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GROUPS WITH NO PARAMETRIC
GALOIS REALIZATIONS

 P DÈBES

A. – We disprove a strong form of the Regular Inverse Galois Problem: there exist
finite groups G which do not have a Q.U /-parametric extension, i.e., a regular realization F=Q.T /
that induces all Galois extensions L=Q.U / of group G by specializing T to f .U / 2 Q.U /. A much
weaker Lifting Property is even disproved for these groups: two realizations L=Q.U / exist that cannot
be induced by realizations with the same ramification type. Our examples of such groups G include
symmetric groups Sn, n � 6, infinitely many PSL2.Fp/, the Monster.

Two variants of the question with Q.U / replaced by C.U / and Q are answered similarly, the second
one under a diophantine “working hypothesis” going back to a problem of Fried-Schinzel.

We introduce two new tools: a comparison theorem between the invariants of an extension F=C.T /
and those obtained by specializing T to f .U /2C.U /; and, given two regular Galois extensions of k.T /,
a finite set of k.U /-curves that say whether these extensions have a common specialization E=k.

R. – Nous réfutons une forme forte du problème inverse de Galois régulier: il existe des
groupes finis G qui n’ont pas de réalisation régulière F=Q.T / induisant toutes les extensions galoi-
siennes L=Q.U / de groupe G par spécialisation de T en f .U /2Q.U /. Une propriété de relèvement
bien plus faible est même infirmée pour ces groupes: deux réalisations L=Q.U / existent qui ne peuvent
être induites par des réalisations ayant le même type de ramification. Nos exemples de tels groupes G
incluent les groupes symétriques Sn, n � 6, une infinité de PSL2.Fp/, le Monstre.

Deux variantes de la question, où Q.U / est remplacé par C.U / et Q, ont une réponse similaire, la
seconde sous une « hypothèse de travail » liée à un problème de Fried-Schinzel.

Nous introduisons deux nouveaux outils: un théorème de comparaison entre les invariants d’une
extension F=C.T / et ceux de celle obtenue en spécialisant T en f .U /2C.U /; et, étant données deux
extensions régulières galoisiennes de k.T /, un ensemble fini de k.U /-courbes qui disent si ces extensions
ont une spécialisation commune E=k.

This work was supported in part by the Labex CEMPI (ANR-11-LABX-0007-01).
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144 P. DÈBES

1. Introduction

Given two fields k � K, a finite Galois extension F=k.T / and a point t0 2 P1.K/, there
is a well-defined notion of specialized extension Ft0=K (see Basic terminology). If F is the
splitting field over k.T / of a polynomial P 2 kŒT; Y �, monic in Y , irreducible in kŒT; Y � and
t0 not a root of the discriminant �P 2 kŒT � of P w.r.t Y , Ft0 is the splitting field over K of
the polynomial P.t0; Y /. We are mostly interested in the situations K D k and K D k.U /

(with U a new indeterminate).

The specialization process has been much studied towards the Hilbert irreducibility issue
of existence of specializations t0 2 k preserving the Galois group. Investigating the set,
say SpK.F=k.T //, of all specialized extensions Ft0=K with t0 2 P1.K/ is a further goal.
For k D K D Q, [7] shows for example that the number of extensions Ft0=Q of group
G D Gal.F=Q.T // and discriminant jdE j � y grows at least like a power of y, for some
positive exponent, thereby proving for G the “lower bound part” of a conjecture of Malle.

Little was known on an even more fundamental question: whether SpK.F=k.T // can
contain all Galois extensions E=K of group contained in G D Gal.F=k.T //; we then say
that F=k.T / isK-parametric, as for example Q.

p
T /=Q.T /. Strikingly no group was known

yet not to have a Q-parametric or a Q.U /-parametric extension F=Q.T / while only four:
f1g, Z=2Z, Z=3Z, S3, are known to have one. No group with no C.U /-parametric extension
F=C.T /was even known, while only a few more with one are: cyclic groups, dihedral groups
D2n with n odd.

1.1. Groups with no K-parametric extension F=k.T /

We produce many such groups:

(a) k D C and K D C.U /: non cyclic nilpotent groups G of odd order, symmetric and
alternating groups Sn and An with n � 6, linear groups PSL2.Fp/ with p > 7 prime,
all sporadic groups, etc.

(b) k D Q and K D Q.U /: the same Sn and An except A6, the PSL2.Fp/ with . 2
p
/ D . 3

p
/ D

�1, the Monster M , etc.
(c) k D K D Q: the same last groups, under some “working hypothesis”.

We say more about the “working hypothesis” in §1.4 below and full statements are in § 2.3-
2.4.

R (parametric vs. generic). – Consequently the groups from §1.1 (a) do not have
a generic extension F=C.T /; generic is indeed a stronger notion meaning “L-parametric for
all fields L � C”. This was known by a result of Buhler-Reichstein [2]: the only groups to
have a generic extension F=C.T / are the cyclic groups and the dihedral groups D2n with n
odd. Our nonC.U /-parametric conclusion however is stronger: the extensions to be parame-
trized in the generic context include all Galois extensions E=L of group G with L any field
containing C and it follows that G should then be a subgroup of PGL2.C/ [18, prop.8.14].
This reduction cannot be used if F=C.T / only parametrizes extensions of L D C.U /. There
exist in fact groups that have a C.U /-parametric extension but no generic extension F=C.T /
(Corollary 2.5).
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GROUPS WITH NO PARAMETRIC GALOIS REALIZATIONS 145

Our first conclusions fit in the framework of Inverse Galois Theory. A prominent open
problem is the Regular Inverse Galois Problem: is every finite group the Galois group of some
extension F=Q.T /, Galois and Q-regular (i.e., F \ Q D Q)? Possessing a Q.U /-parametric
extension F=Q.T / is for a group G a strong variant. Our results show that this strong
variant fails and conditionally so does the weaker Q-parametric analog. This sets welcome
boundaries for inverse Galois theory over Q, a topic where few general statements were
available. Narrowing these boundaries further, e.g., removing “conditionally” in the version
over Q, still remains desirable. We note this weaker but unconditional result (1) of Legrand
[23]: every non trivial group that has at least one Q-regular realization F=Q.T / has one that
is not Q-parametric (2).

1.2. Non parametric ramification type & the Lifting Property

Our main result is in fact stronger than §1.1. Assume thatG is a group as in list (a) above if
k D C, or, as in list (b) if k � C. Then not onlyG does not have a k.U /-parametric extension
F=k.T / but it does not even have a k.U /-parametric ramification type .r;C/. By this we mean
that if r � 2 is any integer and C D .C1; : : : ; Cr / any r-tuple of nontrivial conjugacy classes
of G, the k-regular Galois extensions F=k.T / with group G, r branch points and inertia
classes C1; : : : ; Cr are not enough to obtain all regular Galois extensions L=k.U / of group
G by specialization of T in k.U /. Thus in the chain of implications:

G has a k.U /-parametric extension F=k.T /

) G has a k.U /-parametric ramification type

) G is a regular Galois group over k,

not only the first condition fails, but also the second one.
Our most precise results (corollaries 2.12 and 2.15) say even more, and are more infor-

mative, in that they show better the obstruction to having k.U /-parametrizations, which is
not the absence of regular realizations F=k.T / but the existence of several that cannot be
obtained by specialization from some with the same ramification type:

(*) For a group G as above, excluding G D An if k 6D C (3), there exist two regular Galois
extensions L1=k.U /, L2=k.U / of group G such that L1C=C.U / and L2C=C.U / are not
C.U /-specializations of regular Galois extensions ofk.T / of groupG with the same ramification
type.

We view indistinctly a k-regular extension F=k.T / as the corresponding k-cover of the
line X ! P1

k
. In these more geometrical terms, k.U /-specializations interpret as pull-backs

along genus 0 covers P1
k
! P1

k
. Statement (*) shows that the following Lifting Property:

(LPN .G/) any N k-G-Galois covers g1; : : : gN of P1
k

of group G can be, after scalar extension
to C, obtained by pull-back along genus 0 covers P1C ! P1C from k-G-Galois covers f1; : : : ; fN
of P1

k
with group G and the same ramification type,

(1) Remark 2.19 explains how Legrand’s result can be deduced from ours under our working hypothesis.
(2) Legrand has also just told me about a promising joint work with Koenig which could lead to unconditional
existence of groups with no Q-parametric extension F=Q.T /.
(3) ForG D An and k 6D C, the two extensions L1=k.U / and L2=k.U / from (*) should be replaced by three.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



146 P. DÈBES

which is weaker than the middle condition in the above chain of implications, already fails
for N D 2. The variant of .LPN .G// requiring further f1 D � � � D fN is stronger, so fails
too. This is interesting as this variant is close to another Arithmetic Lifting Property, for the
field C.U / (4) and that only two counter-examples to this property are known, due to Colliot-
Thélène [4], for Z=8Z over some number field and for some p-group over some “ample field”.

1.3. Comparison result and pre-order for extensions of C.T /

We will first focus on the situationK D k.U /with k � C. Results mentioned above follow
from a general criterion (criterion 2.9) for some set of k-regular Galois extensions L=k.U /
of group G not to be k.U /-specializations of k-regular Galois extensions F=k.T / of group
G and given ramification type .r;C/. A main point is that

(*) the branch point number of an extension (5) F=C.T / cannot drop under specialization of T
in C.U / nC, unless F=C.T / is one from a list of exceptional extensions with F of genus 0 (see
Theorem 2.1 (a)).

Despite its basic nature, this did not seem to be known; the difficulty is that the group
may drop and that the ramification of the specialization point T0 2 C.U / may cancel some
of the ramification of F=C.T / (6). We prove a more precise version (Theorem 3.1) giving
better estimates of the branch point number and other invariants of specialized extensions
FT0=C.U / which could be interesting beyond this paper.

The situation K D C.U / has another interesting feature: specialized extensions
FT0=C.U / with T0 2 C.U / remain extensions of the rational function field in one inde-
terminate, as the initial extension F=C.T /; in other words, pull-backs of a cover of P1C
along covers P1C ! P1C still are covers of P1C. The specialization process induces a (partial)
pre-order on the set of Galois extensions L=C.T /. We will show that this is in fact an order
on a big subset (see Theorem 2.1 (b)), with this consequence:

(*) for “most” groups G (e.g., all groups of rank � 4), there is at most one C.U /-parametric
extension F=C.T / of group G.

The pre-order that we use to investigate the minimal elements raises further questions
about the ordered structure of Galois extensions of C.T / that are certainly worthwhile being
studied.

(4) In the Arithmetic Lifting Property for C.U /, the lifting covers f1; : : : ; fN from (LPN .G/) are replaced by
one cover, of P1C.U/, instead of P1C. Disproving it would consist in showing the variant of (*) from §1.2 above
concluding that L1C=C.U / and L2C=C.U / are not C.U /-specializations of any one C.U /-regular Galois exten-
sion F =C.U /.T / of group G (and not just of anyone coming from an extension F=C.T /). Footnote 6 explains
however that a main point of our approach, statement (*) from 1.3 below, does not extend to these general
C.U /-extensions F =C.U /.T /.
(5) The extension F=C.T / need not be assumed to be Galois in this statement.
(6) Statement (*) in fact becomes false for general C.U /-extensions F =C.U /.T / (not just those coming from
extensions F=C.T /). Take F D C.U /.

p
H.U;T // with

H.U;T / D T.T � .U 2 � .U � a1/
2// � � � .T � .U 2 � .U � as/

2//.T � 1/

and a1; : : : as 2 C n f0g pairwise distinct. The extension F =C.U /.T / has s C 2 branch points but for
T0.U / D U

2, we haveH.U;T0.U // D U 2.U �a1/2 � � � .U �as/2.U 2�1/ and the extension F T0
=C.U / has

only 2 branch points.
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GROUPS WITH NO PARAMETRIC GALOIS REALIZATIONS 147

1.4. The twisted polynomial

Our results in the situation that k D K is a number field will be obtained from those
with K D k.U / by specialization, but of the indeterminate U this time. To this end we will
generalize a tool introduced in [7] as the “self-twisted cover”. Theorem 2.16, the concrete
statement around this specialization approach, is interesting for its own sake: given two
k-regular Galois extensions F=k.T /, L=k.T / of group G, it provides a finite list of families
of covers eXU ! P1

k.U /
parametrized by U 2 P1 which have the answer to the question of

whether F=k.T / and L=k.T / have a common specialization:

(*) for all but finitely many u0 2 k and all t0 2 k not a branch point of F=k.T /, we have
Lu0=k D Ft0=k if and only if for at least one family eXU , the u0-curve eXu0 has an unramified
k-rational point above t0,

and a similar statement holds with u0 the generic point U of P1U .
The working hypothesis alluded to in §1.1 is stated in § 2.4.2: it connects the absence

of k.U /-rational points on each of the curves eXU with the absence, for infinitely many u0 2 k,
of k-rational points on each of the curves eXu0 . It relates to some diophantine problem of
Fried-Schinzel and somehow extends Hilbert’s Irreducibility Theorem. It has no known
counter-example.

