Covers of P!
over the p-adics

ABSTRACT. Given a field K, the regular inverse Galois problem over K consists in
showing that each finite group G is the Galois group of a regular extension of K(T),
or equivalently, to finding a G-cover of P! of group G defined over K. Generalizing
[DeFr], we solve the regular inverse Galois problem over the field of totally p-adic
numbers for each prime p and give a criterion for the descent from the totally real
number field to Q. The second half of the paper is concerned with “local-to-global”
questions. We show that a G-cover defined over Q, for all primes p is necessarily
defined over Q (Dew’s conjecture). Also related to a question of Dew, our last result
asserts that if K is a number field and is the field of moduli of a (G-)cover, then only
for finitely many primes p may the completion K, of K not be a field of definition.

1. Introduction

This paper is concerned with the regular form of the inverse Galois problem :
does each finite group G occur as the Galois group of a regular extension E/Q(T) 7
Recall that the word “regular” means that the field Q should be algebraically closed
in E, i.e., ENQ = Q. The problem has a geometric formulation. Classically a
G-cover is a Galois cover f : X — P! given together with its automorphisms (Cf.
§2.1). Then the problem amounts to finding a G-cover defined over Q as a G-cover
and with G as automorphism group.

More generally, the regular inverse Galois problem can be considered over an
arbitrary field K : does each finite group occur as the automorphism group of a G-
cover defined over K ? Throughout this paper we assume that K is of characteristic
0. We will only consider covers defined a priori over K, which is equivalent to
requiring that the branch points be in K. Thus, the problem is a descent problem,
namely the descent of the field of definition of G-covers from K to K. A second
question then immediately arises, in fact the second stage of the original problem,
which is concerned with the descent from K to Q : find criteria for descending the
field of definition of a G-cover a priori defined over K.

We will discuss these questions when K = Q,, is the field of p-adic numbers and
K = Q" is the field of totally p-adic numbers, that is, the subfield of Q (viewed as
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a subfield of Q,) consisting of all algebraic numbers such that all conjugates over
Q are p-adic. This includes the prime p at infinity ; in that case, “p-adic” should
be understood as “real” and Q is denoted by Q!". The definition of Q™ does not
depend on the choice of an embedding Q, — @p. This makes the field Q? a more
intrinsic subfield of Q than QpN Q.

After some preliminaries in §2 (notation, etc.), we show in §3 that given any
prime p, each group is a Galois group over Q'?(7) (Th.3.1). The proof generalizes
the one given in [DeFr| for the special case p = co. Recently F. Pop has obtained
new results which contain Th.3.1 [Po3] : Q% can even be replaced by any finite
intersection of Qs. Both our approach and his rely on patching and glueing
techniques introduced by D. Harbater [Har| for formal analytic covers and revisited
by Q. Liu [Li] from the rigid point of view. The Hurwitz space theory is the other
important tool of our proof.

The following §4 is concerned with the second stage of the descent. Th.4.1, a
special case of [De2], is a criterion for a G-cover a priori defined over Q%" and with
Q-rational branch points to be defined over Q. We note that the extra condition
“with Q-rational branch points” forbids at the moment to combine Th.3.1 and
Th.4.1.

The rest of the paper is devoted to “local-to-global” questions. In his thesis,
E. Dew conjectures that a G-cover defined over all the completions of a number
field K is necessarily defined over K. In §7 we prove that Dew’s conjecture holds
except possibly in a very special case coming from Grunwald’s theorem (Th.7.1).
This special case cannot occur if K = Q. I am very much indebted to J-C. Douai
for a decisive contribution to the proof.

If a (G-)cover is only defined over all but finitely many completions of K, then
only the field of moduli has to be equal to K. In §8 we show that the converse
holds as well : only for finitely many primes p may the completion K, of the field
of moduli K not be a field of definition (Th.8.1). This result also originated in
a question of E. Dew. Th.7.1 and Th.8.1 are related to the classical problem of
studying the obstruction for the field of moduli to be a field of definition. The
appropriate definitions and the necessary tools to prove these results are presented
in §5 and §6.

2. Preliminaries

2.1. Covers and G-covers over a field K. Given a field K, by “cover over
K” we mean a flat and finite morphism f : X — PI with X a smooth projective
curve over K. By “G-cover of group G over K” we mean a Galois cover f : X — Pl
over K given together with an isomorphism h : G — G(K(X)/K(T')) (where T is
the generic point of P!). Note that the “G” of “G-cover” is the capital letter G
which indicates that the Galois action is part of the data. This “G” is not the name
of the group; in the phrase “G-cover of group G”, the name of the group is G
(italicized). We use the words “cover” and “G-cover” alone (without specifying the
base field K) only when the base field is algebraically closed. We use the word
“(G-)cover” in statements holding for both covers and G-covers. Isomorphisms of
covers are defined in the classical way. Isomorphisms of G-covers are defined as
follows. An isomorphism x between two G-covers of group G is an isomorphism of
covers that commutes with the given actions of G (i.e., with notation as above, such
that h/(g)(z’) o x = h(g)(a’ o x) for all g € G and all 2’ € K(X’)). If L/K is a field
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extension and f is a (G-)cover over K, the (G-)cover over L obtained from f by
extension of scalars is denoted by f ® x L. Two (G-)covers f; : X; — P, over K;,
i = 1,2, are said to be isomorphic if both covers f; @, K1 K2 and fo Qk, K1 K2
are isomorphic.

2.2. Invariants of a cover. A cover f: X — P! (over an algebraically closed
field & C C) has three basic invariants, which only depend on the isomorphism
class of the cover. First the group G of the cover, i.e., the monodromy group of
the cover f ®j C, or, equivalently, the automorphism group of the Galois closure
f: X = PLof f, or, also, the Galois group G(k(X)/k(T)). Second, the branch point
set {t1,...,t,} of the cover, which will be denoted by {t(f)}. Third, the inertia
canonical invariant of the cover. Recall the definition of the latter. To each branch
point ¢;, i = 1,...,r, can be associated a conjugacy class C; of the group G in the
following way. The inertia groups of f above t; are cyclic congugate groups of order
equal to the ramification index e;. Furthermore each of them has a distinguished
generator corresponding to the automorphism (1" — #;)1/¢ — e27/¢ (T — t;)1/¢ of
C(((T —t;)*/¢)). Then C; is the conjugacy class of all the distinguished generators
of the inertia groups above t;. The inertia canonical invariant of f : X — P! is
defined to be the unordered r-tuple C = (C4,...,C,). By invariants of a (G-)cover
f over a non algebraically closed field k, we always mean the invariants of the cover
f k.

