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Abstract: The context for this paper is the Inverse Galois Problem. First we give an if and
only if condition that a finite group is the group of a Galois regular extension of R(X) with
only real branch points. It is that the group is generated by elements of order 2 (Theorem
1.1 (a)). We use previous work on the action of the complex conjugation on covers of P1

[FrD]. We also use Fried and Völklein [FrV] and Pop [P] to show each finite group is the
Galois group of a Galois regular extension of Qtr(X). Here Qtr is the field of all totally real
algebraic numbers (Theorem 5.7). §1, §2 and §3 discuss consequences, generalizations and
related questions.

The second part of the paper, §4 and §5, concerns descent of fields of definition from
R to Q. Use of Hurwitz families reduces the problem to finding Q-rational point on a special
algebraic curve. Our first application considers realizing the symmetric group Sm as the group
of a Galois extension of Q(X), regular over Q, satisfying two further conditions. These are
that the extension has four branch points, and it also has some totally real residue class field
specializations. Such extensions exist for m = 4, 5, 6, 7, 10 (Theorem 4.11).

Suppose that m is a prime larger than 7. Theorem 5.1 shows that the dihedral group
Dm of order 2m isn’t the group of a Galois regular extension of Q(X) with fewer than 6 branch
points. The proof interprets realization of certain dihedral group covers as corresponding to
rational points on modular curves. We then apply Mazur’s Theorem. New results of Kamienny
and Mazur [KM] suggest that no bound on the number of branch points will allow realization
of all Dms.

§0.1. Description of Theorem 1.1: Throughout, C denotes the complex number field, X an indeterminate
and C(X) a fixed algebraic closure of C(X). Let k be a subfield of C. We say a finite extension Y/k(X)
with C(X) ⊃ Y is regular over k if k̄ ∩ Y = k. Equivalently [Y : k(X)] = [Y C : C(X)]. Denote this degree
by n. Regard the degree n field extension Y C/C(X) as the function field extension of a degree n cover
ϕ : YC → P1. Here P1 is the complex projective line and YC is an irreducible non-singular curve.

The map ϕ is ramified over a finite number of points x1, . . . , xr. We call these the branch points of
the cover (or of the extension Y/k(X)). Our first result (Theorem 1.1 (a)) shows exactly when a finite group
G is the group of a Galois regular extension of R(X) with only real branch points.

This happens if and only if G is generated by involutions.
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Theorem 1.1 uses formulas for the action of complex conjugation on the fundamental group of P1\{x1, . . . , xr}
(cf. §2.3). Hurwitz [Hur] knew these. Krull and Neukirch investigated them further [KN]. Still, no one has
exploited this simple statement about groups generated by involutions.

§0.2. Relations with the Inverse Galois Problem: Here is a weak version of the Inverse Galois problem.
Does each group occur as the Galois group of a field extension of Q? As do others, we approach this through
its geometric analog. That is, we consider it over Q(X) rather than Q. This is a descent problem. Suppose
we are given a group G, a suitably large integer r and r points x1, . . . , xr ∈ P1(C). Topology then constructs
a Galois extension of C(X) with Galois group G and branch points x1, . . . , xr. One must then restrict the
scalars from C to Q. Theorem 1.1 gives a form of descent from C to R. Proposition 2.3 and Comment 3 of
§3.5 refine these for specific applications (see §0.4).

We stress the condition on the branch points. Theorem 1.1 (a) shows that Galois groups occur over
Q (or even R) using r branch points in P1(R) only if r elements of order 2 generate G. Therefore, in practice,
classical “rigidity” [Se3; Theorem 9.1] realizes only groups over Q(X) that are generated by 3 elements of
order 2.

Corollary 1.2 is another consequence of Theorem 1.1 (a). Each finite group has a totally nonsplit
cover (c.f. §1.2) that is not the Galois group of a regular extension of R(X) with only real branch points.
Nevertheless, every finite group is the Galois group of a regular extension of R(X), with branch points
consisting of complex conjugate pairs ([Se3; Ex p. 107] or Theorem 3.1). Theorem 5.7 notes that each finite
group is the Galois group of a regular extension of Qtr(X). Here Qtr is the field of all totally real algebraic
numbers.

§0.3. Extension of Theorem 1.1: Theorem 1.1 has a (b) part that applies to not necessarily Galois
extensions. Finite group G is the monodromy group of a cover ϕ : YC → P1 defined over R with only real
branch points if and only if

(*) G has an automorphism h and a system of generators α1, . . . , αs such that h(αi) = α−1
i for i =

1, . . . , s.
Of course, (*) holds if G is generated by elements of order 2. §1.2–§1.5 has a more complete discussion on (*)
and related conditions. In particular, we discuss the persistence of property (*). Given a group G satisfying
(*), when does there exist a totally nonsplit cover of G that doesn’t satisfy (*) (§1.5).

