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THE SCHINZEL HYPOTHESIS FOR POLYNOMIALS

ARNAUD BODIN, PIERRE DÈBES, AND SALAH NAJIB

Abstract. The Schinzel hypothesis is a famous conjectural statement about
primes in value sets of polynomials, which generalizes the Dirichlet theorem
about primes in an arithmetic progression. We consider the situation that
the ring of integers is replaced by a polynomial ring and prove the Schinzel
hypothesis for a wide class of them: polynomials in at least one variable over
the integers, polynomials in several variables over an arbitrary field, etc. We
achieve this goal by developing a version over rings of the Hilbert specialization
property. A polynomial Goldbach conjecture is deduced, along with a result
on spectra of rational functions.

1. Introduction

The so-called Schinzel Hypothesis (H), which builds on an earlier conjecture of
Bunyakovsky, was stated in [SS58]. Consider a set P = {P1, . . . , Ps} of s polyno-
mials, irreducible in Z[y], of degree � 1, and such that

(*) there is no prime p ∈ Z dividing all values
∏s

i=1 Pi(m), m ∈ Z.

Hypothesis (H) concludes that there are infinitely manym ∈ Z such that P1(m), . . . ,
Ps(m) are prime numbers. If true, the Schinzel hypothesis would solve many clas-
sical problems in number theory: the twin prime problem (take P = {y, y + 2}),
the infiniteness of primes of the form m2 + 1 (take P = {y2 + 1}), the Sophie
Germain prime problem (P = {y, 2y+1}), etc. However, it is wide open except for
one polynomial, P1 of degree one, in which case it is the Dirichlet theorem about
primes in an arithmetic progression.

We consider the situation that the ring Z is replaced by a polynomial ring R[x]
in n � 1 variables over some ring R, and “prime” is understood as “irreducible”.
We prove the Schinzel Hypothesis in this situation for a wide class of rings R,
for example Z, or k[u] with k an arbitrary field. The infiniteness of integers m is
replaced by a degree condition.

1.1. Main result. Specifically, let R be a Unique Factorization Domain (UFD)
with fraction field K. Our assumptions include K being a field with the product
formula. The definition is recalled in Section 4. The basic example is K = Q.
The product formula is

∏
p |a|p · |a| = 1 for every a ∈ Q∗, where p ranges over all

prime numbers, | · |p is the p-adic absolute value, and | · | is the standard absolute
value. Rational function fields k(u1, . . . , ur) in r � 1 variables over an arbitrary
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field k and finite extensions of fields with the product formula are other examples
[FJ08, §15.3].

Given n indeterminates x1, . . . , xn, set R[x] = R[x1, . . . , xn] (n � 0).1 Con-
sider s � 1 polynomials P1, . . . , Ps, irreducible in R[x, y], of degree � 1 in y. Set
P = {P1, . . . , Ps}, and let Irrn(R,P ) be the set of polynomials M ∈ R[x] such
that P1(x,M(x)), . . . , Ps(x,M(x)) are irreducible in R[x].

For every n-tuple d = (d1, . . . , dn) of integers di � 0, denote the set of polyno-
mials M ∈ R[x] such that degxi

(M) � di, i = 1, . . . , n, by PolR,n,d. It is an affine
space over R: the coordinates correspond to the coefficients. Then consider the set
Irrn,d(R,P ) = Irrn(R,P ) ∩ PolR,n,d.

As usual, N∗ denotes the set of positive integers.

Theorem 1.1. Assume that n � 1 and R is a UFD with fraction field a field K
with the product formula, imperfect if K is of characteristic p > 0 (i.e., Kp �= K).
For every d ∈ (N∗)n such that d1 + · · · + dn � max1�i�s degx(Pi) + 2, the set

Irrn,d(R,P ) is Zariski-dense in PolR,n,d.

In particular, the following Schinzel hypothesis for R[x] holds true:

(**) there exist polynomials M ∈ R[x] with partial degrees any sufficiently large
integers such that P1(x,M(x)), . . . , Ps(x,M(x)) are irreducible in R[x].2

Irreducibility over R is a main point. As a comparison, the Hilbert specia-
lization property provides elements m ∈ K such that P1(x,m), . . . , Ps(x,m) are
irreducible over K (provided that all degx(Pi) are � 1). However, no m ∈ R

achieving irreducibility over R exists in general. Take, for example, P1 = x(y2 −
y) + (y2 − y + 2) in Z[x, y]; P1(x,m) is divisible by 2, hence reducible in Z[x] for
every m ∈ Z. Yet the core of our approach will be to develop some Hilbert property
over rings; we say more about this in Section 2.3.

Rings R satisfying the assumptions of Theorem 1.1 include:
(a) the ring Z of integers, and more generally, every ring Ok of integers of a

number field k of class number 1,
(b) polynomial rings k[u1, . . . , ur] with r � 1 and k an arbitrary field,
(c) fields (so R = K) with the product formula, imperfect if of characteristic

p > 0, e.g., Q, k(u1, . . . , ur) (r � 1, k arbitrary), and their finite extensions.
As to the analog of assumption (*), it is automatically satisfied under our hy-

potheses (Lemma 2.1). Our approach also allows the situation that the polynomials
Pi have several variables y1, . . . , ym, which leads to a multivariable Schinzel hypoth-
esis for polynomials (Theorem 5.5).

Finally we refer to Remark 5.4(b) for a discussion of the assumption on the
integers d1, . . . , dn.

1.2. Examples. Take R[x] as above and Pi = bi(x)y
ρi + ai(x) with ρi ∈ N∗, ai, bi

relatively prime in R[x] (possibly in R) and such that, for each i = 1, . . . , s, −ai/bi
satisfies the Capelli condition that makes biy

ρi + ai irreducible in K(x)[y], i.e.,
−ai/bi /∈ K(x)� for every prime divisor � of ρi and −ai/bi /∈ −4K(x)4 if 4|ρi (e.g.,
[Lan02]). Then the following holds:

(***) there exist polynomials M ∈ R[x] with partial degrees any sufficiently large
integers such that b1M

ρ1 + a1, . . . , bsM
ρs + as are irreducible in R[x].

1For n = 0, we mean R[x] = R, which is the original context of the Schinzel hypothesis.
2Up to adding P0 = y to the set P , one may also require that M be irreducible in R[x].
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This solves the polynomial analogs of all famous number-theoretic problems men-
tioned above (twin prime, etc.), and proves the Dirichlet theorem as well.

On the other hand, the Schinzel hypothesis for R[x] obviously fails (hence The-
orem 1.1, too) for n = 1 if R = K is algebraically closed. It also fails for the finite
field R = F2 and P = {y8+x3}: from an example of Swan [Swa62, pp. 1102–1103],
M(x)8 + x3 is reducible in F2[x] for every M ∈ F2[x]. Interestingly enough, results
of Kornblum-Landau [KL19] show that it does hold for Fq[x] in the degree one
case and for one polynomial, i.e., in the situation of the Dirichlet theorem; see also
[Ros02, Theorem 4.7]. The situation that R = K is a finite field, and the related
one that R = K is a PAC field,3 and n = 1, have led to valuable variants; see
[BS09], [BS12], [BW05].

1.3. Special rings. The special situation that R = K is a field is easier, and
is dealt with in Section 2. In the addendum to Theorem 1.1 (in Section 2), K is
assumed to be a Hilbertian field, more exactly a strongly Hilbertian field (definitions
are in Section 4.1). This provides more fields than those in Section 1.1(c) for which
Theorem 1.1 holds (with R = K): every abelian (not necessarily finite) extension
of Q, the field k((u1, . . . , ur)) of formal power series over a field k in at least two
variables, etc.

For R = k[u] with k a field, we have this version of Theorem 1.1 in which the
partial degrees of M are prescribed, including the degree in u.

Theorem 1.2. With P as above and n � 1, assume R = k[u] with k an arbitra-
ry field. For every d ∈ (N∗)n satisfying d1 + · · · + dn � max1�i�s degx(Pi) + 2,
there is an integer d0 � 1 such that for every integer δ � d0, there is a polynomial
M ∈ Irrn(R,P ) satisfying⎧⎨⎩

degxj
(M) = dj j = 1, . . . , n,

degu(M) =

{
δ if char(k) = 0,
pδ if char(k) = p > 0.

Identifying k[u][x1, . . . , xn] with a polynomial ring in n + 1 variables, it follows
that the Schinzel hypothesis holds for polynomial rings in at least 2 variables over
a field of characteristic 0. In characteristic p > 0, a weak version holds for which
one degree is allowed to be any sufficiently large multiple of p.

In the degree one case of the Schinzel hypothesis, i.e., in the Dirichlet situation,
one can get rid of this last restriction.

Theorem 1.3. Assume that n � 2 and k is an arbitrary field. Let (A1, B1), . . . ,
(As, Bs) be s pairs of nonzero relatively prime polynomials in k[x]. There is an
integer d0 � 1 with this property: for all integers d1, . . . , dn larger than d0, there
exists an irreducible polynomial M ∈ k[x] such that Ai+BiM is irreducible in k[x],
i = 1, . . . , s, and degxj

(M) = dj, j = 1, . . . , n.

To our knowledge, this was unknown, even for s = 1. When k is infinite, we have
a stronger version, not covered by Theorems 1.1 and 1.2. Let k denote an algebraic
closure of k.

3A field K is PAC if every curve over K has infinitely many K-rational points. The first
examples of PAC fields were ultraproducts of finite fields.
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Theorem 1.4. Assume n � 2 and k is an infinite field. Let A,B ∈ k[x] be two
nonzero relatively prime polynomials, and let Irrn(k,A,B) be the set of polyno-
mials M ∈ k[x] such that A + BM is irreducible in k[x]. For every d ∈ (N∗)n,
Irrn(k,A,B) contains a nonempty Zariski open subset of Polk,n,d(k).

1.4. The Goldbach problem. The analog of the Goldbach conjecture for a poly-
nomial ring R[x] is that every nonconstant polynomialQ ∈ R[x] is the sum of two ir-
reducible polynomials F,G ∈ R[x] with deg(F ) � deg(Q) (and so deg(G) � deg(Q),
too).4 Pollack [Pol11] showed it in the 1-variable case when R is a Noetherian inte-
gral domain with infinitely many maximal ideals, or, if R = S[u] with S an integral
domain. His method relies on a clever use of the Eisenstein criterion.

Finding Goldbach decompositions for Q ∈ R[x] (n � 1) corresponds to the
special situation of the degree 1 case of the Schinzel hypothesis for which P =
{P1, P2} with P1 = −y and P2 = y +Q. We obtain this result.

Corollary 1.5. Let R be a ring as in Theorem 1.1. Every nonconstant poly-
nomial Q ∈ R[x] is the sum of two irreducible polynomials F,G ∈ R[x] with F =

a+ bxd1
1 · · ·xdn

n (a, b ∈ R) a binomial of degree d1 + · · ·+ dn � deg(Q).