2.3. K-arithmetic fundamental group [Se2 ;Ch.6]. The open subset of (P1)”
(resp. of P") consisting of ordered r-tuples (resp. unordered r-tuples) (t1,...,%,)
with no two equal coordinates is denoted by U" (resp. by U,). Given a r-tuple
t = (t1,...,tr) € Up(K), the K-arithmetic fundamendal group of P*\{t} is denoted
by I ¢. It can be defined in the following way. Fix an algebraic closure K (1') of
K(T). If Q¢ C K(T) is the maximal algebraic extension of K (T) unramified above
P\ {t1,...,t-}, then T is the Galois group of the extension Q/K(T). The K-
arithmetic fundamental group H?, . is also called the geometrical fundamental group.
From Riemann’s existence theorem, the group HE,t is the profinite completion of

the topological fundamental group of P1\ {t}. The latter has a classical presentation
given by r generators z1,...,z, and the one relation z; - - -z, = 1. Furthermore the
exact sequence

(1) 1—>Hft_>HK,t_’GK—>1
splits. More precisely, to each rational base point t, € P!(K) \ {t} corresponds
a section s;, : Gg — llgt obtained by embedding function fields of covers in

K((T'—t,)). The section s, is well-defined up to conjugation by an element of Tl
(which corresponds to the choice of an embedding in K ((T —t,))).

2.4. Dictionary “covers/homomorphisms”. (G-)covers over K essentially
correspond to representations of K-arithmetic fundamental groups. We review this
dictionary which transforms the question of descending the field of definition into
the question of extending group homomorphisms. Let t = (¢1,...,t,) € U, (K).
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2.4.1. Covers. To a degree d cover f : X — P! over K with branch points in
{t} can be associated a transitive representation

¢: g — Sq

such that the restriction to H?,t is transitive. Conversely to such a representation
can be associated a cover as above. These correspondences, which we briefly recall
below, are non-canonical. But they induce canonical one-one correspondences,
inverse the one to another, between isomorphism classes, when K is algebraically
closed. More specifically, two covers f and f’ are isomorphic if and only if the

corresponding representations ¢ and ¢’ are conjugate by an element ¢ € Sy, i.e.,

(2) ¢ () = pd(z)p~? for all z € e,

Via this dictionary, the group of the cover is G = ¢(I3z ;). The inertia canonical
invariant of the cover is the r-tuple of conjugacy classes in the group G of the r
elements ¢(z1),...,d(z,).

[Correspondences. Let t, € P'(K)\ {t}. Fix an embedding Q¢ — K((T —t,)).
A degree d cover f: X — P! over K with branch points in {t} given with a point
on X above t, corresponds, via the functor “function fields” to a specific finite
subextension of Q¢ /K (T), i.e., via Galois theory, to a specific subgroup H of Ik ¢.
Label the left cosets of IIx ¢ modulo H by the integers 1,...,d in such a way that
H corresponds to 1. The action of Ilx + by left multiplication on the left cosets of
ITg + modulo H provides a representation ¢ : Ilx ¢ — Sq as above.

Conversely, given such a representation, denote the stabilizer of 1 in the rep-
resentation ¢ : Ix¢ — Sg by g ¢(1). Consider the fixed field E = Q%™ of
Lk (1) in Q¢. Then the extension EK /K (T) is the function field extension associ-
ated to a degree d cover f : X — P'. Furthermore this cover is defined over K, i.e.,
is isomorphic to a cover f: X — Pk over K]

2.4.2. G-covers. To a G-cover f over K of group G and with branch points in
{t} can be associated a surjective homomorphism

(ZS:HK,tHG

such that ¢(H?,t) = G. Conversely to such an homomorphism can be associated a
G-cover as above. These (non-canonical) correspondences induce canonical one-one
correspondences, inverse the one to another, between isomorphism classes, when K
is algebraically closed. More specifically, two G-covers f and f’ are isomorphic if
and only if the corresponding representations ¢ and ¢’ are conjugate by an element,
p € Q@G,ie.,

®3) ¢ () = pp(x)p ! for all z € HE,t

[Correspondences. A G-cover f : X — P! over K of group G and with
branch points in {t} corresponds, via the functor “function fields” to a specific
finite Galois subextension of Q/K(T), i.e., via Galois theory, to a specific normal
subgroup H of IIx¢. The group i /H is canonically identified with the Galois
group G(K(X)/K(T)). Composing the natural surjection gy — IIx¢/H with
the given isomorphism G(K(X)/K(T) — G provides a surjective homomorphism
¢ : gy — G as above.
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Conversely, given such an homomorphism, consider the fixed field £ = Qf{ er(4)
of Ker(¢) in Q. Then the extension EK/K(T) is the function field extension
associated to a Galois cover f : X — P! of group g ¢/Ker(¢). Furthermore
this cover is defined and Galois over K, i.e., is isomorphic to a Galois cover
fx : Xx — P} over K. The isomorphism Iii/Ker(¢) — G endows fx with
a structure of G-cover over K]

2.5. Galois action. Given a field K, the absolute Galois group G(K/K) of K
is denoted by G-

2.5.1. Galois action on (G-)covers. The Galois group G has a natural action on
varieties over K ; in particular, Gk acts on (G-)covers of P! over K. Let f : X — P!
be a (G-)cover and T € Gk. The corresponding conjugate cover will be denoted by
/7 : X7 — PL If the three invariants of the cover f are G, {t} = {t1,...,t,}
and C = (Cy,...,C}), then the three invariants of the cover f7 are respectively
G, {67} = {t7,....t7} and CX(T) = (XD 0XT)y where x : Gx — Z/|GIZ is
the cyclotomic character of K modulo the order of the group G. Assume now that
the cover f (resp. G-cover f) corresponds to the homomorphism ¢ : H?,t — Sy
(resp. ¢ : Il ; — G). Fix a rational base point #, € PY(K) \ {t} and consider the
homomorphism ¢7 : Iz, — Sa (resp. ¢7 : Uz, — @) defined by

(4) @7 () = (x5 ) for all z € gz,

where 2%t (") = s, (7)a(s,(7))~". Then the homomorphism ¢” corresponds to a
cover (resp. a G-cover) that is isomorphic (over K) to the cover f7 (resp. to the
G-cover f7).

2.5.2. Galois action on unramified fibers. If f : X — P! is a cover over K, by
“fiber” of the cover f we always mean geometric fiber, i.e., the corresponding fiber
of the cover f ®x K. The following result will be used several times.

PROPOSITION 2.1 — Let f: X — ]P’}( be a cover over K and ¢ : Il ¢ — Sy
be the associated homomorphism. Let t, € PY(K) \ {t}. Then for each 7 € Gf,
the permutation ¢(si, (7)) is conjugate in Sy to the permutation w, induced by the
action of T on the fiber f1(t,).