Acknowledgments. – I wish to express special thanks to the anonymous referee for
his/her valuable suggestions and notably for his/her remark that the original results
about C.U /-parametric extensions could be extended with no extra work to results about
C.U /-parametric ramification types. I also wish to thank Lior Bary-Soroker, Joachim
Koenig, François Legrand, Razvan Litcanu and Danny Neftin for many interesting and
helpful discussions about this work.

The paper is organized as follows. § 2 presents in full detail the results of our paper.
We reduce their proofs to that of three main statements: the comparison Theorem 2.1, the
twisting Theorem 2.16 and the genus zero Proposition 2.4. We state them and explain their
implications. Their proofs, which are independent, are given in § 3 and § 4. Finally § 5 is an
appendix which collects a few classical results that enter in our proofs and that we have
rephrased to fit our field arithmetic set-up; § 5 is used in § 3 and in § 4. We start below with
some basic terminology.

Basic terminology. – (For more details, see [8] or [10].)
The base field k is always assumed to be of characteristic 0. Is also fixed a big algebraically

closed field containing the complex field C and the indeterminates that will be used and in
which all field compositum should be understood.

Given a field k, an extension F=k.T / is said to be k-regular if F \ k D k. We make
no distinction between a k-regular extension F=k.T / and the associated k-regular cover
f W X ! P1: f is the normalization of P1

k
in F and F is the function field k.X/ of X .

The “field extension” viewpoint is mostly used in this paper.
We also use affine equations: we mean the irreducible polynomial P 2 kŒT; Y � of a

primitive element of F=k.T /, integral over kŒT �.
By group and branch point set of a k-regular extension F=k.T /, we mean those of the

extension Fk=k.T /: the group of Fk=k.T / is the Galois group of its Galois closure. The

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



148 P. DÈBES

branch point set of Fk=k.T / is the (finite) set of points t 2 P1.k/ such that the associated
discrete valuations are ramified in F=k.T /.

The field k being of characteristic 0, we also have the inertia canonical invariant C of the
k-regular extension F=k.T /, defined as follows. If t D ft1; : : : ; trg is the branch point set
of f , then C is a r-tuple .C1; : : : ; Cr / of conjugacy classes of the group G of f : for i D
1; : : : ; r , Ci is the conjugacy class of the distinguished (7) generators of the inertia groups IP
above ti in the Galois closure bF=k.T / of F=k.T /. The couple .r;C/ is called the ramification
type of F=k.T /. More generally, given a finite group G, we say that a couple .r;C/ is a
ramification type for G over k if it is the ramification type of at least one k-regular Galois
extension F=k.T /.

We also use the notation e D .e1; : : : ; rr / for the r-tuple with i th entry the ramification
index ei D jIPj of primes above ti ; ei is also the order of elements of Ci , i D 1; : : : ; r .

We say that two k-regular extensions F=k.T / andL=k.T / are isomorphic if there is a field
isomorphism F ! L that restricts to an automorphism � W k.T / ! k.T / equal to the
identity on k and that they are k( T)-isomorphic if in addition � is the identity on k.T /.

Given a Galois extension F=k.T / and t0 2 P1.k/, the specialized extension Ft0=k

of F=k.T / at t0 is the Galois extension defined as follows. Consider the localized ring
At0 D kŒT �hT�t0i of kŒT � at t0, the integral closure Bt0 of At0 in F . Then Ft0=k the
residue extension of an arbitrary prime ideal of Bt0 above hT � t0i. (As usual use the
local ring kŒ1=T �h1=T i and its ideal h1=T i if t0 D1).

If P 2 kŒT; Y � is an affine equation of F=k.T / and�P 2 kŒT � is its discriminant w.r.t. Y ,
then for every t0 2 k such that �P .t0/ 6D 0, t0 is not a branch point of F=k.T / and the
specialized extension Ft0=k is the splitting field over k of P.t0; Y /.

IfK is a field containing k and t0 2 P1.K/, the specialized extensionFt0=K ofF=k.T / at t0
is the extension .FK/t0=K. If K D k.U /, T0 2 K.U / is a non-constant rational function (8)

and P 2 KŒT; Y � is an affine equation of F=K.T /, then �P .T0/ 6D 0 and so P.T0.U /; Y / is
an affine equation of the specialized extension FT0=K.U /.

If the extension F=k.T / is not Galois, the above definition leads to several specializa-
tions Ft0=k: the prime ideals of Bt0 above hT � t0i are not conjugate in general. When we
use this extended definition (only once in Theorem 3.1 (a)), we will talk about a specialization
instead of the specialization Ft0=k.

Recall the Riemann Existence Theorem (RET), a fundamental tool of the paper and of
the surrounding theory of covers of P1 (viewed here as field extensions of C.T /): it allows
turning questions about covers into combinatorics and group theory considerations.

R E T. – Given a groupG, an integer r � 2, a subset t � P1.k/
of r points and an r-tuple C D .C1; : : : ; Cr / of nontrivial conjugacy classes of G, there is a
Galois extension F=k.T / of group G, branch point set t and inertia canonical invariant C iff
there exists .g1; : : : ; gr / 2 C1 � � � � � Cr such that g1 � � �gr D 1 and hg1; : : : ; gri D G.
Furthermore the number of such extensions F=k.T / (in a fixed algebraic closure k.T /) equals

(7) “distinguished” means that these generators correspond to the ei th root e2i�=ei of 1 in the canonical isomor-
phism IP! �ei D he

2i�=ei i.
(8) We use a capital letter for the specialization pointT0 to stress that it is a functionT0.U / contrary to the situation
for which it is a point in the ground field and the notation t0 is preferred.
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GROUPS WITH NO PARAMETRIC GALOIS REALIZATIONS 149

the number of r-tuples .g1; : : : ; gr / as above, counted modulo component-wise conjugation by
an element of G.

The RET shows that a couple .r;C/ is a ramification type for G over k if the set, tradi-
tionally called the Nielsen class, of all .g1; : : : ; gr / 2 C1 � � � � � Cr such that g1 � � �gr D 1

and hg1; : : : ; gri D G is nonempty.

We will notably use the RET to construct Galois extensions of given group G and
with an inertia canonical invariant C only formed with some given conjugacy classes
C1; : : : ; CN of G, possibly repeated. This is possible if the union

SN
iD1 CN contains a

generating set fg1; : : : ; gtg of G.

This generating assumption on the set fC1; : : : ; CN g is satisfied in the following situations:
(a) C1; : : : ; CN are the respective classes of elements g1; : : : ; gN forming a generating set
for G ; (b) C1; : : : ; CN are all non-trivial conjugacy classes of G (any N -tuple .g1; : : : ; gN /
with gi 2 Ci , i D 1; : : : ; N , is a generating set thanks to a classical lemma of Jordan [19]);
(c) G is a simple group and C1; : : : ; CN consist of a single non-trivial conjugacy class of G.
Situations (a) and (b) will be used in Corollary 2.10 and (c) is alluded to around Problem 2.14.

2. Main results

We present our main results: the specialization process and the associated order in the situ-
ation k D C and K D C.U / (§ 2.1), some new examples of groups with a C.U /-parametric
extension F=C.T / (§ 2.2), a method to produce groups with no k.U /-parametric ramifica-
tion type (§ 2.3), our “twisted polynomial” ePLF .U; T; Y / and its use towards the construction
of groups with no k-parametric extension F=k.T / (§ 2.4).

2.1. C.U /-specializations of Galois extensions F=C.T /

This subsection gives the main definitions and our first main tool (Theorem 2.1).

2.1.1. Comparison theorem. – Given an extension F=C.T /, we use the following notation
for its invariants: GF for the group, rF for the branch point number, CF for the inertia
canonical invariant, gF for the genus of F ; they are invariant inside the isomorphism class
of F=C.T /.

Given two Galois extensions F=C.T / and L=C.T /, we write

F=C.T / � L=C.T /

if L=C.U / is the specialized extension FT0=C.U / of F=C.T / at some non-constant rational
function T0 2 C.U /.

For a conjugacy class C of a group G, set C Z D
S
˛2Z C

˛. This powered conjugacy
class C Z is also the conjugacy class of the cyclic subgroup generated by any element of C .

Given tuples C D .C1; : : : ; Cr / and C0 D .C 01; : : : ; C
0
r / of conjugacy classes of G and G0,

write C � C0 if for every j 2 f1; : : : ; r 0g, there exists i 2 f1; : : : ; rg such that C 0j � C
Z
i .
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T 2.1. – (a) Let F=C.T / and L=C.T / be two finite Galois extensions. Assume
gF � 1. Then we have:

F=C.T / � L=C.T /) .GF ; rF ;CF / � .GL; rL;CL/

where the right-hand side condition means thatGF � GL, rF � rL and CF � CL. If in addition
GF D GL, the implication also holds if gF D 0; and we have gF � gL if rF � 4.

As recalled in § 3.3, the excluded case gF D 0 is known to only happen when rF � 3

and GF is a subgroup of PGL2.C/, i.e., one of these groups: Z=nZ (n � 1), .Z=2Z/2, A4,
S4, A5, D2n (n � 3). For each such group GF , there is, up to isomorphism, only one Galois
extension F=C.T / of group GF and genus gF D 0.

Theorem 2.1 will be deduced from Theorem 3.1 which offers more precise estimates, for
example, the lower bound

(*) rL � .N � 4/rF C 4

if L=C.T / D FT0=C.T / with T0 2 C.T / of degree N .

2.1.2. The order�. – These estimates will further show that, as stated below, the pre-order�
is antisymmetric on a big subset of all Galois extensions, regarded modulo isomorphisms.

Specifically, denote by G� the set of groups that are

(*) (of rank � 4) or (or rank 3 and odd order) or (of rank 2 and order not divisible by 2 or 3) or
(a subgroup of PGL2.C/)

and by E � the set of all Galois extensions F=C.T /, viewed up to isomorphism such that
(GF 2 G�; GF 6� PGL2.C/) or (gF D 0).

The notion of “parametric extensions” appearing below was introduced in § 1; the defini-
tion is recalled right next in § 2.1.3.

T 2.1. – (b) The relation � induces a (partial) order on E �. Consequently, for
every group G 2 G�, there is at most one Galois extension F=C.T / of group G that is
C.U /-parametric.

The uniqueness part follows from the first part (and Remark 3.5, whenGF � PGL2.C/):
the main point is that if an extension F=C.T / is C.U /-parametric of group G 2 G�, it is the
smallest (for �) Galois extension L=C.T / of group G. (9)

We have no example of two non-isomorphic Galois extensions F=C.T / and L=C.T /
such that F=C.T / � L=C.T / and L=C.T / � F=C.T /, and in particular, no example of
a group G that has two non-isomorphic C.U /-parametric extensions F=C.T /. In fact the
groups that are known to have at least one C.U /-parametric extension F=C.T / are the finite
subgroups of PGL2.C/, and for them, uniqueness is part ot Theorem 2.1 (for the existence,
see Corollary 2.5).

The proofs of the two parts of Theorem 2.1 are given in § 3.2 and § 3.4.

(9) For a Galois extensionL=C.T / of groupG, there is a Galois extensionF=C.T / such thatF=C.T / � L=C.T /
and F=C.T / is minimal (for �) among all Galois extensions of C.T / of group G, but several such extensions
F=C.T / exist in general.
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2.1.3. Parametricity. – Next definition extends the notion of parametric extension intro-
duced by Legrand [20], [22], [21].

D 2.2. – Given a nonempty set H of k-regular Galois extensions F=k.T /
of group G and a nonempty set R of Galois extensions F=k of group contained in G,
H is said to k-specialize to all extensions in R if

(*) for every extension L=k 2 R , there exist F=k.T / 2 H and t0 2 P1.k/, not a branch
point of F=k.T /, such that the specialized extension Ft0=k is k-isomorphic to E=k.

The set H is said to be k-parametric if (*) holds with R the set of all Galois extensions L=k
of group contained in G. Given a field K � k, H is said to be K-parametric if the set
HK D fFK=K.T /jF=k.T / 2 Hg is K-parametric.

We have two typical situations in mind:

(a) H D fF=k.T /g consists of a single k-regular Galois extension. When H is K-parametric
(for a field K � k), we say that the extension F=k.T / is K-parametric and that G has a
K-parametric extension F=k.T /. These definitions corresponds to those of Legrand.

The extension Q.
p
T /=Q.T / is the standard example of a K-parametric extension

F=Q.T /; it is for all fields K � Q and so is in fact generic. Recall that “generic” for a finite
k-regular Galois extension F=k.T / means “K-parametric for all fields K � k”. See [18] for
more on generic extensions and polynomials.

