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Abstract

We show that the sequence 2™ + n is a universal Hilbert sequence. That is, for each
polynomial P(T,Y) irreducible in Q(7")[Y], the polynomial P(2" + n,Y") is irrreducible
in Q[Y] for all but finitely many n. This answers a question of M. Yasumoto. Other
examples, like 2™ 4 5™, are given. They all are obtained as special cases of a more general

result which is proved from classical diophantine arguments.

1. Introduction

A wuniversal Hilbert subset (or sequence) S of Q is an infinite subset of Q with the
following property: for each polynomial P(T,Y) irreducible in Q(7')[Y], the polynomial
P(t,Y) is irrreducible in Q[Y] for all but finitely many ¢ € S. A classical argument
shows that the existence of universal Hilbert subsets follows from Hilbert’s irreducibility
theorem. We show (see Addendum 2 at the end of the paper) that this argument can even
be refined to show that there exists a universal Hilbert subset S C N of asymptotic density
1, that is, such that card{n € S|n < T} ~ T as T — oo (the same observation was made
independently by Bilu [3]).

That argument however only provides uneffective existence conclusions. The first ex-
plicit example was produced by Sprindzuk [9] who showed that the sequence [exp v/loglog n]
+n!2"° satisfies the above universal property. Other examples of the form a,,b™ where
b is any integer distinct from 0, 1, —1 and a,, is a product of primes less than a certain
explicit function of m were given in [4]. Further new examples appear in the recent paper

by Bilu [3]. Using non-standard techniques, Yasumoto [10] proved a general criterion for
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a sequence of rational numbers to be universal. As a consequence of his criterion, he ob-
tains such simple examples as 2"(n® + 1) and 2"p,, where p,, is the nth prime. He then
asks whether certain specific sequences such as 2" + n, 2" + 3™ are universal sequences.

Concerning the former, this paper gives a positive answer.

THEOREM 1 — The sequence 2™ + n is a universal Hilbert sequence. More generally if b
is any integer such that |b| > 2 and p € Z[X] is any non constant polynomial, then the

sequence b"™ + p(n) is a universal Hilbert sequence.

As for the sequence 2™ + 3™, we have the following partial answer. Given a real number
0 > 1, an infinite subset S of Q is said to be d-universal if the following universal property
holds: for each absolutely irreducible polynomial P(T,Y") € Q[T,Y] with deg, P > 4, the
polynomial P(t,Y) has no root in Q for all but finitely many ¢ € S. Standard arguments

([5],]7]) show that a subset is a universal Hilbert subset if and only if it is 2-universal.

THEOREM 2 — Let a and b be two integers such that 1 < |a| < |b| and such that a and
b are multiplicatively independent. Then the sequence a™ + b™ s d-universal, for each real

number & such that

Log 0|
Log (%)

In particular, if |a| < +/|b|, then the sequence a™ + b™ is a universal Hilbert subset.

o>

Thus Th.2 shows that the sequence 2™ + 3™ is 3-universal. This reduces the question
of whether 2™ + 3™ is a universal Hilbert subset to checking the universal property for
polynomials of degree 2 in Y. Further considerations (contained in this paper) actually
show that the essential remaining case is that of polynomials Y2 +oT + 3 (o, 3 € Z). On
the other hand, Th.2 shows that 2" + 5™ is a universal Hilbert sequence. Note also that
the condition “a and b multiplicatively independent” is necessary: indeed is a“ = b, then
the polynomial YV 4+ Y™ — T becomes reducible when T is specialized to T' = a™ 4 b™ with
n a multiple of wu.

Both Th.1 and Th.2 will be deduced from a more general result (Main Theorem), which
is the main result of the paper. Clearly other examples of universal Hilbert subsets can
be derived. Our method uses classical diophantine tools: the main ingredients are Siegel’s
theorem, Ridout’s theorem and Baker’s theorem. Our results are not completely effective,
in contrast with those of Sprindzuk and Débes. Given an irreducible polynomial P(7,Y) €

Q(T)[Y], they can effectively determine the set of exceptional elements in the universal
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Hilbert subset. Neither Yasumoto’s method nor ours provide such an effective conclusion.

However our method gives an effective upper bound for the number of exceptions.

2. Main results

In this section we state the Main Theorem and show how to derive both Th.1 and Th.2.
The Main Theorem is proved in §3.

