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Introduction and acknowledgements: Consider a cover ϕ : X → P1
x of the Riemann sphere (uniformized

by x) by a projective nonsingular curve X with r > 2 branch points. Assume that both the curves and the
map are defined over Q. Generalizing Serre [Se] we consider not necessarily Galois covers with any number
r of branch points (not necessarily in R). We show how to compute the action of complex conjugation on
the fiber in X over a real value of x0 ∈ P1

x. It is an “exceptional cover” for which all of the residue class
fields above x0 are real. The group of the Galois closure of such an exceptional cover must be a quotient of
a universal group generated by elements of order 2.

Serre was interested primarily in applications to groups as Galois groups, so he considered only the case
that x0 is not equal to a branch point of the cover. Siegel’s theorem [S] gives explicit necessary conditions
for an affine curve to have infinitely many integral points. As motivation for allowing x0 to be a branch
point we give immediate application to a converse of Siegel’s theorem phrased in terms of “complete Siegel
families.”

Sprindžuk too was often motivated by Siegel’s theorem. His papers were not similar in style to ours,
but both authors were influenced in the direction of the topics here by [Sp]. Finally, we would like to
acknowledge that there are a number of papers in the literature in addition to [Se] that have considered the
continuous action of complex conjugation on paths (e.g., [KN]). It is inevitable therefore that some of our
results repeat older observations.

Acknowledgements: In addition to the correction of a considerable number of typos, we thank the referee
for pointing out that similar versions of the formulas of §2.1, with a different arrangement of the branch
points, appear in [H].

§0. FRAMEWORK FOR THE MAIN RESULTS

Consider the rational function field C(x) in one variable and a fixed copy of the complex plane with a
point at ∞ uniformized by a variable x. Denote the latter by P1

x. From Riemann’s existence theorem,
degree n extensions E of C(x) ramified over r places x1, . . . , xr are in one-one correspondence—up to a
natural equivalence—with the degree n connected covers of P1

x \ {x1, . . . , xr}. These are in turn in one-one
correspondence with equivalence classes of transitive permutation representations T : π1 → Sn on the set
{1, 2, . . . , n} where π1 denotes the fundamental group of P1

x \ {x1, . . . , xr}.
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The Galois group of the normal closure of the extension E/C(x) is identified with the monodromy
group of the cover, the group G = T (π1). If a Galois cover X → P1

x is known to be defined over Q, then
its monodromy group can be realized as a Galois group over Q; by application of Hilbert’s irreducibility
theorem G is the Galois group of some residue class field extension Ex0/Q with x0 a rational specialization
of x. For nonsolvable groups, this idea has been an essential part of any success on the inverse Galois theory
problem. In this paper we investigate the real embeddings of these residue class fields. In particular, when
are they totally real? In terms of covers this would be asking when such a cover can have fibers consisting
of only real points.

Generalization of Serre’s observations: This work originated with a question of Serre [Se]. A given
group G is easily realized as the monodromy group of a cover. Indeed, since π1 is isomorphic to a free
group on r − 1 generators (cf. §1.1), for sufficiently large r, G is T (π1). But the problem is to get the cover
corresponding to the permutation representation to be defined over Q, the purpose of “rigidity theory.” After
discussing the rigidity assumptions, Serre asks about local properties (over R and Qp) of the residue class
extensions provided by a rigid situation. He shows for example that for 3 real branch points and G �= S3

these extensions cannot be totally real.

We consider any number r = r1 +2r2 of branch points with r1 of them real and 2r2 of them in complex
conjugate pairs. Then we give necessary conditions (§1) on a group G for there to be a cover with monodromy
group G to have totally real fibers (Theorem 1.1). For the statement of the following simplified version we
recall that a conjugacy class of a group is said to be rational if it is closed under putting elements to powers
relatively prime to the orders of elements in the class.

Theorem 0.0: Assume that a cover X → P1
x and each of its r branch points are defined over Q. Consider

x0 ∈ P1
x \ {x1, . . . , xr}. If the fiber consists of just real points, then the monodromy group G is generated

by r − 1 elements α1, . . . , αr−1 of order 2. Furthermore, if the Galois closure X̂ → P1
x is also defined over Q

(i.e., the smallest Galois cover factoring through X → P1
x, and X̂ is irreducible over the algebraic closure of

Q) the elements α1α2, α2α3, . . . , αr−2αr−1 are in rational conjugacy classes of G.

Other examples and corollaries of §1: if a group of odd order is the Galois group of a regular extension
E/Q(x), then the extension has no real branch points. Also, Theorem 2.4 (§2.3) shows the effect of complex
conjugation on the fiber of a cover over a real point in the general case: condition 1.3 a) of Theorem 1.1.

The proof of Theorem 1.1 (as a combination of Theorem 2.4 and of §2.4) appears in §2. Here two
aspects of complex conjugation are considered: action on the points in a fiber of a cover defined over R; and
through its action on π1, as an automorphism of G. The simple formulation of Theorem 0.0 comes through
some miraculous group theoretic manipulations. The “branch cycle argument” from [Fr,1] concludes the
proof (§2.4). Below we will denote the element that gives this action by cx0 = c.

“Rigidity” and exceptions to Theorem 1.1 for r = 4: No rigidity assumptions are involved in the
first part of the paper. These come up in §3 to study the converse of Theorem 1.1. That is, when can we
actually realize a group satisfying the necessary conditions of Theorem 1.1 as a Galois group of a totally real
extension of Q?
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We have been suppressing the dependence of all statements on data given by a collection of r conjugacy
classes, C = (C1, . . . ,Cr), of the group G which contain respective inertia group generators corresponding
to the points x1, . . . , xr for the Galois closures of one of the covers under investigation. In §3.2 we state
generalizations of the classical “rigidity assumption” (as discussed in [Se]). All of the results of this paper
and the “rigidity results” depend on C = (C1, . . . ,Cr). But this brings up the difficulty that also appears in
[FrT]. In addition to the new rigidity assumption on C, transitivity of the straight Hurwitz monodromy group
on straight Nielsen classes (Prop. 3.3), one needs a Q-point on a certain algebraic variety H(C) associated
to G (and C). In the case r = 3 this is a rational variety, and so it has lots of Q-points.

In the case r = 3 there is just one centerless group, S3, that has conjugacy classes C that satisfy the
necessary conditions of Theorem 1.1 (Prop. 1.2). In contrast to this, Proposition 3.6 and Theorem 3.7 show
that all of the groups Sn and An, n ≥ 4 are exceptions to Theorem 1.1 in the case that r = 4 in the following
weak sense. To each of these groups G there is an associated C with this property: there is a curve cover
YG → P1

x ramified over {0, 1,∞} and defined over Q such that the totally real field conclusion holds for C
if and only if there is a Q-point mmm ∈ YG, not lying over one of the branch points of the cover.

When n = 4 (G = S4) and 5 (G = S5) the curve YG is of genus 0, and we show that it has infinitely
many rational points(Theorem 3.7). Thus S4 (resp., S5) is achieved as a Galois group of a regular extension
of Q(t) with infinitely many totally real specializations giving S4 (resp., S5) as a totally real extension of Q.
Actually, this is true for all n between 4 and 9. But showing that YG is of genus 0 in the respective cases
takes up some space. For other values of n, the genus of the curve exceeds 0. (Indeed, for values of n that
are prime, the genus of YG is a quadratic function of n.) This happens, also, when you modify the initial set
of αs. Since we cannot devine the existence of rational points on these curves unless they are of genus 0, this
is a serious obstruction when r = 4 to getting all Sns as Galois groups of regular extensions with infinitely
many real specializations. Finding real points on these curves, however, is another matter. The theory of §2
shows exactly how to describe such real points. This is a special case of our next topic.

Real points on H(C): The formulas that are satisfied by the element cx0 that plays the role of complex
conjugation on the data for a cover X → P1

x in Theorem 2.4 can be inspected without having the cover
defined over R. In fact, the existence of cx0 is an if and only if condition for the corresponding cover to be
defined over R. This shows dramatically in terms of the parameter space H(C) and its presentation as a
cover of Pr minus the standard discriminant locus Dr (§3.3).

Theorem 0.1 (Theorem 4.4 of §4.2): There is a constructive partition H1, . . . ,Hv of the points of H(C)
lying over Pr(R) \ Dr with the following property: each of the Hi’s, as a set of complex valued points on
the manifold H(C) is connected; and for each mmm ∈ Hi we may apply Theorem 2.4 to explicitly test for
the existence of a collection of c’s playing the role of complex conjugation on the fibers of the cover—up to
equivalence—that corresponds to mmm. This test does not depend on the choice of base point that we use to
apply Theorem 2.4, and Hi passes this test if and only if all of the points of Hi correspond to covers defined
over R.

Nonexistence of a Qp analog: This brings up the problem of Qp analogues of these results for rational
primes p. There are tools: Neukirch [N] has checked local behavior for Galois extensions K/Q whose groups
are of odd order; and Grothendieck’s lifting theorems (for tamely ramified covers [Gro]) consider the primes
relatively prime to the order of the group. But in a later paper we will show there is no naive Qp analogue
for these results; this uses that there is no nontrivial Hecke operator theory for the curves associated to the
upper half plane by a noncongruence subgroup (c.f. §3.6 prior to Theorem 3.7) of SL2(Z) due to Atkin [A].
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Application to a converse of Siegel’s theorem: We conclude by considering residue class fields of
points over the branch points x1, . . . , xr of the cover. The effect of complex conjugation here is a corollary
of Theorem 2.4 together with data from markings on the disjoint cycles of a branch cycle attached to the
specific ramified point of interest (Theorem 4.2).

A version of Siegel’s theorem [S] says that an affine curve X defined over Q has infinitely many integral
points only if the curve is of genus 0 and it has either one point or two real conjugate points at infinity.
The above gives an explicit criterion for the “general” real member of a family of affine covers to satisfy
the “real conjugate points” condition. This is the source of the definition of Siegel families in §4.3. For
“complete” Siegel families we then discuss criteria for a natural converse of Siegel’s theorem. The families
themselves and the criteria for the converse are put in terms of combinatorial data that goes along with
Riemann’s existence theorem. We conclude with examples that display relevant properties of Siegel families.
For example, for families over Q, as a corollary to Theorem 1.1, §4.3 gives a computation for whether the
residue class field over the point at ∞ in a cover from a Siegel family is constant as a function of the family
parameters.

§1. COVERS WITH REAL FIBERS

§1.1. NOTATIONS AND BACKGROUND TOOLS: Let ϕ : X → P1
x be a finite cover of the projective

line of degree n by an irreducible projective nonsingular curve. This cover is ramified over a finite set of
points x1, . . . , xr called the branch points of the cover. For x0 /∈ {x1, . . . , xr} consider a labeling of the points
ppp1, . . . , pppn of ϕ−1(x0). There is a natural transitive action T : π1 → Sn, called the monodromy action, of
the fundamental group π1 of P1

x \ {x1, . . . , xr} on {1, 2, . . . , n} identified respectively with the ppp’s given as
follows.