One can even take d1 + · · · + dn = 1 when R = K is a Hilbertian field, or
when n � 2 and R = K is an infinite field (the latter was already known from
[BDN09, Corollary 4.3(2)]). On the other hand, the Goldbach conjecture fails for
F2[x] and Q(x) = x2 + x (note that x2 + x + 1 is the only irreducible polynomial
in F2[x] of degree 2). From Corollary 1.5, however, it holds true for Fq[x, y] if
condition deg(F ) � deg(Q) is replaced by degx(F ) � degx(Q).

1.5. Spectra. The following result uses Theorem 1.3 as a main ingredient.

Corollary 1.6. Assume that n � 2 and k is an arbitrary field. Let S ⊂ k be a finite
subset, let a0 ∈ k \ S, separable over k and let V ∈ k[x] be a nonzero polynomial.
Then, for all sufficiently large integers d1, . . . , dn (larger than some d0 depending
on S, a0, V ), there is a polynomial U ∈ k[x] such that:

(a) U(x)− aV (x) is reducible in k[x] for every a ∈ S,
(b) U(x)− a0V (x) is irreducible in k(a0)[x] of degree max(deg(U), deg(V )),
(c) degxi

(U) = di, i = 1, . . . , n.

If S �= k, e.g., if k is infinite, a0 can be chosen in k itself.
A more precise version of Corollary 1.6 shows that one can even prescribe all

irreducible factors but one of each polynomial U(x)− aV (x), a ∈ S, provided that
these factors satisfy some standard condition (Corollary 5.8).

If k is algebraically closed, the irreducibility condition (b) implies that the ra-
tional function U/V is indecomposable [Bod08, Theorem 2.2]; “indecomposable”
means that U/V cannot be written h ◦ H with h ∈ k(u) and H ∈ k(x) with
deg(h) � 2. The set of all a ∈ k such that U(x) − aV (x) is reducible in k[x] is
called the spectrum of U/V , and the indecomposability condition is equivalent to
the spectrum being finite. Corollary 1.6 rephrases to conclude that given S and
V as above, indecomposable rational functions U/V ∈ k(x) exist with a spectrum

4If primes are considered up to units (as they are for us), the original Goldbach conjecture is
that every even integer m such that |m| > 2 is the sum of two primes p and q with max(|p|, |q|) �
|m|. In our polynomial analog, the degree replaces the absolute value and degQ > 0 replaces
m �= 0, 1,−1. On the other hand, the polynomial analog no longer has an additional restriction
corresponding to m being even and different from ±2.
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containing S and satisfying (c). See [Naj04], [Naj05] for the special case V = 1 and
[BDN17, §3.1.1] for further results.

Final note. The original Schinzel hypothesis has also appeared in arithmetic ge-
ometry, notably around the question of whether, for appropriate varieties over a
number field k, the Brauer–Manin obstruction is the only obstruction to the Hasse
principle: if rational points exist locally (over all completions of k), they should ex-
ist globally (over k). In 1979, Colliot-Thélène and Sansuc [CTS82] noticed that this
is true for a large family of conic bundle surfaces over P1

Q if one assumes Schinzel’s
hypothesis. This conjectural statement has since become a working hypothesis of
the area. See, for example, [HW16] for some recent developments. It could be in-
teresting to investigate the potential use of our polynomial version of the Schinzel
hypothesis to some similar questions over other fields k than number fields, like
rational function fields.

This paper is organized as follows. The strategy is explained in Section 2. Section
3 is devoted to the situation that R = k[x] with n � 2 and k is an infinite field, for
which geometric techniques can be used; Theorem 1.4 is proved. Section 4 builds
up the Hilbert tools involved in the proofs of the other main results from Section 1;
an introduction to this contribution to the Hilbertian field theory is already given
in Section 2.3. The main results from Section 1, excluding Theorem 1.4, are finally
proved in Section 5.

2. General strategy

Throughout the paper, R is a UFD with fraction field K. Recall that a poly-
nomial with coefficients in R is said to be primitive w.r.t. R if its coefficients are
relatively prime in R.

All indeterminates are algebraically independent over K.
Let x = (x1, . . . , xn) (n � 1) and λ = (λ0, λ1, . . . , λ�) (� � 1) be two tuples of

indeterminates, and let Q = (Q0, Q1, . . . , Q�) with Q0 = 1 be an (� + 1)-tuple of

nonzero polynomials in R[x], distinct up to multiplicative constants in K×. Set

M(λ, x) =
�∑

i=0

λiQi(x).

Consider a set P = {P1, . . . , Ps} of s polynomials

Pi(x, y) = Piρi
(x)yρi + · · ·+ Pi1(x)y + Pi0(x),

irreducible in R[x, y] and of degree ρi � 1 in y, i = 1, . . . , s. Each polynomial
Pi(x, y) is irreducible in K(x)[y] and is primitive w.r.t. R[x].

Finally, set, for i = 1, . . . , s,

Fi(λ, x) = Pi(x,M(λ, x)) = Pi

(
x,

�∑
j=0

λjQj(x)

)
.

In the case ρi = 1, i.e., Pi = Ai(x) +Bi(x)y, the polynomial Fi rewrites

Fi(λ, x) = Ai(x) +Bi(x)

⎛⎝ �∑
j=0

λjQj(x)

⎞⎠ .
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We will follow a specialization approach: for some special values λ∗
0, . . . , λ

∗
� in

R of λ0, , . . . , λ�, the corresponding polynomials Fi(λ
∗, x) = Pi(x,M(λ∗, x)) will

be shown to be irreducible in R[x], i = 1, . . . , s. The first step is to check the
irreducibility of the polynomials before specialization.

2.1. The preliminary irreducibility lemma.

Lemma 2.1.

(a) Each polynomial Fi(λ, x) is irreducible in R[λ, x] and of degree � 1 in x.
Furthermore, if degy(Pi) = 1, Fi(λ, x) is irreducible in K[λ, x].

(b) If R is infinite and Π =
∏s

i=1 Pi, there is no irreducible polynomial p ∈ R[x]
dividing all polynomials Π(x,M(x)) with M ∈ R[x].

Note that (b) fails if R is finite: with R = F2 and P = {y, y+1}, the polynomial
x divides all polynomials M(x)(M(x) + 1) (M ∈ F2[x]).

Proof.
(a) Fix an integer i ∈ {1, . . . , s}. By assumption, the polynomial Pi(x, λ0) is

irreducible in R[x, λ0]. It is also irreducible in the bigger ring R[x, λ]. Consider
the ring automorphism R[x, λ] → R[x, λ] that is the identity on R[x, λ1, . . . , λ�]

and maps λ0 to the polynomial λ0 +
∑�

i=1 λiQi(x). The polynomial Fi(λ, x) is the
image of Pi(x, λ0) by this isomorphism. Hence it is irreducible in R[x, λ].

To see that degx(Fi) � 1, write Fi as a polynomial in λ1. The leading coefficient

is Piρi
(x)Q1(x)

ρi ; it is of positive degree in x since Q1 is by assumption. This
proves that degx(Fi) � 1.

In the case ρi = 1, irreducibility of Fi(λ, x) in K[x, λ] follows from the above
case, applied with R taken to be K, and the fact that the polynomial Pi(x, y) =
Ai(x) + Bi(x)y is irreducible in K[x, y]. Namely, Pi(x, y) is of degree 1 in y and
is primitive w.r.t. K[x]. Primitivity follows from the fact that, as Ai and Bi are
relatively prime in R[x], then

- they are relatively prime in K[x] (an application of Gauss’s lemma) and
- they are relatively prime in K[x]. For lack of reference for this last point, we

provide a quick argument below.
Prove by induction on n that for every two fields K, L with K ⊂ L, for ev-

ery nonzero A,B ∈ K[x], if A and B have a common divisor D ∈ L[x] with
deg(D) > 0, then they have a common divisor C ∈ K[x] with deg(C) > 0. The
case n = 1 follows from the Bézout theorem. Then, for n � 2, if D is as in the
claim, we may assume that deg(x2,...,xn)(D) > 0. Observe then that D divides

A and B in L(x1)[x2, . . . , xn]. By induction A and B have a common divisor
C ∈ K(x1)[x2, . . . , xn] with deg(x2,...,xn)(C) > 0. Using Gauss’s lemma, one easily

constructs a polynomial C0 = c(x1)C ∈ K[x1][x2, . . . , xn] (with c(x1) ∈ K[x1])
dividing both A and B in K[x1][x2, . . . , xn].

(b) If the claim is false, there is an irreducible polynomial p ∈ R[x] such that
Π(x,M(x)) = 0 in the quotient ring R[x]/(p(x)) for all M ∈ R[x]. But R[x]/(p(x))
is an integral domain, and it is infinite. Indeed, if p is nonconstant, say d =

degx1
(p) � 1, the elements

∑d−1
i=0 rix

i
1 with r0, . . . , rd−1 ∈ R are infinitely many

different elements in R[x]/(p(x)); and if p ∈ R, then the quotient ring is R/(p)[x],
which is infinite, too. Conclude that the polynomial Π(x, y), which has infinitely
many roots in R[x]/(p(x)), is zero in the ring (R[x]/(p(x))[y]. As this ring is



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

THE SCHINZEL HYPOTHESIS FOR POLYNOMIALS 8345

an integral domain, there is an index i ∈ {1, . . . , s} such that Pi(x, y) is zero in
(R[x]/(p(x))[y]. This contradicts Pi(x, y) being primitive w.r.t. R[x]. �

2.2. The specialization stage. Denote the set of polynomials F1, . . . , Fs by F
and consider the subset

HR(F ) ⊂ R�+1,

of all (�+ 1)-tuples λ∗ = (λ∗
0, . . . , λ

∗
� ) such that Fi(λ

∗, x) is irreducible in R[x], for
each i = 1, . . . , s. Via the correspondence

(λ∗
0, . . . , λ

∗
� ) �→

�∑
j=0

λ∗
jQj(x),

the set HR(F ) can be equivalently viewed as the set of all polynomials of the form

m(x) =
∑�

j=0mjQj(x) with m0, . . . ,m� ∈ R such that Pi(x,m(x)) is irreducible

in R[x], i = 1, . . . , s.
Theorems 1.1–1.4 are results about the set HR(F ) in the following special case

of our situation: for a given d = (d1, . . . , dn) ∈ (N∗)n, the Qi are all the monic
monomials Q0, Q1, . . . , QNd

in PolR,n,d; then the polynomial

Md(λ, x) =

Nd∑
i=0

λiQi(x)

is the generic polynomial in n variables of ith partial degree di, i = 1, . . . , n.
The bulk of the method is to obtain some specialization results that show that

HR(F ) is Zariski-dense in R�+1 (or even contains a nonempty Zariski open subset in
the situation of Theorem 1.4). For example, anticipating the reminder on Hilbertian
fields in Section 4.1, we can immediately establish this statement, already alluded
to in Section 1.

Addendum to Theorem 1.1. The set Irrn,d(R,P ) is Zariski-dense in PolR,n,d

for every d ∈ (N∗)n, in each of these two situations:
(a) R = K is a strongly Hilbertian field,
(b) R = K is a Hilbertian field and degy(P1) = · · · = degy(Ps) = 1.