MAIN THEOREM — Let b be integer such that |b| > 2 and p be a real number such that
0 < p < 1. Consider the set

S(,p)={b"+c|neNceZ, 0<]|c| <I[b|"}

Let P(T,Y) € Q[T,Y] be an absolutely irreducible polynomial. Set d = degy P and suppose
that d > 1/(1 — p).

Assume that P(t,Y) has a rooty € Q for each t in an infinite subset S of S(b, p). Then
there exist an integer r such that 0 < r < d and a polynomial ¢(X) of degree deg p < d —2

such that the set S contains infinitely many integers of the form

(%) padtr 4 o(b?)  for some integer ¢ > 0

The condition obtained on S is a real obstruction to S being d-universal. Indeed the
polynomial P(T,Y) = b"Y? + ¢(Y) — T becomes reducible when T is specialized to any

integer of the form (*).

Proof of Th.1 and Th.2. Consider a sequence b™ + p(n) as in Th.1 and a sequence a™ + b™

as in Th.2. For all but finitely many integers n, we have

b" +p(n) € S(b,p) for p=1/3
a™ +b" € S(b,p) for p=TLog|a|/Log|b|

Given ¢ and r, only finitely many integers ™ 4+ p(n) can be of the form (*): otherwise,
for infinitely many integers n, we would have p(n) = ¢(b?), which gives p(n) > 2"/¢ or
p(n) < 1, a contradiction. Similar arguments show the same is true for the sequence
a™ 4+ b" under the hypothesis “a and b multiplicatively independent”.

Conclude from the Main Theorem that if P(T,Y) € Q[T Y] is any absolutely irreducible
polynomial of degree d = degy P > 1/(1 — p), then P(b™ + p(n),Y) (resp. P(a™ +b",Y))
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has no root y € Q, except possibly for finitely many n. In the case of the sequence a™ +b",
we have p = Log|a|/ Log|b|. Th.2 immediately follows.

In the case of the sequence b™ + p(n), we have p = 1/3 and so 1/(1 — p) = 3/2. Thus
the sequence b™ 4 p(n) is 2-universal, which, as recalled in the introduction, is equivalent

to being a universal Hilbert subset. ]

3. Proof of the Main Theorem

Fix an integer b such that |b| > 2, a real number p such that 0 < p < 1 and an absolutely
irreducible polynomial P(7,Y) € Q[T,Y]. Suppose that d = degy P > 1/(1 — p) and that
there exists an infinite subset S of S(b, p) such that the polynomial P(¢,Y’) has a root
y € Q for each t € S. We wish to show that infinitely many elements of S are of the form
(*). With no loss of generality we may assume that the polynomial P(7,Y) is monic in Y.

From Siegel’s theorem, the curve P(t,y) = 0 has genus 0; more precisely it is birational
to P! over Q. Equivalently the function field of the curve over Q is of the form Q(X), with
X a certain non-constant rational function on the curve. Projections on the T-line and on
the Y-line are respectively of the form f(X), g(X) with f,g € Q(X). It follows that all
but finitely many solutions (¢,y) € Q? of the equation P(t,y) = 0 are of the form:

{ t=f(x)
y = g(x)
for some = € Q.
Consider an arbitrary solution (¢,y) € Q2 of P(t,y) = 0 with t € S C S(b, p). Write

t=0b0"+c withneNceZ, 0<]|c| <|b"

A further conclusion of Siegel’s theorem is that the rational function f has at most 2
poles. We distinguish two cases, depending on whether f has one or two poles. We will
show that, under our assumptions, only the former may occur, and that, in that case, we

obtain the parametrization (*) of the Main Theorem.

3.1. 1st case: f has exactly one pole.
Since this pole is rational over Q, we may assume that it is oo, which means that
f € Q[X]. Furthermore, deg(f) > 2 (because deg, (P) > 2). Changing X to X — a, we

may also assume that
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aceQ, a#0
v e Q[X], degp <d—2
Since t is an integer, the corresponding x has a bounded denominator. Let n = qd + r be

the euclidean division of n by d. Write the equation f(x) =t in the form

f(X)=aX%+p(X) with {

b (b)) — az? = p(z) — ¢

The integer r is the same for infinitely many solutions. So we may assume that r is
fixed. Write b" /a = ¢4 with ¢ € C. We obtain

[T 1¢v7 - cal = \—9"("2_ :

