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Abstract. We address some questions concerning indecomposable poly-
nomials and their behaviour under specialization. For instance we give
a bound on a prime p for the reduction modulo p of an indecomposable
polynomial P (x) ∈ Z[x] to remain indecomposable. We also obtain a
Hilbert like result for indecomposability: if f(t1, . . . , tr, x) is an inde-
composable polynomial in several variables with coefficients in a field
of characteristic p = 0 or p > deg(f), then the one variable special-
ized polynomial f(t∗1 + α∗1x, . . . , t∗r + α∗rx, x) is indecomposable for all

(t∗1, . . . , t
∗
r , α∗1, . . . , α

∗
r) ∈ k

2r
outside a proper Zariski closed subset.

1. Introduction

Let x be an indeterminate. A non-constant polynomial f(x) ∈ k[x] with

coefficients in a field k is said to be decomposable in k[x] if it is of the form

u(g(x)) with g and u in k[x] of degree > 2, and indecomposable otherwise.

For polynomials in several variables, the definition is slightly different: for

an integer n > 2 and a n-tuple x = (x1, . . . , xn) of indeterminates, a non-

constant polynomial f(x) ∈ k[x] is decomposable in k[x] if it is of the form

u(g(x)) with u ∈ k[t] of degree > 2 and g(x) ∈ k[x]; unlike for n = 1, the

case deg(g) = 1, deg(u) > 2 is allowed.

The central theme of the paper is the following general problem. Let

A be an integral domain with quotient field K and f(x) ∈ A[x] be an

indecomposable polynomial in K[x]. Given a ring morphism σ : A → k

with k a field, the question is whether the polynomial fσ(x) obtained by

applying σ to the coefficients of f(x) is also indecomposable.

We first have the following general conclusion à la Bertini-Noether, under

the assumption that deg(f) is prime to the characteristic of K1: the answer

to the question is positive “generically”, that is, for all σ such that Iσ
f 6= 0

where If is some non-zero element of A depending only on f (proposition

2.3). Based on a general decomposition result for polynomials, established
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in [2], our approach leads to quite explicit versions of the Bertini-Noether

conclusion. For polynomials in several variables, similar conclusions had

already been proved (see [3], [4], [5]); the single variable case is somewhat

different.

We investigate further two typical situations. The first one is for A = Z
and σ : Z → Fp a reduction morphism modulo p. The Bertini-Noether

conclusion is here that fσ(x) is indecomposable if p is suitably large. Our

method leads to the following explicit version. To our knowledge no such

bound as the one below was previously available.

Theorem 1.1. Let f(x) ∈ Z[x] be indecomposable in Q[x]. There exists a

constant γd depending only on d = deg(f) such that if p > γd ‖f‖d
∞ is a

prime, the reduced polynomial f(x) modulo p is indecomposable in Fp[x].

We then focus on the situation where A = k[t] with t = (t1, . . . , tr) an

r-tuple of indeterminates (r > 1), k a field and σ : k[t] → k a specialization

morphism sending each ti to a special value t∗i ∈ k, i = 1, . . . , r. In this

situation, the Bertini-Noether conclusion is that if f(t, x) ∈ k[t, x] is inde-

composable in k(t)[x] and of degree prime to the characteristic of k, then for

all t∗ = (t∗1, . . . , t
∗
r) ∈ kr but in a proper Zariski closed subset, the specialized

polynomial f(t∗1, . . . , t
∗
r , x) is indecomposable in k[x].

The indecomposability assumption excludes polynomials f of the form

u(t, g(t, x)) with u, g ∈ k[t, x]. It is natural to ask whether the Bertini-

Noether conclusion extends to such polynomials and more generally to all

polynomials that are indecomposable in k[t, x] (as (r+1)-variable polynomi-

als). Although this is not true in general (take for example f(t, x) = tx4), we

show nevertheless that the desired conclusion does hold up to some change

of variables. Specifically we obtain the following result.

Theorem 1.2. Let f(t, x) be indecomposable in k[t, x]. Assume that k is of

characteristic p = 0 or p > deg(f). Then we have the following:

(a) if α = (α1, . . . , αr) is an r-tuple of indeterminates, the polynomial

f(t1 + α1x, . . . , tr + αrx, x) is indecomposable in k(α, t)[x];

(b) for all (α∗
1, . . . , α

∗
r) ∈ k

r off a proper Zariski closed subset, the polynomial

f(t1 + α∗
1x, . . . , tr + α∗

rx, x) is indecomposable in k(t)[x];

(c) for all (α∗
1, . . . , α

∗
r , t

∗
1, . . . , t

∗
r) ∈ k

2r off a proper Zariski closed subset, the

polynomial f(t∗1 + α∗
1x, . . . , t∗r + α∗

rx, x) is indecomposable in k[x].
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Combined with the standard fact that f(t, x) is indecomposable in k[t, x]

if it is irreducible in k[t, x], theorem 1.2 has the following consequence which

makes it easy to produce indecomposable polynomials in one variable.