Proof. By definition, HK(F ) is a Hilbert subset. Furthermore, from Lemma 5.6,
it contains a separable Hilbert subset if degy(P1) = · · · = degy(Ps) = 1. It follows

from the definitions that HK(F ) is Zariski-dense in KNd+1 in both situations. One
does not even need to assume that d1 + · · · + dn � max1�i�s degx(Pi) + 2; the
statement holds, for example, for d1 = · · · = dn = 1. �

2.3. The ring situation. To make the strategy work over the ring R, with R
possibly different from K, the challenge is to further guarantee that:

- the Hilbert subset HK(F ) contains (�+ 1)-tuples with coordinates in R,
- for some of these (�+1)-tuples λ∗, the corresponding polynomials Fi(λ

∗, x) are
primitive w.r.t. R, and so irreducible in R[x].

We already noted (in Section 1.1) that this is not possible, even with R = Z,
if F1(λ, x), . . . , Fs(λ, x) are arbitrary irreducible polynomials in R[λ, x]. We will,
however, manage to achieve irreducibility over R for our more special polynomials
Fi(λ, x) = Pi(x,M(λ, x)).
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For R = k[u1, . . . , ur] (r � 1), polynomials in R[x] can be viewed as polynomials
in at least two variables over the field k. We explain in Section 3 how geometric
specialization techniques can be used, if k is also infinite.

For more general rings R, more arithmetic specialization tools are needed, which
we develop in Section 4. We expand the notion of a Hilbertian ring introduced in
[FJ08, §13.4]. The defining property is that, for separable polynomials F (λ, x) in
the one variable x, tuples (λ∗

1, . . . , λ
∗
r) can be found with coordinates in the ring R

and satisfying the specialization property over K.
Our approach can be summarized as follows. It may be of interest for the sole

sake of the Hilbertian field theory.
(Sections 4 and 5) Assume that K is of characteristic 0, or K is of characteristic

p > 0 and imperfect (the imperfectness assumption).
(a) We extend the property of Hilbertian rings to all irreducible polynomials

F (λ, x) (not just the separable ones F (λ, x)), and show, in fact, a stronger version:
λ∗
1, . . . , λ

∗
r can be chosen pairwise relatively prime (Proposition 4.2); and for R =

k[u], their degrees in u can be prescribed off a finite range (Theorem 4.8).
(b) We show that if K is a field with the product formula, then R is a Hilbertian

ring (Theorem 4.6); this improves on [FJ08, Prop.13.4.1], where the assumption is
that R is finitely generated over Z, or over k[u] for some field k.

(c) For R both a UFD and a Hilbertian ring, we show that our polynomials
F (λ, x), due to their structure, satisfy the specialization property over the ring R,
and we prove Theorem 1.1 in this situation (Section 5.1). The specific argument
for the primitivity point appears in this proof.

The imperfectness assumption relates to a classical subtlety in positive cha-
racteristic. There are two notions of Hilbertian fields, depending on whether the
specialization property is requested for all irreducible polynomials or only for the
separable ones. We follow [FJ08] and use the name Hilbertian for the weaker (the
latter), and we say strongly Hilbertian for the stronger (precise definitions are in
Section 4.1). They are equivalent under the imperfectness assumption ([Uch80] or
[FJ08, Proposition 12.4.3]).

3. Towards Theorem 1.4–A geometric argument

Lemma 3.1 is our specialization tool here. Based on results of Bertini, Krull and
Noether, it is in the same vein as those from [BDN09], [BDN17]. We prove it below,
and then deduce Theorem 1.4.

Notation is as in Section 2. Consider the special case of the general situation
from Section 2 for which s = 1 = ρ1. One degree 1 polynomial P (x, y) is given:
P (x, y) = A(x)+B(x)y with A,B ∈ R[x] two nonzero relatively prime polynomials,
or P (x, y) = y. We then have:

F (λ, x) = A(x) +B(x)
(∑�

j=0 λjQj(x)
)

= A(x) + λ0B(x) + λ1B(x)Q1(x) + · · ·+ λ�B(x)Q�(x).

Lemma 3.1. Assume that n � 2, R = K is an algebraically closed field, and the
following holds (which implies � � 1):

(a) there is an index i0 ∈ {1, . . . , �} such that
- deg(Qi0) �≡ 0 modulo p if char(K) = p > 0,
- deg(Qi0) �= 0 if char(K) = 0,

(b) there is no polynomial χ ∈ K[x] such that A,B,Q1, . . . , Q� ∈ K[χ].
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Then the set HK(F ) of all (�+ 1)-tuples λ∗ = (λ∗
0, . . . , λ

∗
� ) such that F (λ∗, x) is

irreducible in K[x] contains a nonempty Zariski open subset of K�+1.

Remark 3.2. Assumptions (a) and (b) can probably be improved, but the following
examples show they cannot be totally removed. In each of them, F (λ, x) is reducible

in K(λ)[x] and every nontrivial factorization yields a Zariski-dense subset of λ∗ ∈
K�+1 such that F (λ∗, x) is reducible in K[x].

• If A,B,Q1, . . . , Q� ∈ K[χ] for some χ ∈ K[x], one can write F (λ, x) = h(χ)

with h ∈ K(λ)[u]. If deg(h) � 2, h is reducible, and so is F (λ, x) in K(λ)[x].
• For A = x2

1, B = −x2
2, � = 1, and Q0 = Q1 = 1, we have

F (λ, x) = x2
1 − λ0x

2
2 − λ1x

2
2 = (x1 −

√
λ0 + λ1x2)(x1 +

√
λ0 + λ1x2).

• If char(K) = p > 0, for A = xp
1, B = xp

2, � = 1, Q0 = 1, Q1 = xp
2, we have

F (λ, x) = xp
1 + λ0x

p
2 + λ1x

2p
2 = (x1 + λ

1/p
0 x2 + λ

1/p
1 x2

2)
p.

Proof of Lemma 3.1. Assume that the conclusion of Lemma 3.1 is false. From
the Bertini–Noether theorem [FJ08, Prop. 9.4.3], F (λ, x) is reducible in K(λ)[x].
Clearly then polynomials F (x, λ∗) are reducible in K[x] for all λ∗ ∈ K�+1 such
that deg(F (x, λ∗)) = degx(F ). The Bertini–Krull theorem [Sch00, Theorem 37]
then yields that one of the following conditions holds:

(1) char(K) = p > 0 and F (λ, x) ∈ K[λ, xp] with xp = (xp
1, . . . , x

p
n),

(2) there exist φ, ψ ∈ K[x] with degx(F ) > max(deg(φ), deg(ψ)) satisfying the
following: there is an integer δ � 1 and �+2 polynomials H,H0, H1, . . . , H�

∈ K[u, v] homogeneous of degree δ such that⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

A(x) = H(φ(x), ψ(x)) =
∑δ

i=0 hiφ(x)
iψ(x)δ−i,

B(x) = H0(φ(x), ψ(x)) =
∑δ

i=0 h0iφ(x)
iψ(x)δ−i,

BQ1(x) = H1(φ(x), ψ(x)) =
∑δ

i=0 h1iφ(x)
iψ(x)δ−i,

...

BQ�(x) = H�(φ(x), ψ(x)) =
∑δ

i=0 h�iφ(x)
iψ(x)δ−i.

The rest of the proof consists in ruling out both conditions (1) and (2).
For condition (1), this readily follows from the assumption on deg(Qi0): if

char(k) = p > 0, the polynomials B and BQi0 cannot both be in K[xp].
Assume condition (2) holds. Note that the polynomials φ and ψ are relatively

prime in K[x] as a consequence of A,B being relatively prime in K[x]. We claim
that the two conditions {

B(x) = H0(φ(x), ψ(x)),
BQi0(x) = Hi0(φ(x), ψ(x))

lead to this conclusion: there is (β, γ) ∈ K2 such that βφ(x)+γψ(x) = 1. We show
it by induction on the common degree δ of H0 and Hi0 .

For δ = 1, write B = aφ + bψ and BQi0 = a′φ + b′ψ with a, b, a′, b′ ∈ K.
If deg(B) = 0, then aφ + bψ ∈ K \ {0} and the claim is established. Assume
deg(B) > 0. If ab′ − a′b �= 0, any irreducible factor π of B divides aφ + bψ and
a′φ + b′ψ, hence divides both φ and ψ in K[x], which contradicts φ and ψ being
relatively prime. As there is at least one such factor π, we have (a, b) = κ(a′, b′)
for some nonzero κ ∈ K. It follows that B = κBQi0 and deg(Qi0) = 0. This
contradicts our assumption. Hence the claim is established for δ = 1.
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Assume the claim is proved for δ � 1 and that{
B =

∏δ+1
j=1(ajφ+ bjψ),

BQi0 =
∏δ+1

j=1(a
′
jφ+ b′jψ)

for some (δ + 1)-tuples ((a1, b1), . . . , (aδ+1, bδ+1)) and ((a′1, b
′
1), . . . , (a

′
δ+1, b

′
δ+1))

with components in K2.
If deg(B) = 0, all polynomials ajφ+ bjψ, j = 1, . . . , δ+1, are of degree 0. Hence

there exists (β, γ) ∈ K2 such that βφ + γψ = 1. Assume deg(B) > 0. As above
in the case δ = 1, use an irreducible factor of B in K[x] to conclude that there
exist two indices j, j′ such that this irreducible factor divides both ajφ+ bjψ and
a′j′φ + b′j′ψ. We may assume that j = j′ = δ + 1. As above in the case δ = 1, it

follows from φ, ψ relatively prime in K[x] that

aδ+1φ+ bδ+1ψ = κ(a′δ+1φ+ b′δ+1ψ)

for some nonzero κ ∈ K. Consider the polynomial B1 = B/(aδ+1φ+ bδ+1ψ). It is
nonzero and we have {

B1 =
∏δ

j=1(ajφ+ bjψ),

κB1Qi0 =
∏δ

j=1(a
′
jφ+ b′jψ).

From the induction hypothesis, applied to B1 and κB1Qi0 , there is (β, γ) ∈ K2

such that βφ+ γψ = 1. This completes the proof of our claim.
Fix (β, γ) ∈ K2 such that βφ+ γψ = 1. Pick (a, b) ∈ K2 such that aγ − βb �= 0,

and set χ = aφ + bψ. We have deg(χ) > 0. Then Kφ + Kψ = Kχ + K, and
so A,B,BQ1, . . . , BQ� are in K[χ]. It follows that A,B,Q1, . . . , Q� are in K[χ],
too. Here is an argument. Fix i ∈ {1, . . . , �}. Since B,BQi ∈ K[χ], Qi writes
as Qi = (p/q)(χ) for some p, q ∈ K[t] relatively prime. But then there exists
u, v ∈ K[t] such that u(χ)p(χ) + v(χ)q(χ) = 1. Since q(χ) divides p(χ) in K[x], we
have deg(q) = 0. Hence Qi ∈ K[χ]. �

Proof of Theorem 1.4. Assume that n � 2, and then fix an infinite field k, two
nonzero relatively prime polynomials A, B in k[x], and an n-tuple d ∈ (N∗)n.
As explained in Section 2, consider the special case of Lemma 3.1 for which the
polynomials Qi are all the monomials Q0, . . . , QNd

in Polk,n,d (with Q0 = 1).