For [γ] the homotopy class of a path γ based at x0, T ([γ]) is the element of Sn that maps i to j where
pppj is the terminal point of the unique lift of γ (through ϕ) which has initial point pppi, i ∈ {1, 2, . . . , n}. Up
to conjugation by an element of Sn this action is independent of the choices x0, the representative of [γ] and
the labeling of the ppp’s.

The group G = T (π1) is called the monodromy group of the cover. Consider π1: it is the free group
on r generators [γ1], . . . , [γr] with the one relation [γ1] · · · [γr] = 1 where γ1, . . . , γr can be taken as “loops”
around x1, . . . , xr based at x0 with special properties (as in the Figures of §2.1 and §2.2). Therefore the
homomorphic image G is generated by r elements σi = T ([γi]) ∈ Sn, i = 1, . . . , r that satisfy σ1 · · ·σr = 1.
The r-tuple (σ1, . . . , σr) is called a branch cycle description of the cover.

Galois action on branch points: Let K ⊂ C be a field of definition of the cover ϕ : X → P1
x. The cover

is said to be g-regular over K if the Galois closure K̂(X) of the function field extension K(X)/K(x) is a
regular extension of K(P1

x) = K(x) (i.e., if K̂(X) ∩ K̄ = K. Informally we say that there is no extension
of constants. More generally, however, we must deal with the group Ĝ = G(K̂(X)/K(x)). This is also a
subgroup of Sn. It contains G identified as G(K̂(X)/K̂(x)), with K̂ the algebraic closure of K in K̂(X).

We also need a group theoretic definition extending the definition of rational conjugacy class of a group
(see Main Results, above).

Definition: Let G be a group and let Ci be the conjugacy class of τi, i = 1, . . . , r. Denote the order of τi

by ei, i = 1, . . . , r. Denote the least common multiple of the ei’s by N . The set {C1, . . . ,Cr} is said to be a
rational set of conjugacy classes of G if

1.1) the set ∪r
i=1Ci contains all powers τk

i , i = 1, . . . , r and k relatively prime to N .
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Note that unions of rational sets of conjugacy classes are also rational sets of conjugacy classes. An
alternative statement to 1.1) is the following:

1.2) for k ∈
(
Z/N

)∗, there exists β ∈ Sr such that τk
i ∈ C(i)β , i = 1, . . . , r.

Consider the orbits of the action of G(K̄/K) on the branch points x1, . . . , xr of the cover. We denote
the orbit of xi by O(i), where the notation implies that we use the integer subscripts in place of the points
themselves. Below we need to consider the union ∪j∈O(i)Cj of the conjugacy classes attached to this orbit
of the branch points. Denote this by O(Ci), the orbit of Ci under G(K̄/K).

§1.2. NECESSARY CONDITIONS FOR REAL RESIDUE CLASSES: Consider a cover ϕ : X →
P1

x as in §1.1. When convenient we denote P1
x by P1. From now on assume that this cover is defined over

R. Then the branch points x1, . . . , xr consist of r1 real points and r2 pairs of complex conjugate points with
r = r1 + 2r2.

We now inspect the possibility that a fiber of this cover will consist only of real points. For simplicity
we assume that r1 �= 0. Modification for the case r1 = 0 appears in a remark after Theorem 1.1. Of course
it is possible to rephrase Theorem 1.1 entirely in terms of function fields (examples of §1.3). Denote the
normalizer of G in Sn by NSn

(G).

Theorem 1.1: Assume in addition to the above that for some real point x0 ∈ P1(R), not a branch point,
that the fiber ϕ−1(x0) consists of n real points. Then r1 ≥ 2 and the monodromy group G can be generated
by r1 + r2 − 1 elements α1, . . . , αr1−1, τ1, . . . , τr2 with the following properties:

1.3) the αi’s each have order 2; so α1, α1α2, α2α3, . . . , αr1−2αr1−1, αr1−1, respectively denoted σ1, . . . , σr1 ,
are each distinct from 1 and each is conjugate to its inverse in G.

Denote the respective conjugacy classes in G of σ1, . . . , σr1 , τ1, . . . , τr2
and τ−1

1 , . . . , τ−1
r2

by the set

S = {C1, . . . ,Cr1
,D1, . . . ,Dr2

,D−1
1 , . . . ,D−1

r2
}.

If, further, the cover is g-regular over Q, then in addition to 1.3) (at the end of §1.2)

1.4) each G(Q̄/Q) orbit of S is a rational set of (nontrivial) conjugacy classes.

Remark: a) Theorem 0.0. Theorem 0.0 in the prior discussion of results is the special case r = r1 (r2 = 0)
and the assumption that the branch points are rational (the G(Q̄/Q) orbits of the conjugacy classes are each
of length 1).

b) Dropping the g-regular assumption. In the last statement of the theorem we have only to replace the list of
conjugacy classes in G by the same list of conjugacy classes in Ĝ = G(Q̂(X)/Q(x)). Note that Ĝ ⊂ NSn(G).
Prop. 2.6 gives a necessary condition for g-regularity in terms of an explicit subgroup Ḡ of NSn(G). This is
also a sufficiency test for the g-regular assumption if in addition, Ḡ = G [Fr,1; p. 33, Prop. 2].

c) If r1 = 0. Then condition 1.3) is empty. The rest remains the same.

§1.3. EXAMPLES AND COROLLARIES: First we consider the special case of r = 3. This example
is considered by Serre [Se], in a “rigid” situation (cf. §3) and with the extra hypothesis r = r1. Here we
complement his work by not assuming any “rigidity” hypotheses hold. In particular, unlike Serre, we allow
that G has a center.
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Proposition 1.2: Let G be a group different from any of Z/n ×sZ/2 with n = 2, 3, 4 or 6. Suppose that
E/Q(x) is a regular Galois extension with group G and r = 3 branch points. Then the residue class field
extensions Ex0/Q with group G and x0 ∈ Q cannot be totally real. The only centerless group among the
exceptions is for n = 3 (i.e., S3).

Proof: Since r = 3 is odd, r1 which is at least 2 from Theorem 1.1, must be 3. The branch points are real
and the group G is generated by two elements α1 and α2 of order 2. A group generated by two elements of
order two must be the dihedral group of degree the order of the product of the two elements (denoted σ2).
Thus 2 · ord(σ2) = |G|.

From 1.4), the powers σk
2 (identified with (k; 0) ∈ Z/n×sZ/2) with (k, n) = 1 should either be conjugate

to α1, σ2 or σ3 = α2 (respectively identified with (0; 1), (1; 0) and (1; 1)). Since the two elements on the end
are of order 2, this implies that k = ±1. Thus ϕ(n) < 3 where ϕ is the Euler phi-function. This won’t be
true unless the dihedral group is of degree at most 6. The only possibilities are n = 2, 3, 4 or 6, thereby
giving the very groups that were excluded.

In §3.3 and §3.4 there is an extensive discussion of some of the many more exceptions to the conclusion
of Prop. 1.2 in the case r = 4. In particular, Sn and An are exceptions to versions of Serre’s example for
each n > 4. We conclude this subsection with a discussion of condition 1.3). First note that it forces the
group to be of even order.

Corollary 1.3: The Galois group of a regular Galois extension E/Q(x) with at least one real branch point
is of even cardinality.

Proof: Choose a rational number x0 for which the Galois group G(Ex0/Q) of the residue class field is
isomorphic to G (i.e., apply Hilbert’s irreducibility theorem). If Ex0 is totally real, since r1 �= 0, Theorem
1.1 implies that r1 ≥ 2. From 1.3) there is at least one element of order 2. Thus G is even. If Ex0 is not
totally real, then complex conjugation is an element of order 2 of G(Ex0/Q).

Now assume that all branch points are real: r = r1. Then 1.3) is fairly restrictive:

1.5) G is generated by r − 1 elements α1, . . . , αr−1 of order 2.

Proposition 1.4: Condition 1.5) is equivalent to the following statement. The group G contains a subgroup
H of index at most 2 where H is generated by r − 2 elements β1, . . . , βr−2 with this property:

1.6) there exists β0 of order 2 such that β0βkβ0 = β−1
k , k = 1, . . . , r − 2.

Proof: First assume that 1.5) holds. Let β0 be α1 and let βi be α1αi+1, i = 1, . . . , r− 2. Since (β0βk)2 = 1,
conclude that 1.6) holds. Furthermore G = H∪Hα1 because the group generated by the βi’s, i �= 0, contains
all of the products αiαj , 1 ≤ i, j ≤ r − 1. The converse is clear by defining α1 to be β0 and αi to be β0βi−1,
i = 2, . . . , r − 1.

Remark: There are two possibilities corresponding to 1.6): either β0 ∈ H and G = H or β0 /∈ H and
G = H×s < β0 >.

There is another easy characterization of 1.5). Denote the free group on generators b1, . . . , br−2 by
F (bbb). Let J be the automorphism of F (bbb) defined by J(bk) = b−1

k , k = 1, . . . , r − 2. This provides an action
of Z/2 on F (bbb) by regarding J as the generator of Z/2. Denote the semidirect product F (bbb)×sZ/2 by D∞,r.
The groups generated by r − 1 elements of order 2 are the quotients of D∞,r.
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§2. PROOF AND GENERALIZATION OF THEOREM 1.1

The notations are those of §1, especially §1.1. Consider a cover ϕ : X → P1
x with r branch points x1, . . . , xr

defined over R. As there abbreviate P1
x to P1 when there can be no confusion.

§2.1. COMPLEX CONJUGATION ON FUNDAMENTAL GROUPS: Complex conjugation pro-
vides a topological automorphism of the points of X that extends the action of complex conjugation on P1.
We use this in our opening lemma. In the proof E will denote the function field of X over R, and Ê the
Galois closure of E/R(x).

Lemma 2.1: Let γ be a path in P1 \ {x1, . . . , xr} based at x0 ∈ R ∪∞. Label the points of X above x0 as
ppp1, . . . , pppn. Denote the usual representation associated to the cover by T : π1 → Sn where we have identified
the integers {1, . . . , n} with the points of the fiber Xx0 . Then complex conjugation induces an automorphism
cx0 = c of Xx0 . This satisfies

2.1) cT (γ)c = T (γ̄).

Proof: Suppose that fu and fl are bi-continuous maps that render the following diagram commutative:

2.2)
X

fu−−−−→ X⏐⏐�ϕ

⏐⏐�ϕ

P1
x

fl−−−−→ P1
x.

It is a standard deduction that if fl fixes x0, then T (fl ◦ γ) = f∗ ◦ T (γ) ◦ f−1
∗ where f∗ denotes the action

induced by fu on the fiber over x0. We apply this to the case where both fl and fu are given by complex
conjugation to get the desired formula.

Alternate proof: Using Puiseux expansions. The branch cycles relative to a given set of paths are computed
by their actions on the points ppp1, . . . , pppn through liftings of the paths that start at the various points. We,
however, wish to identify the effect of complex conjugation in a residue class field with a process related to
analytic continuation. It is perhaps safer to see this on the level of functions.