Corollary 1.3. Let f(t, x) be irreducible in k[t, x]. Assume that k is of

characteristic p = 0 or p > deg(f). Then for all (α∗
1, . . . , α

∗
r , t

∗
1, . . . , t

∗
r) ∈ k

2r

off a proper Zariski closed subset, the polynomial f(t∗1 +α∗
1x, . . . , t∗r +α∗

rx, x)

is indecomposable in k[x].

The assumption on the characteristic of k in theorem 1.2 guarantees that

f(t, x) is indecomposable in k[t, x] under the condition that it is indecom-

posable in k[t, x]. This follows from [3, theorem 4.2]. A similar result holds

for polynomials in one variable [7, lemma 21.8.11]. We will use these re-

sults in several occasions. We will further show that this assumption on the

characteristic of k cannot be removed in theorem 1.2 (see remark 4.3).

Theorem 1.2 and corollary 1.3 can be made more explicit: for two variables

polynomials (r = 1), the exceptional Zariski closed subset can be taken to

be a union of at most d curves of degree bounded by deg(f)3 +2 deg(f), see

corollary 4.8.

A main step in theorem 1.2 is to go from two to one variable (that is, the

case r = 1). A key ingredient is a partial differential equation satisfied by

the roots of a polynomial equation (Burger’s equation lemma 4.4) due to

Wood [14] and investigated further by Lecerf and Galligo [8].

Acknowledgments. The second author thanks G. Lecerf and A. Galligo

for interesting discussions about Burger’s equation.

2. Preliminaries and first results

2.1. Decomposition of polynomials. A useful tool is the following de-

composition result for polynomials in one variable, established in [2].

Let A be an integral domain, f ∈ A[x] be a monic polynomial of degree

d and m > 2 be a divisor of d that is invertible in A. Then there exists a

unique triple (u, g, h) of polynomials in A[x] such that

(m−dec) f(x) = u(g(x)) + h(x)

with the conditions that

(i) u and g are monic,

(ii) deg(u) = m, the coefficient of xm−1 in u is 0 and deg(h) < d− d

m
,

(iii) h(x) =
∑

i hix
i with (deg(g) | i ⇒ hi = 0).
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In particular, if A is a field and 1 < m < d, f(x) is m-decomposable in

A[x] (i.e. decomposable with the polynomial u from the definition of degree

m) if and only if h(x) = 0 in the above m-decomposition.

Remark 2.1. Using this decomposition, one easily deduces the following

statement which can be compared to theorem 2 of [1]:

Let f(t1, . . . , tr, x) ∈ k[t1, . . . , tr][x] be a monic polynomial with deg(f) = d

prime to the characteristic of k and m be a divisor of d with 1 < m < d. If f

is m-decomposable in k[t1, . . . , tr][x] then for all f ′(t1, . . . , tr) ∈ k[t1, . . . , tr]\
k, f + f ′ is m-indecomposable in k[t1, . . . , tr][x].

Indeed assume f = u(g) with u ∈ k[x] of degree m and g ∈ k[t1, . . . , tr][x].

Deduce that the m-decomposition (with A = k[t1, . . . , tr]) of f+f ′ is f+f ′ =

u′(g) with u′(x) = u(x)+f ′ (and no remainder). As u′ /∈ k[x], conclude with

proposition 7 from [2] that f + f ′ is not m-decomposable in k[t1, . . . , tr][x].

Next we recall from [2] this more technical information on the decomposi-

tion (m-dec) that we will use later: the polynomial g(x) is the approximate

m-root of f(x). More specifically if f(x) = xd + a1x
d−1 + · · · + ad and

g(x) = x
d
m + b1x

d
m
−1 + · · ·+ b d

m
, we have

(S)



a1 = mb1

a2 = mb2 +
(
m
2

)
b2
1

...
ai = mbi +

∑
j1+2j2+···+(i−1)ji−1=i

j1+j2+···+ji−16m

cj1...ji−1b
j1
1 · · · bji−1

i−1 , 1 6 i 6 d
m

where the coefficients cj1...ji−1 are the multinomial coefficients defined by the

following formula:

cj1...ji−1 =
(

m

j1, . . . , ji−1

)
=

m!
j1! · · · ji−1!(m− j1 − · · · − ji−1)!

.