We then have F (λ, x) = A(x) + B(x)Md(λ, x) with Md =
∑Nd

i=0 λiQi the generic
polynomial in n variables of partial degree di in xi, i = 1, . . . , n.

Lemma 3.1 concludes that Hk(F ) = Irrn(k,A,B) ∩ Polk,n,d(k) contains a

nonempty Zariski open subset of Polk,n,d(k). As k is infinite, the set Irrn(k,A,B)∩
Polk,n,d(k) also contains a nonempty Zariski open subset of Polk,n,d(k). This proves
Theorem 1.4. �

Remark 3.3.
(a) If k is finite, however, the nonemptiness of Irrn(k,A,B) cannot be guaran-

teed at this stage: each finite set Irrn(k,A,B) ∩ Polk,n,d(k) (d ∈ (N∗)n) could be
covered by a hypersurface. For infinite fields, Theorem 1.4 clearly covers Theorem
1.3. We will use a different method, in Section 4, to prove Theorem 1.3 for finite
fields (which will also reprove the infinite case).

(b) Lemma 3.1 can be used in other situations. For example, let A,B,C ∈ K[x]
be nonzero polynomials, with A, B relatively prime and C ∈ K[x] distinct from
A, B, up to multiplicative constants in K×. Assume hypotheses (a) and (b) of
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Lemma 3.1, respectively, hold for Qi0 = C and for A,B,C. Lemma 3.1 shows that
the set of (λ, μ) ∈ K2 such that A + B(λC + μ) is irreducible in K[x] contains a
nonempty Zariski open subset of A2

K .

4. Hilbertian rings

This section introduces the notion of the Hilbertian ring and establishes some
specialization tools that will be important ingredients of the proofs of the main
theorems in Section 5.

4.1. Basics from the Hilbertian field theory. We recall the basic definitions
and refer to chapters 12 and 13 of [FJ08] for more. Other classical references include
[Sch82], [Sch00], [Lan83].

Consider a field K and two tuples λ = (λ1, . . . , λr) and x = (x1, . . . , xn) (r � 1,
n � 1) of indeterminates. Given m polynomials f1(λ, x), . . . , fm(λ, x) (m � 1)
in x with coefficients in K(λ), irreducible in the ring K(λ)[x] and a polynomial
g ∈ K[λ], g �= 0, consider the set

HK(f1, . . . , fm; g) =

⎧⎨⎩λ∗ ∈ Kr

∣∣∣∣∣∣
fi(λ

∗, x) irreducible in K[x]
for each i = 1, . . . ,m,
and g(λ∗) �= 0

⎫⎬⎭ .

Call HK(f1, . . . , fm; g) a Hilbert subset of Kr. If, in addition, n = 1 and each fi
is separable in x (i.e., fi has no multiple root in K(λ)), call HK(f1, . . . , fm; g) a
separable Hilbert subset of Kr. The field K is called Hilbertian if every separable
Hilbert subset of Kr is nonempty and strongly Hilbertian if every Hilbert subset of
Kr is nonempty (r � 1). Equivalently, “nonempty” can be replaced by “Zariski-
dense in Kr” in the definitions. As recalled earlier, a field K is strongly Hilbertian
if and only if it is Hilbertian and the imperfectness condition holds: K is imperfect
if of characteristic p > 0.

Classical Hilbertian fields include the field Q, the rational function fields Fq(u)
(with u some indeterminate) and all of their finitely generated extensions [FJ08,
Theorem 13.4.2], every abelian extension of Q [FJ08, Theorem 16.11.3], and fields
k((u1, . . . , ur)) of formal power series in r � 2 variables over a field k [FJ08, The-
orem 15.4.6]. All of them are also strongly Hilbertian. Algebraically closed fields,
the fields R, Qp of real, of p-adic numbers, more generally Henselian fields, are non-
Hilbertian. The fraction field of a UFD R need not be Hilbertian (take R = Zp),
even if R has infinitely many distinct prime ideals: a counterexample is given in
[FJ08, Example 15.5.8].

Fields with the product formula provide other examples of Hilbertian fields. Re-
call from [FJ08, §15.3] that a nonempty set S of primes p of K, with associated
absolute value | · |p, is said to satisfy the product formula if for each p ∈ S, there
exists βp > 0 such that:

(1) For each a ∈ K×, the set {p ∈ S| |a|p �= 1} is finite and
∏
p∈S

|a|βp

p = 1.

In this case call K a field with the product formula. From a result of Weissauer,
such fields are Hilbertian [FJ08, Theorem 15.3.3]. The fields Q, k(λ1, . . . , λr) with k
any field and r � 1, and their finite extensions, are fields with the product formula.
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4.2. Hilbertian ring. The following definition is given in [FJ08, §13.4].

Definition 4.1. An integral domain R with fraction field K is said to be a
Hilbertian ring if every separable Hilbert subset of Kr (r � 1) contains r-tuples
λ∗ = (λ∗

1, . . . , λ
∗
r) with coordinates in R.

Since Zariski open subsets of Hilbert subsets remain Hilbert subsets, it is equiv-
alent to require that a Zariski-dense subset of tuples λ∗ exists in Definition 4.1.
Under the imperfectness assumption, a better property holds for Hilbertian rings,
and extends to arbitrary Hilberts sets.

Proposition 4.2. Let R be an integral domain such that the fraction field K is
imperfect if of characteristic p > 0. The following are equivalent:

(i) R is a Hilbertian ring.
(ii) Every separable Hilbert subset of K contains elements λ∗ ∈ R.
(iii) For every nonzero λ∗

0 ∈ R and every a = (a1, . . . , ar) ∈ Rr, every Hilbert
subset of Kr (r � 1) contains r-tuples λ∗ = (λ∗

1, . . . , λ
∗
r) with nonzero coordinates

in R and such that λ∗
i ≡ ai[mod λ∗

0 · · ·λ∗
i−1], i = 1, . . . , r.

Clearly, it suffices to prove (ii) ⇒ (iii). This is done in Section 4.4 by reducing
the number of variables to reach the situation r = n = 1 of condition (ii). We recall
a classical tool.

4.3. The Kronecker substitution. Given an arbitrary field K, an irreducible
polynomial f ∈ K[λ, y], of degree � 1 in y = (y1, . . . , ym), and an integer D >
max1�i�m degyi

(f), the Kronecker substitution is the map

SD : PolK(λ),m,D → PolK(λ),1,Dm with D = (D, . . . , D),

deriving from the substitution of yD
i−1

for yi, i = 1, . . . ,m, and leaving the coeffi-
cients in the field K(λ) unchanged.

Proposition 4.3. There exist a finite set S(f) of irreducible polynomials g ∈
K[λ][y] of degree � 1 in y and a nonzero polynomial ϕ ∈ K[λ] such that the Hilbert
subset HK(f) ⊂ Kr contains the Hilbert subset

HK(S(f);ϕ).
Furthermore, the finite set S(f) can be taken to be the set of irreducible divisors of
SD(f) in K[λ][y].

Proof. See [FJ08, Lemma 12.1.3]. The statement is only stated for λ = T but
the proof carries over to our more general situation by merely changing the single
variable T for an r-tuple λ = (λ1, . . . , λr) of variables. �

We will also use the following observation several times.

Lemma 4.4. Let R be a Hilbertian ring with a fraction field K of characteristic
p > 0 and imperfect. There are infinitely many a ∈ R that are different modulo
Kp.

Proof. Let R be a Hilbertian ring. Clearly K is Hilbertian, in particular, it is
infinite. Assume further that K is of characteristic p > 0 and imperfect. Then
K �= Kp and K/Kp is a nonzero vector space over the infinite field Kp. Thus
K/Kp is infinite. It follows that if h ∈ N is an integer, one can find h+ 1 elements
k1, . . . , kh+1 of K that are different modulo Kp. If δ ∈ R is a common denominator
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of k1, . . . , kh+1, then δk1, . . . , δkh+1 are elements of R that are distinct modulo Kp.
The conclusion follows. �

4.4. Proof of Proposition 4.2. Fix an integral domain R satisfying the imper-
fectness assumption and assume that condition (ii) holds. Let λ∗

0 ∈ R \ {0}, let
a = (a1, . . . , ar) ∈ Rr, and let H ⊂ Kr be a Hilbert subset.

4.4.1. First reductions. Consider the Hilbert subset Hλ∗
0 ,a1

deduced from H by
substituting λ∗

0λ1 + a1 to λ1 in the polynomials involved in H. This first reduction
is used at the end of the proof in Section 4.4.4.

From the standard reduction Lemma 12.1.1 from [FJ08], the Hilbert subset
Hλ∗

0 ,a1
contains a Hilbert subset of the form

HK(f1, . . . , fm; g) =

⎧⎨⎩λ∗ ∈ Kr

∣∣∣∣∣∣
fi(λ

∗, x) irreducible in K[x]
for each i = 1, . . . ,m,

g(λ∗) �= 0

⎫⎬⎭
with f1, . . . , fm irreducible polynomials in K[λ, x], of degree at least 1 in x, and
g ∈ K[λ], g �= 0.

For i = 1, . . . ,m, view fi as a polynomial in y = (λ2, . . . , λr, x1, . . . , xn) with
coefficients in K[λ1]. From Proposition 4.3, there is a finite set S(fi) of irre-
ducible polynomials g ∈ K[λ1][y] of degree � 1 in y and a nonzero polynomial
ϕi ∈ K[λ1] such that the Hilbert subset HK(fi) ⊂ K contains the Hilbert subset
HK(S(fi);ϕi) ⊂ K.

Consider the Hilbert subset

HK(S(f1) ∪ · · · ∪ S(fm);ϕ1 · · ·ϕm) ⊂ K.

From the standard reduction Lemma 12.1.4 from [FJ08], this Hilbert subset contains
a Hilbert subset of the form

HK(g1, . . . , gν) =

{
λ∗
1 ∈ K

∣∣∣∣gi(λ∗
1, y) irreducible in K[y]

for each i = 1, . . . , ν

}
with g1, . . . , gν irreducible polynomials in K[λ1, y], monic, and of degree at least 2
in y.

4.4.2. 1st case: g1, . . . , gν are separable in y. From assumption (ii), there is an
element λ∗

1 ∈ R \ {−a1/λ
∗
0} such that, for each i = 1, . . . , ν, gi(λ

∗
1, y) is irreducible

in K[y] and degx(fi(λ
∗
1, λ2, . . . , λr, x)) � 1. We refer to Section 4.4.4 for the end of

the proof which is common to 1st and 2nd cases.