(b) Given a ramification type .r;C/ (for G over k), take H D Hr;G.C/k to be the set of
all k-regular Galois extensions F=k.T / with group G and ramification type .r;C/. This
is also the set of k-points on the Hurwitz stack associated with .r;C/. When Hr;G.C/k is
K-parametric, we say that the ramification type .r;C/ is K-parametric and that G has a
K-parametric ramification type.

R 2.3 (Transfer properties). – (a) If a set H of k-regular Galois extensionsF=k.T /
is k.U /-parametric, then it is k-parametric.

Proof. – Let H be as above and E=k be a Galois extension of group H � G. As H is
k.U /-parametric, there exist F=k.T / 2 H and T0 2 k.U / such that the specialized
extension FT0=k.U / is k.U /-isomorphic to E.U /=k.U /. Hence for all but finitely many
u0 2 P1.k/, the extension, .FT0/u0=k, obtained by specializing FT0=k.U / at u0 is E=k.
The conclusion follows since, as explained below, for all but finitely many u0 2 P1.k/,
.FT0/u0=k is also the specialized extension FT0.u0/=k.

This is clear ifT0 2 k. AssumeT0 … k and letP 2 kŒT; Y � be an affine equation ofF=k.T /.
Then FT0 is the splitting field over k.U / of P.T0.U /; Y / and, as F=k.T / is Galois, it is also
the splitting field of any irreducible factorQ 2 kŒU; Y � of P.T0.U /; Y /. Thus such aQ is an
affine equation of the Galois extension FT0=k.U /. For all but finitely many u0 2 P1.k/, the
extension .FT0/u0=k is the splitting field over k of Q.u0; Y / and also of P.T0.u0/; Y /. This
concludes the argument as for all but finitely many u0 2 P1.k/, FT0.u0/=k is also the splitting
field over k of P.T0.u0/; Y /.
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This argument applies inductively to show that condition “H is k.U1; : : : ; Us/-parametric”
is stronger and stronger as s gets bigger; it remains however always weaker than “generic”.
(b) On the other hand, for the same set H of k-regular Galois extensions F=k.T / and
an algebraic extension E=K with K � k, the connection between “E-parametric” and
“K-parametric” is not so clear. As we will see, our criterion to produce non k.U /-parametric
sets of extensions is all the more efficient that there are more k.U /-regular realizations of the
groupG in question, and so will be more fruitful when k is algebraically closed. We however
do not have any proof of any implication.

2.2. Groups with a k.U /-parametric extension F=k.T /

We will deduce such groups from the following statement (one of our three main state-
ments with Theorems 2.1 and 2.16). It is proved in § 4.2.1.

P 2.4 (genus 0). – If F=C.T / is a Galois extension of group G with F of
genus 0, then F=C.T / is C.U /-parametric.

C 2.5. – All subgroups of PGL2.C/:

Z=nZ .n � 1/; .Z=2Z/2; A4; S4; A5; D2n .n � 3/

have a C.U /-parametric extension F=C.T /, with gF D 0. Out of them, Z=nZ with n D 1; 2; 3
and D6 D S3 have a k.U /-parametric extension for every field k of characteristic 0.

Theorem 2.1 (b) shows further that the C.U /-parametric extension claimed to exist is
unique up to isomorphism.

Whether other groups than the subgroups of PGL2.C/ have a C.U /-parametric extension
is not known.

Proof of Corollary 2.5. – Subgroups of PGL2.C/ have a classical realization F=C.T /
with gF D 0. Such an extension F=C.T / is automatically C.U /-parametric from Proposi-
tion 2.4. As to the second part of Corollary 2.5 we note that the groups Z=nZ with n D 1; 2; 3
and D6 D S3 are known to have a generic extension F=Q.T / [18].

Clearly if a k-regular Galois extension F=k.T / is K-parametric, then so is its ramifica-
tion type .r;C/. So the ramification types of the extensions F=C.T / from Corollary 2.5 are
C.U /-parametric. It would be interesting to provide other examples of parametric ramifica-
tion types.

R 2.6 (Parametricity and genericity). – Cyclic groups and dihedral groups D2n
with n odd were known to have aC.U /-parametric extension as they have a generic extension
F=C.T /: for Z=dZ, take F D C.T 1=d /=C.T / (d � 1/; for D2n, it is a result of Hashimoto-
Miyake [17] (see also [18, Theorem 5.5.4]). These groups are the only ones to have a generic
extension F=C.T / [2]. The other subgroups of PGL2.C/: .Z=2Z/2, A4, S4, A5, D2n with
n even, have a C.U /-parametric extension but no generic extension F=C.T /. Whether
subgroups of PGL2.C/ other than Z=nZ with n D 1; 2; 3 and S3 have a Q.U /-parametric
extension F=Q.T / is unclear. (10)

(10) Even if for some of these groups (.Z=2Z/2, S4, D2n with n even), the unique C.U /-parametric extension
F=C.T / is defined over Q (§ 3.3), a Q-model F0=Q.T / is not guaranteed to be Q.U /-parametric: although any
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2.3. Groups with no k.U /-parametric ramification type

We explain how we use Theorem 2.1 to produce groups with no k.U /-parametric ramifica-
tion type .r;C/, with k algebraically closed in § 2.3.2 and k non algebraically closed in § 2.3.3.
We start with a general criterion in § 2.3.1. Assume k � C; there is no loss of generality.

Our method leads to a better conclusion than “no k.U /-parametric ramification type”.
To this end we introduce this definition:

D 2.7. – Given nonempty sets H and R of k-regular Galois extensions of
group G (11), the set H is said to weakly k.U /-specialize to all extensions in R if

(*) for every extension L=k.U / 2 R , there exist F=k.T / 2 H and T0 2 P1.C.U // such that
the specialized extension FT0=C.U / is C.U /-isomorphic to LC=C.U / (12).

The set H is weakly k.U /-parametric if (*) holds with R the set of all k-regular Galois
extensions L=k.U / of group G. When one of these properties holds for H D Hr;G.C/k 6D ;,
we say that the ramification type .r;C/ has the property (instead of H).

Obviously we have:

H is k.U /-parametric) H is weakly k.U /-parametric.

2.3.1. General criterion. – Given a subfield k � C and a finite groupG, denote the set of all
k-regular extensions L=k.U / of groupG by Rk.G/. From Theorem 2.1, if the ramification
type .r;C/ is weakly k.U /-parametric, we must have

(*) r � rL and C � CL for every L=k.T / 2 Rk.G/:

The general idea is to show that for some groups G, this is possible for no ramification
type .r;C/. Criterion 2.9 below uses the following additional notation.

D 2.8. – Say that two conjugacy classes C and C 0 of G are incompatible, and
write then C#C 0 if there is no conjugacy class C0 such C � C Z

0 and C 0 � C Z
0 .

For example, ifC is the conjugacy class of a generator of a maximal cyclic subgroup ofG,
then C#C 0 if and only if C 0 6� C Z. In particular, if C 0 is also the conjugacy class of a
generator of a maximal cyclic subgroup of G, then C#C 0 if and only if C Z 6D .C 0/Z, i.e.,
if the two maximal cyclic subgroups associated with C and C 0 are not conjugate inG. Many
concrete examples appear in § 2.3.2 and § 2.3.3 below.

extension L=Q.U / of groupH � G is a specialization of F=C.T /, the specialization point T0, which is in C.U /
may not be inQ.U /. Anticipating on § 4.2, the issue relates to the following: a polynomial equationP.U;T;Y / D 0
with P 2 QŒU; T; Y � may have a solution .T0.U /; Y0.U // 2 C.U /2 but no solution in Q.U /2: think of
Y 2 C T 2 CU 2 C 1 D 0.
(11) And not of group contained inG for R as in the original parametric context.
(12) While in the original parametric context, (*) should be true without extending the scalars from k to C. Also note
that necessarily T0 … C if L=k.U / is non-trivial, as a consequence of the k-regularity of L=k.U /.
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C 2.9. – Let R � Rk.G/ be a nonempty subset. Let �R be the minimum
number rL for some L=k.T / 2 R . Assume the list of conjugacy classes appearing in some
tuple CL with L=k.T / 2 R has at least �R of them that are pairwise incompatible, and that
�R > �R . Then

(*) there is no ramification type .r;C/
that weakly k.U /-specializes to all extensions L=k.T / in R .

In particular, G has no weakly k.U /-parametric ramification type and a fortiori no
k.U /-parametric ramification type .r;C/.

The smaller the subset R is the stronger is conclusion (*), which, in the extreme case
R D Rk.G/, is equivalent to G not having a weakly k.U /-parametric ramification
type .r;C/.

Proof. – Assume that there is a ramification type .r;C/ that contradicts (*). It follows
from Theorem 2.1 that r � �R and C � CL for every L=k.T / 2 R . Hence if C , C 0 are two
conjugacy classes appearing in the list of tuples CL with L=k.T / 2 R , there are conjugacy
classes Ci ; Cj from C such that C � C Z

i and C 0 � C Z
j . If C#C 0, then Ci 6D Cj . Hence

r � �R and �R � �R , a contradiction.

2.3.2. Groups with noC.U /-parametric ramification type. – Denote the number of conjugacy
classes of maximal cyclic subgroups of a group G by �.G/ and the rank of G (minimal
cardinality of a generating set) by rk.G/.

C 2.10. – Assume k that is algebraically closed. If �.G/ � rk.G/ C 2, there
exist two extensions L1=k.T / and L2=k.T / such that no ramification type .r;C/ weakly
k.U /-specializes to both. Consequently G has no weakly k.U /-parametric ramification type
and a fortiori no k.U /-parametric ramification type F=k.T /.

Proof. – This directly follows from criterion 2.9 applied with R consisting of two exten-
sionsL1=k.T / andL2=k.T / chosen so that rL1 D rk.G/C1 and CL2 contains all non trivial
conjugacy classes ofG. Such extensions exist thanks to the RET (as recalled in Basic Termi-
nology).

R 2.11. – As pointed out by Legrand, the proof gives more: no two Galois
extensions F1=k.T /, F2=k.T / with group G and same branch point number r (but possibly
different ramification types) can weakly k.U /-specialize to L1=k.T /, L2=k.T /, respectively.
Namely, as in criterion 2.9, one should otherwise have r � rk.G/ C 1, but then F2=k.T /
cannot specialize to L2=k.T / if �.G/ � rk.G/ C 2. For G D .Z=2Z/n with n � 3, one
can even take k D Q. Construct indeed L1=Q.T / and L2=Q.T / as in the proof but also
Q-regular: take L1 D Q.T /.

p
T � 1; : : : ;

p
T � n/ and L2=Q.T / can be obtained thanks to

the rigidity theory.

As we check below, the groups in the following non exhaustive list satisfy the condition
�.G/ � rk.G/C 2.

C 2.12. – Assume that k is algebraically closed. None of these groups:

– Sn and An, n � 6,
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– non cyclic nilpotent groups G with abelianization Gab different from Z=2Z � Z=2Z, in
particular non cyclic nilpotent groups G of odd order,

– linear groups PSL2.Fp/, p > 7 prime,
– all sporadic simple groups,

has a weakly k.U /-parametric ramification type .r;C/. More precisely, for such groupsG, there
exist two Galois extensions L1=k.U / and L2=k.U / of group G such that no ramification type
.r;C/ weakly k.U /-specializes to both.

On the other hand, all finite subgroups of PGL2.C/ can be double-checked not to satisfy
�.G/ � rk.G/ C 2 (which must also hold because they have a C.U /-parametric exten-
sion F=C.T /). The quaternion group H8 is another example. The complete list of groups
satisfying the condition remains to be established. It seems that it contains most simple
groups (and not just the last two categories of examples).

Proof. – We use the standard notation for the conjugacy classes ofSn orAn: Œ1`1 � � �n`n � is
the conjugacy class of elements of Sn that write as a product of `1 cycles of length 1, . . . , `n
cycles of length n, all cycles having disjoint supports; if such a class is contained in An, it is
a conjugacy class of An if and only if `q � 2 or `2q � 1 for some q 2 f1; : : : ; ng; otherwise
Œ1`1 � � �n`n � splits into two distinct conjugacy classes of An denoted by Œ1`1 � � �n`n �1 and
Œ1`1 � � �n`n �2.

The symmetric groups Sn, n � 6, satisfy �.G/ � rk.G/ C 2. Indeed rank.Sn/ D 2 and
these 4 conjugacy classes are pairwise incompatible:

Œn1�; Œ.n � 1/1�; Œ.n � 2/121�; Œ.n � 3/131�:

So do the alternating groups An with n � 6: note that rank.An/ D 2 and use the classes(
Œn1�1; Œ.n � 3/12111�; Œ.n � 2/112�; Œ.n � 4/114� if n odd

Œ.n � 1/111�1; Œ.n � 2/121�; Œ.n � 3/113�; Œ.n � 4/121� if n even.