Consider functions f1, . . . , fn of Ê where the fi’s are a complete set of conjugates (under G(Ê/R(x)))
and such that f1 is a local uniformizing parameter at each place of Ê above x0. In particular, f1(pppi)
generates the residue class field of the point pppi over R(x0). With no loss identify f1 = f1(x;x0) with a
Puiseux expansion about x0. The conjugates of f1 are therefore the complete set of Puiseux expansions that
result from analytically continuing f1 around the lifts to X̂ of closed paths on P1

x \ {x1, . . . , xr} that are
based at x0. Since x0 is real, the effect of complex conjugation in the residue class field is obtained by acting
on the coefficients of the Puiseux expansions of the fi’s. This gives cx0 .

The process of analytic continuation is given by rearrangement of power series, an essentially algebraic
process. Denote the path around xi by Pj , j = 1, . . . , r. Suppose that when you continue fk around Pj the
result is fl. Then, when you continue f̄k around P̄j , the result is f̄l. This is what the formula says.

Remark: From Lemma 2.1 it is immediate that cx0 is an element of NSn
(G), the normalizer of G in Sn.
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Real branch points: This is the start of a discussion in which we give specific generators of π1 and we
study how complex conjugation acts on them. Since there is a considerable distinction between the effect
on the generators that go around real branch points and those that go around complex (not real) branch
points, we start with the case where X → P1

x and the branch points x1, . . . , xr of the cover are both defined
over R. Assume that these are arranged in order on the “circle” R ∪∞. Then a point x0 ∈ R ∪∞ lies in
one of the segments

(x1, x2), (x2, x3), . . . , (xr−1, xr), (xr, x1).

Let ρi be a counter clockwise rectangle about xi as shown in Figure 1, i = 1, . . . , r.

Figure 1: Convenient paths in the case of real branch points.

Define closed paths based at x0 as follows using the ui’s—top counterclockwise halves of ρi’s whose
respective initial–end points are on the x-axis—of Figure 1:

γr = ρr, γr−1 = urρr−1(ur)−1, γr−2 = urur−1ρr−2(urur−1)−1, . . . ,

γ2 = ur · · ·u3ρ2(ur · · ·u3)−1, γ1 = (u1)−1ρ1u1.

Note that in expressing γ1 we have used that urur−1 · · ·u1, which is homotopic on the r-punctured sphere
to the top of the band, is also homotopic there to the trivial path based at x0. Then the γi’s are generators
of π1 which satisfy γ1 · · · γr = 1. Denote the effect of applying complex conjugation to each point of a path
γ by γ̄.

Lemma 2.2: The paths γ̄1, γ̄2, . . . , γ̄r−2, γ̄r−1, γ̄r are respectively homotopic to

γ−1
1 , (γ3 · · · γr)

−1γ−1
2 (γ3 · · · γr), . . . , (γr−1γr)

−1γ−1
r−2(γr−1γr), (γr)

−1γ−1
r−1γr, γ

−1
r .

Proof: Clearly γ̄1 = γ−1
1 and γ̄r = γ−1

r . Throughout use that

2.3) ρ̄i = ρ−1
i and uiū

−1
i = ρi, i = 1, . . . , r.

Apply conjugation to γr−1 = urρr−1u
−1
r to get γ̄r−1 = ūrρ̄r−1ū

−1
r . With the help of 2.3) we get the desired

expression for γ̄r−1. The procedure is the same to compute

γ̄r−2 = urur−1ρ̄r−2(urur−1)
−1

except to note that urur−1(urur−1)
−1 is urρr−1ū

−1
r , which is homotopic to γr−1γr.
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Remark 2.3: In the case that x0 is in the interval (xi, xi+1) the statement of Lemma 2.2 would go through
with (γ1, . . . , γr) replaced by

(γi+1, γi+2, . . . , γr, γ1, . . . , γi).

Now define σi to be T (γi), i = 1, . . . , r, so that (σ1, . . . , σr) ∈ Sr
n is a branch cycle description of the

cover X → P1
x. Lemmas 2.1 and 2.2 give us an element cx0 = c ∈ NSn

(G) such that

2.4)
cσ1c = σ−1

1 , cσ2c = (σ3 · · ·σr)
−1σ−1

2 (σ3 · · ·σr), . . . ,

cσr−1c = (σr)
−1σ−1

r−1σr, cσrc = σ−1
r .

§2.2. ADJUSTMENTS FOR COMPLEX BRANCH POINTS: For a cover defined over R some of
the branch points are either real and the remainder occur in complex conjugate pairs. Exactly as in §2.1 we
get the existence of cx0 = c playing the role of complex conjugation. Defines it by its effect on branch cycles.

We follow the notation of §1.1 with r1 the number of real points (including the possibility of ∞) among
the r branch points. As in §2.1 it is convenient to label the real branch points x1, . . . , xr1 , from left to right
(as in Figure 2) in such a way that x0 falls between xr1 and x1. Of course, this may mean that we must relabel
the conjugacy classes also (cf. Hurwitz monodromy action, §3.1). We have also chosen to use an idealized
picture in which the pairs of complex conjugate points, xr1+1, x̄r1+1, . . . , xr1+r2 , x̄r1+r2 , are placed left to
right in the band of rectangles, (the barred points below the real circle) with the rectangles surrounding
them composing part of the band. It will be clear from the comments below that it goes through mutatis
mutandi with the complex points anywhere so long as the paths for the complex conjugate pairs of points
are chosen symmetrically with respect to the real circle and so that the order of the paths is the same as
that of our idealized picture.

Consider any description

σσσ = (σ1, . . . , σr1 , σr1+1,1, σr1+1,2, . . . , σr1+r2,1, σr1+r2,2)

of the branch cycles for a cover ϕ : X → P1
x defined over R and having the x’s above as branch points. The

subscript labeling indicates the entries correspond in order to the given branch points.

Figure 2: A band about P1
x(R) containing x1, . . . , xr
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In Figure 2, x0 is the intersection of the left side of the rectangle around x1 with the x-axis (where the
surrounding band is sufficient to encompass the complex conjugate points, labeled with r1 + 1, . . . , r; these
start from the right and continue around to the left). Use the u’s along the top of the band, and ρi (resp.,
ρi,1 and ρi,2) the counterclockwise path around the rectangle surrounding xi i = 1, . . . , r1 (resp, xi and x̄i,
i = r1 + 1, . . . , r1 + r2) to form γ’s as was done with Figure 1 in §2.1.

Consider the paths
γ1, . . . , γr1 , γr1+1,1, γr1+1,2, . . . , γr1+r2,1, γr1+r2,2,

chosen in this order so that the product is homotopic to 1, given by

ur1+r2 . . . uj+1ρj(ur1+r2 . . . uj+1)−1 = γj , j = 1, . . . , r1, and

ur1+r2 . . . uj+1ρj,1(ur1+r2 . . . uj+1)−1 = γj,1,

ur1+r2 . . . uj+1ρj,2(ur1+r2 . . . uj+1)−1 = γj,2,

j = r1 + 1, . . . , r1 + r2.

Denote γj,1γj,2 by γj,., j = r1 +1, . . . , r1 + r2; and denote the product γr1+1,. · · · γr1+r2,. by γ.. As in Lemma
2.2 of §2.1, applying complex conjugation to the γ’s gives these results: γ̄1, . . . , γ̄r1 are respectively homotopic
to

2.5a) γ−1
1 , (γ3 · · · γr1

γ.)−1γ−1
2 (γ3 · · · γr1

γ.), . . . , (γr1
γ.)

−1γ−1
r1−1γr1

γ., γ
−1
. γ−1

r1
γ.; and

γ̄r1+1,1, γ̄r1+1,2, . . . , γ̄r1+r2,1, γ̄r1+r2,2

are respectively homotopic to

2.5b)

(γr1+2,. · · · γr1+r2,.)
−1γ−1

r1+1,2(γr1+2,. · · · γr1+r2,.),

(γr1+2,. · · · γr1+r2,.)
−1γ−1

r1+1,1(γr1+2,. · · · γr1+r2,.),

. . . ,

γ−1
r1+r2,2, γ

−1
r1+r2,1.

Now define σ’s in the notation above to be T (γ)’s, to get a branch cycle description of the cover
X → P1

x. Similar to the above notation denote σj,1σj,2 by σj,.,
j = r1 + 1, . . . , r1 + r2; and denote the product σr1+1,. · · ·σr1+r2,. by σ..

Application of Lemma 2.1 and the computation above gives (in analogy with Lemma 2.2) an element
cx0 = c ∈ NSn

(G) such that

2.6a)
cσ1c = σ−1

1 , cσ2c = (σ3 · · ·σr1
σ.)−1σ−1

2 (σ3 · · ·σr1
σ.), . . . ,

cσr1−1c = (σr1
σ.)

−1σ−1
r1−1σr1

σ., cσr1c = σ−1
. σ−1

r1
σ.; and

2.6b)

cσr1+1,1c = (σr1+2,. · · ·σr1+r2,.)
−1σ−1

r1+1,2(σr1+2,. · · ·σr1+r2,.),

cσr1+1,2c = (σr1+2,. · · ·σr1+r2,.)
−1σ−1

r1+1,1(σr1+2,. · · ·σr1+r2,.),

. . . ,

cσr1+r2,1c = σ−1
r1+r2,2, cσr1+r2,2c = σ−1

r1+r2,1.

§2.3 THE MAIN THEOREM AND CONDITION 1.3): We now state our main theorem. In partic-
ular it includes the statement of 1.3) of Theorem 1.1.
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Theorem 2.4: Consider a cover ϕ : X → P1
x defined over R and having x1, . . . , xr ∈ C ∪∞ as its branch

points. With the choices of ordering on the branch points x1, . . . , xr1 ∈ R made above and with respect
to the paths of Figure 2, let (σ1, . . . , σr) be the description of the branch cycles of the cover given above.
Denote the Galois closure of the function field extension R(X)/R(x) by Ê, and the Galois group G(Ê/R(x))
by Ĝ

def= ĜR. It is a subgroup of NSn(G). For each value of x0 ∈ P1(R) different from x1, . . . , xr1 , there is
an element c = cx0 ∈ G(Ê/R(x)) such that c can be identified with the action of complex conjugation in the
residue class field of a prime of Ê above x0 and thereby with an element of NSn

(G). In the induced action of
complex conjugation on the points of X this element is determined by the formulas of 2.6). Furthermore, if c
is the identity (i.e., the fiber ϕ−1(x0) consists only of real points), αi = σ1 · · ·σi is of order 2, i = 1, . . . , r1−1.

Proof: The first paragraph is an immediate consequence of Lemma’s 2.1 and 2.2. The element c is identified
with a generator of the decomposition group of a place of the function field E that lies over x0. In particular,
it must be an element of Ĝ. Our next task is to show that the formulas that result from 2.6) in the case that
c = 1 give the result on the α’s. We inductively deduce this from 2.6): i = 1 is already in 2.6). The rest of the
argument is mere combinatorics from 2.6) and from the formula σ1 · · ·σr = 1. Since the last 2r2 of the σ’s,
being paired up next to their inverses disappear from the formula σ1 · · ·σr = 1, with no loss we may assume
in the rest of our calculations that r = r1. From the product of the σ’s equal to 1, (σ1σ2)−1 = σ3 · · ·σr.
Plug this into the relation σ3 · · ·σr = σ−1

2 (σ3 · · ·σr)σ
−1
2 . This immediately gives (σ1σ2)2 = 1. The induction

continues quite easily on the same principles.