4.4.3. 2nd case: g1, . . . , gν are not all separable in y. Necessarily K is of charac-
teristic p > 0. The following lemma (which we will use twice) adjusts arguments
from [FJ08, Prop.12.4.3]. For simplicity, set λ = λ1.

Lemma 4.5. Under the 2nd case assumption, for every nonzero λ∗
0 ∈ R, there is a

nonzero b ∈ λ∗
0R with this property: there exist irreducible polynomials Q̃1, . . . , Q̃ν

in K[λ, y], separable, monic of degree � 1 in y such that for all but finitely many

τ ∈ HK(Q̃1, . . . , Q̃ν), τ
p + b is in HK(g1, . . . , gν).

Proof of Lemma 4.5. Assume g1, . . . , g� are not separable in y (with � � 1) and
g�+1, . . . , gν are separable in y. For each i = 1, . . . , �, there exists Qi ∈ K[λ, y]
irreducible, separable, monic, and of degree � 1 in y, and qi a power of p different
from 1 such that gi(λ, y) = Qi(λ, y

qi). Since gi(λ, y) is irreducible in K[λ, y],
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Qi has a coefficient hi ∈ K[λ] which is not a pth power. Choose ai ∈ R with
hi(λ + ai) ∈ Kp[λ] if there exists any, otherwise let ai = 0. Also set Qi = gi for
i = �+ 1, . . . , ν.

Consider the elements a ∈ R from Lemma 4.4. Among the corresponding
elements aλ∗

0 ∈ R, which are also different modulo Kp, there is at least one,

say b = aλ∗
0, such that b ∈ R \

⋃�
i=1(ai + Kp). By [FJ08, Lemma 12.4.2(b)],

hi(λ+ b) /∈ Kp[λ], i = 1, . . . , �.

Consider the polynomials Q̃i(λ, y) = Qi(λ
p + b, y), i = 1, . . . , ν. They are monic

and separable in y. Furthermore, as detailed in Section 12.4 from [FJ08] (and [FJ]
which clarifies the argument), they are irreducible in K[λ, y].

Let τ ∈ HK(Q̃1, . . . , Q̃ν) but not in the set C, finite by [FJ08, Lemma 12.4.2(c)],
of all elements c ∈ R with hi(c

p+b) ∈ Kp for some i = 1, . . . , �. For i = �+1, . . . , ν,

we have Q̃i(τ, y) = gi(τ
p + b, y), and so gi(τ

p + b, y) is irreducible in K[y]. Let
i ∈ {1, . . . , �}. Since τ /∈ C, we have hi(τ

p + b) /∈ Kp. Hence Qi(τ
p + b, y) =

Q̃i(τ, y) /∈ Kp[y]. From the choice of τ , this polynomial is irreducible in K[y]. By
[FJ08, Lemma 12.4.1], we obtain that

Q̃i(τ, y
qi) = Qi(τ

p + b, yqi) = gi(τ
p + b, y)

is irreducible in K[y]. Whence finally: τp + b ∈ HK(g1, . . . , gν). �

Then use the assumption (ii) of Proposition 4.2 to conclude that for the ele-

ment b and the polynomials Q̃1, . . . , Q̃ν given by Lemma 4.5, the Hilbert subset

HK(Q̃1, . . . , Q̃ν) contains infinitely many elements τ ∈ R. Fix one off the finite
list of exceptions in the final sentence of Lemma 4.5 and such that λ∗

1 = τp + b
is different from −a1/λ

∗
0. The element λ∗

1 ∈ R is then in HK(g1, . . . , gν) and
λ∗
0λ

∗
1 + a1 �= 0. Up to excluding finitely many more τ above, we may also assure

that degx(fi(λ
∗
1, λ2, . . . , λr, x)) � 1 (i = 1, . . . , ν). (Here we have only used that

b ∈ R. The possible choice of b in λ∗
0R will be used later (Section 4.6.1).)

4.4.4. End of proof of Proposition 4.2. Applying Proposition 4.3 and taking into
account the first reduction changing H to Hλ∗

0 ,a1
yields in both cases that

there is λ∗
1 ∈ R \ {0} such that λ∗

1 ≡ a1[modλ∗
0], fi(λ

∗
1, λ2, . . . , λr, x) is(2)

irreducible in K[λ2, . . . , λr, x] and is of degree at least 1 in x, i = 1, . . . ,m.

Repeating this argument provides an r-tuple λ∗ = (λ∗
1, . . . , λ

∗
r) in (R\{0})r such

that f1(λ
∗, x), . . . , fm(λ∗, x) are irreducible in K[x] (so λ∗ is in the original Hilbert

subset H) and such that λ∗
i ≡ ai[mod λ∗

0 · · ·λ∗
i−1], i = 1, . . . , r.

4.5. UFD with fraction field with the product formula.

Theorem 4.6. If R is an integral domain such that the fraction field K has the
product formula and is imperfect if of characteristic p > 0, then R is a Hilbertian
ring.

Fix a ring R as in the statement. Theorem 4.6 relies on the following lemma,
whose main ingredient is a result for fields with the product formula. Recall a useful
tool in a field K with a set S of primes p satisfying the product formula. For every
a ∈ K, the (logarithmic) height h(a) of a is defined by

h(a) =
∑
p∈S

βp log(max(1, |a|p)).
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Clearly h(an) = nh(a) (n ∈ N) and h(1/a) = h(a) if a �= 0.

Lemma 4.7. Let f1, . . . , fm be m irreducible polynomials in K(λ)[y]. For all but
finitely many t0 ∈ R, there is a nonzero element a ∈ R with the following property:
if b ∈ R is of height h(b) > 0, the Hilbert subset HK(f1, . . . , fm) contains infinitely
many elements of R of the form t0 + ab� (� > 0).

Proof. [Dèb99, Theorem 3.3] proves the weaker version for which the element a
is only asserted to lie in K. However, the proof can be adjusted so that a ∈ R.
Specifically, the same argument there leads to the stronger conclusion provided that
if K is of characteristic p > 0, infinitely many a ∈ R can be found that are different
modulo Kp. This is the conclusion of Lemma 4.4. �

Proof of Theorem 4.6. We prove condition (ii) from Proposition 4.2. LetH ⊂ K be
a separable Hilbert subset. From Lemmas 12.1.1 and 12.1.4 of [FJ08], the Hilbert
subset H contains a separable Hilbert subset of the form

HK(f1, . . . , fm) =

{
λ∗ ∈ K

∣∣∣∣fi(λ∗, y) irreducible in K[y]
for each i = 1, . . . ,m

}
with f1, . . . , fm irreducible polynomials in K[λ, y], monic, separable and of degree
at least 2 in y.

Pick an element t0 ∈ R that avoids the finite set of exceptions in Lemma 4.7.
Consider an element a ∈ R associated to this t0 in Lemma 4.7. Choose an element
b ∈ R of height h(b) > 0.

Here is an argument showing that such b exist. Fix a prime p ∈ S. Recall that
by definition, the corresponding absolute value is nontrivial [FJ08, §13.3]: there
exists b ∈ K such that |b|p �= 1. One may request that b ∈ R (if | · |p is equal to 1
on R, then so it is on K). From the product formula, there is a prime p0 ∈ S such
that |b|p0

> 1. We have h(b) � log(max(1, |b|p0
)) > 0.

From Lemma 4.7, λ∗
1 = t0 + ab� ∈ R is in the Hilbert subset HK(f1, . . . , fm),

hence in the Hilbert subset H, for infinitely many integers � > 0. �

4.6. Polynomial rings in one variable.

Theorem 4.8. Assume that R = k[u] with k an arbitrary field. Let H be a Hilbert
subset of Kr (r � 1), let λ∗

0 ∈ R be a nonzero element of R, and let d1 � 1 be an
integer. Define p̃ by

p̃ =

{
1 if char(k) = 0 or H is a separable Hilbert subset,
p otherwise.

Denote the subset of H of r-tuples λ∗ = (λ∗
1, . . . , λ

∗
r) ∈ Rr such that λ∗

1 and
λ∗
0λ

∗
2 · · ·λ∗

r are relatively prime in R and max1�i�r deg(λ
∗
i ) = p̃d1 by Hλ∗

0 ,p̃d1
. There

is an integer d0 such that if d1 � d0, the set Hλ∗
0 ,p̃d1

is nonempty.

When R = k[u], statement (iii) from Proposition 4.2 also holds for the Hilbert
subset H: there the congruence conditions are stronger but no control is given on
the degree in u of λ∗

1, . . . , λ
∗
r as in Theorem 4.8.

We divide the proof of Theorem 4.8 into two parts. The situation: one parameter,
one variable, is considered in Section 4.6.1, the general one in Section 4.6.2.
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4.6.1. Proof of Theorem 4.8: situation r = n = 1. We are given a Hilbert subset
H ⊂ K = k(u), a nonzero element λ∗

0 ∈ k[u], an integer d1 � 1, and we need to
find an element λ∗

1 ∈ k[u] such that λ∗
1 ∈ H, λ∗

1 and λ∗
0 are relatively prime, and

deg(λ∗
1) = p̃d1.

From Lemmas 12.1.1 and 12.1.4 from [FJ08], the Hilbert subset H contains a
Hilbert subset of the form

HK(f1, . . . , fm) =

{
λ∗ ∈ K

∣∣∣∣fi(λ∗, y) irreducible in K[y]
for each i = 1, . . . ,m

}
with f1, . . . , fm irreducible polynomials in K[λ, y], monic and of degree at least 2
in y.

We distinguish the two cases corresponding to the definition of p̃.
Separable case: char(k) = 0 or H is a separable Hilbert subset. As n = 1, the

Hilbert subset H is also separable under the assumption char(k) = 0. So we may
assume that the polynomials f1, . . . , fm above are separable in y. We distinguish
two subcases.

- 1st subcase: k is infinite. Use [Lan83, Prop. 4.1 p. 236] to assert that there
exists a nonempty Zariski open subset V ⊂ A2

k such that for all but finitely many
γ ∈ k,

{τ + γ(u− β)d1 ∈ k[u]|(τ, β) ∈ V } ⊂ HK(f1, . . . , fm).

Fix a nonzero γ ∈ k off the finite exceptional list. There are infinitely many
different (τ, β) ∈ V such that no root in k of the polynomial λ∗

0 ∈ k[u] is a root of
τ+γ(u−β)d1 , and so τ+γ(u−β)d1 and λ∗

0 are relatively prime. The corresponding
elements λ∗

1 = τ+γ(u−β)d1 are infinitely many different elements of the set Hλ∗
0 ,d1

.
In this case, one can take d0 = 1.

- 2nd subcase: k is finite. Start with another classical reduction, namely [FJ08,
Lemma 13.1.2], to conclude that there exist polynomials Q1, . . . , Qν in K[λ, y],
irreducible in K[λ, y], monic and separable in y, of degree � 2 in y, and such that
the Hilbert subset HK(f1, . . . , fm) contains the set

H ′
K(Q1, . . . , Qν) =

{
λ∗ ∈ K

∣∣∣∣Qi(λ
∗, y) has no root in K

for each i = 1, . . . , ν

}
.

