequen
e taken in a majority of Abhyankar'swritings on 
urves, in parti
ular [5℄, where the pre
eding proof is given with thismodi�ed de�nition.Proof of the Embedding Line TheoremIf the epimorphism � : C[X;Y ℄ ! C[T ℄ is given by X = P (T ); Y = Q(T ), putN := dT (P );M := dT (Q) and write:P (T ) = �0TN + �1TN�1 + � � �+ �N ;Q(T ) = �0TM + �1TM�1 + � � �+ �M :(we 
onsider here that dT (0) = 0).Suppose one of the degrees M;N is zero, for example M = 0. Then: Q(T ) == �0 2 C.For all G 2 C[X;Y ℄, dT (G(P (T ); Q(T )) 2 NN: If � is an epimorphism, thereexists su
h a G with dT (G(P (T ); Q(T )) = 1, and this implies N = 1. So:(P (T ) = �0T + �1; �0 6= 0Q(T ) = �0 :Consider the isomorphism of C-algebras �1 : C[U; V ℄ ! C[X;Y ℄, given by:(U = 1�0X � �1�0V = Y � �0 :Then � Æ �1 : C[U; V ℄ ! C[T ℄ is given by:(U = TV = 0and the theorem is proved in this 
ase.
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u-PampuSuppose now that M � 1; N � 1. By the epimorphism theorem, M j N orN jM . Suppose for example that M j N . Consider the isomorphism of C-algebras�1 : C[U; V ℄ ! C[X;Y ℄ given by:(U = X � �0�� NM0 Y NMV = Y :Then � Æ �1 is given by:(U = P (T )� �0�� NM0 Q(T ) NMV = Q(T ) :We have: dT (P (T )��0�� NM0 Q(T )NM ) < dT (P (T )) and so in the new 
oordinates(U; V ), the sum of the degrees of the polynomials giving the embedding of the linein the plane is stri
tly less than in the 
oordinates (X;Y ).Repeating this pro
ess a �nite number of times, we see that we arrive at thesituation where one of the polynomials is a 
onstant, the 
ase �rst treated. Thisproves the theorem. �Referen
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