Note: Special case. Assume that r = 3 and that two of the branch points are complex conjugate. Let σσσ be
a description of the branch cycles of ϕ : X → P1

x relative to the paths of Figure 2. The effect of complex
conjugation on the residue class fields of the points above x0 is given by c = cx0 ∈ Ĝ ⊂ NSn

(G) with these
properties:

cσ−1
1 c = σ1 and cσ−1

2 c = σ3.

In particular, if c = 1, then σ2
1 = 1 and σ2σ3 = 1. But this gives σ1 = 1, contrary to our assumptions. Thus,

in the case that two of the branch points are complex conjugate, c is different from 1.

§2.4. THE BRANCH CYCLE ARGUMENT AND 1.3) AND 1.4): We now explain the extra
conditions that are forced on the conjugacy classes C under the assumption that the Galois closure of a
cover associated to them is defined over R (resp., Q). Again, we use the notation that the coordinate entries
of C are conjugacy classes of the transitive subgroup G of Sn defined by a description σσσ of the branch cycles
of a cover. As in §1.1 let N denote the least common multiple of the orders of the elements in the conjugacy
classes Ci, i = 1, . . . , r. For each k ∈ (Z/N)∗ we define a unique conjugacy class Ck

i of G by putting each
element of Ci to the power k. Put each coordinate of C to the power k to consider a new r-tuple Ck of
conjugacy classes of G. Let σ ∈ Sr act on C by permuting the coordinates. Denote the result by σC. Recall
that NSn(G) acts by conjugation on C to give a new r-tuple of conjugacy classes. Also, C mod NSn(G)
denotes the ordered collections of r-tuples of conjugacy classes γCγ−1, γ ∈ NSn(G).

Suppose that the cover X → P1, defined over a field K has a description of its branch cycles associated
to C. Retain the association of xi with the conjugacy class Ci, i = 1, . . . , r. Regard G(K(xxx)/K) as a subgroup
of Sr through the action of its elements on the r-tuple xxx = (x1, . . . , xr). Similarly, regard G(K(ζN )/K) as a
subgroup of (Z/N)∗. Here ζN is a primitive Nth root of 1. As earlier denote the Galois closure of the field
extension K(X)/K(x) by Ê and its Galois group by Ĝ. The elements γ of Ĝ satisfy γCγ−1 = σCk for some
σ ∈ Sr and k ∈ (Z/N)∗. More precisely, consider the group

2.7)
Ḡ ={γ ∈ NSn(G) | γCγ−1 = σCk, (σ, k) ∈ Sr × (Z/N)∗ and

there exists τ ∈ G(K̄/K) with τ|K(xxx) = σ, τ|K(ζN ) = k}.
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Then Ĝ ⊂ Ḡ. [Fr,1; p. 33, Prop. 2].

Definition 2.5: The branch points xxx and the conjugacy classes C are said to be Galois compatible (over K)
if for each τ ∈ G(K̄/K), if τ permutes the xi’s as τ̄ ∈ Sr, then for k = kτ the image of τ in G(K(ζN )/K),

2.8) Ck
i = γC(i)τ̄γ−1 for some γ ∈ Ĝ (independent of i), i = 1, . . . , r.

The next result is a rephrasing of the branch cycle argument of [Fr,1; p. 61].

Proposition 2.6: Suppose that the cover X → P1 has a description of its branch cycles associated to C.
Then Galois compatibility of xxx and C (over K) is a necessary condition that the field of definition of the
cover actually be K. Furthermore, if the cover is g-regular (§1.1), then for each k ∈ (Z/N)∗, there exists
σ ∈ G(K(xxx)/K) (⊆ Sr) such that Ck ≡ σC.

With this we show that we have completed the necessary ingredients for the proof for Theorem 1.1.
The proof of Theorem 2.4 gives 1.3) by applying complex conjugation as given by −1. In order to get 1.4)
note that the g-regularity assumption just means that Ĝ = G. Thus we choose any k relatively prime to N
and consider whether O(Ci) contains Ck

i . For any τ ∈ G(K̄/K) apply 2.8) to conclude that this is so. Since
this works for any k with the stated properties, we are done.

This section concludes with an example that will appear again in §4.1. It is a warmup, too, to the
definition of Nielsen class in the next section.

Example 2.7: Comparison of all real branch points with complex conjugate branch points. As in §1.1,
consider covers ϕ : X → P1 which have associated to them a description of the branch cycles σσσ with r = 3,
group G = A4, and conjugacy classes C given as follows: C1 is the conjugacy class of a 3-cycle; C2 is the
conjugacy class of elements inverse to those of C1; and C3 the conjugacy class of a product of two 2-cycles.
Inside of A4 the 3-cycles form two conjugacy classes: a 3-cycle and its inverse are in different conjugacy
classes. These are permuted by the action of NS4(G) = S4. Thus from Prop. 2.6, if our cover is defined
over R (resp., Q), and if it has real branch points (since R(xxx) = R), then its Galois closure must contain C

(resp., be defined over Q(ζ3), ζ3 = e2π
√
−1/3).

Suppose that C1 is represented by (1 2 4). Compute the complete list of possible branch cycle descrip-
tions, up to equivalence, that have representatives in the respective order of C1,C2,C3. In §3.1 this will be
called an absolute straight Nielsen class. This list consists of exactly one element represented by

σσσ = ((1 2 4), (1 2 3), (1 3)(2 4)).

It is easy to see that there is a natural family of covers defined over Q containing exactly once a representative
cover of each equivalence class of covers. Indeed, these are parametrized by the covering of P3 \ D3 = U3

which has function field F equal to the fixed field in Q(x1, x2, x3) of the automorphism that switches x1 and
x2: F = Q(x1x2, x1 +x2, x3). Any Q-rational point of this rational variety gives us one of the desired covers
ϕ : X → P1

x. Because it suits applications in §4.3 so well, we intend to consider such a cover where x3, the
branch point corresponding to C3, is ∞. For the rest of the example consider the two possibilities for the
placement of the other branch points.

Case 1: x1 and x2 are real. We compute cx0 = c according to Theorem 2.4. There are 3 cases depending on
the interval in which we choose x0. But in each case these are determined by the property that c conjugates
a pair of elements from the entries of σσσ to their inverses. This gives these possibilities for c:

(2 4) for x0 ∈ (∞, x1); (1 2) for x0 ∈ (x1, x2); and (1 3) for x0 ∈ (x2,∞).

Case 2: x1 and x2 are complex conjugate. From Theorem 2.4 there is only one possibility for c. It conjugates
each of (1 2 4) and (1 2 3) to the inverse of the other, and it conjugates (1 3)(2 4) to itself. Thus c = (1 2)(3 4).
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§3. RIGIDITY AND A CONVERSE TO THEOREM 1.1

If in Theorem 2.4 for some choice of x0 the element c is the identity (i.e., complex conjugation acts
trivially on the fiber of the cover) we refer to the cover, and its associated groups G, in Theorem 2.4 as
exceptional. We have already listed what happens in the case when r = 3 in §1.3. There are results for each
of the fields K = R and K = Q in Theorem 2.4. Denote the exceptional list of groups having associated C
for which cx0 comes out to be 1 satisfying condition 1.3) (resp., also, 1.4)) by ER,r (resp. EQ,r). For example,
Prop. 1.2 shows that there are just four groups in EQ,3.

The problems that we consider in this section start with describing some of the groups (with associated
conjugacy classes C) that appear in EQ,4 (r = 4). In particular, EQ,4 contains Sn and An for each n ≥ 4.
Then we want to consider some of these examples for whether there are actual covers ϕ : X → P1 associated
to this data that are defined over Q that satisfy the hypotheses of Theorem 1.1. In this case we would realize
the given group as a totally real Galois extension of Q. For simplicity we consider only the case where the
cover has all of its branch points real (i.e., r1 = r in §2). Our special case of concentration is S5 in the case
r = 4. Here is a reminder of the conditions in terms of generators.

For covers and branch points over R the following hold for exceptional σσσ:

3.1a) G is generated by αi, i = 1, . . . , r − 1, all of order 2; and

b) σi = αi−1αi, i = 2, . . . , r − 1, and σr = αr−1.

For covers and branch points over Q, there would be one further condition:

3.1c) σi is in a rational conjugacy class of G, i = 1, . . . , r (and σ2
1 = σ2

r = 1).

Of necessity we must now recall some basics related to the problem.

§3.1. NIELSEN CLASSES AND HURWITZ MONODROMY GROUPS: This is the classical
discussion of maps of degree n from curves of genus g to projective 1-space. It gives us more discrete data
for a cover, called a Nielsen class, that we shall regard as being fixed in the consideration of any family of
covers. Suppose that {x1, . . . , xr} consists of distinct points of P1

x. For any element σσσ ∈ Sr
n denote the group

generated by its coordinate entries by G(σσσ).

Consider ϕ : X → P1
x, ramified only over xxx, up to the relation that regards

ϕ : X → P1
x and ϕ′ : X ′ → P1

x as equivalent if there exists a homeomorphism λ : X → X ′ such that
ϕ′ ◦ λ = ϕ. These equivalence classes are in one-one correspondence with

{σσσ = (σ1, . . . , σr) ∈ Sr
n | σ1 · · ·σr = 1, G(σσσ) is a transitive subgroup of Sn}

modulo the relation that regards σσσ and σσσ′ as equivalent if γσσσγ−1 = σσσ′ for some γ ∈ Sn. This correspondence
goes under the heading of Riemann’s existence theorem [Gro]. (In most practical situations we shall mean
that there truly is ramification over each of the branch points xi, i = 1, . . . , r.)

Riemann’s existence theorem generalizes through a combinatorial group situation to consider the covers
above, not one at a time, but as topologized collections of families: the branch points xxx run over the set
(P1

x)r \Δr with Δr the r-tuples with two or more coordinates equal. The key definition is of a Nielsen class.
This is part and parcel of the formulations of “rational rigidity” and its generalizations (§3.2).

Suppose that T : G → Sn is any faithful transitive permutation representation of a group G. Let
C = (C1, . . . ,Cr) be an r-tuple of conjugacy classes from G. It is understood in our next definition that
we have fixed the group G before introducing conjugacy classes from it. Denote the subgroup of Sn that
permutes the entries of C (a subgroup of the normalizer of G) by NSn(C).
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Definition 3.1: The Nielsen class of C is

{ τττ ∈ Gr | G(τττ) = G, there exists β ∈ Sr with τ(i)β ∈ Ci, i = 1, . . . , r and τ1 · · · τr = 1}.

Denote this by Ni(C). The straight Nielsen class is defined the same way, except that it doesn’t include the
permutation of the conjugacy classes:

SNi(C)
def= { τττ ∈ Gr | G(τττ) = G, τi ∈ Ci, i = 1, . . . , r and τ1 · · · τr = 1}.

The quotient of Ni(C) by NSn(C) is denoted Ni(C)ab
T , and it is called the absolute Nielsen class of C.