Consider the set {pi|i ∈ I} of irreducible factors of the given polynomial λ∗
0 ∈

k[u]; view them as primes of K. Apply [FJ08, Lemma 13.3.4] to assert that, for
each j = 1, . . . , ν, there are infinitely primes pj of K such that there is an apj

∈ R
with this property: if a ∈ R satisfies a ≡ apj

mod pj , then Qj(a, v) �= 0 for every
v ∈ K. For each j = 1, . . . , ν, pick one such prime pj that is different from all
primes pi with i ∈ I.

Denote the ideal (
∏ν

j=1 pj)(
∏

i∈I pi) ⊂ R by I. From the Chinese Remainder
Theorem, there exists a0 ∈ R such that every a ∈ a0 + I satisfies{

a ≡ apj
mod pj for j = 1, . . . , ν,

a ≡ 1 mod pi for i ∈ I.

Consider such an a and rename it λ∗
1. It follows from the first condition that

λ∗
1 ∈ H ′

K(Q1, . . . , Qν), and so λ∗
1 ∈ HK(f1, . . . , fm) ⊂ H. It follows from the second

condition that λ∗
1 �≡ 0 mod pi for every i ∈ I. Hence λ∗

1 and λ∗
0 are relatively prime.

Finally, when λ∗
1 ranges over a0 + I, deg(λ∗

1) assumes all but finitely many values
in N. Therefore there is an integer d0 such that Hλ∗

0 ,d1
�= ∅ for every d1 � d0.
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2nd case: char(k) = p > 0 and H is not a separable Hilbert subset. Not
all of the polynomials f1, . . . , fm are separable in y. Proceed as in Section 4.4.3.
From Lemma 4.5, there is a nonzero b ∈ λ∗

0R and some irreducible polynomials

Q̃1, . . . , Q̃m in K[λ, y], separable, monic of degree � 1 in y such that for all but

finitely many τ ∈ HK(Q̃1, . . . , Q̃m), τp + b is in HK(f1, . . . , fm).
From the separable case of the current proof, there is an integer d0 � 1 with the

following property: the Hilbert subset HK(Q̃1, . . . , Q̃ν) contains infinitely many
elements τ ∈ R such that τ and λ∗

0 are relatively prime and deg(τ ) = d1. Fix
one not in the finite list of exceptions in the final sentence of Lemma 4.5 and set
λ∗
1 = τp + b. We then have λ∗

1 ∈ HK(f1, . . . , fm). Furthermore, λ∗
1 and λ∗

0 are
relatively prime in R. Finally, assuming that d0 is also larger than deg(b), we have
deg(λ∗

1) = pd1 if d1 � d0, thus finally proving that λ∗
1 ∈ Hλ∗

0 ,pd1
.

4.6.2. Proof of Theorem 4.8: situation r � 1, n � 1. As in Section 4.6.1 we distin-
guish two cases according to the definition of p̃.

Separable case: H is a separable Hilbert subset (in particular, n = 1). From
Lemma 12.1.1 and Lemma 12.1.4 from [FJ08], the separable Hilbert subset H ⊂ Kr

contains a Hilbert subset of the form

HK(f1, . . . , fm) =

{
λ∗ ∈ Kr

∣∣∣∣fi(λ∗, x) irreducible in K[x]
for each i = 1, . . . ,m

}
with f1, . . . , fm irreducible polynomials in K[λ, x], separable, monic and of degree
at least 2 in x.

Set K = K(λ3, . . . , λr) (with K = K if r = 2) and regard f1, . . . , fm as polynomi-
als in the ring K(λ1)[λ2, x]. By [FJ08, Proposition 13.2.1], there exists a nonempty
Zariski open subset U ⊂ A2

K such that

(3) {a+ bλ1|(a, b) ∈ U} ⊂ HK(λ1)(f1, . . . , fm).

Furthermore, up to shrinking U , one may require that the polynomials

(4) fi(λ1, aλ1 + b, λ3, . . . , λr, x), i = 1, . . . ,m,

are separable and of degree at least 2 in x, and that b �= 0. As R = k[u] ⊂ K is infi-
nite, the open subset U contains elements (a, b) ∈ R2. For such (a, b), the polynomi-
als above in (4) are inK[λ1, λ3, . . . , λr, x] and are irreducible inK(λ1, λ3, . . . , λr)[x].
Repeating this procedure provides an (r−1)-tuple ((a2, b2), . . . , (ar, br)) ∈ (R2)r−1

with b2 · · · br �= 0 such that the polynomials

gi(λ1, x) = fi(λ1, a2λ1 + b2, . . . , arλ1 + br, x), i = 1, . . . ,m

are in K[λ1, x], irreducible in K(λ1)[x], separable, and of degree � 2 in x.
From the proof in situation r = n = 1 and in the separable case (in Section 4.6.1),

there is an integer δ0 � 1 with this property: the Hilbert subset HK(g1, . . . , gm)
contains an element λ∗

1 ∈ R relatively prime to λ∗
0 ·b2 · · · br and such that deg(λ∗

1) =
δ1 if δ1 � δ0. Request further that δ0 satisfy:

(5) δ0 > max
2�i�r

deg(bi).

Set d0 = δ0 + max2�i�r deg(ai) and fix an integer d1 � d0. It follows from
d1 − max2�i�r deg(ai) � δ0 that the Hilbert subset HK(g1, . . . , gm) contains an
element λ∗

1 ∈ R such that deg(λ∗
1) = d1 −max2�i�r deg(ai).
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Consequently we have the following:
- the r-tuple λ∗ = (λ∗

1, a2λ
∗
1 + b2, . . . , ar−1λ

∗
1 + br−1, arλ

∗
1 + br) ∈ Rr is in the

original Hilbert subset H, and, denoting the ith component of λ∗ by λ∗
i ,

- λ∗
1 is relatively prime to λ∗

0λ
∗
2 · · ·λ∗

r ,
- the largest degree of λ∗

1, . . . , λ
∗
r is d1 (due to condition (5), this largest degree

is max2�i�r deg(aiλ
∗
1)).

This proves that λ∗ ∈ Hλ∗
0 ,d1

.
General case: We will use the Kronecker substitution. The Hilbert subset H

contains a Hilbert subset

HK(f1, . . . , fm; g) =

⎧⎨⎩λ∗ ∈ Kr

∣∣∣∣∣∣
fi(λ

∗, x) irreducible in K[x]
for each i = 1, . . . ,m,

g(λ∗) �= 0

⎫⎬⎭
with f1, . . . , fm irreducible polynomials in K[λ, x], of degree at least 1 in x, and
g ∈ K[λ], g �= 0.

As in Section 4.4, Proposition 4.3, followed by [FJ08, Lemma 12.1.4], provides
polynomials g1, . . . , gν , irreducible in K[λ1, y], monic, and of degree � 2 in y with
this property. For every λ∗

1 ∈ HK(g1, . . . , gν), each of the polynomials

fi(λ
∗
1, λ2, . . . , λr, x), i = 1, . . . ,m,

is irreducible in K[λ2, . . . , λr, x]. From the proof in situation r = n = 1 (Section
4.6.1), the Hilbert subset HK(g1, . . . , gν) contains infinitely many λ∗

1 ∈ R relatively
prime to λ∗

0. Repeating this argument (r − 2) times provides λ∗
1, . . . , λ

∗
r−1 ∈ R

such that fi(λ
∗
1, . . . , λ

∗
r−1, λr, x) is irreducible in K[λr, x] (i = 1, . . . ,m) and λ∗

i and
λ∗
0λ

∗
1 · · ·λ∗

i−1 are relatively prime (i = 1, . . . , r − 1).
Repeating the argument once more but applying this time the full conclusion of

the case r = n = 1 of the proof including the degree condition, we obtain that there
is an integer d0, which we may also choose to be larger than max1�i�r−1 deg(λ

∗
i ),

with the following property: if d1 � d0, there exists an element λ∗
r ∈ R such that

- fi(λ
∗
1, . . . , λ

∗
r−1, λ

∗
r , x) is irreducible in K[x], i = 1, . . . ,m,

- λ∗
r and λ∗

0λ
∗
1 · · ·λ∗

r−1 are relatively prime,
- deg(λ∗

r) = p̃d1.
Finally, the r-tuple λ∗ is in the original Hilbert subset H, λ∗

i and λ∗
0λ

∗
1 · · ·λ∗

i−1

are relatively prime (i = 1, . . . , r), and, consequently, λ∗
1 is relatively prime to

λ∗
0λ

∗
2 · · ·λ∗

r , and max1�i�r deg(λ
∗
i ) = p̃d1. Thus the set Hλ∗

0 ,d1
is nonempty.

5. Proofs of the main results

In this section we prove Theorems 1.1, 1.2, and 1.3, as well as Corollary 1.5 (on
the Goldbach problem for polynomials) and the alluded to Multivariate Schinzel
Hypothesis for polynomials (Theorem 5.5).

5.1. A more precise result. Theorem 5.2 below is a more precise form of Theo-
rems 1.1 and 1.2. We prove it using the tools built up in Section 4 and then deduce
Theorems 1.1 and 1.2.

Recall the notation from Section 2: R is a UFD with fraction field K, x =
(x1, . . . , xn), λ = (λ0, λ1, . . . , λ�) (n � 1, � � 1) are two tuples of indeterminates,
Q = (Q0, Q1, . . . , Q�), with Q0 = 1, is an (� + 1)-tuple of nonzero polynomials in

R[x], distinct up to multiplicative constants in K×, and P = {P1, . . . , Ps} is a set



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

THE SCHINZEL HYPOTHESIS FOR POLYNOMIALS 8357

of s polynomials

Pi(x, y) = Piρi
(x)yρi + · · ·+ Pi1(x)y + Pi0(x),

irreducible in R[x, y] and of degree ρi � 1 in y, i = 1, . . . , s. We also set

M(λ, x) =
�∑

j=0

λjQj(x),

and, for i = 1, . . . , s,

Fi(λ, x) = Pi(x,M(λ, x)) = Pi

(
x,

�∑
j=0

λjQj(x)

)
.

The polynomials F1, . . . , Fs are irreducible in R[λ, x] (Lemma 2.1). Finally, for
F = {F1, . . . , Fs}, we introduced the subset

HR(F ) ⊂ R�+1

of all (�+1)-tuples λ∗ (or, equivalently, of polynomials Λ(x) =
∑�

j=0 λ
∗
jQj(x)) such

that Fi(λ
∗, x) = Pi(x,Λ(x)) is irreducible in R[x], i = 1, . . . , s.

Given a nonzero element λ∗
−1 ∈ R and a tuple a = (a0, . . . , a�) ∈ R�+1, consider

the subset
HR,λ∗

−1,a
(F ) ⊂ HR(F )

of those (�+1)-tuples λ∗ = (λ∗
0, . . . , λ

∗
� ) ∈ HR(F ) which further satisfy the congru-

ences λ∗
i ≡ ai[mod λ∗

−1λ
∗
0 · · ·λ∗

i−1], i = 0, . . . , �.
Make the following additional assumption on Q0, . . . , Q� (which implies � � 2).