For the second class of examples, we start with the caseG is abelian. IfG of rank s � 2, it
writesG D Z=d1Z�� � �Z=dsZwith s � 2 and d1jd2j � � � jds inZ. The s-tuples ."1; : : : ; "s�1; 1/
with "i 2 Z=diZ .i D 1; : : : ; s � 1/ generate non-conjugate maximal cyclic subgroups of G.
There are d1 � � � ds�1 such s-tuples, and so at least s C 2 unless (s D 2 and d1 2 f2; 3g) or
(s D 3 and d1 D d2 D 2). After checking separately the remaining special cases (use further
non-conjugate maximal cyclic subgroups e.g., those generated by s-tuples ."1; : : : ; "s�1; k/
with k 2 .Z=dsZ/�), conclude that �.G/ � rk.G/C 2 unless G D Z=2Z � Z=2Z.

Assume more generally that G is nilpotent. From the Burnside basis theorem, G and its
abelianization Gab have the same rank. On the other hand, we have �.G/ � �.Gab/. If G is
non cyclic then so is Gab. If Gab is further assumed to be different from Z=2Z � Z=2Z, then
from the preceding case, we have �.Gab/ � rk.Gab/C2. Inequality �.G/ � rk.G/C2 follows.

All finite simple groups have rank 2 and their classification shows that many of them have
at least 4 non-conjugate maximal cyclic subgroups of G. This includes all groups PSL2.Fp/
(p > 7 prime) and all sporadic simple groups.

Criterion 2.9 can be used in a slightly different way to lead to this variant of Corollary 2.10.
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C 2.13. – If N is an integer < �.G/=.rk.G/ C 2/, there do not exist N
ramification types .r1;C1/; : : : ; .rN ;CN / such that this holds:

(*) every Galois extension L=C.U / of group G is a C.U /-specialization of one of the ramifica-
tion types .ri ;Ci /, i D 1; : : : ; N .

Proof. – Letg1; : : : ; g�.G/ be generators of �.G/ non-conjugate maximal cyclic subgroups
and let C1; : : : ; C�.G/ be their conjugacy classes. For j D 1; : : : ; �.G/, construct a Galois
extension Lj =C.U / such that Cj appears in CLj , rLj D rk.G/ C 2 (13), and in such a way
that the constructed extensions are distinct; if some happen to be equal in a first stage,
compose them with non-trivial automorphisms of C.U /. Assume that N ramification types
.r1;C1/; : : : ; .rN ;CN / exist that satisfy the conclusion of Corollary 2.13. Then there is an
index i 2 f1; : : : ; N g such that at least �.G/=N of the constructed extensions Lj =C.U /
(j D 1; : : : ; �.G/) are C.U /-specializations of extensions F=C.T / with ramification type
.ri ;Ci /. If R is the set of these �.G/=N extensions, we have �R D rk.G/ C 2 and crite-
rion 2.9 can be applied with �R � �.G/=N ; this gives �.G/=N � rk.G/ C 2 and so
N � �.G/=.rk.G/C 2/.

The following generalized problem was suggested by the referee.

P 2.14. – Givenm nontrivial conjugacy classesC1; : : : ; Cm of a finite groupG such
that

Sm
iD1 Ci contains a generating set of G, do there exist finitely many ramification types

.r1;C1/; : : : ; .rN ;CN / with C1; : : : ;CN only supported by powers of C1; : : : ; Cm such that this
holds:

(*) every Galois extension F=C.T / of group G and with ramification type only supported
by conjugacy class powers of C1; : : : ; Cm is a C.U /-specialization of one of the ramification
type .ri ;Ci /, i D 1; : : : ; N ?

Corollary 2.13 shows that when C1; : : : ; Cm consist of all non trivial conjugacy classes
of G, one should have N � �.G/=.rk.G/C 2/. The special case m D 1 is also interesting; G
can be taken to be a simple group, a symmetric group Sn withC1 the class of involutions, etc.
However this case is not in the range of criterion 2.9 as the conjugacy classes involved in the
ramification types of the extensions F=C.T / considered in (*) are all pairwise compatible;
�R D 1 in this case.

2.3.3. Groups with no Q.U /-parametric ramification type. – Here we apply criterion 2.9 over
a non-algebraically closed field k.

C 2.15. – Let k be a subfield of C. None of the groups

– Sn, n � 6 and An, n � 7,
– PSL2.Fp/ with p a prime such that . 2

p
/ D . 3

p
/ D �1,

– the Fischer-Griess Monster M ,

(13) Take for CLj a tuple consisting of Cj and the conjugacy classes of elements of a minimal generating set and
apply the RET as explained in Basic Terminology.
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has a weakly k.U /-parametric ramification type and a fortiori they do not have a k.U /-para-
metric ramification type .r;C/. More precisely, except for the alternating groupsAn, there exist
two extensions L1=k.U /, L2=k.U / such that no ramification type .r;C/ weakly k.U /-special-
izes to both; for groups An, three extensions are needed.

The list is not exhaustive. This corollary is meant to show on examples how to apply
Criterion 2.9 and how in some situations where it cannot be applied directly, one can still
get the desired conclusion.

Proof. – TakeG D Sn, n � 6. The group Sn is known to have Q-regular realizations with
the following inertia canonical invariants (see [27], [20, B-3] for the first one and [16] for the
second one):(

Cm D .Œn1�; Œm1.n �m/1�; Œ211n�2�/ with 1 � m � n, .m; n/ D 1;

C D .Œ.n � 2/112�; Œ311n�3�; Œ2n=2�; 2.n�2/=212�/ if n � 6 even.

Apply criterion 2.9 with R consisting of the following two realizations:

– if n is odd, those above with inertia canonical invariants C1 and Cm, withm 6D 1; 2; n�
1; n � 2; such an m exists as n � 7;

– if n is even, those above with inertia canonical invariants C1 and C.

Then �R � 3 and �R � 4. Conclude that statement (*) from criterion 2.9 is satisfied for
this R .

Take G D An, n � 7. The group An is known to have Q-regular realizations with the
following inertia canonical invariant [20, B-3]:
if n is even:

.Œm1.n �m/1�1; Œm
1.n �m/1�2; Œ.n=2/

2�/ with 1 � m � n, .m; n/ D 1

if n is odd:

.Œn1�1; Œn
1�2; Œm

1..n �m/=2/2�/ with m odd, 1 � m � n, .m; n/ D 1,

.Œn1�1; Œn
1�2; Œ.m=2/

2.n �m/1�/ with m even, 1 � m � n, .m; n/ D 1.

One checks that for every n � 7, one can always find three such realizations with four
pairwise incompatible conjugacy classes in the union of the three inertia canonical invariants.
Criterion 2.9 concludes the proof in this case.

TakeG D PSL2.Fp/ with p > 3 a prime such that . 2
p
/ D . 3

p
/ D �1. [29, §8.3.3] gives two

Q-regular realizations L1=Q.T / and L2=Q.T / of G with rL1 D rL2 D 3 and

CL1 D .2A; pA; pB/ and CL2 D .3A; pA; pB/;

where 2A (resp. 3A) is the unique conjugacy class of PSL2.Fp/ of order 2 (resp. of order 3)
andpA; pB are the two conjugacy classes of orderp. Hence for R D fL1=Q.T /; L2=Q.T /g,
we have �R � 3.

According to [15, Corollary 2.7], the maximal order of an element of PSL2.Fp/ is p C 1,
so the conjugacy classes pA and pB are classes of generators of maximal cyclic subgroups.
It follows that 2A#pA, 2A#pB, 3A#pA, 3A#pB. Furthermore 2A#3A: indeed otherwise
both classes would be contained in the conjugacy class of a cyclic subgroup h
0i � PSL2.Fp/
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of order 6. But then 
0 2 3A or .�
0/ 2 3A and so 2A � .3A/Z or 2A � .�3A/Z—a
contradiction.

However pA and pB are not incompatible and criterion 2.9 cannot be applied directly.
We use instead the following argument.

Assume there is a ramification type .r;C/ that weakly k.U /-specializes to both extensions
L1=Q.T / andL2=Q.T /. From above we have r D 3 and, with C D .C1; C2; C3/, there should
exist integers ai ; bi ; ci 2 Z, i D 1; 2, such that

.C
a1
1 ; C

b1
2 ; C

c1
3 / D .2A; pA; pB/ and .C a21 ; C

b2
2 ; C

c2
3 / D .3A; pA; pB/:

Necessarily C2; C3 2 fpA; pBg, 2A � C Z
1 and 3A � C Z

1 . This contradicts 2A#3A.

Finally take G D M the Fischer-Griess Monster. We will use two known Q-regular
realizations L1=Q.T / and L2=Q.T / of G, for which rL1 D rL2 D 3 and

CL1 D .2A; 3B; 29A/ and CL2 D .2A; 3C; 38A/

(where we use the standard notation from the Atlas of simple groups for the conjugacy classes
ofM ). The extensionL1=Q.T / is the one originally produced by J. Thompson [30]; the main
point is that CL1 is a “rigid triple”. Computer programs now exist to find other rigid tuples.
The triple CL2 was communicated to me by J. Koenig who checked that it is rigid, assuming
that the current classification of all (certain and hypothetical) maximal subgroups of M is
correct.

Assume there is a ramification type .r;C/ that weakly k.U /-specializes to both extensions
L1=Q.T / and L2=Q.T /. Then we have r D 3. Set C D .C1; C2; C3/. From the Atlas
of simple groups, there is only one conjugacy class, 38A, whose elements are of order a
multiple of 38 (and this multiple is 38) and there are three conjugacy classes, 29A, 87A and
87B, whose elements are of order a multiple of 29 (and these multiples are 29, 87 and 87).
One of C1; C2; C3, say C1, must be 38A and one, say C2, should be 29A or 87A or 87B.
Furthermore 3B and 3C are not a power of 87A or 87B. This leads to these possibilities
for the triple C of ramification indices of F=Q.T /:

C D .38A; 29A;C3/ or C D .38A; 87A;C3/ or C D .38A; 87B;C3/

withC3 of order divisible by 3. But then the lower bound for the number rT0 of branch points
of a specialized extensionFT0=Q.T /with T0 2 Q.T / given in Theorem 3.1 (b-1) gives rT0 > 3
and so neither L1=Q.T / nor L2=Q.T / can be a specialization of an extension F=Q.T / with
inertia canonical invariant C.

2.4. Non Q-parametric extensions F=Q.T /

Assume k is a number field. The groups from Corollary 2.15 have no weakly k.U /-para-
metric ramification type .r;C/ and a fortiori no weakly k.U /-parametric extension F=k.T /.
We show below how to deduce that they do not have a k-parametric extension F=k.T /
(Corollary 2.18). Our method is however conditional to some diophantine “working hypoth-
esis” (§ 2.4.2) and does not lead to a non k-parametric ramification type conclusion.
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2.4.1. Main tool for producing non k-parametric extensions F=k.T /. –

T 2.16. – Let F=k.T / and L=k.T / be two k-regular Galois extensions with
respective groupsG andH such thatH � G. There exist k.U /-regular covers efi W eXi ! P1

k.U /
,

i D 1; : : : ; N such that:

(a) k.U /.eXi / D Fk.U /, i D 1; : : : ; N .
(Equivalently, after scalar extension to k.U /, each cover efi becomes isomorphic to the

k-cover of P1
k

corresponding to the extension F=k.T /).
(b) For all but finitely many u0 2 k or for u0 D U , the k.U /-covers ef1; : : : ; efN have

good reduction at U D u0 and the reduced k.u0/-covers, say efi ju0 W eXi ju0 ! P1
k.u0/

(i D 1; : : : ; N ), have this property:

(*) for all t0 2 P1.k.u0// not a branch point of F=k.T /, the specializations Lu0=k.u0/
and Ft0=k.u0/ are k.u0/-isomorphic iff there exist i 2 f1; : : : ; N g and an unramified
k.u0/-point on eXi ju0 above t0 (via efi ju0 ).

Theorem 2.16 is proved in § 4.

2.4.2. The working hypothesis. – We will deduce some non k-parametric conclusions from
Theorem 2.16 under this “working hypothesis”:

(WH) Let k be a number field and fi W Xi ! P1
k.U /

, i D 1; : : : ; N , be k.U /-regular covers.
Assume that none of the k.U /-curves X1; : : : ; XN have an unramified (14) C.U /-rational point.
Then for infinitely many u0 2 k, the covers f1; : : : ; fN have good reduction at U D u0 and
none of the reduced curves X1ju0

; : : : ; XN ju0
have an unramified k-rational point.

This is an extension of Hilbert’s Irreducibility Theorem, which indeed corresponds to
(WH), modified as follows: instead of “k.U /-regular covers of P1

k.U /
with no unramified

C.U /-rational point,” consider “closed points of P1
k.U /

of degree � 2 over k.U /”—one way
of seeing irreducible polynomials P 2 k.U /ŒY � with degY .P / � 2.