Similarly there are absolute straight Nielsen classes by replacing NSn(C) by the appropriate subgroup.

Consider canonical generators γ1, . . . , γr of the fundamental group π1(P1
x − xxx, x0) (e.g., those used in

the proof of Lemma 2.2). We say that a cover ramified only over xxx is in Ni(C) if the classical representation
of the fundamental group sends the respective canonical generators to an r-tuple σσσ ∈ Ni(C).

The Hurwitz monodromy group Hr: Generators Q1, . . . , Qr−1 of Hr satisfy the following relations:

3.2a) QiQi+1Qi = Qi+1QiQi+1, i = 1, . . . , r − 2;

b) QiQj = QjQi, 1 ≤ i < j − 1 ≤ r − 1; and

c) Q1Q2 · · ·Qr−1Qr−1 · · ·Q1 = 1.

Relations 3.2 a) and b) alone give the Artin braid group Br. It is relation 3.2 c) that indicates
involvement with projective algebraic geometry. The Artin braid group is the fundamental group of Ar −
Dr while the Hurwitz monodromy group is the fundamental group of Pr − Dr. Here Dr is the classical
discriminant locus in the respective spaces. The natural embedding of Ar in Pr gives the natural surjective
homomorphism from the braid group to the monodromy group. This all fits together in a commutative
diagram of fundamental groups induced from a geometric commutative diagram:

3.3)
Ar \ Δr −→ (P1)r \ Δr

Ψr

⏐⏐� ⏐⏐�Ψr

Ar \ Dr −→ Pr \ Dr

where the map Ψr can be regarded as the quotient action of Sr acting as permutations on the coordinates
of (P1)r. The respective fundamental groups in the upper row of 3.3) will be called here the straight Artin
braid and Hurwitz monodromy groups:

3.4) SHr = π1((P1)r \ Δr, xxx0) is the kernel of the homomorphism Ψ∗
r : Hr → Sr that maps Qi to (i i+1),

i = 1, . . . , r − 1.

Production of a moduli space: In our final topic we consider how Hurwitz monodromy action on Nielsen
classes defines a moduli space. From the relations we compute that Hr acts on the absolute Nielsen classes
by extension of the following formula:

3.5) (τ1, . . . , τr)Qi = (τ1, . . . , τi−1, τiτi+1τ
−1
i , τi, τi+2, . . . , τr).

In the notation above we say that ϕT : XT → P1
x is in the absolute Nielsen class Ni(C)ab

T .

Exercise: Let σσσ = (σ1, . . . , σr) be an r-tuple of elements of G with σ1 · · ·σr = 1. There exists Q ∈ SHr

such that the r-tuple given by applying Q to the r-tuple (σ−1
1 , . . . , σ−1

r ) is the r-tuple with entries the right
hand terms in formula 2.4) of §2.1.
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Solution: Take Q for example to be

(Qr−1Qr−2 · · ·Q1)(Qr−1Qr−2 · · ·Q2) · · · (Qr−1Qr−2)Q1.

Any permutation representation of a fundamental group defines a cover of the space. Denote the cover
corresponding to the action of Hr on Ni(C)ab

T by

3.6) Ψ(C) : H(C)T → Pr \ Dr.

That is, an absolute Nielsen class Ni(C)ab
T defines a moduli space H(C)T of covers

ϕT : XT → P1
x of degree equal to deg(T ) in that Nielsen class [Fr,1; §4]. For each point mmm ∈ H(C)T choose

a point xxx ∈ (P1)r \ Δr such that
xxx∗ = Ψr(xxx) = Ψ(C)(mmm).

The cardinality of Ψ(C)−1(xxx∗) is |Ni(C)ab
T |. Thus mmm corresponds to exactly one equivalence class of covers

of Ni(C)ab
T . A representative cover ϕmmm : Xmmm → P1

x has coordinates xxx ∈ (P1)r for its branch points. We often
drop the decorative subscript T .

Proposition 3.2: The algebraic set H(C)T is irreducible if and only if it is connected, and this holds if and
only if Hr is transitive on Ni(C)ab

T .

Proof: Since Ψ(C) is unramified and Pr \ Dr is nonsingular, so is H(C)T . Thus it is irreducible as an
algebraic set (i.e., an open subset of some projective variety which is defined by a prime ideal in the ring of
polynomials in the ambient projective space) if and only it is connected. From the theory of fundamental
groups this last property is equivalent to the transitivity of the permutation representation.

§3.2 GENERALIZATIONS OF RIGIDITY: The topic is how to check if there are covers in a given
Nielsen class that are actually defined over Q (or R). Although the results that we state here are essentially
in [Fr,1], it is the attention drawn to the special case of r = 3 by [T] that brought their significance to
the mathematical public. There is a technically valuable game that compares the Galois and nonGalois
situations. Even if ultimate interest is in Galois extensions, it can be better to start with a nonGalois cover
and go to the Galois closure. The strong “rigidity” conditions may be harder to satisfy in the nonGalois
situation. But if they do hold, this implies the vanishing of an obstruction for the field of definition that
isn’t easily checked from the Galois situation.

The point of the Hurwitz monodromy actions is this ([Fr,1,3,4] or [DFr] for details). Suppose that
SHr acts transitively on the straight Nielsen classes (§3.1), that CenSn(G) is trivial, and that each of the
conjugacy classes of C is rational. Then cover 3.6), with the total space of representing covers for points of
H(C)T , is defined over Q.

Q-points on Hurwitz spaces: In particular, existence of covers in the Nielsen class Ni(C)ab
T defined over

Q is equivalent to existence of Q-points on the Hurwitz space H(C). Two special assumptions that appear
in the next proposition (the first implies the second):

3.7a) for each k ∈ (Z/N)∗, Ck ≡ C mod NSn(G); and

b) for each k ∈ (Z/N)∗, there exists σ ∈ Sr such that Ck ≡ σC mod NSn
(G).

Note that 3.7 b) is a consequence of Galois compatibility of xxx and C over Q as in 2.8).
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Proposition 3.3: Suppose that the cover X → P1
x corresponds to the point mmm ∈ H(C)T (as in Prop. 3.2).

Assume that SHr is transitive on the absolute straight Nielsen classes SNi(C)ab
T defined by C (§1.2). Assume

also that one of the following holds: either G is in its regular representation and G has no center; or

*) the centralizer, CenSn
(G) of G in Sn is trivial.

Then 3.7 b) holds if and only if the intersection of all fields of definition of all covers X → P1
x in the Nielsen

class Ni(C) is Q. In the case that 3.7 a) holds, the cover 3.6) is defined over Q and the field of definition of
the cover X → P1

x is Q(mmm).

§3.3. Sn AND An ARE IN EQ,4: We discuss groups generated by elements of order 2.

Definition 3.4: A finite group G is said to be (m1, . . . , mt)-generated if it is generated by elements
{α1, . . . , αt} with ord(αi) = mi, i = 1, . . . , t. We shorten this expression to mt-generated if the mi’s
are a constant function of i.

In seeking to find the exceptional groups in Theorem 2.4 we apply this definition to consider groups that
are 2r−1-generated for suitably small values of r. Of course all noncyclic simple groups are 2r−1-generated
for suitable values of r, but it is not exactly clear what value this would be; nor given a small value of r
for which it is so, is it clear that we can find suitable generators αi, i = 1, . . . , r − 1 so that 3.1 c) holds.
Proposition 3.6 says that r = 4 works for Sn and for An. The referee suggested [F] for a proof of the following
result.

Lemma 3.5: Consider an element σ ∈ An with n ≥ 2. Suppose that the disjoint cycle decomposition of σ
has the shape (s1) · · · (su) (counting the cycles of length 1) with
s1 ≤ s2 ≤ · · · ≤ su. If si = si+1 for some i, or if one of the si’s is odd, then the conjugacy class of σ is
rational. Note that it may be rational even if neither is satisfied.

Proposition 3.6: For n ≥ 4, Sn and An are both 23-generated, and both are in EQ,4.

Proof: We chose Sn and An because in the former case all conjugacy classes are rational, and in the latter
case Lemma 3.5 shows nearly all of them to be so. Suppose that we have obtained the dihedral group Dn−1

of order 2(n − 1) as a subgroup of Sn−1. Since Dn−1 has an n − 1-cycle in Sn−1, the group 〈Dn−1, (1 n)〉
must be Sn: it is a doubly transitive group containing a 2-cycle. There are two cases to deal with here: n
odd and n even. In the former case use

α1 = (1 2)(3 4) . . . (n−2 n−1) and α2 = (2 3)(4 5)(6 7) . . . (n−3 n−2)

as generators of Dn−1; and in the latter case use

α1 = (1 2)(3 4) . . . (n−3 n−2) and α2 = (2 3)(4 5)(6 7) . . . (n−2 n−1).

This finishes our discussion of Sn by taking α3 = (2n) in 3.1).

The modified principle for An is based on the lemma that a primitive subgroup of An containing a
3-cycle must be all of An (e.g., [Car; p. 163 #15]). We consider separately each of the residue classes of n
modulo 4, with the most difficult of these, n ≡ 0 mod 4, coming last. The α’s here are as in 3.1).

Case 1: n ≡ 1 mod 4. Take the α’s as follows:

3.8)
α1 = (1 2)(3 4) · · · (n−2 n−1)
α2 = (1 2)(4 5) · · · (n−1 n)
α3 = (2 3)(4 5) · · · (n−1 n).
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We will repeatedly use a simple principle: if α and α′ are of order 2, ind(α)+ ind(α′) = m− 1 and < α, α′ >
is transitive on m integers, then αα′ is an m-cycle on these integers. Apply this to 3.8) to conclude that
α1α3 is an n-cycle; α1α2 is an n− 2-cycle (on {3, . . . , n}); and α2α3 is the 3-cycle (1 3 2). Let G = G(ααα) be
the group generated by the α’s.

Note that conjugation of (1 3 2) by α3α1 gives (1 3 5). Also, α1α2 is an n−3-cycle on {3, . . . , n}. Thus
the subgroup of G that stabilizes 2 is transitive on the remainder of the integers. In particular, G is doubly
transitive, and therefore primitive: G = An. To conclude that An ∈ EQ,4 we check that α1α2 and α2α3 are
rational conjugacy classes. But both have repeated 1-cycles. Lemma 3.5 concludes this case.

Case 2: n ≡ 3 mod 4. This case has a twist that shows in our choice of α’s:

3.9)
α1 = (1 2)(3 4) · · · (n−4 n−3)
α2 = (2 3)(4 5) · · · (n−5 n−4)(n−3 n−1)
α3 = (n−3 n−2)(n−1 n).

Here α1α2 (resp., (α1α3)2) is an n−2 cycle (resp., 3-cycle) on {1, 2, . . . , n−3, n−1} (resp., {n−4, n−3, n−2}).
As in Case 1, G is doubly transitive and therefore equal to An ∈ EQ,4.

Case 3: n ≡ 2 mod 4. This is even easier than the previous cases with the α’s as follows:

3.10)
α1 = (1 2)(3 4) · · · (n−3 n−2)
α2 = (n−4 n−3)(n−1 n)
α3 = (2 3)(4 5) · · · (n−4 n−3)(n−2 n−1).