Proof. Denote the stabilizer of 1 in the representation ¢ : g+ — Sq by Ik ¢(1).
Then the extension of function fields (over K) associated to the cover f: X — P!
is the extension E/K(T) where E = QFK"(D is the fixed field of Ik ¢(1) in .
Select d representatives {1, .. ., &4 of the left cosets of Ik ¢ modulo Ik ¢(1) in such
a way that ¢(&)(1) =4,7=1,...,d. Then for all z € llx and for any two indices
1,7 €{1,...,d}, we have

(5) P(2)(i) = j < fj_l(zfi) € Uk (1)

Let 7 € Gi. In order to compute the permutation w,, we pick a primitive
element y; of the extension E/K(T). Set y; = yfi, i =1,...,d. By definition of F,
the conjugates of y; over K(T') are the d distinct elements y1,...,yq4, 1 = 1,...,d.
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Since t, is not a branch point of f, the field K(T,yi,...,y4) can be embedded in
K((T —t,)). The permutation w, is then equal, up to conjugation in Sy, to the
permutation induced by 7 on the formal power series y1, ..., y4. But this action of
T on coefficients of power series corresponds precisely to the element s; (1) € Ik .
Consequently we obtain :

St (T)

wi)=j ey =y e @)D =yl © & (s, (1)&) € Tk e (1)

which, in view of (5), completes the proof. [
3. Descent from Q to Q
3.1. Statement of the results. This section is aimed at proving this result.

THEOREM 3.1 — Let p be a prime (possibly p = 00 ). Then each finite group is
the automorphism group of a G-cover defined over QP, or, equivalently, the Galois
group of a regular extension of QP (T).

When p is the prime at infinity, this result is due to M. Fried and myself [DeFr].
Galois properties of the field Q! were also investigated by M. Fried, D. Haran and
H. Vélklein who gave a precise description of the absolute Galois group G (@/ Q")
[FrHaV3]. A more general result on G(Q%/Q*) with p an arbitrary prime was more
recently obtained by F. Pop [Po3]. Here we explain how the proof of [DeFr| extends
to finite primes. Like in [DeFr| the proof has two stages : from Q to Q N Q, first,
then from Q N Q, to Q. The second stage can be worked out similarly for finite
primes and for p = co. Only the first stage is specific to each case : for finite primes,
it relies on Harbater’s techniques which replace Debes-Fried’s result on the complex
conjugation used in [DeFr].

The following definition plays an important role in the proof of Th.3.1 and in
many other places of this paper.

DEFINITION 3.2 — Let fix : X — Pk be a cover over K. A fiber fgl(to) with
t, € PY(K) is said to be totally rational if it consists only of K-rational points on
Xg. A (G)-cover f: X — Pl is said to be definable over K with a totally rational
fiber above t, if there ewists a (G-)cover fr : Xk — Pk over K with a totally
rational fiber above t, and such that the (G-)covers fx and f are isomorphic.

The first stage consists in proving the following result. Recall that an unordered
r-tuple (Cq, ..., C,) of conjugacy classes of a group G is said to be rational if, for all
integers m relatively prime to the order of G, we have (C4,...,C,) = (CT*,...,C™)
as unordered r-tuples(*).

(*) The special case r=1 corresponds to the more classical notion of rational conjugacy class.
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LEMMA 3.3 Let p be a prime, G be a finite group and b > 0 be an integer.
Then there exists a G-cover f : X — P! with the following properties.
(1) The G-cover f is definable over Q, with a totally rational fiber above a point
to € PL(K) \ {t(/)}.
(2) The automorphism group Aut(f) of the cover f is G.
(3) The inertia canonical invariant of f is a rational tuple C of conjugacy classes
of G.
(4) Each conjugacy class of G appears at least b times in the inertia canonical
invariant C of f.

3.2. Harbater’s “patching and glueing” result [Har]. The proof of Lemma
3.3 divides into two cases, depending on whether p = oo or p is finite. We refer
to [DeFr;85.3] for the first case. The finite case rests on the following Harbater’s
result.

THEOREM 3.4 (Harbater) — Let G be a finite group and Hy and Hs be two
subgroups of G generating G (i.e., G =< Hy,Hs >). For j = 1,2, let f; : X; — P!
be a G-cover defined over Qp, of group Hj, with r; branch points and with inertia
canonical invariant the r;-tuple C; = (Cj1,...,Cj,). Assume in addition that

(5) For j = 1,2, f; has a totally rational fiber above a point to; € P1(Qp) \ {t(f;)}-

Then there exists a G-cover f : X — P! defined over Q, with a totally rational fiber
above a point t, € PY(Qp) \ {t(f)}. of group G, with r = r1 + ry branch points and
inertia canonical invariant the r-tuple C = (C%, ... ,C’lar1 LOS L 052) where C’ﬁ
is the conjugacy class in the group G of elements of Cj;, j =1,2,i=1,...,7;.

Th.3.4 is slightly more precise than Harbater’s statement but can be easily
deduced from his construction. Harbater’s original proof uses formal analytic
geometry. In a short note [Li], Liu gave another proof of Th.3.4 using rigid analytic
geometry instead. We briefly sketch Liu’s method and explain how to obtain the
extra conclusions, in particular, the one relative to the inertia canonical invariant
of the cover f.

Sketch of proof. Assumption (5) insures that, for j = 1,2, one can find a small
disk O; about t,; with the following properties :

(i) f{l(O_j) is isomorphic as rigid analytic space over Q, to the disjoint union of
d; = |Hj| copies of O;(**).

(i) f7'(P*\ O;) is connected.

Set D; = P*\ O; and dD; = D; \ D;, j = 1,2. It follows from (i) that the branch
points of f; arein D; and that fj_1 (0Djy) is isomorphic over @, to the disjoint union
of d; = |H,| copies of 0D;, j = 1,2.

One may assume that D; N Dy = () : otherwise replace f; by xj o f; with x; a
suitable automorphism of P!, j = 1,2. Then consider the three following analytic
spaces U,, Uy and Us, which are formed from local pieces of X7 and X5 :

- U, consists of d = |G| disjoint copies of P!\ D; U Dy. Note that each of these
copies contains one copy of dD; and one copy of 0Ds.

(**) As usual, if O is a disk, O is the associated closed disk
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- Uy consists of d/d; copies of f; *(Dy). Note that each of these copies contains
dy copies of 9D1.

- Uy consists of d/dy copies of f, *(D3). Note that each of these copies contains
ds copies of 9Ds.

Thanks to a general result on analytic spaces, U,, U1 and Us can be patched and
glued to provide a new analytic space X over Qp. A cover f : X — P! is then easily
defined by f = Id on U, and f = f; on U;, i = 1,2. More specifically, U, is glued,
on one hand, to U; along the d common copies of dD; and, on the other hand, to
Us along the d common copies of dD3. Furthermore, by using a clever labeling of
the different copies of 9Dy and 9D, Harbater shows that this can be done in such
a way that

(a) the resulting space X is connected.