Once g has been obtained we get the full decomposition as follows: first

compute f (1) = f − gm and set u(1) = xd, h(1) = 0. If for the highest

monomial αxi of f (1), i is divisible by d
m then set f (2) = f (1) − αgi m

d ,

u(2) = u(1) + αxi m
d and h(2) = h(1) ; if i is not divisible by d

m then set

f (2) = f (1)−αxi, u(2) = u(1) and h(2) = h(1) +αxi. Then iterate the process

with f (1) replaced by f (2).

2.2. Further degree estimates for polynomials in two variables. Let

A be an integral domain and f(t, x) ∈ A[t, x] of degree d, monic in x:

f(t, x) = xd + a1(t)xd−1 + · · ·+ ad(t)
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with deg ai(t) 6 i, 1 6 i 6 d.

Let m|d and write the decomposition f = u(g)+h associated to m, where

f is viewed as a one variable polynomial in x over A[t]. We have

g(t, x) = x
d
m + b1(t)x

d
m
−1 + · · ·+ b d

m
(t) ∈ A[t, x],

h(t, x) =
∑

hi(t)xi,

and

u(t, x) = xm + u2(t)xm−2 + · · ·+ um(t) ∈ A[t, x].

Lemma 2.2. Under the assumptions and notation above, we have

(1) degx g = d
m ,degx u = m,degx h < d− d

m ;

(2) degt g 6 d
m ,degt u 6 d, degt h 6 d;

(3) deg g = d
m ,deg u 6 d, deg h 6 d.

Proof. The first item follows from the definition of the approximate m-root

and the existence of such a decomposition. We prove below a refinement of

the second point.

Fix some index i with 1 6 i 6 d/m. First we have deg bi(t) 6 i: indeed

from system (S) we have deg b1(t) = deg a1(t) 6 1. Furthermore, mbi(t) is

a Z-linear combination of ai(t) (which satisfies deg ai(t) 6 i) and of terms

bj1
1 · · · bji−1

i−1 with j1 + 2j2 + · · · + (i − 1)ji−1 = i. By induction we obtain

deg bi(t) 6 i. This yields degt g 6 d
m and degt gj 6 j d

m .

If d
m does not divide i, the coefficient hi(t) of h(t, x) =

∑d
i=1 hi(t)xd−i is

the coefficient of the highest monomial αi(t)xd−i in the difference between

f and powers of g.

If d
m divides i, let j such that i = j d

m and denote the former coefficient by

uj(t) (it is the coefficient of xm−j in u). Then deg uj(t) = deg αi(t) 6 j d
m 6 d

(j = 2, . . . ,m). This implies that degt uj(t)gm−j 6 d.

Conjoining the two cases, conclude that degt h 6 d.

This gives the second item and deg g = d
m , deg h 6 d. As u is the sum of

terms uj(t)xm−j with deg uj(t) 6 j d
m , we have deg u 6 maxj=2,...,m

(
j d

m +

(m− j)
)

6 d. �

2.3. The Bertini-Noether conclusion. If σ : A → B is a ring morphism,

we denote the image of elements a ∈ A by aσ. For p(x) ∈ A[x], we denote

the polynomial obtained by applying σ to the coefficients of p by pσ(x).

Proposition 2.3 below is the analog for indecomposable polynomials of

the classical Bertini-Noether theorem for absolutely irreducible polynomials

[7, proposition 9.4.3].
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2.3.1. General statement. Fix an integral domain A with quotient field K.

Proposition 2.3. Let f(x) ∈ A[x] be indecomposable in K[x] of degree d

prime to the characteristic p > 0 of K. Then there exists a non-zero element

If ∈ A such that the following holds. For every morphism σ : A → k in a

field k, if Iσ
f 6= 0, then fσ(x) is indecomposable in k[x].

Proof. Let a0 be the coefficient of xd in f(x), γ = da0 and Aγ∞ be the lo-

calized ring of A by the powers of γ. The polynomial f(x)/a0 is in Aa∞0
[x],

is monic and is indecomposable in K[x]. For each non-trivial divisor m of

d, let

f(x)/a0 = um(gm(x)) + hm(x)

be the m-decomposition of f(x)/a0 in Aγ∞ [x] (m is invertible in Aγ∞). Each

polynomial hm(x) writes hm(x) = hA
m(x)/γνm for some hA

m(x) ∈ A[x] and

νm ∈ N, and is non-zero (as f is indecomposable in K[x]). Let hm0 be the

(non-zero) coefficient of hA
m(x) of highest degree and set If = γ

∏
m hm0.