Assumption 5.1. Q0, . . . , Q� are monomials with coefficient 1, Q0 = 1, and
min(deg(Q1), deg(Q2)) > max1�i�s degx(Pi).

Theorem 5.2. Let λ∗
−1 be a nonzero element of R, and let a = (1, . . . , 1) ∈ R�+1.

(a) Assume that R is a UFD and a Hilbertian ring and that K is imperfect if of
characteristic p > 0. Then the subset HR,λ∗

−1,a
(F ) is Zariski-dense in R�+1.

(b) If R = k[u] with k an arbitrary field and d1 a sufficiently large integer, then
HR(F ) contains a tuple λ∗ = (λ∗

0, . . . , λ
∗
� ) ∈ R�+1 such that λ∗

1 and λ∗
−1λ

∗
0λ

∗
2 · · ·λ∗

�

are relatively prime and degu(
∑�

j=0 λj ∗Qj(x)) = p̃d1.

Proof. The number of monomials Qi is � + 1 � 3. Each Fi is of degree � 1 in x
and is irreducible in K(λ)[x], i = 1, . . . , s (Lemma 2.1). Let g ∈ K[λ] be a nonzero
polynomial and consider the Hilbert subset

HK(F ; g) ⊂ K�+1.

In situation (a), it follows from Proposition 4.2 that the Hilbert subset HK(F ; g)
contains an (� + 1)-tuple λ∗ = (λ∗

0, . . . , λ
∗
� ) ∈ R�+1 satisfying the congruences

λ∗
i ≡ 1[mod λ∗

−1λ
∗
0 · · ·λ∗

i−1], i = 0, . . . , �.
In situation (b), from Theorem 4.8, the Hilbert subset HK(F ; g) contains an

(� + 1)-tuple λ∗ such that λ∗
1 and λ∗

−1λ
∗
0λ

∗
2 · · ·λ∗

� are relatively prime and that

max0�i�� deg(λ
∗
i ) = p̃d1, i.e., degu(Λ) = p̃d1 for Λ =

∑�
j=0 λ

∗
jQj(x).

With each Fi(λ
∗, x) being irreducible in K[x], to finish the proof, it suffices to

show that Fi(λ
∗, x) is primitive w.r.t. R (i = 1, . . . , s).

Assume otherwise, i.e., for some i = 1, . . . , s, there is an irreducible element
π ∈ R dividing all the coefficients of Fi(λ

∗, x). The quotient ring R = R/(π) is an
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integral domain. Use the notation U to denote the class modulo (π) of polynomials
U with coefficients in R.

(1) P iρi
(x)M(λ∗, x)ρi + · · ·+ P i1(x)M(λ∗, x) + P i0(x) = 0.

As P is primitive w.r.t. R[x], we have P �= 0 in R[x, y], and so there is an index,
say j, in {0, 1, . . . , ρ} such that P ij(x) �= 0 (in R[x]).

As λ∗
1 and λ∗

2 are relatively prime (in both situations (a) and (b)), one of the
two is not divisible by π. Conjoin this with our monomials Qi being of coefficient 1
to conclude that M(λ∗, x) and P ij(x)M(λ∗, x)j are nonzero in R[x]. Furthermore
we have:

(2) deg(M(λ∗, x)) � min(deg(Q1), deg(Q2)).
The final argument below shows that all nonzero terms P ih(x)M(λ∗, x)h with

h ∈ {0, . . . , ρi} are of different degrees. This clearly contradicts (1).
Assume that, for some h, k ∈ {0, 1, . . . , ρ} with k > h, two nonzero polynomials

P ih(x)M(λ∗, x)h and P ik(x)M(λ∗, x)k are of the same degree. Then we have:

degx(Pi) � deg(P ih)− deg(P ik) = (k − h) deg(M(λ∗, x)) � deg(M(λ∗, x)).

But this, conjoined with (2), contradicts Assumption 5.1. �

Remark 5.3 (On Assumption 5.1). Our primitivity argument in the proof of The-
orem 5.2 rests on the polynomials M(λ∗, x) having at least two monomials λ∗

1Q1,
λ∗
2Q2 with relatively prime coefficients and large enough degrees (as large as in

Assumption 5.1). The occurrence of the additional constant monomial λ0Q0 in
M(λ, x) has been a constant assumption (it is used, for example, in Lemma 2.1(a)).
Thus Assumption 5.1 somehow optimizes the method. It is unclear whether it can
be improved thanks to other arguments.

Proof of Theorems 1.1 and 1.2. From Theorem 4.6, the assumption on R in The-
orem 1.1 implies that of Theorem 5.2(a); and R = k[u] in both Theorems 1.2 and
5.2(b). Theorems 1.1 and 1.2 then correspond to the special case of Theorem 5.2
for which, for a given d ∈ (N∗)n, the Qi are all the monomials Q0, Q1, . . . , QNd

in
Polk,n,d and Q1, Q2 are monomials of degree d1 + · · · + dn and d1 + · · ·+ dn − 1.
The assumption on d1, . . . , dn in Theorems 1.1 and 1.2 guarantees Assumption 5.1
of Theorem 5.2. �

Remark 5.4.
(a) The proof shows that Theorem 1.1 holds under the more general assumption

that R is a UFD, a Hilbertian ring, and K is imperfect if of characteristic p >
0. We note that there exist UFD with a Hilbertian fraction field satisfying the
imperfectness assumption but not Hilbertian as a ring, e.g., the ring C[[u1, . . . , un]]
of formal power series with n � 2 [FJ08, Example 15.5]. It is unclear whether
Theorem 1.1 holds for these rings.

(b) (On assumption d1+ · · ·+dn � max1�i�s degx(Pi)+2). It is unclear whether
this assumption can be improved in Theorem 1.1.

The proof shows that it is the exact translation of Assumption 5.1 in the special
situation of Theorem 5.2 that an n-tuple d ∈ (N∗)n is given and the Qi are all
the monomials in Polk,n,d. As noted in Remark 5.3, Assumption 5.1 is, however, a
technical assumption (though quasioptimal for the method).

We know that d1, . . . , dn must be positive in Theorem 1.1 (due otherwise to the
already given counterexample P1 = x(λ2−λ)+(λ2−λ+2) in Z[λ, x]). We also know
some situations where the current assumption can be improved. For example, it
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can be removed when R = K is a strongly Hilbertian field (Addendum to Theorem
1.1 in Section 2). Section 5.3 shows another situation for which an ad hoc argument
uses a weaker assumption. The status of the assumption remains unclear in general.

5.2. The multivariable Schinzel hypothesis. Theorem 5.2 offers more flexibil-
ity than Theorems 1.1 and 1.2. Instead of taking for Q0, . . . , Q� all the monomials
in Polk,n,d, one may want to work with a proper subset of them and construct irre-
ducible polynomials of the form Pi(x,M(x)) with some of the coefficients in M(x)
equal to 0.

In this manner one can extend Theorems 1.1 and 1.2 to the situation that
P1, . . . , Ps are polynomials in m variables y1, . . . , ym.

Let R be a UFD with fraction field a field K with the product formula, imperfect
if K is of characteristic p > 0. Let x = (x1, . . . , xn) (n � 1) and y = (y1, . . . , ym)
(m � 1) be two tuples of indeterminates.

Theorem 5.5. Let P = {P1, . . . , Ps} be a set of polynomials, irreducible in R[x, y]
and of degree � 1 in y. Let Irrn(R,P ) be the set of all m-tuples M = (M1, . . . ,Mm)
∈ R[x]m such that Pi(x,M(x)) is irreducible in R[x], i = 1, . . . , s. For every
d ∈ (N∗)n such that

D := d1 + · · ·+ dn � max
1�i�s

(deg(Pi) + 2),

the subset Irrn,d(R,P ) of all m-tuples M = (M1, . . . ,Mm) ∈ Irrn(R,P ) such that
degxj

(Mi) � Di−1dj, for i = 1, . . . ,m, j = 1, . . . , n, is Zariski-dense in the product
PolR,n,d × · · · × PolR,n,Dm−1d.

The proof is an easy induction left to the reader: use Theorem 5.2 to successively
specialize in R[x] the indeterminates y1, . . . , ym.

5.3. The Goldbach problem. This section contains the proof of Corollary 1.5,
our polynomial version of the Goldbach problem, and a related remark.

Proof of Corollary 1.5. Fix an integral domain R as in Theorem 1.1, an integer
n � 1, and a nonconstant polynomial Q ∈ R[x].

Let P = {P1, P2} with P1 = −y and P2 = y+Q. We will proceed as in Theorem
5.2 but with only two monomials Q0, Q1 (so � = 1) and without making Assumption
5.1.

Assume that we are not in the case n = 1 = deg(Q); this case is dealt with sep-
arately. Let Q∞ be a monic nonconstant monomial appearing in Q with a nonzero
coefficient. Denote this coefficient by q∞. Let Q1 be a nonconstant monomial dis-
tinct from Q∞ and of degree deg(Q1) � deg(Q). Denote the coefficient of Q0 = 1
in Q by q0 (the constant coefficient).

As in the proof of Theorem 5.2, Proposition 4.2 provides nonzero λ∗
0, λ

∗
1 in R

satisfying the following: for M = λ∗
0 + λ∗

1Q1, both M , and M +Q are irreducible
in K[x], λ∗

0 ≡ 1 − q0[mod q∞], and λ∗
1 ≡ 1[mod λ∗

0] (the elements q∞, λ∗
0, λ

∗
1 play

the respective roles of λ∗
0, λ

∗
1, λ

∗
2 from Proposition 4.2).

To conclude, it suffices to show that M and M + Q are primitive. As λ∗
0 and

λ∗
1 are relatively prime, M is primitive. As for M + Q, it follows from this: the

coefficients of Q∞ and Q0 in M +Q are relatively prime. Indeed, the former is q∞
and the latter is λ∗

0 + q0, which is congruent to 1 modulo q∞.
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Finally, in the case n = 1 = deg(Q), write Q = q1x+ q0. We can take:⎧⎪⎪⎨⎪⎪⎩
if q1 �= 1 Q = [x+ (q0 − 1)] + [(q1 − 1)x+ 1],
if q1 �= −1 Q = [−x+ (q0 − 1)] + [(q1 + 1)x+ 1],
if q1 = 1 = −1 Q = [rx+ (rq0 + 1)] + [(r + 1)x+ (rq0 + q0 + 1)]

with r ∈ R \ {0, 1}.
�

The more specific conclusion, alluded to in Section 1.4, that in Corollary 1.5,
one can further take deg(Q1) = 1 if R = K is a Hilbertian field, or if R = K is
an infinite field and n � 2, can be obtained from similar arguments but using the
Addendum to Theorem 1.1 (in Section 2) and Theorem 1.4 instead of Theorem 5.2.

5.4. The Dirichlet situation. We prove Theorem 1.3 about the degree 1 case of
the Schinzel hypothesis, i.e., in the situation of the Dirichlet theorem. Lemma 5.6
below is a preliminary result which takes advantage of some special feature of the
Kronecker substitution in this situation.