(b) there exists a natural action of G on X which yields an identification Aut(f) ~ G
for which the subgroup H; of G corresponds to the automorphism group of each of
the covers fj*l(Dj) —Dj, j=1,2.
From an analog of the GAGA theorem, the resulting analytic cover is still an
algebraic cover over Q,. Clearly this cover has totally rational fibers above any
point Q,-rational point ¢, of P*\ D; U Ds.

Finally we have

{t(N)} = xa({t(f)} Ux2({t(f2)})

Let P be a point on X above a branch point of f. The local ring at P is the local
ring at some point on f]-fl(Dj) C Xj, for j = 1 or j = 2. Therefore, the inertia
groups of both these points are the same. In view of the definition of the inertia
canonical invariant (§2.2), this completes the proof. [

3.3. Proof of Lemma 3.3. For each element g € G, g # 1, use Lemma 2.1 of
[Har] (or Lemme 1 of [Li]) to construct a G-cover f, : X, — P! over Q,, of group
< g > and with a totally rational fiber above a point t,, € P}(Qp) \ {t,} (where
{ty} = {t(fy)}). Consider the associated homomorphism ¢, : Ilg, +, —< g >. Set
8y = 8¢, ,- It follows from Prop.2.1 that

54(Go,) C Ker(¢y)

Now if n, is the order of g and k € (Z/n,Z)” is any unit of Z/n,Z, the kth power
¢’g“ of ¢4 is still a homomorphism because its image lies in < g >, which is abelian.
Furthermore ¢§ : g, t, —< g > is still surjective and satisfies

54(Gq,) C Ker(gblgc)

Denote the associated G-cover by fg(k).
Next, for each g € G \ {1} and each k € (Z/n,Z)", take b copies of the cover

fék). Finally use Th.3.4 to patch and glue all these covers together. It is readily
checked that the resulting G-cover f : X — P! has the properties (1) and (2).

For each g € G\{1} and each k € (Z/n,Z)", let Cgk) denote the inertia canonical

invariant of fék) : Cgk) is a tuple with entries in < g > (conjugacy classes of the
cyclic group < g > are trivial). Furthermore it has to contain at least one generator
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of the cyclic group < g >. But then the element g itself necessarily appears in C_((Jkl)
for some k' € (Z/ngyZ)”. This proves condition (4). As for condition (3), i.e., the
rationality of the inertia canonical invariant of f, it is an immediate consequence of
the following formula : for each g € G \ {1} and all k, k" € (Z/n,Z)", we have

(6) (Cé’“))k, _ (Cgkk')) m

3.4. Second stage of Th.3.1. The second stage of the proof of Th.3.1 is the
same for finite primes and for the prime at oco. It makes use of the Hurwitz space
theory for G-covers.

3.4.1. Hurwitz spaces for G-covers [FrVo]. Under the conditions “Z(G) = {1}”
(i.e., “G has trivial center”) and “C is rational”, Fried and Voélklein showed the
existence of a moduli space H2(C) for G-covers of group G and inertia canonical
invariant equal to C. More precisely, §2(C) is a smooth algebraic variety defined
over Q with this property : G-covers of group G, with 7 branch points, with inertia
canonical invariant equal to C and defined over a field k correspond to k-rational
points on HZ(C).

3.4.2. End of proof of Th.3.1. With no loss, we may assume that

(7) The group G has trivial center and commutators generate the Schur multiplier
of G.

Indeed, from Lemma 2 of [FrVg], each finite group is the quotient of a group
with this property. The next ingredient of the proof is Conway-Parker theorem
[FrVo ;appendix]. Under condition (7), there exists an integer b,(G) with this
property : if C is an r-tuple of conjugacy classes such that each conjugacy class of
G appears at least b,(G) times in C, then the Hurwitz space H2(C) is irreducible.

Applying Lemma 3.3 with b = b,(G) yields a G-cover f : X — P! with an
inertia canonical invariant C satisfying the preceding property. So the associated
Hurwitz space $) = $2(C) is irreducible. Furthermore, from properties (1) and
(3), $ is defined over Q and $(Q,) # (. Conclusion follows from this result of Pop
([PoRoGr] and [Pol]) : if X is a smooth variety defined over Q, then X (Qt) # ()
provided that X (Qp) # 0. (In fact, X (Q') is dense in X(Q,)). O

4. Descent from K to QQ

4.1. From Q! to Q. Th.4.1 is concerned with the descent from Q! to Q.
The basic idea is this. The action of complex conjugation ¢ on covers of P! can
be explicitly described by some formulas due to Hurwitz that give the action
of ¢ on suitable generators of the topological fundamental group 7 (P! \ {t},%,)
([Hur],[FrDe],[De2 ;display (3) p.867]). Being defined over R imposes to a G-cover
certain group-theoretic constraints coming from these formulas. If a G-cover f is
defined over Q" these Hurwitz constraints should be satisfied by all the conjugates
of f. Under suitable conditions, these constraints are sufficiently sharp to imply that
these conjugate covers are the same cover. More precisely, we proved the following
result in [De2]. For simplicity, we restrict to the case where all the branch points
are real.
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THEOREM 4.1 — Let f: X — P! be a G-cover of group G and with branch
points r points t1,...,t, € PY(R) such that t; < ... < t,. Let C; be the inertia
cananical class associated to t;, i = 1,...,r. Assume that the following holds.

(1) The center of the group G is trivial.
(2) Each of the conjugacy class C; is rational, i = 1,...,r.

(3) The G-cover f is defined over Q.
(4) The branch points t1, ..., t, of the cover are in P*(Q).
(5) The action of G (by componentwise conjugation) on the set

(Z) gl"'gT:1
(1) <g1,-..,9r >=G
(Z’L’L) giECi,izl,...,T

9o =1
" N (gogl) =1
sni(C,r) = 91+, 9,) €GT (iv) Jg, € Gsuch that .
(gog1 -+ gr—1)?

is transitive (*).

Then the G-cover f can be defined over Q.

Condition (5) should be compared to the classical “rigidity assumption”. The
latter requires that the action of G be transitive on a much bigger subset of G",
namely the subset denoted by sni(C) consisting of all r-tuples (g1,...,g,) of G
satisfying only the first three conditions (i), (ii) and (iii) of the definition of sni(C, ).
The extra set of conditions (iv) makes assumption (5) more likely than the rigidity
assumption.

Th.4.1 can be stated more generally. Without assumption (5), it still can be
concluded that the G-cover f can be defined over a number field L of degree [L : Q]
less than the number of orbits of the action of G on the set sni(C,r).