Consider next a morphism σ : A → k in a field k such that Iσ
f 6= 0. This

morphism uniquely extends to some morphism Aγ∞ → k, still denoted by

σ. It is easily checked that the m-decomposition of (f/a0)σ(x) in k[x] is

(f/a0)σ(x) = uσ
m(gσ

m(x)) + hσ
m(x)

As hσ
m 6= 0 for all m, (f/a0)σ, and so also fσ, is indecomposable in k[x]. �

2.3.2. Examples. (a) For A = Z, then If ∈ Z, If 6= 0. Proposition 2.3,

applied with σ : Z → Fp the reduction morphism modulo a prime number

p, yields the following:

for all suitably large p, the reduced polynomial f(x) modulo p is indecompos-

able in Fp[x].

This example will be refined in section 3.

(b) Take A = k[t] with k a field and t = (t1, . . . , tr) some indeterminates.

Denote by f(t, x) the polynomial f(x) of proposition 2.3. Assume that

deg(f) is prime to the characteristic of k and that f(t, x) is indecomposable

in k(t)[x]. In this situation If ∈ k[t] and proposition 2.3, applied with σ the

specialization morphism k[t] → k that maps t = (t1, . . . , tr) to an r-tuple

t∗ = (t∗1, . . . , t
∗
r) ∈ k

r yields the following:

for all t∗ off a proper Zariski closed subset of k
r (viz. the subset {If (t) = 0}),

the specialized polynomial f(t∗, x) is indecomposable in k[x].

This example will be refined in section 4.
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(c) Let f(x) = xd + a1x
d−1 + · · · + ad be the generic polynomial of degree

d > 1 in one variable. Take for A the ring Z[a] generated by the d-tuple

of indeterminates a = (a1, . . . , ad) corresponding to the coefficients of f(x).

The argument below shows that f(x) is indecomposable in Q(a)[x]. Propo-

sition 2.3, applied next with σ : A → k a specialization morphism of a and

k any field of characteristic 0, yields that all degree d polynomials in k[x]

are indecomposable but possibly those from the proper Zariski closed subset

corresponding to the equation If = 0 (with If viewed in k[a]).

To show that f(x) is indecomposable in Q(a)[x], assume f(x) = u(g(x))

with u, g ∈ Q(a)[x] of degree > 2. As f is monic, such a decomposition

would exist with u and g monic in Q[a][x]; this follows from lemma 4.6

below. But then by specializing a, it could be concluded that all degree d

polynomials in Q[x] are decomposable. This is not the case, as for example

corollary 1.3 shows.

3. Proof of theorem 1.1

The proof is somewhat similar to the proof of lemma 2.2.

Let f ∈ Z[x] of degree d, m be a divisor of d and p > d be a prime

number. As in the proof of proposition 2.3, we reduce to the case that f is

monic by dividing f(x) by the leading coefficient a0 and viewing the resulting

polynomial in Za∞0
[x]. Then the reduction modulo p of the m-decomposition

f = u(g) + h and the m-decomposition of the reduced polynomial modulo p

both exist and they coincide.

We say that a polynomial p(x) = p0x
d + p1x

d−1 + · · ·+ pd of degree 6 d

is f-tame of order d if there exist constants γi,d such that |pi| 6 γi,d‖ f‖i
∞

for all i = 0, . . . , d. This definition depends on ‖f‖∞ and not on ‖p‖∞. Of

course f is itself f -tame of order d.

Using the system (S), it follows by induction on i that |bi| 6 γi,d‖f‖i
∞,

i = 1, . . . , d
m ; thus g is f -tame of order d

m . Recall now how the decomposition

is continued. If d
m does not divide i, the coefficient hi of h =

∑d
i=1 hix

d−i is

the coefficient of the highest monomial αix
d−i in the difference between f

and powers of g.

If d
m divides i, say i = j d

m , then pick the coefficient αi of the highest

monomial above and set uj = αi: this is the coefficient of xm−j in u(x).

Deduce that |uj | = |αi| 6 γj‖f‖
j d

m∞ 6 γ‖f‖d
∞ (j = 2, . . . ,m) for some

constants γj , γ.
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This implies that ujg
m−j is f -tame of order d (even if it is a polynomial

of degree < d). Whence h is f -tame of order d and so ‖h‖∞ 6 γd‖f‖d
∞.

Conclusion: as f is not m-decomposable in Q[x], h(x) 6= 0. If p > γd‖f‖d
∞

then h(x) (mod p) 6= 0 and so f(x) (mod p) is not m-decomposable in Fp[x].