We make more comments on the hypothesis (WH) in § 2.4.4. Below we first explain how
to combine it with Theorem 2.16.

2.4.3. Main conclusions

P 2.17. – Let k be a number field, assume that (WH) holds and let F=k.T / be
a k-regular Galois extension of group G.

(a) If a k-regular Galois extension L=k.U / of group H � G is such that LC=C.U / is not
a specialization of F=k.T / at any T0 2 P1.C.U //, there are infinitely many u0 2 k
such that the specialization Lu0=k is not a specialization of F=k.T / at any t0 2 k, not
a branch point of F=k.T /.

(b) If F=k.T / is k-parametric then it is weakly k.U /-parametric.
(c) Every group with no weakly k.U /-parametric extension has no k-parametric extension.

C 2.18. – Let k be a number field and assume (WH) holds. Every group as in
Corollary 2.15 has no k-parametric extension F=k.T /.

(14) By “unramified on Xi” we mean w.r.t. the cover fi W Xi ! P1
k.U/

; similarly below “unramified on Xi ju0
”

means w.r.t. the cover fi ju0
W Xi ju0

! P1
k

, i D 1; : : : ;N .
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Proof of Proposition 2.17. – Let F=k.T / and L=k.U / be as in (a) and ef1; : : : ; efN be the
k.U /-regular covers provided by Theorem 2.16. Combining its conclusion (b) for u0 D U
and the assumption in (a) above yields that none of the k.U /-curves eX1; : : : ; eXN has
an unramified C.U /-rational point (15). Apply (WH) to conclude that for infinitely many
u0 2 k, the covers ef1; : : : ; efN have good reduction at U D u0 and that none of the reduced
curves eX1ju0 ; : : : ; eXN ju0 have an unramified k-rational point. From Theorem 2.16, for
these u0, the specialization Lu0=k, which is of Galois group contained in H � G, is not
a specialization Ft0=k with t0 2 k, not a branch point of F=k.T /. Statements (b) and (c)
follow straightforwardly from (a).

R 2.19. – (a) The proof shows that Proposition 2.17 and Corollary 2.18 still hold
if (WH) is replaced by the weaker hypothesis (WH-[) for which the conclusion of (WH) solely
holds for k.U /-regular covers f1; : : : ; fN which all become isomorphic to a k.U /-regular
Galois cover (the same for i D 1; : : : ; N ) after scalar extension to k.U /.

(b) We can explain how, conditionally, Legrand’s result (mentioned in § 1.1) can be
deduced from ours. Assuming G is the group of some Q-regular Galois extension L=Q.U /,
if F=Q.T / is another Q-regular Galois extension of group G such that LC=C.U / is not a
C.U /-specialization of F=Q.T /, then it follows from Proposition 2.17 that, if G satisfies
(WH-[), F=Q.T / is not Q-parametric. (16)

For example, one can take for F=Q.T / a specialization LU0=Q.T / with U0.T / D aC T 5

with a 2 Q. For all but finitely many a 2 Q, Gal.F=Q.T // D G. From inequality (*)
from § 2.1.1, the branch point number of FC=C.T / is bigger than that of LC=C.U /. From
Theorem 2.1, the latter is not a specialization of the former with T0 2 C.U /.

2.4.4. Comments on the working hypothesis

(a) The working hypothesis (WH) is a variant for covers of the following statement about
curves, posed as a problem of Fried in [3], and which we call here the Fried-Schinzel problem:

(*) given a family XU of smooth projective k-curves parametrized by U 2 P1, if there is no
k.U /-rational point onXU , then there are infinitely many u0 2 k such that there is no k-rational
point on Xu0 .

Schinzel proved that Fried’s problem has an affirmative answer when XU has genus 0 [26,
Theorem 38]. A stronger conclusion even holds: the infinitely many u0 can be chosen in the
ring of integers of k. Our cover variant (WH) holds too for genus 0 curves, but for a different
reason: the k.U /-curves that we consider should not have rational points over C.U /; this is
not possible if the genus is 0, due to Tsen’s theorem.

Our working hypothesis (WH) was also shown to hold in this situation: N D 1 and
f1 W X1 ! P1

T;k.U /
is the k.U /-cover corresponding to the polynomial Y n � UmQ.T / with

n � 2 dividing deg.Q/, m relatively prime to n and Q 2 kŒT � n k a polynomial with integral

(15) To obtain this C.U /-irrationality conclusion (instead of k.U /-irrationality), one uses the fact, shown by the
proof of Theorem 2.16, that the covers ef1; : : : ; efN behave well under scalar extension from k to C: the covers,
with C as base field, are obtained from the original ones by scalar extension.
(16) Legrand in fact obtains a stronger conclusion: he can produce extensions E=Q that in addition to not being
specializations of F=Q.T / are Galois of groupG (and not only of groupH � G).
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coefficients such that the Galois group ofQ has an element that fixes no root ofQ (e.g.,Q is
irreducible in kŒT �) [24].

(b) There is no known counter-example to the working hypothesis (WH) or to the Fried-
Schinzel problem. The best attempts in this direction are due to Cassels, Lewis and Schinzel
[25] [3] [27]. They produce two polynomials Y 2 � f .U; T / with f .U; T / taken to be(

f1.U; T / D T
4 � .8U 2 C 5/2; or

f2.U; T / D T .T
2 � .7U 4 C 7/2/

and show these properties: the C.U /-curve y2 � f .U; t/ D 0 is of genus 1, the equation
y2 � f .U; t/ D 0 has no unramified solution .T0.U /; Y0.U / 2 Q.U /2 and the equation
y2�f .u0; t / D 0 has a solution .t0; y0/ 2 Q2 for every u0 2 Z. This however does not make
them counter-examples. First, the last conclusion is only established under a conjecture of
Selmer [28]. Secondly, for f D f2, the equation y2�f .U; t/ D 0 has an unramified solution
.T0.U /; Y0.U / 2 C.U /2 (contrary to the assumption in (WH)) (17), and for f D f1, it is not
shown (even conjecturally) that the equation y2 � f .u0; t / D 0 has a solution .t0; y0/ 2 Q2

for every u0 2 Q (it is only shown for every u0 2 Z) (18).

3. C.U /-specializations of Galois extensions F=C.T /

A main goal of this section is to establish Theorem 2.1.

Let F=C.T / be a degree d Galois extension of group G, with r branch points t1; : : : ; tr ,
inertia canonical invariant C D .C1; : : : ; Cr / and associated ramification indices
e D .e1; : : : ; er /. Also set (

" D 1
e1
C � � � C

1
er

e1 D max.e1; : : : ; er /:

Let T0.U / D a.U /=b.U / 2 C.U / n C with a; b 2 CŒU � relatively prime and b 6D 0. Set

N D deg.T0/ D max.deg.a/; deg.b//:

We will compare the invariants of F=C.T / to those of FT0=C.T /.

Note that when N D 1, T0 is a linear fractional transformation and the two extensions
F=C.T / and FT0=C.T / are isomorphic. More specifically, T0 interprets as an automorphism
of P1.C/ and if f W X ! P1 is the branched cover corresponding toF=C.T /, thenFT0=C.T /
corresponds to the cover f ı T �10 . In particular the invariants G, r , d , g, C are the same for
the two extensions.

(17) The equation y2 � f2.U; t/ D 0 also has the obvious ramified solution y D t D 0.
(18) And it is also actually stated that for infinitely u0 2 Q, the elliptic curve of equation y2 � f .u; t/ D 0 is of
rank 0.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



162 P. DÈBES

3.1. Invariants of the specialized extensions

Denote the invariants of the specialized extensions FT0=C.U / by GT0 , dT0 D jGT0 j, gT0
and CT0 . The following statement is the most precise of this section. We will in particular
deduce Theorem 2.1 from it.

T 3.1. – Consider the specialized extension FT0=C.U /.
(a) We have GT0 � G, equivalently dT0 � d . Furthermore dT0 < d if and only if there

is a subfield L � F , L 6D C.T /, of genus 0, such that a specialization of it at T0 is trivial:
LT0 D C.U /.

(b) The branch point number rT0 satisfies rT0 � rN and

rT0 �
.r � " � 2/N C 2

1 � .1=e1/
if r � 0(b-1)

rT0 � .r � 4/N C 4 if r � 4(b-2)

(c) The inertia canonical invariant CT0 of FT0=C.U / consists of conjugacy classes in GT0 of
powers g˛ (˛ 2 N ) of elements of C1 [ � � � [ Cr .

(d) The genus gT0 satisfies gT0 � N.g C d � 1/, and, if GT0 D G,

gT0 � g �
d

4
.N � 1/.r � 4/:

R 3.2. – The lower and upper bounds for gT0 in (d) are better than those that can
be deduced from inequalities (b-1) or (b-2) by combining them with the usual ones given by
Riemann-Hurwitz:

r

2
C 1 � d � g �

rd

2
C 1 � d �

r

2
:

Proof. – (a) The first part of (a) is standard.
Assume that there is a subfield L � F , L 6D C.T / with a trivial specialization:

LT0 D C.U /. Then we have

dT0 D ŒFT0 W LT0 � ŒLT0 W C.U /� � ŒF W L� < d:

For the converse, assume that dT0 < d . A standard argument (e.g., [12, Lemma 13.1.2])
from the theory of Hilbertian fields (applied here to the field C.U /) shows that there exists
� 2 F nC.T / such that C.T; �/T0 D C.U /: if P.T; Y / is an affine equation of F=C.T /, � is a
coefficient inC.T / of a factorizationP.T; Y / inC.T /ŒY �. The fieldL D C.T; �/ is the desired
field.

That L is of genus 0 follows from LT0 D C.U /. Indeed, if Q.T; Y / is an affine
equation for L=C.T /, LT0 D C.U / means that there exists Y0.U / 2 C.U / such that
Q.T0.U /; Y0.U // D 0, which is a rational parametrization of the curve of equationQ.T; Y /.
Hence its function field L is of genus 0.

(b) A first point of the proof is that

(*) if u 2 P1.C/ is a branch point of FT0=C.U /, there exists a branch point ti of F=C.T / such
that T0.u/ D ti and, conversely, if T0.u/ D ti , the associated inertia group is generated by some
power g˛i (˛ 2 N ) of an element gi 2 Ci .

This statement, which in particular yields conclusion (c), follows from the Specialization
Inertia Theorem (SIT) recalled in § 5. Specifically, we use it in the situation the Dedekind
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domain is A D CŒU � (or A D CŒ1=U � for u D 1), K D C.U /, the K-regular extension is
FC.U /=C.U /.T / and p is the ideal p D hU � ui if u 2 C (and p D h1=U i if u D1).

A few remarks on the assumptions from § 5 are in order:

(1) jGj … p since A=p D C is of characteristic 0.
(2) there is no vertical ramification at p in the extensionFK=K.T /: indeed if Y is a primitive

element of F=C.T /, integral over A, then 1; Y ; : : : ; Y d�1 (with d D jGj) are integral
overAŒT � and form aK.T /-basis ofFK=K.T /. The discriminant of this basis is a non-
zero element of C � A, and so remains non-zero modulo p. This classically guarantees
the content of our claim.

(3) no two different branch points of F=K.T / meet modulo p: indeed the branch points are
those of F=C.T / and their mutual differences ti � tj or .1=ti / � .1=tj / are non-zero
elements of C � A and remain non-zero modulo p.

(4) the ideal p is unramified in K.t1; : : : ; tr /=K D C.U /=C.U /.
(5) ti and 1=ti are integral over eAp: ti ; 1=ti 2 C [ f1g i D 1; : : : ; r .

The SIT concludes that if u 2 P1.C/ is a branch point of FT0=C.U /, there exists
i 2 f1; : : : ; rg such that T0 meets ti modulo p, which exactly means that T0.u/ D ti , and,
secondly, that, if T0.u/ D ti , the inertia group of FT0=C.U / at u, is generated by an element
of C ˛i with

(**) ˛ D ordu.T0.U / � ti /:

This concludes the proof of (*). To simplify the exposition of the rest of the proof, we first
assume:

(H) neither1 nor T0.1/ is a branch point of F=C.T /.

and will explain afterwards how to reduce to this hypothesis.

For an element u 2 P1.C/ such that T0.u/ D ti for some i D 1; : : : ; r to be a branch
point of FT0=C.U /, the integer ˛ from (**) should not be a multiple of ei . Note further that
because of (H), u 6D 1 and u is not a pole of T0.

For each i D 1; : : : ; r , label the roots in C of a.U / � tib.U / as follows:

� ui1; : : : ; uipi are the pi distinct simple roots,
� vi1; : : : ; viqi are the qi distinct multiple roots of orders, saymi1; : : : ; miqi , non divisible

by ei ,
� wi1; : : : ; visi are the si distinct multiple roots of orders, say ni1; : : : ;niqi , divisible by ei .