Th.4.1 is a descent criterion over Q for G-covers a priori defined over Q"
and with branch points in P!(Q). One may wish to combine Th.4.1 and Th.3.1.
Unfortunately, Th.3.1 is not precise enough yet : assumption (4), that is, that the
branch points be in P!(Q), is not guaranteed by the conclusion of Th.3.1. Such a
version of Th.3.1 with some extra rationality conditions over Q on the branch points
would be a great improvement.

4.2. From Q® to Q. In a general way, the knowledge of the action of Gq, on

fundamental groups HQT . vields necessary conditions for a cover to be defined over
P

Qp, so in particular, over Q. But in the finite case, the action of G, on covers of

P! is not as easy to describe as in the case p = oc. M. Fried and I proved that there

is no exact analog of Hurwitz formulas for the p-adics (see [DeFr ;§3.7] for a precise

(*) Nonemptyness of sni(C,r) follows from Hurwitz formulas.




COVERS OVER THE P-ADICS 11

formulation). Now subtler analogs might exist. As recent results of Pop show [Po3],
investigating further the action of G, on covers of P! is certainly an interesting
direction of work.

Considering covers over the different completions of Q raises other interesting
questions, in particular, various forms of “local-to-global” questions. The rest of
this paper will be devoted to these questions.

4.3. Hurwitz spaces and Hasse principle. Let G be a finite group. From
Th.3.1, for each prime p, G is the automorphism group of a G-cover f, : X, — P!
defined over Q. We mention in §4.1 a possible improvement of Th.3.1. Another one
would consist in showing that one can arrange for the inertia canonical invariant C,,
of fp not to depend on p. Assume further that the center Z(G) of G is trivial. Then
the question can be rephrased as follows : show that there exists an integer r and
an r-tuple C such that the associated Hurwitz space $ = Hg(C) has Q*-rational
points for each prime p (*). When this is achieved, an interesting kind of Hasse
problem arises : can one conclude that $(Q) # () ? The following example shows the
answer to be “No” in general.

EXAMPLE 4.2. Let £ be a prime > 7 and G be the dihedral group G = Doy
of order 2¢. Take r = 4 and each of the conjugacy classes Cy,...,Cy equal to the
set of involutions of Dgy. Then [DeFr| shows that the associated Hurwitz space
$H = H¢(C) is irreducible and defined over Q. Furthermore, if k is field, k-rational
points on §) can be interpreted as k-rational points on the modular curve X;(¢).
Consequently, $(Q,) # 0 for each prime p : Qp-rational points can be found near
the cusps which are Q-rational. And $(Q) = () : this is Mazur’s theorem [MaSe].

REMARK 4.3. In [DeFr], the same example shows that at least six branch points
are necessary to realize the dihedral group Dg, over Q(T'), which is a little striking
when one knows only three are sufficient for the Monster. Recent results of Mazur
and Kamieny [MaKa] suggest that the following might even be true : there is no
integer r, such that each dihedral group is realized over Q(T') with at most r,
branch points (see [DeFr] for more details).

5. First variants of Dew’s conjecture
In his thesis [Dew], E. Dew makes this conjecture.

CONJECTURE (Dew) — Let K be a number field and f: X — P! be a G-cover
defined over K. Then the following conditions are equivalent :
(i) The G-cover f can be defined over K, for all primes p of K (including the primes
at infinity).
(i) The G-cover f can be defined over K.

We will prove in §7 that this conjecture holds except possibly in a very special
case coming from Grunwald’s theorem [ArTa]. This special case cannot occur if
K = Q. It is unknown whether Dew’s conjecture holds in the special case; no

Using [Del j[5] p.240], this can be shown for each group G generated by involutions and satisfying
condition (7) of §3.
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counter-example has yet been found. Dew’s conjecture is concerned with G-covers.
The same conjecture with covers instead of G-covers is an open question ; it might
not hold even over Q (Cf. Remark 5.4).

The following result consists of three easier variants of Dew’s conjecture.

PROPOSITION 5.1 Let K be a number field and f : X — P! be a G-cover
defined over K.

(A) Assume that the G-cover f has a smallest field of definition, that is, there exists
a field contained in each field of definition of the G-cover f. Then the conclusion of
Dew’s conjecture holds true.

(B) Assume that f can be defined over K as a cover, i.e., there exists a cover
fx : Xic — Pk over K such that fr and f are isomorphic as covers over K. Then
the following conditions are equivalent :

(i) The cover fx @k K, is a Galois cover for all but finitely many primes p.

(i) The cover fx is a Galois cover over K (in particular, the G-cover f can be

defined over K ).

(C) Let t, € PH(K)\ {t(f)}. Then the following conditions are equivalent :

(i) The G-cover f can be defined over K, with a totally rational fiber above t, for
all but finitely many primes p.

(i) The G-cover f can be defined over K with a totally rational fiber above t,.

These three results are consequence of this well-known corollary of the Cebotarev
density theorem (e.g. [Sc]) :

LEMMA 5.2 (Frobenius-Hasse) — Let L/K be a number field extension. If L
can be embedded in K, for all but finitely many primes p of K, then L = K.

(A) is an immediate consequence of Lemma 5.2. (B) is proved below. The proof
of (C) is postponed to §6.2.3.

Proof of (B). Let E/K(T) be the function field extension corresponding to the
cover fx : X — Pi. The field extension EK /K(T) is Galois. There is a smallest
subfield K of K such that the field extension EK /K (T) is Galois : it is the constant
field of the Galois closure E/K(T) of E/K(T), i.e., K=EnK.If p is a prime, the
cover fx @k Ky is a Galois cover if and only if the field K can be embedded in K,.
Conclusion follows from Lemma 5.2. [

REMARK 5.3. A G-cover f : X — P! satisfying condition (i) of Dew’s conjecture
has necessarily K as field of moduli (see §6). From Coombes-Harbater’s theorem (see
Th.6.1), f : X — P! can then be defined over K as a cover, that is, f has a model
[k : Xg — Pk over K as in Prop.5.1 (B). But condition (i) of Prop.5.1 (B) and
condition (i) of Dew’s conjecture are different. Indeed, that a G-cover f : X — P!
can be defined over K, means that there exists a Galois cover f, : X; — P}(F over

K, such that f, and f are isomorphic as G-covers over K,. But in general f, need
not be isomorphic to the cover fx ®x K.
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Prop.5.1 shows that the difficulty in Dew’s conjecture is that the cover
f : X — P! is a priori defined over K and that there may be several different
ways of descending the field of definition.

REMARK 5.4. Towards a possible counter-example to Dew’s conjecture for
covers. Assume that a cover f : X — P! can be defined in three different ways
over three real quadratic fields Q(\/a1), Q(y/a2), Q(\/az) with ay, a2, ag positive,
odd, square-free integers and such that ged(ay, as,as) = 1. Assume in addition that
the three positive integers a1, as, az can be selected in such a way that the following
conditions hold :

(i) ajasas is a perfect square.