Retain the notation from Section 5.1 but consider the degree 1 case. That is, we
have, for i = 1, . . . , s:{

Pi = Ai(x) +Bi(x)y,

Fi(λ, x) = Ai(x) +Bi(x)
(∑�

j=0 λjQj(x)
)
.

Assume further that the polynomials Qi are the monomials Q0, Q1, . . . , QNd
in

Polk,n,d for some d ∈ (N∗)n, with as before Q0 = 1 and Q1 and Q2 monomials of
degrees d1 + · · ·+ dn and d1 + · · ·+ dn − 1.

Lemma 5.6. If as above degy(P1) = . . . = degy(Ps) = 1, then the Hilbert subset

HK(F1, . . . , Fs) ⊂ KNd+1 contains a separable Hilbert subset.

Proof of Lemma 5.6. Fix D > max 1�j�n
1�i�s

degxj
(Fi) and consider the Kronecker

substitution:

SD : PolK(λ),n,D → PolK(λ),1,Dn with D = (D, . . . , D),

mapping xj to xDj−1

, j = 1, . . . , n (introduced in Section 4.2). Fix i ∈ {1, . . . , s}.
From Proposition 4.3, there exist a finite set S(Fi) of irreducible polynomials in
K[λ][x] of degree � 1 in x and a nonzero polynomial ϕi ∈ K[λ] such that the Hilbert
subset HK(Fi) ⊂ KNd+1 contains the Hilbert subset HK(S(Fi);ϕi). Furthermore,
one can take for S(Fi) the set of irreducible divisors in K[λ][x] of the following

polynomial (in which Md =
∑Nd

h=0 λhQh):

SD(Ai +BiMd) = SD(Ai) + SD(Bi)

Nd∑
h=0

λhSD(Qh).

The polynomials SD(Qh) are distinct monomials in x (up to multiplicative constants
in K×): this indeed follows from the fact that two different integers between 0
and Dn−1 − 1 have different D-adic expansions a1 + a2D + · · · + an−1D

n−2 with
0 � aj � D − 1, j = 1, . . . , n− 1.

Note that SD(Ai) and SD(Bi) may not be relatively prime (take for example
Ai = x2 − 1 and Bi = x3 − 1), and so Lemma 2.1 cannot be used directly. Denote
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the gcd of SD(Ai) and SD(Bi) by Δ ∈ K[x]. Conclude from Lemma 2.1 that the
polynomial

fi :=
SD(Ai +BiMd)

Δ
=

SD(Ai)

Δ
+

SD(Bi)

Δ

Nd∑
h=0

λhSD(Qh)

is irreducible in K[λ, x]. Since Δ ∈ K[x], its irreducible factors f in K[λ, x] are
in fact in K[x], and so satisfy HK(f) = KNd+1. We conclude that one can take
S(Fi) = {fi}, where fi is the polynomial displayed above.

The polynomial fi has an additional property: it is separable in x. This clas-
sically follows from fi being irreducible in K(λ)[x] conjoined with the fact that if
the characteristic of K is p > 0, then not all exponents of x in fi are divisible by

p (note that
∑Nd

h=0 λhSD(Qh) is the generic polynomial in one variable of degree
Dn − 1).

We have thus proved that the Hilbert subset HK(F1, . . . , Fs) ⊂ KNd+1 contains
the separable Hilbert subset HK(f1, . . . , fs;ϕ1 · · ·ϕs). �

Proof of Theorem 1.3. The statement is about polynomials in at least two variables
that are denoted x1, . . . , xn there. For consistency with the previous notation, we re-
label them here as u, x1, . . . , xn, with n � 1. Set R = k[u] and view k[u, x1, . . . , xn]
as R[x].

Up to adding it to the given list (A1, B1), . . . , (As, Bs) of couples of relatively
prime polynomials in R[x], one may assume that the couple (1, 0) is in this list;
this will guarantee that the desired polynomial M is itself irreducible in R[x], as
requested.

With the notation from this subsection, Lemma 5.6 gives that the Hilbert subset
HK(F1, . . . , Fs)⊂KNd+1 contains a separable Hilbert subset, sayHK(f1, . . . , fs;ϕ).
From the separable case of Theorem 4.8, there is an integer d0 such that for every
integer δ � d0, HK(f1, . . . , fs;ϕ) contains a tuple λ∗ ∈ RNd+1 such that λ∗

1 and
λ∗
2 are relatively prime in R and degu(Md(λ

∗, x)) = δ. We have a fortiori λ∗ ∈
HK(F1, . . . , Fs) ⊂ KNd+1:

Fi(λ
∗, x) = Ai(x) +Bi(x)Md(λ

∗, x) is irreducible in K[x], i = 1, . . . , s.

Assume d0 large enough so that, if di � d0, i = 1, . . . , n, then

d1 + · · ·+ dn − 1 > max
i=1,...,s

max(deg(Ai), deg(Bi)).

The irreduciblility of each Ai(x) +Bi(x)Md(λ
∗, x) in R[x] is deduced by proving it

is primitive from λ∗
1, λ

∗
2 being relatively prime as in the proof of Theorem 5.2.

Finally, up to multiplying ϕ by the coordinate λh corresponding to the monomial
xd1
1 · · ·xdn

n , one guarantees that degxi
(Md(λ

∗, x)) = di, i = 1, . . . , n. This completes
the proof: Md(λ

∗, x) is the requested polynomial. �

Remark 5.7. Lemma 5.6 also shows that the degree 1 case of the Schinzel hypo-
thesis holds when R is a Hilbertian field (strongly Hilbertian is not needed), thus
completing the proof of the addendum to Theorem 1.1 (situation (b)).

5.5. Spectra of polynomials. Assume n � 2, fix an arbitrary field k, a subset
S = {a1, . . . , at} ⊂ k, a0 ∈ k \ S, separable over k, and V ∈ k[x], V �= 0. We will
show this more precise version of Corollary 1.6.
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Corollary 5.8. Let w0, . . . , wt ∈ k[x] be t+1 nonzero polynomials with w0 = 1.
Assume that (wi) + (wj) = k[x] for i �= j and each wi is relatively prime to
V . For all sufficiently large integers d1, . . . , dn (larger than some d0 depending
on S, a0, V, w1, . . . , wt), there is a polynomial U ∈ k[x] such that these three con-
clusions hold:

(a) U − aiV = wiHi with Hi ∈ k[x] irreducible in k(a0)[x] and not dividing wi,
i = 0, 1, . . . , t,

(b) deg(U − a0V ) = max(deg(U), deg(V )),
(c) degxi

(U) = di, i = 1, . . . , n.

In order to obtain Corollary 1.6, it suffices to choose w1, . . . , wt as in the state-
ment above but not in k. From (a) above, U −aiV is reducible in k[x], i = 1, . . . , t,
as requested in the version from Section 1. The other conclusions are the same in
the two versions.

Remark 5.9. The assumption (wi) + (wj) = k[x] is necessary when V = 1: if we
have U − aiV = wiHi and U − ajV = wjHj for two distinct indices i, j, then
wiHi − wjHj = (aj − ai)V .

Proof. As (wi) + (wj) = k[x], i �= j, the Chinese Remainder Theorem may be used
to conclude that there is a polynomial U0 ∈ k[x] such that

U0 − aiV = wipi with pi ∈ k[x], i = 1, . . . , t.

As w0 = 1, we also have U0 − a0V = w0p0 for some p0, but here p0 is in k(a0)[x].
Furthermore, the polynomials U ∈ k(a0)[x] satisfying the same (t + 1) conditions
are of the form

U(x) = U0(x) +M(x)

t∏
i=0

wi(x)

for some M ∈ k(a0)[x]. For such a polynomial U , we have

U − aiV = wi

(
pi +M

∏
j �=i

wj(x)

)
, i = 0, . . . , t.

Up to changing U0, we may assume that p0, . . . , pt are nonzero.
For each i = 0, . . . , t, the polynomials Ai = pi and Bi =

∏
j �=i wj(x) are relatively

prime in k(a0)[x]. Namely, if π ∈ k(a0)[x] is a common irreducible divisor in k(a0)[x]
of these two polynomials, then π divides pi and π divides wj for some j �= i, and
hence π is a common divisor of U0−aiV and U0 −ajV . Therefore π divides V and
wj , which contradicts the assumption (V,wj) = 1.

Set R = k(a0)[xn], K = k(a0)(xn), x = (x1, . . . , xn−1), and, for d ∈ (N∗)n−1 and
i = 0, . . . , t, {

Pi = Ai(x) +Bi(x)y,

Fi(λ, x) = Ai(x) +Bi(x)
(∑Nd

j=0 λjQj(x)
)
.

As in the proof of Theorem 1.3, the Hilbert subset HK(F0, . . . , Ft) contains a sep-
arable Hilbert subset HK(f0, . . . , ft, ϕ) with f0, . . . , ft ∈ K[λ, x] of degree � 1 in x
and ϕ ∈ K[λ], ϕ �= 0.

The field extension k(a0)/k is finite and separable. Setting R0 = k[xn] and K0 =
k(xn), so is the extension K/K0. From [FJ08, Corollary 12.2.3], HK(f0, . . . , ft, ϕ)

contains a separable Hilbert subset HK0
of K

Nd+1
0 .
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Proceed as in the proof of Theorem 1.3 to conclude that there is an integer d0 with
the following property: if δ1, δ2, . . . , δn are integers � d0, the Hilbert subset HK0

,
and so the Hilbert subset HK(F0, . . . , Ft), too, contains a tuple λ∗=(λ∗

0, . . . , λ
∗
Nd

)∈
R

Nd+1
0 such that λ∗

1 and λ∗
2 are irreducible in R0, and degxi

(Md(λ
∗, x)) = δi, i =

1, . . . , n. Choosing again for Q1, Q2 monomials of respective degrees d1+ · · ·+dn−1

and d1+ · · ·+dn−1−1 and assuming d0 sufficiently large, we obtain as for Theorem
1.3 that each of the polynomials

Fi(x) = Ai(x) +Bi(x)Md(λ
∗, x)

is irreducible in k(a0)[xn][x1, . . . , xn−1], i = 0, . . . , t.
Up to increasing d0, one can further guarantee that δ1, . . . , δn are large enough

so that deg(Md(λ
∗, x)) > deg(U0) and Fi does not divide wi, i = 1, . . . , s. The

polynomial

U(x) = U0(x) +Md(λ
∗, x)

t∏
i=0

wi(x)

is in k[x] and satisfies the required condition U − aiV = wiHi, with Hi = Fi irre-
ducible in k(a0)[x], i = 0, . . . , t. Up to replacing the Hilbert subsetHK(f0, . . . , ft, ϕ)
by a Zariski open subset of it, one can also request that deg(U − a0V ) =

max(deg(U), deg(V )). Finally degxi
(U) = δi +

∑t
j=1 degxi

(wj) can be taken to
be any given sufficiently large integer di, i = 1, . . . , n. �
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