Here α1α3 is an n−1 cycle on {1, 2, . . . , n−1}, and (α2α3)2 is a 3-cycle on {n−2, n−1, n}. Conclude as
previously.

Case 4: n ≡ 0 mod 4. Here we take the α’s in a slightly more complicated way:

3.11)

α1 = (1 2)(3 4) · · · (n−1 n)

α2 =
(
2 3

)(
4 5

)
· · ·

(n

2
n

2
+1

)

α3 =
(n

2
+1

n

2
+3

)(n

2
+4

n

2
+5

)
· · · (n 1).

Since (α2α3)2 is the 3-cycle (n
2

n
2 +1 n

2 +3) def= λ, our main difficulty is to show that the group G generated by
the α’s is primitive.

Suppose that
{1, . . . , n} = V1 ∪ . . . ∪ Vt

is a partition of the integers from 1, . . . , n into a system of imprimitivity for G: this is a disjoint union, and
G acts as permutations of V1, . . . , Vt. Here is the principle we need for our next computation. If τ ∈ G is
the 3-cycle (a1 a2 a3), then {a1, a2, a3} ⊂ Vi for some integer i. Indeed, because τ is transitive on the a’s,
the set of a’s must consist of a union of any of the V ’s that it actually moves together with a subset of one
of the V ’s. If τ moves any V , the cardinality of the a’s would have to be at least 4. Thus the only other
possibility is that τ moves none of the V ’s. We use this principle by conjugating λ by various of the α’s to
get 3-cycles that show that one of the V ’s contains all of the integers.
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Consider these elements in G, with α1,i = α1αi, i = 2, 3:

α1,2 =
(
1 3 5 . . .

n

2
−1

n

2
+1

n

2
+2

n

2
n

2
−2 . . . 4 2

)(n

2
+3

n

2
+4

)
· · ·

(
n−1 n

)

α1,3 =
(
3 4

)
· · ·

(n

2
−1

n

2

)(n

2
+1

n

2
+2

n

2
+3

n

2
+5 . . . n−1 1 2 n n−2 . . .

n

2
+4

)
.

Note that the square of α1,3 (resp., α1,2) fixes n
2 (resp., n

2 +3) and has n
2 +1 and n

2 +3 (resp., n
2 and n

2 +1)
next to each other in a cycle
(n

2 +1 n
2 +3 n

2 +7 . . . a . . . n
2 +10 n

2 +6) where a is 1 or 2 depending on whether n
4 is congruent to 0 modulo 2

(resp, (. . . n
2−7 n

2−3 n
2 +1 n

2
n
2−4 . . .)). Thus, repeated conjugates of λ by these cycles show that all of these

integers are in the same V . This by itself gives n
2 +1 integers in V .

Thus the group is primitive and since it contains a 3-cycle it is all of An.

In Prop. 3.6 there are groups that would be exceptions to the general situation excluded by Theorem
2.4 under the condition that they arise as the geometric monodromy groups of Galois covers over K (K = R
or Q) with appropriate branch cycle conditions. Suppose that G is one of these groups with appropriate
branch cycle generators σσσ. In §3.4 (Theorem 3.7) we apply this to explicit cases of Prop. 3.6. The reader
will note that the theory isn’t at all restricted to R or Q, but for simplicity we stick to these cases.

§3.4. EXCEPTIONAL COVERS IN PROP. 3.6: Take α1, α2, α3 from the first paragraph of the proof
of Prop. 3.6. Here G = Sn. Let

σ1 = α1, σ2 = α1α2, σ3 = α2α3 and σ4 = α3,

as we already have done. The representatives of the Nielsen class have the property that if a cover X → P1
x

(of degree n) in this Nielsen class is defined over Q, then there would be (lots of) points x0 ∈ P1
x(R) distinct

from the branch points of the cover such that the points of X over x0 are all real. Because the group is Sn, it
is immediate that the Galois closure X̂ → P1

x is geometrically irreducible and has group Sn. Thus it would
realize this Nielsen class with r = 4 as an exception over Q to the general complex residue class property of
Theorem 2.4.

What we will see is that all of the example Nielsen classes of Prop. 3.6 are tantalizingly close to being
exceptions over Q. The obstruction to completing this, for each n, lies in finding Q-rational points on a
curve Yn for which we have a great deal of information about its presentation as a 3-branch point cover of
the sphere defined over Q (Theorem 3.7). Indeed, the curve can be described as a quotient of the upper half
plane by a “noncongruence subgroup” of SL(2, Z), similar to the examples of [Fr,4; Theorems 5.6 and 5.9].
What we demonstrate is that for n = 4 and 5 the curve Yn is a genus 0 curve. The values of n for which
this curve is of genus 0 are 4 ≤ n ≤ 9 (c.f. §0).

Suppose that H(C)T is the parameter space of covers in this Nielsen class (Part 3 below). We show
that the group SH4 acts transitively on the absolute straight Nielsen classes. With this, the cover X → P1

x

above is defined over Q(mmm) with mmm ∈ H(C)T the point corresponding to the equivalence class of the cover.
Thus we are reduced to finding a (any) rational point on H(C)T .
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Our first task is to conveniently display the straight absolute Nielsen classes when n = 5.The following
discussion has three parts leading up to Theorem 3.7.

Part 1: Preparation for the listing. Multiplications of elements in left-right notation tend to be more
transparent if the shapes of the first elements being multiplied are easily visualized. Although the notation
of Prop. 3.6 has them in a different order, we therefore choose representatives of the Nielsen class to have σ1

a 4-cycle, σ2 a 2-cycle, σ3 a 3-cycle, and σ4 a product of two 2-cycles. For example, replace the σ’s above in
the given order by

σ4σ1σ
−1
4 , σ4, σ2, σ3.

Now let us look at any 4-tuple τττ in the straight Nielsen class. Conjugating by an element of Sn allows
us to assume that τ1 = (1 2 3 4). If we follow this by conjugation by a power of τ1 we may assume that
τ2 = (1 a) with the choices for a divided into the case a = 5 and the cases a = 2 or 3.

Consider the values of a �= 5, all of which turn out to give representatives. First: τ1τ2 = (1 2 . . . a−1)(a a+
1 . . . 4) and τ3τ4 is the inverse of this. If 5 disappears from the product of τ3 and τ4, then 5 appears τ3 in
the 3-cycle.

For the case a = 3, τ3 = (5 2 1) and τ4 = (2 5)(3 4). For a = 2 we consider the appearance of 1 in τ3 or
τ4. If it appears in the 3-cycle of τ3, then by conjugation by (2 3 4) we may assume that the 3rd integer in
the 3-cycle is 2. Wherever it is, τ3τ4 is forced to send 1 to 2 or to send 2 to 1, contrary to what τ1τ2 does.

Part 2: Notation for the display. For a moment exclude the case a = 5. In the display below there is a
leader notation L1,a (for a = 2 or 3). This indicates that we are displaying a representative for the values
of τ3 and τ4 that go along with the corresponding values of τ1 and τ2. Recall that since the product of all
of the τ ’s is 1, the product of τ3 and τ4 is the inverse of (1 . . . a−1)(a . . . 4). From the combinatorics above,
we obtain the complete list of possibilities for τ3 and τ4 that should appear in the line Lc,a by conjugating
(just) τ3 and τ4 by

{(1 . . . a−1)r(a . . . 4)s | r ∈ Z/(a−1) and s ∈ Z/(5−a)}.

For the case a = 5 the conjugation is by the powers of (1 2 3 4 5), but there is also an additional notation
in place of the c for a parameter b, which is just 3 in the case n = 5.

Part 3: Quotation of [Fr,4] (or [FrT]). We briefly review the results of §4.1 of [Fr,4] (or §3.2 of [FrT]).
The 4 conjugacy classes defining the Nielsen class of S5 with which we deal are all distinct. This simplifies
considerably the theory of such families of covers. In particular, transitivity of SH4 on the list described by
Part 2 above is equivalent to transitivity of the subgroup generated by the following set of elements (§3.1):

3.12) a1,2 = Q2
1, a1,3 = Q−1

1 Q2
2Q1, a1,4 = Q−1

1 Q−1
2 Q2

3Q2Q1.

If we show transitivity of the group generated by these elements, then Prop. 3.3 implies that any cover
X → P1

x in this Nielsen class is defined over Q(mmm) where mmm is the point of the Hurwitz space (H(C)T of
Prop. 3.2) that corresponds to the cover. Furthermore, there is a cover

ψn : Yn → P1
x, ramified over just 0, 1, ∞

defined over Q such that H(C)T (Q) is nonempty if and only if

3.13) Yn(Q) − {ψ−1
n (0), ψ−1

n (1), ψ−1
n (∞)}

is nonempty. Finally, this cover has these further properties:
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3.14a) it can be identified with the projective normalization of the upper half plane modulo a subgroup (of
finite index) of PSL(2, Z); and

b) a description of the branch cycles of the cover is given by the collection a1,i, i = 2, 3, 4 in their
permutation action on the straight Nielsen classes described by Part 3.

In particular 3.14 b) allows us to explicitly compute the genus of Yn from the Riemann-Hurwitz formula.
Of course, as already explained, we will do this only for the cases n = 4 and 5. In another paper we will
explicitly list all of the Nielsen classes and show that the action of SH4 on the straight Nielsen classes
described by Part 3 is transitive. In the next result we state this tentatively.

Theorem 3.7: If the action of SH4 on the straight Nielsen classes is transitive, then the curve cover
ψn : Yn → P1

x defined over Q with properties 3.13) and 3.14) exists. For any n for which expression 3.13) is
nonempty, Sn is the Galois group of a regular extension of P1

x over Q with the branch cycles given by the
proof of Prop. 3.6. In particular this cover has many totally real specializations (i.e., is an exception to the
conclusion of Prop. 3.6). In the case that n = 4, the cover ψ4 : Y4 → P1

x is of degree 6 and Y4 is isomorphic
to P1 over Q. In particular 3.13) is nonempty. The cover ψ5 : Y5 → P1

x (i.e., n = 5) is of degree 10 and it
has a description of its branch cycles given by the following elements in S10:

(1 2 3)(4 5)(6 7 8 9 10), (1 7 6)(2 4 3)(5 9) and ((1 4 9 10)(8 5 3 7))−1.

Thus Y5 is also of genus 0 and again 3.13) is nonempty.

Proof: We need only find the action of a1,j , j = 2, 3 and 4 on representatives of the list of straight Nielsen
classes as described in Part 3 to reduce the theorem to a computation. Since the a’s are a description of
the branch cycles of a cover, we compute a1,4 as the inverse of the product of a1,2 and a1,3. First: n = 5
following the notation of Part 2.