4. Proof of theorem 1.2

First note that assertions (b) and (c) immediately follow from assertion (a)

and proposition 2.3. We are left with proving assertion (a). With no loss of

generality we may assume that degti f > 0. And this, due to the assumption

on the characteristic of k, amounts to ∂f/∂ti 6= 0, i = 1, . . . , r. Also recall

that due to the assumption on the characteristic of k, the polynomial f(t, x)

is indecomposable in k[t, x] [3, theorem 4.2].

We divide the proof into two stages.

4.1. Stage 1: from r to 2 variables. Here we show that for r > 2,

the polynomial f(t1 + α1x, . . . , tr−1 + αr−1x, tr, x) is indecomposable in the

polynomial ring k(α1, . . . , αr−1, t1, . . . , tr−1)[tr, x].

For this stage we use the following classical characterization: if y is a

tuple of at least two indeterminates and L an algebraically closed field, a

polynomial f(y) ∈ L[y] is indecomposable in L[y] if and only if f(y) − T

is irreducible in L(T )[y] (where T is a new indeterminate). The desired

conclusion readily follows by induction from the following result, which as

explained in [11, §2], is a reformulation of the Matsusaka-Zariski theorem

[7, proposition 10.5.2].

Proposition 4.1. Let s > 3 be an integer, x = (x1, . . . , xs) be an s-tuple

of indeterminates and Q(x) ∈ k[x] be an absolutely irreducible polynomial.

Assume that ∂Q/∂x1 6= 0. Then if α1 is a new indeterminate, the polynomial

Q(x1 + α1xs, x2, . . . , xs) is irreducible in k(α1, x1)[x2, . . . , xs].

4.2. Stage 2: from two to one variable. Here we show that for r > 1,

f(t1 + α1x, . . . , tr + αrx, x) is indecomposable in k(α1, . . . , αr, t1, . . . , tr)[x].

From stage 1, we are reduced to proving the special case r = 1 of theorem

1.2 (a), which we restate below.

Theorem 4.2. Let f(t, x) be an indecomposable polynomial in k[t, x] with

k a field of characteristic p = 0 or p > deg(f). Then the polynomial f(t +

αx, x) is indecomposable in k(α, t)[x].
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Again because of the assumption on the characteristic of k, f could equiv-

alently be assumed to be indecomposable in k[t, x].

Remark 4.3. The following example, inspired by [12, p. 21], shows the con-

clusion fails if the assumption on the characteristic p is removed. Take

k = Fp and f(t, x) = xp2
+xp + t. As degt(f) = 1, f(t, x) is indecomposable

in k[t, x]. But the polynomial f(t+αx, x) = xp2
+xp+t+αx is decomposable

in k(α, t)[x] (and even in k(α)[x]): indeed, if a, b ∈ k(α) satisfy a + bp = 1

and ab = α, then we have xp2
+ xp + t + αx = (xp + bx)p + a(xp + bx) + t.

4.2.1. Preliminary lemmas. The following three lemmas will be used in the

proof of theorem 4.2. The first one is due to Lecerf and Galligo [8]. It ex-

presses in a simple and algebraic way a result already obtained by J.A. Wood

[14]. We denote partial derivatives ∂
∂α and ∂

∂t by ∂α and ∂t.

Lemma 4.4 (Burger’s equation lemma). Let k be a field and f ∈ k[t, x] be

a polynomial of degree d. Let q(α, t, x) = f(t + αx, x) ∈ k[α, t, x]. Suppose

φ ∈ k(α, t) is a simple root in x of the polynomial q(α, t, x), i.e., q(α, t, φ) =

0 and ∂xq(α, t, φ) 6= 0. Then the derivations ∂α and ∂t of k(α, t) uniquely

extend to k(α, t, φ) and we have ∂αφ = φ · ∂tφ.

Proof. Condition ∂xq(α, t, φ) 6= 0 guarantees that ∂α and ∂t uniquely extend

to k(α, t, φ). Differentiate then q(α, t, φ) = 0 with respect to α and with

respect to t. Using next the special form q(α, t, x) = f(t + αx, x) of q, this

leads to the following formulas:{
∂xq(α, t, φ) ∂αφ = −∂αq(α, t, φ) = −φ ∂tf(α + tφ, φ)
∂xq(α, t, φ) ∂tφ = −∂tq(α, t, φ) = −∂tf(α + tφ, φ)

which yields what we want. �

Lemma 4.5. Let K be a field and g ∈ K[v] be a polynomial such that

d = deg(g) is prime to the characteristic of K. For all but at most d − 1

values c ∈ K, the polynomial g(v) + c has only simple roots in K.