(ii) Each of the three integers is a square modulo each prime divisor of the product
of the two other ones.

(iii) At least one out of the three integers aj, as, a3 is congruent to 1 mod 8.

(For example, take a; = 13, ag = 17, az = 13.17). Then it is easily checked that
for each finite prime p, at least one out of the fields Q(\/a;), i = 1,2,3 can be
embedded in Q,. Therefore, the cover can be defined over Q, for each prime p.
Assume that such a cover can be found that cannot be defined over Q. Then this
cover would be a counter-example to the analogue of Dew’s conjecture for covers
(without the automorphisms). However covers with real quadratic fields as minimal
fields of definition do not seem very easy to construct.

This first approach of Dew’s conjecture was intended to suggest that it has a lot
to do with the existence of a single or several minimal fields of definition for a given
G-cover. This is very much related to the classical question of the obstruction for
the field of moduli to be a field of definition.

6. Field of moduli versus field of definition

6.1. Definitions. Fix a base field K and its algebraic closure K. Let f : X — P!
be a cover (resp., G-cover) a priori defined over K. Consider the subgroup M(f)
(resp. Ma(f)) of Gk consisting of all the elements 7 € G such that the covers
(resp., the G-covers) f and f7 are isomorphic. Then the field of moduli of the cover
f (resp., the G-cover f) is defined to be the fixed field

FM(f) (resp, FMG (f))

of M(f) (resp. Mg(f)) in K. The field of moduli of a cover (resp., G-cover) is a
finite extension of K contained in each field of definition containing K. So it is the
smallest field of definition containing K if it is a field of definition. In particular,
from Prop.5.1 (A), Dew’s conjecture is true for G-covers defined over their field
of moduli. In fact, from Prop. 2.7 of [CoHar|, that condition is equivalent to the
assumption of Prop.5.1 (A) : if a G-cover has a smallest field of definition, it has to
be the field of moduli.

In general the field of moduli need not be a field of definition [CoHar ;Example
2.6]. However, Coombes and Harbater proved this result [CoHar ;Prop.2.5].

THEOREM 6.1 (Coombes-Harbater) The field of moduli of a Galois cover f
is a field of definition of the cover f (without the automorphisms).
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The dictionary §2.4 provides the following algebraic characterization of field of
moduli and field of definition. Let ¢ : Il — Sy (resp. ¢ : Il — G) be the
homomorphism associated to a cover f (resp. a G-cover f). Let t, € P*(K)\ {t} be
a rational base point and s = s;, be the associated section s, : Gg — g .

PROPOSITION 6.2 — (a) An element 7 € Gk is in the subgroup M(f) (resp.
Mc(f)) if and only if there exists pr € Sq (resp. - € G) such that

(1) $(@°D) = o, p(x)p; " for all x € T,

In particular, the field of moduli of the cover f (resp. the G-cover f) is the subfield
of K fized by all the elements 7 € Gk such that (1) holds.

(b) An algebraic extension k of K is a field of definition of the cover f (resp. the
G-cover f) if and only if G, C M(f) (resp. G, C Mq(f)) and if the collection
(pr)rea, of elements or € Sq (resp. o € G) satisfying (1) can be selected in such
a way that the correspondence T — @, is an homomorphism of groups.

The condition

(2) (gon)*lgongaTz =1forall 71,7 € Gg

that appears in (b) is the exact algebraic counterpart of the classical Weil’s cocycle
condition [We]. In general, the left-hand term of (2) lies in the centralizer Ceng,G
of G in Sy for a cover (resp. in the center Z(G) of G for a G-cover). Therefore if
Ceng,G = {1} (resp. Z(G) = {1}), the field of moduli of the cover (resp. G-cover
f) is also a field of definition.

6.2. Applications of Prop.6.2.

6.2.1. Algebraic proof of Coombes-Harbater’s theorem (Th.6.1). Coombes-
Harbater’s argument can be rephrased algebraically as follows. If the cover
f : X — P! is Galois, then the group G = d)(HE,t) C Sy acts freely and tran-
sitively on {1,...,d} and the same is true for the group Ceng,G. By multiplying
each ¢, on the right by an element of Ceng,G, one may assume that

(3) o fixes 1 for all 7 € M(f)

Together with (1) this extra condition completely determines each ., T € M(f).
Condition (2) follows then immediately. Hence the field of moduli is a field of
definition. In fact it follows from Prop.2.1 and (3) that we have this stronger
conclusion : the cover f: X — P! can be defined over its field of moduli in such a
way that the fiber above t, contains at least one rational point. O

6.2.2. Practical criteria. Results of this paragraph are due to J-R. Pycke. Let
f : X — P! be a cover defined over K and with K as field of moduli. Let
¢ : Il , — Sq be the homomorphism associated to f. Denote the Galois closure

over K of f : X — P! by f: X — P! and the field of moduli of the G-cover fby
Kg. Let t, € PY(K) \ {t}. Denote the normalizer of G = ¢(Ilz,) in Sy by Ng,G.
Consider the map
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@{GK:M(‘]C) — NSdG/CenSdG

T - P

(resp_ Yo : {GKG =Ma(f) — G/Z(G) )

T - Y7
that assigns to each element 7 € M(f) (resp. T € Mg(f)) the left coset modulo
Ceng,G (resp. modulo Z(G)) of an element ¢, € Ng,(G) (resp. @, € G) satisfying
(1). This map is a group homomorphism. Then Prop.6.2 (b) can be reformulated
as follows :

PROPOSITION 6.3 (Pycke) — (a) The field of moduli K is a field of definition
of the cover f if and only if the homomorphism @ : Gxg — Ng,G/Cens,G can be
lifted up to an homomorphism ¢ : Gxg — Ng,G.

(b) The field of moduli K¢ of the G-cover f is a field of definition of the G-cover
f if and only if the homomorphism @q : Gr, — G/Z(G) can be lifted up to an
homomorphism pa : Gx, — G.

The following classical cases where the field of moduli is a field of definition are
all trivially covered by Prop.6.3. :

(for the cover f) :
- Ceng,G = {1} i.e., the cover f has no automorphims.
- Ceng,G is a direct summand of Ng,G, e.g. the cover f is Galois (Th.6.1).
- The Galois group Gk is a projective profinite group.

~

(for the G-cover f) :

- Z(G) = {1} i.e. G has a trivial center.

- Z(G) = G (i.e. G is abelian).

- The Galois group G is a projective profinite group.

- The cover f can be defined over K with a totally rational fiber above a point
t, € PY(K)\ {t} (use Prop.2.1).