Notation and basic tools appear in §2. Classical identifications in the theory of covers appear in §2.1
and §2.2. Skip these on a first reading. §3.1-§3.4 give the proof of Theorem 1.1. The final descent argument
for the constructive part (⇐) uses Weil’s general criterion. This says that the field of moduli (§2.4) K of
a cover is a field of definition if a certain cocycle condition holds. We add an observation to a result of
Coombes and Harbater [CoH] for Galois covers (Theorem 2.4 (ii)). Thus, K is also a field of definition for
the G-cover; the cover and its automorphisms can be defined over K.

This method is natural, but perhaps intricate. Serre suggested to simplify this using the algebraic
fundamental group rather than the classical topological fundamental group. §3.6 gives a second proof of
Theorem 1.1 (a) following Serre’s viewpoint. This is constructive. Assume we have a group G and generators
of G with property (*). We give an explicit description, in terms of “branch cycles,” of a cover ϕ : YC → P1

that has the properties stated in Theorem 1.1 (b). Furthermore, we can force this cover to have some fibers
of only real points.

§0.4. Enhanced applications: The topological action of complex conjugation c induces its arithmetic
action. (§3.7 has a precise formulation.) We note that no naive p-adic analog of this representation of
complex conjugation holds for the Frobenius Fp ∈ G(Q̄p/Qp) (§3.7).
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Comment 3 in §3.5 answers a question of E. Dew in his thesis [D]. In so doing it refines the technique
of descending from C to R. Consider the field of moduli K of a G-cover when K is a number field. How
can we effectively decide if each completion of K is a field of definition of the G-cover? After [D], the non-
archimedean completions pose no obstruction. We give iff conditions for the field of moduli, on one hand,
and the field of definition, on the other, of a G-cover to be (in) R. Dew has started an investigation of a
local-global question for the field of moduli being a field of definition. Knowing the answer over each local
place (including infinite places) doesn’t answer the global question.

Descent to Q appears in §4. We consider G = Sm and specific choices of 3 generators of order 2.
Then, we investigate if certain 4 branch point covers ϕ : YC → P1 derived from Theorem 1.1 can be defined
over Q. “Rigidity assumptions” from [Se3; Ch. 8, 9] don’t apply. They rarely do when there are 4 (or more)
branch points.

In §4.1 and §4.2, we recall from [Fr1] how to handle nonrigid cases. Hurwitz family ideas reduce the
problem to finding a rational point on a certain curve C(C). §4.3 gives a formula for the genus of C(C) when
r = 4. We can answer our original question about Sm when the curve C(C) has genus 0. Our computation
shows this happens exactly when m = 4, 5, 6, 7, 10. So, for these values of m, we realize the symmetric
group Sm as the Galois group of a regular extension of Q(X) with 4 branch points and with some totally
real residue class specializations (Theorem 4.11). Serre noted, with 3 branch points instead of 4, only one
centerless group, G = S3, had the same property [Se2].

We don’t know how to improve on our sporadic 3 generator cases to draw the conclusion of Theorem
4.11 for an infinite number of groups. Descent from R to Q is the difficulty because we must find rational
points on low dimensional Hurwitz spaces. Even with easy groups this is a difficult obstruction. For example,
the dihedral group Dm of order 2m is generated by 2 elements of order 2.

Consider a prime m > 7. Theorem 5.1 shows that Dm requires covers with at least 6 branch points
to be realized as the Galois group of a regular extension of Q(X). Mazur has formulated conjectures that
imply that realization of all Dms will require an unbounded number of branch points [KM]. We borrow some
of his formulation from e-mail discussion with him.

§0.5. Acknowledgements: David Harbater made expositional simplications in our proof on Comment
3—Dew’s question—in §3. In addition, much of the proof of Theorem 2.4 (§2.4) is implicit in the result in
[CH]. Our concern is with property (ii) which was not stated there.

§1. FIRST RESULTS AND CONSEQUENCES.

Let Y/K(X) be a regular extension of degree n and ϕ : YC → P1 the associated cover. That is, YC is the set
of places of the field Y C and ϕ is the natural restriction of places—points of P1—to C(X). Branch points
x1, . . . , xr are the places ramified in the extension Y C/C(X).