Proof. Let b0 ∈ K be the coefficient of vd in g. The discriminant of g + c is

∆ = Res(g + c, g′) = dd b2d−1
0

∏
ν

(g(ν) + c)

where in the product ν ranges over all roots ν ∈ K of g′ (with repetition for

multiple roots). If c is distinct from the d− 1 values −g(ν) then ∆ 6= 0 and

g(v) + c have only simple roots. �
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Lemma 4.6 (Turnwald). Let A be an integrally closed domain of quotient

field K and f ∈ A[x], monic in x. If f is decomposable in K[x] then f

admits a decomposition in A[x], i.e. f = u(g) with u, g ∈ A[x] monic in x.

See [13, proposition 2.2] or [6, theorem 2.1], [10, theorem 2.1].

4.2.2. Proof of theorem 4.2. We assume that f(t + αx, x) ∈ k[α, t, x] is de-

composable in k(α, t)[x], and equivalently in k(α, t)[x], and we will prove

that f(t, x) is decomposable in k[t, x].

Adding a constant c ∈ k to f(x, y) changes f(t+αx, x) to f(t+αx, x)+ c

and does not affect the decomposability assumption nor the desired conclu-

sion. Note next that degx(f(αx, x)) = d. As p = 0 or p > d, it follows from

lemma 4.5 that some element c ∈ k can be found such that the polynomial

f(αx, x) + c has only simple roots in k(α). Up to replacing f by f + c we

may and will assume that this is the case for f(αx, x) itself.

If fd(t, x) ∈ k[t, x] denotes the homogeneous part of degree d in f(t, x),

the leading coefficient of f(αx, x), relative to x, is fd(α, 1). Consider now the

polynomial q̃(α, t, x) = f(t + αx, x)/fd(α, 1) = q(α, t, x)/fd(α, 1). By con-

struction q̃ ∈ k(α)[t][x], is monic in x and is decomposable in k(α, t)[x]. By

lemma 4.6 applied with A = k(α)[t], we get q̃ = u(g) with u, g ∈ k(α)[t][x],

monic in x and such that degx u = m > 2 and degx g = d/m > 2. Set

q̃(α, t, x) =
d∏

i=1

(x− φi) =
m∏

j=1

(g(α, t, x)− λj),

so that φ1, . . . , φd ∈ k(α, t) are the roots of q̃, and λ1, . . . , λm ∈ k(α, t) are

the roots of u. Furthermore, by uniqueness of factorization, there exists a

partition of {1, . . . , d} into subsets I1, . . . , Im of {1, . . . , d} such that:

∏
i∈Ij

(x− φi) = g(α, t, x)− λj (j = 1, . . . ,m)

We will use Newton’s identities: for a polynomial p(x) = xn + p1x
n−1 +

· · ·+ pn−1x + pn =
∏n

i=1(x− φi), setting S` =
∑n

i=1 φ`
i , we have:

(N) S` + p1S`−1 + · · ·+ p`−1S1 + `p` = 0 (` = 1, . . . , n)

Applied to g(α, t, x)− λj (for which only the constant term depends on j),

this provides the following: for every ` = 1, . . . , d
m − 1 and j = 1, . . . ,m,

(*)
∑
i∈I1

φ`
i =

∑
i∈Ij

φ`
i ∈ k(α)[t].
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At this stage we use our initial reduction to the situation that f(αx, x) has

only simple roots in k(α). This implies first that q̃(α, t, x) has only simple

roots in k(α, t), and, second, that these roots, φ1, . . . , φd, can be viewed in

the ring k(α)[[t]] of formal power series in t with coefficients in k(α), via

some embedding k(α, t)(φ1, . . . , φd) ⊂ k(α)((t)); such an embedding indeed

exists thanks to Hensel’s lemma.

Differentiation of (*) for ` = d
m − 1 with respect to α then provides

∑
i∈I1

(
d

m
− 1) · ∂αφi · φ

d
m
−2

i =
∑
i∈Ij

(
d

m
− 1) · ∂αφi · φ

d
m
−2

i ∈ k(α)[t].

Use lemma 4.4 to deduce that

∑
i∈I1

φi · ∂tφi · φ
d
m
−2

i =
∑
i∈Ij

φi · ∂tφi · φ
d
m
−2

i ∈ k(a)[t]

and to conclude that

(**) ∂t

∑
i∈I1

φ
d
m
i

 = ∂t

∑
i∈Ij

φ
d
m
i

 ∈ k(α)[t] (j = 1, . . . ,m)

Use this conclusion for j = 1 to write
∑

i∈I1
φ

d
m
i = P1 + d1 for some P1 ∈

k(α)[t] with P1(α, 0) = 0 and some d1 ∈ k(α)[[tp]], and to deduce next that∑
i∈Ij

φ
d
m
i = P1 + dj for some dj ∈ k(α)[[tp]], j = 1, . . . ,m.