Then we have

pi C

qiX
jD1

mij C

siX
jD1

nij D N; i D 1; : : : ; r;(1)

rX
iD1

0@ qiX
jD1

.mij � 1/C

siX
jD1

.nij � 1/

1A � 2N � 2:(2)
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Equality (1) is clear. As to (2), it follows from the fact (left to the reader (19)) that if u 2 C is
root of a.U / � tib.U / of order m � 1 for some i D 1; : : : ; r , then u is a root of order m � 1
of the polynomial a0b � ab0, which is of degree 2N � 2. An alternate argument consists
in applying the Riemann-Hurwitz formula to the branched cover T0 W P1 ! P1 induced
by the rational function T0.U /: the left-hand side term from (2) is smaller than or equal
to the term

P
P .eP � 1/ of this formula (where P ranges over all ramified points) and so

is � 2 � 0 � 2C 2 deg.T0/ D 2N � 2.
Statement (*) gives

rT0 D

rX
iD1

.pi C qi /:

Clearly rT0 � rN follows. Inequality (2), conjoined with (1), rewrites
rX
iD1

.N � pi � qi � si / � 2N � 2

so we obtain

(***) rT0 � .r � 2/N C 2 �

rX
iD1

si :

From (1), for i D 1; : : : ; r , we also have pi C qi C eisi � N , whence

si �
N

ei
�
pi C qi

ei
:

The definition of e1 and " leads to

rT0 � rN � .2N � 2/ � "N C
1

e1

rX
iD1

.pi C qi /

and finally to inequality (b-1).
From (2) we can also deduce that

rX
iD1

si � 2N � 2

which conjoined with (***), yields inequality (b-2).

(d) Write the Riemann-Hurwitz formula for F=C.T / and FT0=C.U /:(
2g � 2 D �2d C

P
F .eP � 1/

2gT0 � 2 D �2dT0 C
P
FT0

.eP � 1/

where
P
F (resp.

P
FT0

) means that the sum ranges over all places of F (resp. of FT0 ) trivial
on C. The first claim from (d) comes from

gT0 D 1 � dT0 C
1

2

X
FT0

.eP � 1/ �
N

2

X
F

.eP � 1/ D N.g � 1C d/:

(19) With this hint: if a.k/.u/� tib.k/.u/ D 0 for k D 0; : : : ;m� 1, then a.h/.u/b.k/.u/� a.k/.u/b.h/.u/ D
0 for h; k D 0; : : : ;m � 1. The claim follows from the observation that every derivative .a0b � ab0/.h/

(h D 0; : : : ;m� 2) is a sum of terms of the form a.h/b.k/ � a.k/b.h/ with h; k D 0; : : : ;m� 1.
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As F=C.T / is Galois, we also haveX
F

.eP � 1/ D

rX
iD1

X
P=ti

.ei � 1/ D

rX
iD1

�
d �

d

ei

�
:

Assume GT0 D G, so dT0 D d . Our analysis of the branch points of the specialized
extension FT0=C.U / yields: X

FT0

.eP � 1/ �

rX
iD1

�
d �

d

ei

�
pi

whence

gT0 � g �
1

2

rX
iD1

�
d �

d

ei

�
.pi � 1/:

Now we have, for each i D 1; : : : ; r ,

pi D N �

qiX
jD1

mij �

siX
jD1

nij

� N � 2

0@ qiX
jD1

.mij � 1/C

siX
jD1

.nij � 1/

1A :
We deduce:

gT0 � g �
1

2

rX
iD1

.d �
d

ei
/

0@N � 1 � 2. qiX
jD1

.mij � 1/C

siX
jD1

.nij � 1//

1A
�
d

4
.r.N � 1/ � 2.2N � 2//

D
d

4
.N � 1/.r � 4/:

Finally we explain how to reduce to a situation for which assumption (H) is satisfied. Note
first that the parameters r , d , g, C are unchanged if the extension F=C.T / is replaced by any
extension F�=C.T / with � 2 C.T / of degree 1.

For some fixed �0 2 Cnft1; : : : ; trg, consider the linear fractional transformation� defined
by

��1.T / D
�T C �

T � �0
;

where �; � are chosen in C so that the complex numbers ��1.t1/,: : :, ��1.tr / are different
from1; such a choice is possible as C is infinite. These r complex numbers are the branch
points of the extension F�=C.T /, and so these branch points are different from 1. Fix
then a second linear fractional transformation �0 such that T0.�0.1// … ft1; : : : ; trg. By
construction the extension F�=C.T / and the rational function ��1 ı T0 ı �0 satisfy the
assumption (H). Therefore the conclusions from Theorem 3.1 comparing the ramification
invariants of the specialized extension

.F�/��1ıT0ı�0=C.U / D FT0ı�0=C.U /
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with those of F�=C.T / are satisfied. These conclusions hold as well for the invariants of
the specialized extension FT0=C.U / compared to those of F=C.T / since FT0=C.U / (resp.
F=C.T /) is obtained from FT0ı�0=C.U / (resp. F�=C.T /) by composition with an automor-
phism of C.U / (resp. an automorphism of C.T /).

In the next subsections, we explain how Theorem 2.1 can be deduced from Theorem 3.1.

3.2. Proof of Theorem 2.1(a)

Assume g � 1 and let L=C.T / be a Galois extension such that F=C.T / � L=C.T /, i.e.,
there exists T0 2 C.U / nC such that L=C.T / D FT0=C.T /. As in § 3.1 denote the invariants
of FT0=C.T / by GT0 , rT0 , gT0 , CT0 .

We already know that G � GT0 and C � CT0 (Theorem 3.1 (a), (c)).

Next we show that rT0 � r . We may assume that N � 2.

A first case is when r � 4: rT0 � r follows from Theorem 3.1 (b-2).

From Theorem 3.1 (b-1), if " � .r � 1/=2 and r � 3 we have:

rT0 > .r �
r � 1

2
� 2/N C 2 � 2

�
r

2
�
3

2

�
C 2 D r � 1:

In particular, for r D 3, we have rT0 � r if " � 1. A simple check shows that the following
3-tuples e:

.2; 2; 2/; .2; 3; 3/; .2; 3; 4/; .2; 3; 5/; .2; 2; e/; .e � 3/

are exactly those for which " > 1 and that g D 0 in these cases.

We are left with the case r D 2. But then F=C.T / is a cyclic extension with two branch
points and hence g D 0. This ends the proof of the inequality .G; r;C/ � .GT0 ; rT0 ;CT0/
when g � 1.

Assume next GT0 D G. The above inequality then also holds if g D 0. The only non-
trivial point is rT0 � r . We know that rT0 < r possibly happens only when r � 3 and
g D 0 and in this case rT0 < r means that either rT0 D 0 in which case FT0 D C.T /
and then GT0 D f1g 6D G, or, rT0 D 2 in which case FT0=C.T / is cyclic, and then again
GT0 6D G. Indeed, in this last case, G cannot be cyclic as r D 3, g D 0 and a cyclic group
has no generating set fg1; g2; g3g such that g1g2g3 D 1 and with respective orders those in
one of the above triples e. Finally it immediately follows from Theorem 3.1 (d) that gT0 � g
if r � 4.

R 3.3. – If F is of genus 0 and GT0 6D G, rT0 < r may happen. One may then
have GT0 D f1g or not (see Example 3.3.2).
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3.3. The exceptional genus 0 cases

The Riemann-Hurwitz formula

2g � 2 D �2d C

rX
iD1

.ei � 1/
d

ei

where d D jGj, in a Galois situation yields

2g � 2 D d.r � 2 � "/:

As " � r=2 we have 2g � 2 � d. r
2
� 2/, and if " � .r � 1/=2, we have 2g � 2 � d

2
.r � 3/.

Hence if g D 0, then (r D 3 and " > 1) or .r � 2/.

Conclude that if g D 0 we necessarily are in one of these cases:

(1) r D 3 and e 2 f.2; 2; 2/; .2; 3; 3/; .2; 3; 4/; .2; 3; 5/; .2; 2; n/, .n � 3/g
with corresponding groups .Z=2Z/2, A4, S4, A5, D2n .n � 3/.

(2) r � 2 then F=C.T / is a cyclic extension.

Namely, a simple calculation shows that the tuples e are the indicated ones. Concerning
the corresponding groups, note first that, as F is of genus 0, G must be a subgroup
of PGL2.C/ and so one of the proposed list. The case r D 2 is clear. Assume r D 3.
Then G cannot be cyclic. For e D .2; 2; 2/, G is generated by two involutions with product
an involution, so G D .Z=2Z/2. Similarly one obtains D2n (dihedral group of order 2n) if
e D .2; 2; n/ (n � 3). If e D .2; 3; 4/ G must be S4 as it cannot be any of the others. We
obtain similarly that G D A4 if e D .2; 3; 3/ and G D A5 if e D .2; 3; 5/.

Next we show that in all these cases, if r distinct points t1; : : : ; tr 2 P1.C/ are fixed (r D 2
or r D 3), there is one and only one Galois extension F=C.T / of group G, ramification
indices e D .e1; : : : ; er / and branch points t1; : : : ; tr . Furthermore, as PGL2 is 3-transitive
on P1.C/, up to isomorphism, there is exactly one extension F=C.T / in each case.

From Proposition 2.4, this unique extension F=C.T / of group G in each case is
C.U /-parametric.

Concerning uniqueness, one checks first that up to some (anti-)isomorphism ofG (which
does not change the Galois extension F=C.T /), there is, for each r-tuple e, a unique possible
r-tuple C D .C1; : : : ; Cr / and second, that this r-tuple is rigid, that is: there is a unique
r-tuple .g1; : : : ; gr / 2 C1 � � � � � Cr such that hg1; : : : gri D G and g1 � � �gr D 1, up
to component-wise conjugation by an element of G. It then classically follows from the
Riemann Existence Theorem that there is one and only one Galois extension F=C.T / as
desired if in addition the branch points are fixed.

Below we produce in each case an example of an extension F=C.T / with the given invari-
ants.

3.3.1. r D 2, G D Z=dZ with d � 1: C. d
p
T /=C.T / is a Galois extension of group Z=dZ

branched at 0 and1 with ramification indices d .
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3.3.2. e D .2; 2; 2/, G D .Z=2Z/2: for F D C.
p
T ;
p
T � 1/, F=C.T / is a Galois

extension of group .Z=2Z/2. A primitive element of F=C.T / is for example
p
T C
p
T � 1.

An affine equation is the polynomial Y 4C 2.1� 2T /Y 2C 1. There are three branch points:
0, 1 and1, which all are of index 2. For T0 D T 2, we have FT0 D C.T;

p
T 2 � 1/ whose

branch points are 1 and �1.
For the other cases, we produce a generating set ofG of 3 elements g1; g2; g3 of orders e1,

e2, e3 and such that g1g2g3 D 1.

3.3.3. e D .2; 3; 3/, G D A4: take

g1 D .12/.34/; g2 D .123/; g3 D .234/:

3.3.4. e D .2; 3; 4/, G D S4: take

g1 D .12/; g2 D .234/; g3 D .4321/:

(The conjugacy classes of g1; g2; g3 in S4 being “rational,” a standard argument shows
further that, if one fixes the three branch points inP1.Q/, the unique corresponding extension
F=C.T / is defined over Q.)

3.3.5. e D .2; 3; 5/, G D A5: take

g1 D .15/.34/; g2 D .124/; g3 D .54321/:

3.3.6. e D .2; 2; n/, e � 3, G D D2n: take g1, g2 two involutions with g1g2 D g�13
generating the normal cyclic subgroup. For n odd, an explicit example is the Galois extension
F=C.T /with affine equation Y 2n�T Y nC1which is branched at 2,�2,1with ramification
indices 2, 2 and n. As it is C.U /-parametric, it follows from the uniqueness conclusion of
Theorem 2.1 (b) that it is isomorphic to the Hashimoto-Mihake generic extension for D2n
mentioned in Remark 2.6.

3.4. Theorem 2.1 (b)

3.4.1. A preliminary lemma. – Retain the notation already introduced for Theorem 2.1 (a).

L 3.4. – When N D deg.T0/ > 1, we have rT0 > r in each of the following cases:

(a) r � 5,
(b) F 6D C.T / and " � .r � 2/=2,
(c) N � 4, r D 4 and " � 3=2,
(d) N � 4, r D 3 and " � 3=4.