REMARK 6.4. The condition “G is projective” holds if K is of cohomological
dimension < 1. The fields k((7)) with char(k) = 0, Q;" (maximal unramified

algebraic extension of Q,), k(T), Q% are some classical examples of field of
cohomological dimension < 1. Over these fields, the field of moduli of a (G-)cover is
a field of definition. E. Dew showed that the result also holds over finite fields [Dew].
Finite fields are of cohomological dimension < 1 but there is an extra difficulty :
there does not necessarily exist a K-rational base point ¢, € P}(K) \ {t}. However
the case of finite fields can still be viewed as a corollary of this paragraph. But
rather than using a section s;,, one should use an arbitrary section of the map
T+ — Gk . Existence of such a section is guaranteed by the projectivity of G .

The following result is also a consequence of Prop.6.3. Both maps ¥ and $ have
the same kernel, namely the subgroup of Gk, denoted by M;_(f), consisting of all
the elements 7 € G such that
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(5) p(x%t2 (M) = ¢(z) for each x € Uz,

()

Denote the fixed field K" of My, (f) in K by Ry, (f).

COROLLARY 6.5 (Pycke) — The field Ry, () is both a field of definition of the
cover f and of the G-cover f. Furthermore we have

‘NSdG‘

{ [Re,(f): K| < [Cens, Gl
[Re,(f) : Ke] < 4

(6)

6.2.3. Proof of Prop.5.1 (C). From Prop.6.2 and Prop.2.1, the field Ry, (f) is
the smallest subfield k of K over which the following equivalent conditions hold.

(i) The cover f : X — P! can be defined over k with a totally rational fiber above
to-

(i) The function field extension K (X)/K (T can be obtained by extension of scalars
from a Galois regular extension Ej,/k(T") with Ej a subfield of k((T' — t,)).

Condition (i) of Prop. 5.1 (C) amounts to saying that the field Ry (f) can be
embedded in K, for all but finitely many primes p. Lemma 5.2 completes the proof.
O

REMARK 6.6. The field R;_(f) can also be described in the following way. The
field of moduli K of the cover f clearly contains the field of moduli of the cover
f From Th.6.1, f can be defined over K as a cover. That is, there exists a cover
f 1+ Xg — PL such that both covers f & and f are isomorphic over K. The function
field K(Xg) can be embedded in K((T — t,)). Then the field R;, (f) corresponds
to the field generated over K by the coefficients of all the formal power series in
K(Xk). Geometrically, this amounts to saying that R (f) is the smallest field of
rationality for all the points in the fiber flzl(to).

6.3. Cohomological approach. In the case of G-covers, the obstruction for
the field of moduli to be a field of definition can be characterized in a cohomological
way. Namely, the following is easily checked.

PROPOSITION 6.7 — Let f : X — P! be a G-cover with field of moduli contained
in K. With notation of Prop.6.2, we have :
(a) The collection ((Pryrs) "  @riPrs ) ,mmeGr induces a 2-cocycle v € H*(K, Z(Q))
in the second Galois cohomology group of K with values in the center Z(G) of the
group G and where the action of Gk on Z(Q) is the trivial one.
(b) The 2-cocycle vy is trivial in H*(K, Z(Q)) if and only if the field K is a field of
definition of the G-cover f.
(¢c) The element v € H*(K,Z(G)) does not depend on the choice of the base point
to and on the section s = sq,.

REMARK 6.8. For a cover (without the automorphisms) with K as field
of moduli, the collection ((¢r,r,) " @r @ry ) mecy is a collection of elements of
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Ceng,G. If Ceng,G is not an abelian group, this collection does not necessarily
satisfy the cocycle condition. Thus there is no such practical cohomological approach
for covers as there is for G-covers.

7. Dew’s conjecture

A statement of Dew’s conjecture was given in §5 together with some comments.
This section is devoted to the proof of the following result.

THEOREM 7.1 — Dew’s conjecture is true except possibly if conditions 1., 2.,
3. below (which will be referred to as the special case) hold.

Some extra notation is needed to describe the special case. For each integer
r > 0, ¢, is a primitive 2"th root of 1 and 7, = (. + (. Then denote by s the
smallest integer such that ns € K and 1541 ¢ K. The special case is defined by
these three simultaneous conditions :

1. =1, 24+ ns, —(2 + ns) are non-squares in K.

2. For each prime p of K dividing 2, at least one out of the elements —1, 2 4 75,
—(2 4 ny) is a square in K.

3. The abelian group Z(G) contains an element of order a multiple of 2t with ¢ > s.

If K = Q, then s = 2 and 15 = 0. Since —1, 2 and —2 are non-squares in Qs,
condition 2. cannot be satisfied. Therefore the special case cannot occur if K = Q.

Proof. Let f: X — P! be a G-cover defined over K and definable over K, for all
primes p. It follows from Lemma 5.2 that the field of moduli of f is K. Consider the
element v € H%(K, Z(G)) of Prop.6.7. For each prime p, K, is the field of moduli
and a field of definition of the cover f ®% Fp. Therefore the element ~y lies in the
kernel of the natural map

1) H(K,Z(Q)) — [ [ H* (K, 2(@))
p
The rest of the proof, which consists in showing that this map is injective except
possibly in the special case, was explained to me by J-C. Douai. By writing Z(G)
as a product of cyclic groups, one may reduce to the case Z(G) = Z/nZ. Then from
the Tate-Poitou theorem [Sel ;I1I-§6.3], the kernel of the map (1) is in duality with
the kernel of the map

(2) Hl(Ku/‘n)_’HHl(vaﬂn)
P

where p,, = Hom(Z/nZ,G,,) is the group of nth roots of 1 in K. Classically we
have H'(K, u,) ~ K*/(K*)". The result then follows from Grunwald’s theorem
[ArTa ;Ch.10] : for a global field, the natural map

(3) KX — [ 5/ ()
p

is injective except possibly in the special case described above (which corresponds
to the special case of Grunwald’s theorem in [ArTa] p. 96 with the extra condition
S=0). O
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8. Field of moduli versus field of definition over the p-adics

8.1. Statement of the main results. The goal of this section is to prove the
following result.

THEOREM 8.1 — Let K be a number field and f : X — P! be a (G-)cover
defined over K. The following conditions are equivalent.
(i) The field of moduli of f is K.
(it) The (G-)cover f can be defined over K, for all but finitely many primes p.

In the case of G-covers, Th.8.1 follows from the fact that the map (1) of §7
has values in the direct sum [, H?*(Ky,, Z(GQ)) ([Sel;Prop.21 p.131]). The same
argument does not apply to covers. Furthermore our proof will be “effective” in
the following sense. Prop.21 p.131 of [Sel] uses the ineffective following fact : any
element v € H*(K, Z(G)) comes from some element in H*(G(L/K), Z(Q)) for some
suitable finite Galois extension L/K. In our proof, such a field L will be described
explicitly. This is of importance if one wishes to bound the exceptional primes in
Th.8.1 (Cf. Remark 8.3).