Remark 4.7. If the characteristic is p = 0, then the elements d1, . . . , dm are

constants in k(α), and the end of the proof below is simpler.

The Newton identity (N) with ` = d/m and p(x) = g(α, t, x)− λj gives

∏
i∈Ij

(−φi) = gd/m = −m

d
(Sd/m + g1Sd/m−1 + · · ·+ gd/m−1S1).

where g1, . . . , gd/m ∈ k[α, t] are the coefficients of g with respect to x. From

display (*), the sums S1, . . . , S d
m
−1 lie in k(α)[t] and are independent of

j = 1, . . . ,m. And from above we have S d
m

= P1 +dj . Therefore there exists

a polynomial P0 ∈ k(α)[t] (independent of j) and elements e1, . . . , em ∈
k(α)[[tp]] such that

∏
Ij

(−φi) = P0 + ej (j = 1, . . . ,m). This provides this

formula for λj (j = 1, . . . ,m):

λj = g(α, t, 0)−
∏
i∈Ij

(−φi) = g(α, t, 0)− P0 − ej
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Set G(α, t, x) = g(α, t, x)− g(α, t, 0) + P0 ∈ k(α)[t, x] so that

q̃(α, t, x) =
m∏

j=1

(g(α, t, x)− λj) =
m∏

j=1

(G(α, t, x) + ej).

This provides the decomposition q̃ = v(G) with v(x) =
∏m

j=1(x + ej) in

k(α)[[tp]][x] and G ∈ k(α)[t, x].

As q̃ and G lie in k(α)[t, x] we deduce that v ∈ k(α, t)[x]: indeed, once we

know q̃ and G, the computation of v is reduced to the resolution of a linear

system. But then by lemma 4.6 one may take v ∈ k(α)[t, x]. Up to a linear

change of variables x 7→ x− a, one may also assume that v(x) is of the form

v(x) = xm + v2x
m−2 + · · · (i.e. v1 = 0), so that we can apply lemma 2.2.

Conclude that degt v 6 d. As v ∈ k(α)[[tp]][x] and p > d we deduce that

v ∈ k(α)[x]. This shows that q̃ is decomposable in k(α)[t, x].

Multiply the equality q̃ = v(G) by fd(α, 1) to get that q is decomposable

in k(α)[t, x], that is: q(α, t, x) = f(t + αx, x) = v′(α, (G′(α, t, x)) with v′ ∈
k(α)[x] of degree > 2 and G′(α, t, x) ∈ k(α)[t, x]. For all but finitely many

α∗ ∈ k, specialization of α to α∗ of this decomposition provides the non-

trivial decomposition f(t + α∗x, x) = v′(α∗, (G′(α∗, t, x)). But then the

change of variables (t, x) 7→ (t− α∗x, x) shows that f(t, x) is decomposable

in k[t, x].

4.3. Explicit versions. We explain here how our method can be used to get

explicit results. For simplicity, we restrict to polynomials in two variables.

Corollary 4.8. Let f(t, x) be an indecomposable polynomial in k[t, x] with

degree d where k is a field of characteristic p = 0 or p > d. Then there

exist polynomials hm,i(α, t) ∈ k[α, t] where m|d, and i = 1, . . . , d − d/m of

total degree 6 md2 + 2d with the following property: for all (t∗, α∗) ∈ k2,

if for each divisor m of d there exists i0 such that hm,i0(α
∗, t∗) 6= 0, then

f(t∗ + α∗x, x) is indecomposable of degree d in k[x].

Proof. The proof is a variation of that of lemma 2.2 or of theorem 1.1. Set

q(α, t, x) = f(t + αx, x) = a′0(α, t)xd + a′1(α, t)xd−1 + · · ·+ a′d(α, t)

Due to the assumption deg f = d we get:

degt a′i(α, t) 6 i, degα a′i(α, t) 6 d− i, deg a′i(α, t) 6 d; i = 0, . . . , d.

In particular a′0(α, t) = a′0(α) does not depend on t.

Consider then q̃(α, t, x) = q(α, t, x)/a′0(α); this is a polynomial in k(α)[t, x],

monic in x. Consider the m-decomposition of q̃ with respect to the variable

x: q̃ = um(gm) + hm.
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Variable t. Apply lemma 2.2 to the polynomial q̃ seen as a polynomial in

A[t, x] with A = k(α), since degt a′i(α, t) 6 i. This yields degt h 6 d.