CELa

Consider the right-hand side. Since

b" = f(a) —c < |z + [o)

we have b" < |z|?. Therefore

< Ja] 72+ B < | A

B

Consider the left-hand side. All terms |£b7 — (x| (¢ € uq) except possibly one are > |z|.
As for the remaining term, since x is a rational number with bounded denominator, we

may use Ridout’s theorem [6]. Pick a real number 3 such that

(2) 0 < B <min(l,d—1—dp)

(This is possible since we assumed d > 1/(1 — p)). From Ridout’s theorem, for suitably
large x, we have

q
either '§ — b—| > |z|7H or 2= —
x

¢
The first possibility leads to

}>\aﬂd_1_ﬁ

=

Using (1) we obtain
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o 7P < ] T o

But (2) yields

d—1—p8>d—-1—-min(l,d—1—dp) =max(d — 2, pd)

whence |z| is bounded. Thus the first possibility may occur only for finitely many z.

{ x=( e
c=¢(x)

which leads to condition (*) for infinitely many ¢.

The second possibility gives

We point out that the proof of this first case is somewhat similar to the proof of Lemma
2 of [2].

3.2. 2nd case: f has exactly two poles.
Let K be the field of definition of the two poles; K is at most a quadratic extension
of Q. By change of variable with coefficients in the field K, we may assume that the two

poles of f are 0 and co. More specifically, f can be written

¢ € K[X]
©(0)#0, d=degp >s>0

fx) = d with {

Set 0(X) = o X+ 1 X4t + -+ g with ¢, ...,0q € K. The equation f(x) =t

rewrites

(@)

=b"+c
.anS

Note that in this case, x a priori is in K (and no longer in Q).

Let v be a finite place of K. Since b™ + ¢ is an integer, we have

()], < [zl

If |z|, < 1, we obtain

|Palo < max (1, |@olv, - -+ [@da-1]v) [2T[o

If |z|, > 1, we obtain, since d > s,
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1
ooy < max(L il l) [

v

Since w4 # 0, the set of places v for which |z|, # 1 is contained in a finite set independent
of x. More precisely, there are only finitely many possibilities for the fractional ideal
generated by x. We conclude that there exists a finite set {z1,...,2x} of elements of K

such that x is necessarily of the form
T = x;u

for some index 7 and with v a unit of K.
The case that K = Q or K is an imaginary quadratic field is easy: there are only finitely
many units and so only finitely many possibilities for x, which contradicts our assumption.
Assume now that K is a real quadratic field. Let w > 1 be the fundamental unit. From

above, we have that, for infinitely many solutions, x is of the form

r = Ew°

for some fixed £ # 0 in K and e € Z. The equation f(x) =t becomes

Po(€w) % -+ pa(Ew®) " =b" + ¢

We may assume that e > 0: otherwise just rearrange the terms on the left-hand side in
the opposite order. Note that both ¢, and ¢4 are non-zero and that both s and d — s are
> (0. The above equation yields

(pogd—sw(d—s)e A we(d—s—l) + b

On the other hand the theory of linear forms in three logarithms (e.g. [1;Ch2]) provides
the following inequality: for each 3 < 1

(3) gooﬁd_sw(d_s)e — b > max(w(d—s)e7 bn)ﬂ

where the constant involved in “<” depends on 3. Choosing 3 such that

1>5>max(p,%)

we obtain that both e and n are bounded, which contradicts our assumption. [J
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Remark 3.1. Inequality (3) can also be obtained by using the Ridout-Mahler theorem,
for example as given in [5;pp.160-161] (see e.g. Cor.1.2).

ADDENDUM 1. The same method can be used to prove more general results. For instance
let py,...,pn be h prime numbers. A more general form of our theorem can be stated with

the set S(b, p) replaced by the following set

S(p1,y-vospnp) ={07 P el c€Z, 0<|c| < (py*---ppt)°}

Yasumoto’s criterion can also be shown to follow from similar principles, combined
with some classical arguments about ideal factorizations in number fields. For example we
sketch below how to prove by our method that a,, := (n® + 1)2" is universal.

Assume the contrary holds. As in the proof of the Main Theorem, it follows from
Siegel’s theorem that, for some rational function f € Q(7') with at most two poles and
degree > 2, the equation f(¢) = a,, has a solution t = t,, € Q for infinitely many integers n.
Assume that f has one pole, the other case being even simpler. We may assume that f is
a polynomial, in which case the rational numbers {t,} must have bounded denominators.