Here is an expansion of the list of absolute Nielsen classes, including the actual results of conjugating
the pairs (τ3, τ4):

L1,2 : τ3 = (5 2 3), τ4 = (2 5)(3 4); τ3 = (5 3 4), τ4 = (3 5)(2 4);
τ3 = (5 4 2), τ4 = (4 5)(2 3);

L1,3 : τ3 = (5 2 1), τ4 = (2 5)(3 4); τ3 = (5 1 2), τ4 = (1 5)(3 4)

L3,5 : τ3 = (1 5 3), τ4 = (3 4)(1 2); τ3 = (2 1 4), τ4 = (4 5)(2 3);
τ3 = (3 2 5), τ4 = (1 5)(3 4); τ3 = (4 3 1), τ4 = (1 2)(4 5);
τ3 = (5 4 2), τ4 = (2 3)(5 1).

Denote the elements under L1,2 by xi, i = 1, 2, 3, in the order of their listing; under L1,3 by x4 and
x5; and those under L3,5 by xi, i = 6, . . . , 10. For each of these denote (xi)Q−1

1 by yi , i = 1, . . . , 10. The
essential part of the computation is the effect of Q2

1 (resp., Q2
2) on the x’s (resp., y’s). For example, the

practical effect of previous comments is that

Q2
1 = (x1x2x3)(x4x5)(x6x7x8x9x10).
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Here are the y’s:

y1: ((1 2), (2 1 3 4), (5 2 3), (2 5)(4 3)) y2: ((1 2), (2 1 3 4), (5 3 4), (3 5)(4 2))
y3: ((1 2), (2 1 3 4), (5 4 2), (4 5)(2 3)) y4: ((1 3), (3 2 1 4), (5 2 1), (2 5)(3 4))
y5: ((1 3), (3 2 1 4), (5 1 2), (1 5)(3 4)) y6: ((1 5), (5 2 3 4), (1 5 3), (3 4)(1 2))
y7: ((1 5), (5 2 3 4), (2 1 4), (4 5)(2 3)) y8: ((1 5), (5 2 3 4), (3 2 5), (1 5)(3 4))
y9: ((1 5), (5 2 3 4), (4 3 1), (1 2)(4 5)) y10: ((1 5), (5 2 3 4), (5 4 2), (2 3)(1 5))

Apply Q2
2: y1 goes to ((12), ?, (2134)(523)(2134)−1, (25)(43)); which has (541) in the 3rd position; and

conjugation by (2 5 4 1)−1 gives y7. Continue in this way to get

Q2
2 = (y1y7y6)(y2y4y3)(y5y9).

Translate this back to the x’s to get that the cover ψ5 : Y5 → P1
x has a description of its branch cycles given

by
a1,2 = (1 2 3)(4 5)(6 7 8 9 10),
a1,3 = (1 7 6)(2 4 3)(5 9),

a1,4 = ((1 4 9 10)(7 8 5 3))−1.

From the Riemann-Hurwitz formula, the genus of Y5 is 0. Since each of the disjoint cycles of σi,
i = 1, 2, 3 is of a distinct length, the points above the branch points—all of them—are rational. This shows
that Y5 has a lot of rational points. From the renown Hilbert-Hurwitz observation, Y5 is isomorphic to P1.

Finally, we quickly traverse the similar calculations for the case n = 4 by displaying the analogs of the
calculations above for (τ3, τ4). There are just two listings:

L1,2 : τ3 = (4 3 2), τ4 = (3 4); τ3 = (4 2 3), τ4 = (2 4); and

L2,4 : τ3 = (4 3 2), τ4 = (1 4); τ3 = (3 2 1), τ4 = (4 3);
τ3 = (2 1 4), τ4 = (3 2); τ3 = (1 4 3), τ4 = (2 1).

Denote the elements under L1,2 by xi, i = 1, 2, in the order of their listing; under L2,4 by by xi,
i = 3, . . . , 6. For each of these denote (xi)Q−1

1 by yi , i = 1, . . . , 6. As above the essential part of the
computation is the effect of Q2

1 (resp., Q2
2) on the x’s (resp., y’s). We easily compute that

Q2
1 = (x1x2)(x3x6x5x4).

Here are the y’s:

y1: ((1 3), (1 2 3), (4 3 2), (3 4)) y2: ((1 3), (1 2 3), (4 2 3), (2 4))
y3: ((3 4), (1 2 3), (4 3 2), (1 4)) y4: ((3 4), (1 2 3), (3 2 1), (4 3))
y5: ((3 4), (1 2 3), (2 1 4), (3 2)) y6: ((3 4), (1 2 3), (1 4 3), (2 1))

The effect of Q2
2 on the y’s is (y1y5y3). Translate this back to the x’s to get that the cover ψ4 : Y4 → P1

x has
a description of its branch cycles given by

a1,2 = (1 2)(3 6 5 4), a1,3 = (1 5 3), and a1,4 = ((1 2 5 4)(3 6))−1.

The genus of Y4 is therefore 0 by the Riemann-Hurwitz formula, and (as in the case of n = 5) all of
the points above the three branch points are rational. Thus the curve is isomorphic to P1.
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§4. POINTS ON H(C) GIVING R-COVERS AND SIEGEL FAMILIES

Consider a collection of conjugacy classes C of a group G (with a permutation representation T : G → Sn)
and the associated Nielsen classes Ni(C)ab

T . In §4.1 and §4.2 we give general results that show the following
things:

4.1a) How to effectively compute the effect of complex conjugation on the points of a fiber ϕ−1(xi) of a cover
ϕ : X → P1

x where xi is one of the branch points of the cover;

b) How to effectively locate all of the points on the parameter space H(C) which correspond to covers
over R in the Nielsen class associated to a group G.

Siegel’s theorem: The remainder of the paper applies the results of §4.1–4.2 to consider a converse to the
following version of Siegel’s Theorem [S]. Let ϕ : X → P1

x be a cover of projective nonsingular curves with
both X and the graph of ϕ defined over Q. Suppose that A is a fractional ideal of Q. If there are infinitely
many Q points of X that lie over the points A ⊂ P1

x, then

4.2a) X is of genus 0 and it has 1 or 2 points over x = ∞; and

b) if there are two points over ∞, they are real conjugates over Q.

If there is just one point over ∞ in 4.2), a rough converse to Siegel’s theorem is obvious. But if option
b) holds there are serious questions for this. Our goal is to use Theorem 2.4 to consider properties of all
complete families of curve covers of genus 0 for which there is some possibility that members of the family will
have property 4.2 b). We reduce this to a computational test with Hurwitz monodromy action—illustrated
by two examples. This combined with a sufficient condition for the family to be defined over Q gives the
necessary ingredients for a reasonable definition of Siegel family of covers over Q (with r ≥ 3 branch points).
In particular, if H is the parameter space for such a family, it is guarantied that the natural degree 2 cover
H∞ → H defined by the points over infinity in the covers of the family has the following property: for a
real point mmm ∈ H, the (two) points of H∞ above mmm are defined over a real quadratic extension of Q(mmm). We
have left it to the examples to illustrate how the following subtle computation would be checked:

Question 4.1: In the above notation, when is it true that for “general” real mmm ∈ H, the (two) points of
H∞ above mmm are conjugate over a real quadratic extension of Q(mmm)?

The fullest converse would show how to quarantee the existence of a member of a Q-Siegel family that
affirmatively satisfies the questions of list 4.7). For 4.7 a) and b) our computations are instructive. Therefore
it is primarily in dealing with question 4.7 c) that the remaining problems arise in giving a converse to Siegel’s
theorem.

§4.1 REAL POINTS ON FIBERS OVER BRANCH POINTS: Use the notation of the previous
sections for a cover (as general as previously) ϕ : X → P1

x that is defined over R and has the usual notation
x1, . . . , xr for its list of branch points. Assume that G and the Nielsen class (associated to C) are fixed
for the discussion. We now state an analogue of Theorem 2.4 that tells us the effect (as a permutation) of
complex conjugation on the points of the fiber ϕ−1(xi). Again, compatible with the ingredients for Theorem
2.4, we assume a naming of the branch points so that x1, . . . , xr1 are the real points, and these appear in
clockwise order around the “circle” P1(R). Recall that the Hurwitz monodromy action (§3.1) allows us to
reorder the entries in C without changing the Nielsen class that is involved in the definition.
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Also, for simplicity, as in the proof of Theorem 2.4, we assume that we have chosen a point x0 ∈ P1(R)
that lies between x1 and xr1 and that we have cx0 = c ∈ NSn(G) so as to satisfy the formulas of 2.6). It is
the action of complex conjugation on the fiber ϕ−1(xr1) that we now describe. Write out σr1 as a product of
disjoint cycles: λ1λ2 · · ·λs. These disjoint cycles are in one-one correspondence with the points of the fiber
ϕ−1(xr1) in the following sense. Consider a path γr1 homotopic to the path that gives the branch cycle σr1 ,
with γr1 of the form ρδρ−1 where δ surrounds a (suitably small) closed disc D about xr1 and ρ is along the
real line. A point ppp ∈ ϕ−1(xr1) corresponds to the disjoint cycle λj whose entries represent exactly the points
above x0 for which the unique lift of γr1 starting at such a point meets the unique connected component of
ϕ−1(D) containing ppp (e.g., [Fr,2; p. 146]).

Theorem 4.2: In the association described above label the points of ϕ−1(xr1) by y1, . . . , ys so that yi

corresponds to the disjoint cycle λi, i = 1, . . . , s. Consider the action of complex conjugation given by 2.6):
cσr1

c = σ−1
r1

. This implies that c maps the set of integers that appear in a disjoint cycle λj to the set of
integers that appear in another disjoint cycle λk. Thus c induces a permutation of the integers y1, . . . , ys

which we denote by cy. It is cy that gives the action of complex conjugation on the points y1, . . . , ys.

Proof: The action of complex conjugation on the points y1, . . . , ys extends naturally (and compatibly) to
the connected components of ϕ−1(D). It also extends to the lifts of γr1 (as it maps γr1 to its inverse). It is
now clear that the lifts of the paths that meet a specific connected component V of ϕ−1(D) are taken by
complex conjugation to the lifts of paths that meet the effect of complex conjugation on V . When translated
in terms of the points of y1, . . . , ys, this is what the theorem says.

Example 4.3: Example 2.7 continued. In example 2.7 we had the following data: r = 3, G = A4, and C1

is the conjugacy class of a 3-cycle; C2 is the conjugacy class of elements inverse to those of C1; and C3 the
conjugacy class of a product of two 2-cycles. Assume that a cover ϕ : X → P1 is in this Nielsen class, and
that xr1 is ∞ and that it corresponds to the conjugacy class labeled as C3. We want to check the effect of
complex conjugation on the (two) points of the cover over ∞. First in the case that all 3 branch points are
real (Case 1 of Ex. 2.7): if we assume that x0 ∈ (∞, x1), the computations were that conjugation by c gives
(2 4). Thus it doesn’t move the two disjoint cycles in a representative of the Nielsen class, so the points are
real.

But in Case 2 of Ex. 2.7, under the assumption that the other two branch points are complex conjugate,
the two disjoint cycles were permuted. Indeed the representative for C3 was (1 3)(2 4) and c turned out to
be (1 2)(3 4). That is, the points over ∞ in the cover under these hypotheses are complex conjugate. A
moment’s reflection reveals that this in particular implies that the residue class fields of the points over ∞
in this Nielsen class are nonconstant as a function of the parameter space.