Implication (i7) = (i) follows immediately from Lemma 5.2. The converse uses
an idea of E. Dew, which consists, for finite primes p, in trying to descend the field
of definition from K_p to Ky via the intermediate subfield KJ", i.e., the maximal
algebraic unramified closure of K. Both Galois groups G(K, /K}") and G(K}" /K,)
are of cohomological dimension < 1. It is quite tempting to use twice in a row that
under projectivity assumptions, the field of moduli is a field of definition (Cf. §6.2.2).
But there is a difficulty. Using the projectivity of G(K,/ K{"), one can obtain a
(G-)cover f, : X, — P}(;w over K" such that f, is isomorphic to f as (G-)covers

over K. For (G-)covers over a nonalgebraically closed field L, a more general notion
of field of moduli relative to an extension L/K can be defined. The difficulty is that
the field of moduli of f, relative to the extension K" /K need not be equal to K.
The key lemma is the following result.

LemMMA 8.2 — Let f: X — P! be a (G-)cover defined over K and with K as
field of moduli. Let L be a Galois extension of K such that

(1) the Galois group G(L/K) is a profinite projective group.
In addition, assume that

(2) the cover f (without the automorphisms) can be defined over L with a totally
rational fiber above a point t, € PH(K)\ {t(f)}.

Then K is a field of definition of the (G-)cover f.

8.2. Proof of Lemma 8.2. For simplicity, we only consider the case of G-
covers. Only slight changes are necessary for the case of covers. The proof divides
into three steps.

8.2.1. 1st step : Descent from K to L. Let ¢ : Il , — G be the homomorphism
corresponding to the G-cover f. By hypothesis, the cover f is isomorphic over K
to a cover fr : X, — PL over L with a totally rational fiber above ¢,. Because of
this extra condition, f also has a structure of G-cover over L of group G (see the
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comments after Prop.6.3). Let ¢, : Il  — G be the homomorphism associated to
the G-cover fr. The homomorphism ¢, can be described in the following way.
Consider the splitting of the exact sequence

(3) 1—>H?7t—>HL7t—>GL—>1

given by the section s;, (or, more precisely, the restriction to Gy, of the section
st, : Gk — Ik ¢). Each element X € Il ¢ can be written in a unique way :
X =2.5,(7) withz € Iz, and 7 € G,

It follows from (2) and Prop.2.1 that ¢r, (s, (7)) = 1. Whence

8.2.2. 2nd step : K is the field of moduli of the homomorphism ¢, relative to the
extension L/K. What we exactly mean by this phrase is that for each A € Iy,
there exists ¢, A € G such that

(4) GL(X™) = oLadL(X)p, y forall X € T

It is sufficient to establish (4) for each element A = s;, (0) € s¢,(Gx) C k.
Let X = x.5,(7) (v € I ,,7 € Gr) be an arbitrary element of II; ;. For each
§ € G, we have X% (®) = 7% (g, (7)% (%) Since Il is a normal subgroup of

Mg ¢, 2% @) still lies in % ,. Next we write

st,(7)% ) = s, (7°)

Since the extension L/K is Galois, then 79 € Gy,. Conclude that
x5t (0) — 15t (5)3150 (1)t (9)

is the unique way of writing x5t (%) as the product of an element of Il , and an
element of sy (Gr,). Therefore we obtain

1 (x*e (V) = g(a* ()

Since K is the field of moduli of the G-cover f, there exists ¢ s € G such that
Pt (9)) = gaL,z;cZ)(ac)gaZ’lé for all = € Il ,. Conclusion follows from ¢(z) = ¢r(X).

8.2.8. 3rd step : K is a field of definition of f. Since G(L/K) is projective the
exact sequence

(5) 1 —Mp — Mgy — G(L/K) — 1

splits. Let S : G(L/K) — Ilg4 be a section to the map gy — G(L/K). For
each 0 € G(L/K), the elements ¢y, g5y € G satistying (4) all agree modulo Z(G)
and so determine a well-defined element @, g5y € G/Z(G). The correspondence
6 — Pp g5 vields a group homomorphism @, i : G(L/K) — G/Z(G). Since
G(L/K) is a projective profinite group, $, /i can be lifted up to an homomorphism
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¢r/k + G(L/K) — G. This implies that the homomorphism ¢, can be extended to
an homomorphism Iy — G : namely the extended homomorphism takes z.5(d)
to ¢r(x)¢r K (0). This completes the proof. O

8.3. Proof of (i) = (ii) in Th.8.1. The cover f can be defined over some
finite extension F' of K (from Th.6.1, in the case of Galois covers, one can take
F = K). Thus there exists a cover fr : Xp — P}, such that both covers fr and
[ are isomorphic over K. Let t, € P1(K) \ {t(f)}. It follows from Hensel’s lemma
that for all but finitely many primes p, we have

(6) fr'(to) © Xp(Ky")

[Namely let £ be a number field such that f'(¢,) C Xr(FE) and o be a primitive
element of the extension F/K that is integral over the ring Ok of integers of K.
Then the irreducible polynomial of « is a monic poynomial in Ok [Y]. Let A € O
be the discriminant of P and p be a finite prime such that |A|, = 1. Denote the
local ring and the residue field associated with the prime p respectively by O, and
ky. The factorization of the polynomial P modulo p is of the form

P=0---0,

where Q1,...,Q, € ky(Y) are irreducible distinct monic polynomials with coeffi-
cients in the residue field k,. From Hensel’s lemma (e.g. [Am ;p.58]), there exist
polynomials Q1,...,Q, € Op(Y) such that Q; = Q; [mod p], deg(Q;) = deg(Q:),
i=1,...,rand P = Q1 ---Q,. By construction, each of the roots of the polynomials
Q1,-..,Q, generates an unramified extension of K,,.]

Let p be a prime such that (6) holds. Set L = K" and consider the (G-)cover
fo = [®%K,. The field of moduli of the (G-)cover f;, is clearly K,,. The Galois group

~

G(K;" /K,) is the free profinite group Z, hence is projective. By construction, the
cover f, satisfies condition (2). From Lemma 8.2, the field K, is a field of definition
of the (G-)cover f,. 0

REMARK 8.3. Trying to bound the exceptional primes p in Th.8.1 is a natural
question. One should be able to prove that there exists a function C(|G|,r)
depending only on the order |G| of the group G and the number r of geometric
branch points with the following property :

“Let f: X — P! be a G-cover defined over K, with K, as field of moduli. If p
does not divide |G| and if Ng/q(p) is larger than C(|G|,r), then the G-cover f can
be defined over K,.”
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