The factorization of a,, easily implies that f cannot have two or more distinct irreducible
factors over Q: indeed, for n > 1, all terms ¢(¢,,) with g irreducible factor of f are of the
same order of growth (a power of ,) and so must all be divisible by a large power of 2
(tending to oo with n); this is impossible if there are several gs. If f = cfl', where c is
constant and f is irreducible, the equation f(t,) = a, rewrites (n3 + 1)2° = cy” with
y € Z and where b is bounded. From well-known theorems, there are only finitely many
solutions (n,y) € Z? to these equations if h > 2.

So, assume h = 1 and let v be a root of f and L = Q(v). Factoring f(t¢,) in L and
comparing ideal factorizations of f(t,) and a, = (n® + 1)2" in the ring of integers of L
we deduce that the ideal generated by t,, — v has the form A,, B"™ for infinitely many n,
where B is a prime ideal lying above 2, A,, is a fractional ideal with bounded denominator,

3. Let g be the order of B in the ideal class group of L. By writing

whose norm is < n
n=gm+r, 0<r < q, we may write A,B" = (A,B")(B")™ = C,D™, where C,, D
are principal, generated, say, resp. by a,,3. We may even assume, multiplying «,, by a
suitable unit, that «, has height < n3. Then t, — v = a,B8™uf* ... up* for fixed units
[, -- -, pr and integers ny, ..., ny (these depending on n).

Let 71,2 be distinct roots of f and apply in both cases the procedure just described.

We obtain equations for t,, — v1,t, — ¥2 and, eliminating ¢,,, we find an equation

m ., ni ng * *m* ma mp
an Byt ot — a8 vt ) =y = £ O
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whence s - .
16 ..
n lul /J’k: - 1| < < efen

0< :
‘a;‘;ﬁ*m AN VA |tn — Yol

where € > 0 does not depend on n. Since the height of o, /o is < n, such inequality has
finitely many solutions, by the generalized Ridout theorem (actually a special case of the

generalized Roth’s theorem given in [5]).

ADDENDUM 2. We end this paper with a proof of the result mentioned in the introduction
about the existence of a universal Hilbert subset S C N of asymptotic density 1. Let
P (T,Y),Py(T,Y),... be some enumeration of all the irreducible polynomials in Q[T’, Y].
For each integer m > 0, denote the set of integers n € N such that P, (n,Y") is reducible
in QY] by E,,. For every set T C N and every real number z, denote the set of integers
n € T such that n < z by T'(x). It follows from the quantitative form of Hilbert’s
irreducibility theorem (e.g. [8;89.7]) that, for each m > 0, we have card(E,,(z)) = O(Vx).
In particular, for each m > 0, card(E,,(z))/z — 0 as * — oo, hence E,, has density 0.

Thus it is sufficient to prove the following lemma.
Lemma 3.2 — Let Fq, Es, ... be a sequence of subsets of N of density 0. Then there
exists a subset E C N such that
(i) E.,,—FE is finite for each integer m.
(i) E is of density 0.
This lemma proved, it suffices to take S = N—F.
Proof. We first construct subsets Ef C Eq, E5 C Es,... and positive real numbers 77 <
T ... with the following properties: for each integer m > 0
(a) Ep,—E), is finite
(b) If R,,, = Ef U---U E},, then we have card(R,,(z)) < z/2™ for x > T),
(c) E5,(Tm) = 0.

Set Ef = E; and take T; to be an integer such that card(F;(z)) < x/2 for x > Ty:
this is clearly possible. Suppose now EY,..., E} Ti,...,T,, constructed. Since each FEj;
has density 0, the same is true of E. So R,, is also of density 0. Hence there exists 7 > 0
such that

T
—QfOI‘(EZT

card(R,(x)) < T
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Also there exists 7/ > 0 such that

card(E,,+1(7)) < for x > 7’

x
Qm—+2
Set T41 = max(r,7',21,,) and E} | = Epqp1—[1,T;,41]. Conditions (a), (b) and (c)
obviously hold for m + 1 in place of m.

Define now E to be

E= CJIE;;

Condition (i) of Lemma 3.2 clearly holds. Let x be a real number such that = > Tj.
Consider the integer m such that T, < z < Ty,41. Since Ef(Tp41) =0 forn > m+1 we
have E(x) = Ry, (x). From (b) above, we conclude that

card(E(z)) < om

For x — oo, we obtain what we want. O
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