Variable α. Consider now q̃ as a rational fraction in α and as a polynomial

in x to compute the degree in α of h (we forget the variable t). Lemma 2.2

cannot be applied since the degree of the coefficients does not satisfy the

correct hypothesis (moreover the coefficients are not polynomials in α). The

m-decomposition q̃ = um(gm) + hm lives in A[α](a′0(α))∞ [x] with A = k[t].

A polynomial g(α, x) = c0x
δ + c1(α)xδ−1 + · · ·+ cδ(α) in A[α](a′0(α))∞ [x]

is α-tame of order δ if each ci(α) can be written (i = 0, . . . , δ):

ci(α) =
c′i(α)
a′0(α)i

with deg c′i(α) 6 iδ.

Note that a′0(α) comes from q̃ and is fixed.

The following properties can easily be proved:

(1) q̃(α, t, x) is α-tame of order d.

(2) The sum of two α-tame polynomials of order δ is α-tame of order δ.

(3) The product of a α-tame polynomial of order δ and a α-tame poly-

nomial of order δ′ is α-tame polynomial of order δ + δ′.

(4) The k-power of a α-tame polynomial of order δ is α-tame of order

kδ.

(5) An α-tame polynomial of order jd is an α-tame polynomial of order

md (j = 1, . . . ,m).

By inspection of system (S), we have in the decomposition q̃ = um(gm)+

hm, that gm is α-tame of order d. The proof is very similar to the one in

lemma 2.2. Then by item (4), gj
m are α-tame of order jd, and by item (5),

q̃ and gj
m are α-tame of order md, (j = 1, . . . ,m). As in lemma 2.2 we

distinguish two cases:

If d
m does not divide i, the coefficient hm,i(α) of hm(x) =

∑d
i=1 hm,i(α)xd−i

is the coefficient of the highest monomial γi(α)xd−i in the difference between

q̃ and powers of gm.

If d
m divides i, let j such that i = j d

m and denote the former coefficient by

um,j(α) (it is the coefficient of xm−j in um). Then um,j(α) = γi(α) = γ′i(α)

a′0(α)i .

This implies that um,j(α)gm−j
m is α-tame of order md.

Both cases imply that um(gm) and hm are α-tame of order md.

Conclusion. The m-decomposition q̃ = um(gm) + hm provides a decomposi-

tion q(α, t, x) = a′0(α)× 1
a′0(α)d (u′m(g′m)+h′m) with h′m =

∑
h′m,i(α, t)xd− d

m
−i

a polynomial in k[α, t, x] whose coefficients satisfy: degα h′m,i 6 md2 and
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degt h′m,i 6 d. Hence deg h′m,i 6 md2 +d. Finally, if a′0(α) 6= 0 then as usual

q is m-decomposable if and only if h′m,i = 0 for all i.

We set hm,i(α, t) = a′0(α) h′m,i(α, t) and we have the desired result. �

Corollary 4.9. Let f(t, x) be an indecomposable polynomial in k[t, x] with

degree d where k is a field of characteristic p = 0 or p > d. Let S be a finite

subset of k. For a uniform random choice of α, t in S, the probability

P
(
{f(t∗ + α∗x, x) is indecomposable in k[x] |α, t ∈ S}

)
is at least equal to 1 − D/|S|, with D = σ1(d).d2 + 2σ0(d).d where σ1(d) =∑

m|d m, σ0(d) is the number of divisors of d and |S| is the cardinality of S.

Proof. By corollary 4.8, f(t∗ + α∗x, x) is indecomposable in k[x], if for all

m|d there exists i0 such that hm,i0(α
∗, t∗) = 0. Thus if (α∗, t∗) belongs

to A =
⋂

m|d
⋃

16i6d−d/m{(α∗, t∗) | hm,i(α∗, t∗) 6= 0} then f(t∗ + α∗x, x)

is indecomposable in k[x]. Now, we consider the complement, Ac, of this

event, and we remark that:

Ac =
⋃
m|d

⋂
16i6d−d/m

{(α∗, t∗) | hm,i(α∗, t∗) = 0}

⊂
⋃
m|d

{(α∗, t∗) | hm,1(α∗, t∗) = 0}

⊂ {(α∗, t∗) |
∏
m|d

hm,1(α∗, t∗) = 0} = B.

Thus P(Ac) 6 P(B) and then 1− P(B) 6 P(A).

As deg(hm,1) 6 md2 + 2d, by Zippel-Schwartz’s lemma, see e.g. [9, lemma

6.44], applied to the event B, we have

1−
∑

m|d(md2 + 2d)

|S|
6 1− P(B).

This gives the desired result. �
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[3] A. Bodin, P. Dèbes, S. Najib, On indecomposable polynomials and their spectrum. Acta
Arith. 139, (2009), 79–100
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