§4.2. POINTS ON THE HURWITZ SPACE THAT GIVE R-COVERS: Continue the notation
from §4.1. Consider x0 ∈ P1(R)\{x1, . . . , xr}. Here we explicitly use that the existence of cx0 = c ∈ NSn

(G)
satisfying formulas 2.6) is a necessary condition for the cover ϕ : X → P1

x to be defined over R. Under the
hypotheses of Prop. 3.3 (cf. [DFr; Theorem 1.7]) the latter is equivalent to having mmm ∈ H(C) corresponding
to this cover defined over R (i.e., with real coordinates). What we show here is that existence of c is also
a sufficient condition for the cover to be defined over R, and therefore that the corresponding point of the
Hurwitz space is real. This gives a satisfying combinatorial description of the real points of H(R). Thus it
is a shame that there are no Qp versions (c.f. §0) in light of the seriousness of checking if H(R) has rational
points (e.g., as in §3.4).
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Theorem 4.4: We assume that the hypothesis *) of Prop. 3.3 holds. Suppose that a cover ϕ : X → P1

has only real and complex conjugate pairs of branch points as in §2. Let σσσ be a branch cycle description
relative to a set of paths given as in Figure 3. Now we may ask (relative to a point x0 ∈ P1(R)) if there
exists cx0 = c ∈ NSn

(G) that satisfies formula 2.6). Then ϕ : X → P1 is defined over R if and only if such a
c exists, and this does not depend on the choice of x0.

There is a constructive partition H1, . . . ,Hv of the points of H(C) over Pr(R) \Dr with the following
property: each of the Hi’s, as a set of complex valued points on the manifold H(C) is connected; each of
the Hi’s corresponds to one element of the Nielsen class; and each mmm ∈ Hi corresponds to a cover in the
Nielsen class defined over R if and only if the element of the Nielsen class that corresponds to Hi has a
corresponding c that satisfies 2.6).

Proof: Since *) holds, Prop. 3.3 says that the cover of the first paragraph of the introduction has a minimal
field of definition K that makes K a field of moduli for the cover. That is, if τ ∈ Aut(C/Q) and if
ϕτ : Xτ → P1 is equivalent to ϕ : X → P1 as a cover, then τ is fixed on K. (An application of Weil’s
cocycle condition; beginning of the proof of [Fr,1; Theorem 5.1].) Here the superscript τ indicates the effect
of applying τ to the coefficients of the equations describing these curves.

If K is contained in R then Theorem 2.4 shows the existence of c. Suppose conversely that c exists
satisfying 2.6). The proof of Theorem 2.4 actually shows that the left side of 2.6) consists of a branch cycle
description of the cover obtained by applying complex conjugation to the coefficients of ϕ : X → P1 (as well
as to the points over x0) relative to paths homotopic to the original paths with which the branch cycles were
computed to be the right side of 2.6). Two covers with equivalent branch cycle descriptions with respect to
the same homotopy classes of paths are equivalent covers. Thus ϕ : X → P1 is equivalent to ϕc : Xc → P1.
But this contradicts the field of moduli property of the field of definition K of the cover, unless c is fixed
on K. That is the cover is defined over R. Since being defined over R has nothing to do with the base
point x0 with which we started the inspection of 2.6), the result doesn’t depend on this choice. Nevertheless,
it would be instructive for the reader to check that if cx0 exists for x0 selected in one of the intervals of
P1 \ {x1, . . . , xr} it exists as well for x0 selected in any other of these intervals.

Now we come to the description of the partition H1, . . . ,Hv. Let I be all of the ways to write r as a
sum of the form r1 + 2r2. We use I to consider first a partition of a subset of (P1)r \ Δr = Ur (§3.1). For
(r1, r2) ∈ I denote the subset of Ur consisting of r1 real points and 2r2 pairs of complex conjugate points by
Ur1,r2 . Let V be one of the finite number of connected components of Ur1,r2 . Denote the image of V under
Ψr in Pr \Dr by W . Now consider the connected components H(C) that lies over W . For any one of these,
the setup for expression 2.6) gives a specific representing Nielsen class relative to the paths considered for
Theorem 2.4. Thus we may check for this Nielsen class if there is a c that works in 2.6). If there is, then all
points of the component of H(C) that lies over W consists of real points. We are now reduced to running
over all pairs (r1, r2) ∈ I, all choices and orderings of the coordinates associated with the r1 real points, and
all representatives of the Nielsen class, to check for the existence of c in each of these cases. This concludes
the algorithm for labeling the real points of H(C).

§4.3. DEFINITION OF SIEGEL FAMILIES: We will be fixing the ramification type over ∞ of our
covers X → P1

x. In particular, our concern is with covers with two points over ∞, both ramified over their
images of order an integer m. Thus the cover is of degree 2m = n. We call such a cover an (m, m)-cover
thereby reserving the right to generalize to other situations without having to drastically change notation.
Suppose that C = C1, . . . ,Cr is a collection of conjugacy classes in a group G for which the covers X → P1

x

in the Nielsen class Ni(C)ab
T are of genus 0 and for which Cr is the conjugacy class of an element σr in

G ⊂ Sn with

4.3) σr is a product of two disjoint m-cycles (of (m, m)-type).
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We consider just the subspace of the Hurwitz space H(C) consisting of representatives of the covers
X → P1

x which happen to be (m, m)-covers. For most examples—just a few simple exceptions are excluded—
Ci �= Cr for i �= r. In this case there can be no confusion about which branch point has the (m, m)-type
of branching. The space representing just the (m, m)-type covers will be denoted H(C∞). We refer to a
representative of the conjugacy class Cr as a Siegel cycle.

Consider the set Ni(C∞) def=

{τττ ∈ Gr | τr = σr, with β ∈ Sr−1 so that τ(i)β ∈ Ci, i = 1, . . . , r, τ1 · · · τr = 1}.

Also, denote the subgroup of the normalizer of G in Sn that centralizes σr and that permutes the conjugacy
classes C1, . . . ,Cr−1 by N(C∞). From [DFr;§1.4] H(C∞) is naturally a cover of An of degree equal to the
quotient of Ni(C∞) by the natural conjugating action of N(C∞). Denote this set by Ni(C∞)abT . Below
denote this family by S(C∞).

Definition 4.5: Consider a family S(C∞) of covers of (m, m)-type (of genus of 0). It is said to be a Siegel
family (of covers) if the following properties hold:

4.5a) S(C∞) is defined over R;

b) a Zariski dense subset W of H(C∞) has associated covers defined over R;

c) for a Zariski dense subset of mmm ∈ W a cover representing mmm has the property that the two points over
∞ are both real; and

d) Cr is rational in the smallest group containing G and N(C∞).

The main point that we make here is that Theorems 4.2 and 4.4 give an explicit test for a given Nielsen
class (with a choice of conjugacy class as Cr) whether the corresponding family of covers is a Siegel family.
Just being a Siegel family is not sufficient to provide us with curves that give a converse to Siegel’s theorem
stated in the introduction. The next definition adds to the properties of Def. 4.5 to further this goal.

Definition 4.6: Suppose that S(C∞) is a family of Siegel covers of (m, m)-type. We say that it is a Q-Siegel
family if the following properties hold:

4.6a) S(C∞) is defined over Q

b) H(C∞) has a Zariski dense set of Q points; and

c) for a Zariski dense subset of mmm ∈ H(C∞)(Q) a cover ϕmmm : Xmmm → P1
x representing mmm has the property

that the two points over ∞ are real conjugates over Q.

§4.4. EXAMPLES AND QUESTIONS ABOUT SIEGEL FAMILIES: Those families that satisfy
the generalized “rigidity condition” (of Prop. 3.3) will be said to be rigid Siegel families. For these families
we can be certain that they are defined over Q, and thus members of them are part of a potential converse
to Siegel’s theorem. Such rigid Q-families include those given by Ex. 4.3 and the main example of [DFr].
But we have left one of the most exciting problems untouched by restricting consideration to just the rigid
families.

The list of complete Siegel families is sufficiently explicit to allow serious consideration of the following
questions about the parameter space H of one of the families:

4.7a) Is H(Q) Zariski dense in H?;

b) If the answer to a) is positive, for sufficiently general mmm ∈ H(Q) and ϕmmm : Xmmm → P1
x the corresponding

cover, is Xmmm(Q) nonempty?; and
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c) If the answer to b) is positive, for A any fractional ideal of Q, is ϕ−1
mmm (A) infinite?

It is only for complete rigid families that we would expect effective answers to these at this time. The main
example of [DFr] passed all these tests affirmatively. But as yet no general procedure tests a specific Siegel
family for property 4.7 c) even if 4.7 a) and b) hold.

We conclude the paper with an example. For this family we will show that questions 4.7 a) and b) are
answered affirmatively. As already discussed (cf. [DFr]) 4.7 c) is tougher.

Example 4.7: A Q-Siegel family with r = 4. The point of this example is to show Theorems 4.2 and 4.4 in
action. We take G to be S4, r = 4 and the Nielsen class has a representative given by the following 4-tuple:

4.7) (σ1 = (1 2), σ2 = (2 3), σ3 = (2 1 4), σ4 = (1 3)(2 4)).

Then a cover X → P1
x given with this branch cycle description is of genus 0, and we assume that the element

σ4 indicates the ramification structure over ∞. We assume the setup exactly as around formula 2.6). We
have a family of covers S(C∞) of (2,2)-type, as given by 4.3). First note that there is no c that satisfies
formula 2.6). In this case such a c would conjugate the 4-tuple of 4.7) to

4.8) (σ1 = (1 2), σ′
2 = (1 3), σ′

3 = (2 3 4), σ4 = (1 3)(2 4)).

But, such a c would commute with the group generated by σ1 and σ4. Therefore c would be either the
identity or (1 2)(3 4): a clear contradiction.

Representatives of the straight Nielsen classes consist of just 3 elements:

4.9) the two elements above and ((1 3), (1 2), (2 1 4), (1 3)(2 4)).

As in the proof of Theorem 3.7, we establish the basic properties of this family by computing the effect
of a1,2 and a1,3 on these absolute straight Nielsen classes. Labeled in this order the effect of Q1 on them is
(1 3 2). Thus Q2

1 is (1 2 3). Now Q2
2 has the effect of (1 2). Compute easily that the curve Y that corresponds

to this cover, in the discussion around 3.13) is of genus 0 and it has lots of Q-points. Finally, if we try to find
c relative to the last of the Nielsen classes listed in 4.9), we get that c exists and is equal to 1. Conclusion,
this is a Siegel family according to Definition 4.5, but only some of the regions described in Theorem 4.4
correspond to real points. Furthermore, we have verified all of the properties of 4.6) for it to be a Q-Siegel
family, except for 4.6 c). This is similar—read, just as tricky—as the analogous question was for Example
4.3.

Consider the Hurwitz monodromy group action on the straight Nielsen class representatives given in
4.9) together with the conjugates of these by (1 2)(3 4). We equivalence two of these elements only if one
comes from the other by conjugation by an element that is in the group of centralizers of σ4 that don’t
permute the two orbits of σ4. A check shows that the Hurwitz monodromy action is transitive on these 6
classes, and we conclude as in Example 4.3.
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