Proof. – Assume N > 1. If r � 5 as in (a), Theorem 3.1 (b-2) gives

rT0 � .r � 4/N C 4 � 2r � 4 > r

From Theorem 3.1 (b-1), we have

(*) rT0 > .r � " � 2/N C 2:

Under the assumptions of (b), we deduce

rT0 > .
r

2
� 1/N C 2 � .

r

2
� 1/2C 2 D r:

Finally rT0 > r easily follows from (*) above in the last two cases (c) and (d).
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3.4.2. Proof of Theorem 2.1 (b). – The only non-trivial point is the antisymmetry
of �. Let F=C.T / and F 0=C.T / be two non-isomorphic extensions in the set E � such
that F=C.T / � F 0=C.T / and F 0=C.T / � F=C.T /. Let T0; T 00 2 C.T / such that
F 0=C.T / D FT0=C.T / and F=C.T / D F 0

T 0
0

=C.T / with deg.T0/ � 2 and deg.T 00/ � 2.

From Theorem 2.1 (a), F=C.T / and F 0=C.T / have the same group G, the same branch
point number r , the same powered conjugacy classes C Z

1 ; : : : ; C
Z
r and, as a consequence, the

same ramification indices e and the same genus g. We also have FT0T 00=C.T / D F=C.T /.
Recall that F=C.T / 2 E � means one of the following situations holds:

(a) G is of rank � 4,
(b) G is of rank 3 and of odd order,
(c) G is of rank 2 and order non divisible by 2 or 3,
(d) F is of genus g D 0.

Each of the first three conditions further implies that

(*) r � 5 or .r D 4 and " �
4

3
�
3

2
/ or .r D 3 and " �

3

5
�
3

4
/:

In the three cases, Lemma 3.4 (applied with N D deg.T0T 00/ � 4) yields a contradiction
to rT0T 00 D r .

Suppose as in (d) that F is of genus 0. Then F=C.T / is one of the exceptional extensions
described in § 3.3. But then so is F 0=C.T / as it has the same invariants G, r , e, g, and again
from § 3.3, it must be isomorphic to F=C.T /, a contradiction.

R 3.5. – This last argument also shows the uniqueness conclusion forC.U /-para-
metric extensions F=C.T / when G � PGL2.C/: since G has a realization F=C.T / with
gF D 0 and that such a realization is C.U /-parametric (Proposition 2.4), the argu-
ment gives that any other C.U /-parametric extension F 0=C.T / of G (which satisfies
F 0=C.T / � F=C.T / and F=C.T / � F 0=C.T /) is isomorphic to F=C.T /.

Finally fix a group G 2 G� but not a subgroup of PGL2.C/. Then all Galois extensions
L=C.T / of group G are in E � and a C.U /-parametric extension F=C.T / of group G is the
smallest such extension for the order �, hence is unique.

3.4.3. An example. – Here is an example for which we have

.G; r; g;C/ D .GT0 ; rT0 ; gT0 ;CT0/

but F=C.T / and FT0=C.T / are not isomorphic, and so N > 1. We do not know whether
an example exists for which F=C.T / could additionally be shown to be a specialization
of FT0=C.T / (which would show that the pre-order � is not an order).

TakeG D D2n with n odd and F=C.T / a Galois extension of groupG with branch points
0; 1;�1; � with � 2 C n f0;˙1g and ramification indices e D .2; 2; 2; 2/; such an extension
exists from the RET and the easy construction of a generating set of G of four elements
g1; : : : ; g4 of order 2 and such that g1 � � �g4 D 1.

Take T0.U / D U 2=.2U 2 � 2U C 1/. One checks that T0.u/ D 0 has a double root,
u D 0, and that T0.u/ D 1 has a double root, u D 1. It follows that both T0.u/ D �1 and
T0.u/ D � have two distinct roots (because of inequality (2) of the proof of Theorem 3.1).
From the analysis of the ramification in specialized extensions in the proof of Theorem 3.1
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(more particularly from (*) and (**)), we obtain that FT0=C.T / has rT0 D 4 branch points,
with ramification indices 2.

The extensions F=C.T / and FT0=C.T / are not isomorphic. Otherwise the cross-ratio
of their branch points would be equal, up to the sign. The cross-ratio of 0; 1;�1; � is
.� � 1/=.2�/. The branch points of FT0=C.T / are the simple roots of T0.u/ D 1 and
T0.u/ D �. Take for example � D 1=5. These four points are then .1 ˙

p
�2/=3, �1

and 1=3. A final computation shows the corresponding cross-ratio is .16C 4
p
�2/=9 while

.� � 1/=.2�/ D �2.
AssumeGT0 6D G. From Theorem 3.1 (a), there exists a sub-extensionL=C.T / ofF=C.T /

such that L 6D C.T /, LT0 D C.T / and L of genus 0. Write L D C.�/ for some � 2 F and
T D A.�/=B.�/ with A;B 2 CŒX� relatively prime, B 6D 0. The irreducible polynomial of �
over C.T / is A.Y / � TB.Y /. Then LT0 D C.U / means that A.Y / � T0.U /B.Y / has a root
Y0.U / 2 C.U /. But then we have T0.U / D A.Y0.U //=B.Y0.U //. As we explain in the last
paragraph, T0 is indecomposable so necessarily A=B D T0 and so L does not depend on �.
The next paragraph provides a contradiction by showing that L is ramified over �.

The Galois group Gal.F=L/ cannot be a subgroup of the cyclic subgroup of order n
of D2n: otherwise, with dL D ŒL W C.T /�, the Riemann-Hurwitz formula yields
�2 D �2dL C 4dL=2, a contradiction. Therefore L is the fixed field in F of some invo-
lution of D2n. The Riemann-Hurwitz formula gives: �2 D �2nCR where R is the number
of ramified primes. Conclude that above each of 0; 1;�1; �, the number of ramified points is
the maximum possible: .n � 1/=2.

That T0 is indecomposable is an exercise for which we only indicate the main steps.
Deduce from T0.U / D A.Y0.U //=B.Y0.U // that A.Y0.U // D K.U /U 2 and B.Y0.U // D
K.U /.2U 2 � 2U C 1/ for some K 2 C.U /. Writing Y0.U / D ˛.U /=ˇ.U / with ˛; ˇ 2 CŒU �
relatively prime, show next that necessarily Y0.U / 2 CŒU � and K.U / 2 C. The desired
conclusion easily follows.

4. Twisting regular Galois extensions in families

Here k-regular extensions F=k.T / are viewed as fundamental group representations, as
recalled in § 4.1. § 4.2 recalls the twisting operation on covers and the twisting lemma (§ 4.2.1).
§ 4.3 explains how the twisting lemma can be used “in family”. § 4.4 states Theorem 4.2, which
is the main result of this section; Theorem 2.16 is a special case. Theorem 4.2 is proved in § 4.5.

4.1. Fundamental groups representations

The absolute Galois group of a field K is denoted by GK . If E=K is a Galois extension
of group G, an epimorphism ' W GK ! G such that E is the fixed field of ker.'/ in K is a
called a GK-representation of E=K.

Given a finite subset t � P1.K/ invariant under GK , theK-fundamental group of P1 n t is
denoted by �1.P1nt; t /K ; here t denotes a fixed base point, which corresponds to choosing an
embedding ofK.T / in an algebraically closed field�. The (geometric)K-fundamental group
�1.P1 n t; t /K is defined as the Galois group of the maximal algebraic extension�t;K=K.T /

(inside �) unramified above P1 n t and the (arithmetic)K-fundamental group �1.P1 n t; t /K
as the group of the Galois extension �t;k=K.T /.
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Degree d K-regular extensions F=K.T / (resp. K-regular Galois extensions F=K.T / of
group G) with branch points in t correspond to transitive homomorphisms �1.P1 n t; t /K ! Sd
(resp. to epimorphisms �1.P1 n t/K ; t / ! G), with the extra regularity condition that the
restriction of � to �1.P1 n t/K ; t /K remains transitive (resp. remains onto). These corre-
sponding homomorphisms are called the fundamental group representations (or �1-represen-
tations for short) of the K-regular (resp. K-regular Galois) extension F=K.T /.

EachK-rational point t0 2 P1.K/nt naturally provides a section st0 W GK ! �1.P1nt; t /K
to the exact sequence

1! �1.P1 n t; t /K ! �1.P1 n t; t /K ! GK ! 1

which is uniquely defined up to conjugation by an element in the fundamental group
�1.P1 n t; t /K .

If � W �1.P1nt; t /K ! G represents aK-regular Galois extension F=K.T /, the morphism
�ıst0 W GK ! G is the specialized representation of� at t0. The fixed field inK of ker.�ıst0/ is
the specialized extension Ft0=K of F=K.T / at t0.

4.2. Twisting regular Galois extensions

For this subsection, we refer to [9].

4.2.1. The twisting lemma. – Fix a field K and a K-regular Galois extension F =K.T / of
group G, also viewed as a K-regular Galois cover f W X ! P1. Recall how it can be twisted
by a Galois extensionE=K of groupH � G. Formally this is done in terms of the associated
�1-and GK-representations.

Let � W �1.P1 n t; t /K ! G be a �1-representation of F =K.T / and ' W GK ! G be a
GK-representation of the Galois extension E=K.

Denote the right-regular (resp. left-regular) representation of G by ı W G ! Sd (resp.
by 
 W G ! Sd ) where d D jGj. Consider the mape�' W �1.P1 n t; t /K ! Sd

defined by the following formula, where R is the restriction map �1.P1 n t; t /K ! GK and
� is the multiplication in the symmetric group Sd :

(*) e�'.‚/ D 
.�.‚// � ı.'.R.‚//�1/ .‚ 2 �1.P1 n t; t /K/:

The map e�' is a group homomorphism with the same restriction on �1.P1 n t; t /K as �.
It is called the twisted representation of � by '.

The associated K-regular extension is denoted by fF '
=K.T / and called the twisted

extension of F =K.T / by '. The field fF '
is the fixed field in �t;K of the subgroup

� � �1.P1 n t; t /K of all ‚ such that e�'.‚/ fixes the neutral element of G (20). Finally the
corresponding K-regular cover, the twisted cover of f by ', is denoted by ef ' W eX' ! P1.

The following statement is the main property of the twisted cover.

T  4.1. – Let t0 2 P1.K/ n t. The specialization representation � ı st0 W

GK ! G is conjugate in G to ' W GK ! G if and only if there exists x0 2 eX'.K/ such thatef '.x0/ D t0.

(20) Taking any other element ofG gives the same field up toK.T /-isomorphism.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



172 P. DÈBES

As a first illustration, we can prove Proposition 2.4, which we have used several times.

Proof of Proposition 2.4. – LetF=C.T / be a Galois extension of groupG withF of genus
0 and L=C.U / be a Galois extension of group H � G. Let � W �1.P1 n t; t /C.U / ! G be a
�1-representation of FC.U /=C.U /.T / and ' W GC.U / ! H � G be a GC.U /-representation
of the Galois extension L=C.U /. Set F D FC.U / and consider the twisted extensionfF '

=C.U /.T / and the associated twisted cover eX' ! P1. The extension F C.U /=C.U /.T /
andFC.U /=C.U /.T / areC.U /.T /-isomorphic. Consequently eX' is of genus 0. From Tsen’s
theorem, eX' has a C.U /-rational point and is isomorphic to P1 over C.U /. Conclude thanks
to Lemma 4.1 that L=C.U / is a C.U /-specialization of F=C.T /.

It is a similar argument that proves that if K is a Pseudo Algebraically Closed field, then
every K-regular Galois extension F=K.T / is K-parametric [5, §3.3.1].

4.3. Twisting in families

Consider the twisted extension fF '
=K.T / when K D k.U / with k a field and U some

indeterminate.

4.3.1. Description of the twisted extension. – Every element‚ in theK-fundamental group
�1.P1 n t; t /K uniquely writes ‚ D �sU .�/ with � 2 �1.P1 n t; t /K and � 2 GK . Whence(

�.‚/ D �.�/�.sU .�//

'.R.‚// D '.�/

and the following formula, where, by conj.g/ (g 2 G), we denote the permutation of G
induced by the conjugation x ! gxg�1:e�'.‚/ D 
.�.�/�.sU .�//'.�/�1/ � conj.'.�//:

Conclude that the field fF '
is the fixed field in �t;K of the following subgroup

� � �1.P1 n t; t /K :

� D f�sU .�/ 2 �1.P1 n t; t /K j�.�/ D '.�/�.sU .�//�1g:

4.3.2. The fiber-twisted cover at u0. – The two extensions F =K.T / and fF '
=K.T / are

K-regular. From the Grothendieck good reduction theorem (§ 5), for every u0 2 k but
in a finite subset E , they specialize at U D u0 to respective extensions F ju0

=k.T / and

.fF '
/ju0

=k.T / that are k-regular of degree

ŒfF '
W k.U /.T /� D ŒF W K.T /� D d;

have branch point set tu0 and have the same genus as the common genus of the function
fields F and fF '

. More specifically, one can take for E the set of u0 2 k that are bad
for F =k.U /.T / or ramified in the extension E=k.U / (21).

Using the embedding of k.U / in the field of Puiseux series in U �u0 and coefficients in k,
we have a natural monomorphism

su0 W Gk ! GK :

(21) Assumption (1) from § 5 is satisfied as k is of characteristic 0 and u0 unramified in E=k.U/ guarantees that
u0 is good for fF '

=k.U /.T / if it is good for F =k.U /.T /.
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The morphism ' ı su0 W Gk ! G is well-defined and so is the twisted extension

˜�
F ju0

�'ısu0
=k.T /:

We call it the fiber-twisted extension at u0. If �ju0
W �1.P1 n tu0 ; t /k ! G is a �1-represen-

tation of the k-regular Galois extension F ju0
=k.T /, then a �1-representation of the twisted

extension above is g�ju0'ısu0 W �1.P1 n tu0 ; t /k ! Sd :

Every element � 2 �1.P1 n t; t /k uniquely writes � D xsu0.�/ with x 2 �1.P1 n t; t /k and
� 2 Gk . Similarly as in § 4.3.1 we obtain:g�ju0'ısu0 .�/ D 
 ��ju0.x/�ju0.su0.�/�'.su0.�//�1/ � conj.'.su0.�///:

The field
˜�
F ju0

�'ısu0
is the fixed field in �tu0 ;k

of the following subgroup

�u0 of �1.P1 n tu0 ; t /k :

�u0 D fxsu0.�/j�ju0
.x/ D '.su0.�//�ju0

.su0.�//
�1
g:

4.4. Comparison statement and proof of Theorem 2.16

T 4.2. – For all but finitely many u0 2 k, the two extensions

.fF '
/ju0

=k.T / and
˜�
F ju0

�'ısu0
=k.T /

are well-defined and are k.T /-isomorphic.

Before giving the proof (in § 4.5), we explain how to deduce Theorem 2.16 from
Theorem 4.2.

Proof of Theorem 2.16. – Consider the two k-regular Galois extensions F=k.T / and
L=k.T / given in Theorem 2.16. Let then F =K.T / be the K-regular extension deduced
from F=k.T / by scalar extension from k to K D k.U /. Denote the K-cover corresponding
to F =K.T / by f W X ! P1K , a �1-representation by � W �1.P1 n t; t /K ! G and let
' W GK ! H � G be a GK-representation of the extension E=K obtained by specializing
LK=K.T / at T D U 2 K.

Denote the distinct automorphisms of the group H by �1; : : : ; �N and set 'i D �i ı ' W

GK ! H � G, i D 1; : : : ; N . We will prove Theorem 2.16 with efi W eXi ! P1
k.U /

taken to

be twisted cover ef 'i W eX'i ! P1
k.U /

, i D 1; : : : ; N . By construction, conclusion (a) from
Theorem 2.16 holds.

Fix an element u0 2 k not in the finite list of exceptions for Theorem 4.2; the case
u0 D U is even easier. Fix a t0 2 P1.k/ not a branch point of F=k.T /. The extension Lu0=k
is k-isomorphic to the specialized extension Ft0=k if and only if the two Gk-representations
'i ı su0 and �ju0

ı st0 are conjugate in G for some index i D 1; : : : ; N . From the twisting

Lemma 4.1, this is equivalent to existence of a k-rational point x on .X̃ ju0
/'iısu0 above

t0; this point x is necessarily unramified in the cover .f̃ ju0
/'iısu0 as the branch point set
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remains the original set t. Theorem 4.2 concludes the proof: the k-cover .X̃ ju0
/'iısu0 ! P1

k
is

equivalent to the k-cover .eX'i /ju0 ! P1
k

, i D 1; : : : ; N .

4.5. Proof of Theorem 4.2

Let E be the finite subset introduced in § 4.3.2 for the application of the Grothendieck
good reduction theorem. Fix u0 2 k n E . The two extensions from the statement of
Theorem 4.2 are well-defined and have the same branch point set, namely tu0 . We will show
that they are k.T /-isomorphic by showing that they have the same �1-representations. We
need to compare g�ju0'ısu0 from § 4.3.2 and some �1-representation, saye�' ju0 W �1.P1 n tu0 ; t /k ! Sd

of the k-regular extension .fF '
/ju0

=k.T /.

As a first step, consider the restrictions of these �1-representations to the geometric
fundamental group �1.P1 n tu0 ; t /k . Recall that from the addendum to the Grothendieck
good reduction theorem (§ 5), we have a specialization isomorphism

spu0 W �1.P
1
n t; t /K ! �1.P1 n tu0 ; t /k

and that for all x 2 �1.P1 n t; t /K , we have8<:�ju0.x/ D � ı sp�1u0 .x/e�' ju0.x/ D e�' ı sp�1u0 .x/:

Using § 4.2.1 (*), we obtaine�' ju0.x/ D 
.�.sp�1u0 .x/// D 
.�ju0
.x// D g�ju0'ısu0 .x/:

To compare the restrictions to Gk of the two �1-representations, first show the following.

L 4.3. – For all but finitely many u0 2 k and all � 2 Gk , we have

�ju0
.su0.�// D �.sU ı su0.�//:

Proof. – Namely, with Y 1 a primitive element of F =K.T /, which we may assume to be
integral over kŒU; T �, the right-hand side term corresponds to the action of su0.�/ 2 GK on
the d different K-conjugates

Y i D

1X
nD0

bin.U /.T � U/
n; j D 1; : : : ; d

of Y 1, viewed in K..T � U//; the action of su0.�/ is given by the action on the coefficients
bin.U / 2 K (n � 0).

From the Eisenstein theorem, there exists a polynomial E.U / 2 kŒU �, E.U / 6D 0, such
that E.U /nC1bin.U / 2 kŒU � for every n � 0, i D 1; : : : ; d . Enlarge the set E to contain the
roots ofE.U /. Then Y 1; : : : ; Y d can be specialized atU D u0 to yield d formal power series
in kŒŒT � u0��

Y i ju0
D

1X
nD0

bin.u0/.T � u0/
n; j D 1; : : : ; d:
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If E is again enlarged to contain the roots of the bad prime divisor of the irreducible poly-
nomialP 2 kŒU; T; Y � of Y 1 over k.U; T / (§ 5), thenP.u0; T; Y / is irreducible in kŒT; Y �; it is
the irreducible polynomial of Y 1ju0

and the extension k.T; Y 1ju0
/=k.T / is k.T /-isomorphic

to the extension F ju0
=K.T /.

The left-hand side term �ju0
.su0.�// of the claimed formula corresponds to the action

of � 2 Gk on the d different k.T /-conjugates Y 1ju0
; : : : ; Y d ju0

, with � acting on the

coefficients bin.u0/ 2 k (n � 0). Clearly we have�
su0.�/.bin.U /

�
ju0
D �.bin.u0//; .i D 1; : : : ; d; n � 0/

and so

.su0.�/.Y i /ju0
D �.Y i ju0

/; .i D 1; : : : ; d /;

which corresponds to the claim.

Lemma 4.3, applied with e�' replacing � also givese�' ju0.su0.�// D e�'.sU ı su0.�//

Using § 4.2.1 (*), we obtaine�' ju0.su0.�// D 
.�.sU ı su0.�//ı.'.su0.�//

D 
.�ju0
.su0.�//ı.'.su0.�//

D g�ju0'ısu0 .su0.�//:
This concludes the proof of g�ju0'ısu0 D e�' ju0 and so of Theorem 4.2.

5. Appendix: Good reduction & specializations of covers

This appendix recalls some classical results essentially due to Grothendieck about the
good reduction of K-regular extensions and the inertia in their specializations. We have
adjusted to our situation the original statements which hold in a bigger generality; in partic-
ular our statements are phrased in field extension terms rather than in a scheme theoretic
language.

Assume K is the fraction field of a Dedekind domain A; typically K D k.U / and
A D kŒU � with U a new indeterminate.

Given a non-zero prime ideal p � A (typically p D hU �u0iwith u0 2 k whenA D kŒU �),
denote the residue field by �p, the completion of A (resp. of K) at p by eAp (resp. by eKp), the
algebraic closure of eKp by Cp and fix an embedding K � Cp.

Let F=K.T / be a K-regular extension of group G, with branch point set t D ft1; : : : ; trg,
inertia canonical invariant C D .C1; : : : ; Cr / and associated ramification indices e D .e1; : : : ; er /.
Let p � A be a non-zero prime ideal. The results we recall are about

(a) the good reduction of F=K.T / modulo the prime ideal p, and,
(b) the ramification above the prime ideal p in specializations Ft0=K at points t0 2 P1.K/.
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The classical references are some general results of Grothendieck [14], [13] and more
specific versions by Beckmann for regular extensions F=K.T / over number fields [1].
Regarding (b), we follow here Legrand’s variant [22, §2] extending Beckmann’s statement to
the situation the ground field is the fraction field of an arbitrary Dedekind domain. For (a)
we follow the variant given in [6].

Classical assumptions. – We first list some classical assumptions involved in these state-
ments; we refer to the articles cited above for more details about them. The main point we
will use is that each of them is satisfied for all but finitely many primes p.

(1) j G j … p.
(2) There is no vertical ramification at p in the extension F=K.T /.
(3) No two different branch points of F=K.T / meet modulo p.
(4) The ideal p is unramified in the extension K.t1; : : : ; tr /=K.
(5) ti and 1=ti are integral over eAp, i D 1; : : : ; r .

We will say that p is a good prime of the extension F=K.T / if conditions (2), (3)
hold (22) and that it is bad otherwise.

We also recall the related notion of good/bad primes of a non-constant polynomial
P 2 AŒT; Y �, irreducible inKŒT; Y � and monic in Y , defined in [6]: a non-zero element
BP 2 A is constructed and called the bad prime divisor of P ; it is essentially the
discriminant w.r.t T of some “reduced form” of the discriminant�P .T / of P w.r.t. Y .
A prime p is said to be a good prime of P if

(6) BP … p.
Again there are only finitely many bad primes for the polynomial P . The two

notions compare as follows: if p is good for P then it is also good for the extension
K.T /ŒY �=hP i of K.T /.

Let B be the integral closure of eApŒT � in the field F eKp.
G   . – Assume that p is a good prime of F=K.T /

and that assumption (1) holds. Then the extension F=K.T / has good reduction at p, i.e., pB is
a prime ideal of B and the fraction field " of B=pB is a separable extension of �p.T / and
satisfies

Œ" W �p.T /� D Œ�p" W �p.T /� D ŒF W K.T /� D degY .P /:

The extension "=�p.T / is called the (good) reduction of F=K.T / at p and denoted
by F jp=�p.T / — F ju0

=k.T / when p D hU � u0i � A D kŒU �. The vertical bar in
the notation is meant to distinguish the reduction from the specialization. The exten-
sion F jp=�p.T / is �p-regular and its branch point set is the reduction, denoted by tp, of the
set t modulo an (arbitrary) prime ideal above p of the integral closure of Ap in Kp.t/.

When the residue field �p is algebraically closed, we have this more precise addendum. Its
statement uses the notion of fundamental group representation of an extension F=K.T /; it
is recalled in § 4.1.

(22) Legrand also includes (1) and (4). For consistency with other good/bad prime notions, we prefer to stick to (2)
and (3) and repeat (1) and (4) when necessary.
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A  G   . – Under the same
assumptions, there is a specialization isomorphism

spp W �1.P1 n t; t /K ! �1.P1 n tp; t /�p

which has this further property: if �K W �1.P1 n t; t /K ! G � Sd is a �1-representation of the
extension FK=K.T /, then the morphism

�K ı sp�1p W �1.P
1
n tp; t /�p ! G � Sd

is a �1-representation of the reduction F ju0
=�p.T /.

Let P 2 AŒT; Y � be a non-constant polynomial, irreducible in KŒT; Y �, monic in Y , e.g.,
an affine equation of the K-regular extension F=K.T /.

P    G   

Assume that p is a good prime of P and that assumption (1) holds. Then the polynomial “P
modulo p” in �pŒT; Y � is irreducible in �pŒT; Y � and of group G.

As explained in [6], this polynomial conclusion is more precise than the field extension
conclusion from GRT; the assumption is however also stronger. Finally we recall the conclu-
sions from [22] about the inertia in specializations.

S I T. – Let t0 2 P1.K/ n t.

(a) If p ramifies in Ft0=K, then F=K.T / has vertical ramification at p (i.e., condition (2)
holds) or t0 meets some branch point modulo p.

(b) Assume that p is a good prime of F=K.T / and assumptions (1), (4), (5) holds.

If for some i 2 f1; : : : ; rg, t0 and ti meet modulo p, then the inertia group of Ft0=K at p is
conjugate in G to the cyclic group

hg
Ip.t0;ti /

i i

where gi is any element of the conjugacy class Ci and Ip.t0; ti / is the intersection multiplicity
of t0 and ti .

In the special case A D kŒT � and K D k.T /, these conclusions correspond to quite
concrete statements about pull-backs of covers of P1 along genus 0 covers P1 ! P1, which
were probably known before Grothendieck; they are used for example in [11].
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