§1.1. Statement of Theorem 1.1: Let x0 be a point in P1(R) \ {x1, . . . , xr}. Denote the fundamental
group π1(P1 \ {x1, . . . , xr}, x0) for short by π1. There is a natural action T of π1 called the monodromy
action on the points of the fiber ϕ−1(x0). For its description, start with [γ], the homotopy class of a closed
path based at x0. Then, T ([γ]) permutes ϕ−1(x0); it maps y ∈ ϕ−1(x0) to T ([γ])(y), the terminal point of
the unique lift of γ through ϕ with initial point y.

The permutation T ([γ]) is independent of the representative of [γ]. Fix a labeling y1, . . . , yn of the
points of the fiber ϕ−1(x0). Regard T as an action T : π1 → Sn of π1 on the integers 1, . . . , n. Up to
conjugation by an element of Sn, this action does not depend on labeling the yis or on the base point x0.
Call the group T (π1) the monodromy group of the cover. This defines a subgroup of Sn up to conjugation
by elements of Sn.
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Theorem 1.1: (a) Consider a finite group G. It is the group of a regular Galois extension of R(X) with
only real branch points exactly when

(1.1) G is generated involutions.

(b) Furthermore, G is the monodromy group of a cover ϕ : YC → P1 defined over R with only real branch
points if and only if

(1.2)
∃h ∈ Aut(G), ∃α1, . . . , αs ∈ G |

〈α1, . . . , αs〉 = G, h(αi) = α−1
i , i = 1, . . . , s.

Addition to Theorem 1.1 (a): We can take the number of generating involutions of G equal to the
number of branch points of the regular Galois extension of R(X) in the statement.

Addition to Theorem 1.1 (b): The cover ϕ : YC → P1 defined over R produced in §3.3 for the only if
part of (b) has branch cycles

(α1, α
−1
1 α2, . . . , α

−1
s−1αs, α

−1
s )

(c.f. §2.3). It is Galois over C. Indeed, it is Galois over R if h is induced by conjugation by h′ ∈ G with h′

of order 2.

§1.2. Group theoretical conditions: As noted, (1.1) ⇒ (1.2). The converse is false: abelian groups
distinct from (Z/2)m satisfy (1.2) but not (1.1). For example, the cyclic group Z/m is the monodromy
group of the Galois cover ϕ : P1 → P1 given by ϕ(y) = ym. For m �= 2, it is defined over R with only real
branch points. Yet, the corresponding function field extension R(y)/R(ym) is not Galois.

Consider two further conditions.

(1.3) G is a subgroup of G′ with [G′ : G] = 2, and G′ is generated by involutions in G′ \ G. Further: If
h′ ∈ G of order 2 induces h, then G is generated by involutions.

(1.4) G = Z/2 or Aut(G) is of even order.

We now show (1.1) ⇒ (1.2) ⇔ (1.3) ⇒ (1.4).

(1.2) ⇒ (1.3): Define G′ to be the semi-direct product G′ = G×s〈h〉 of G and the group generated by the
automorphism h. The elements (αi, h), i = 1, . . . , s, and h generate G′ and they are of order 2:

(αi, h)(αi, h) = (αih(αi), h2) = (αiα
−1
i , 1) = 1.

Also, (αi, h) ∈ G′ \ G. Suppose h is represented by inner automorphism by an element h′ ∈ G with h′ of
order 2. Then G is generated by involutions; include h′ with αih

′, i = 1, . . . , s.

(1.2) ⇐ (1.3): Consider the situation where g0, g1, . . . , gr are involutions in G′ \G that generate G′. Then,
βi = g0gi, i = 1, . . . , r, are in G. Clearly, g0 conjugates them to their inverses: g0(g0gi)g0 = gig0 = (g0gi)−1.
We have only to check if they generate G.

Take H to be the subgroup that the βis generate. We show G is the union of the cosets of H and g0H
to conclude the proof. Do an induction on elements of G presented as words gi1 · · · git in the gis. Assume
words of length at most t − 1 are in one of the cosets H or g0H. Now do cases for gi2 . . . git

= σ in H or
g0H. If σ ∈ H, then g0gi1σ is also in H. Multiply by g0 to see gi1σ ∈ g0H. On the other hand, if σ ∈ g0H,
then multiply by (gi1g0)g0 to get gi1σ in H. We’re done.
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(1.3) ⇒ (1.4): Suppose G′ contains τ of order 2 not in the centralizer CenG′(G) in G′. Then, conjugation
by τ is an automorphism of G of order 2. Thus, |Aut(G)| is even. Assume all elements of G′ of order 2 are
in CenG′(G). Pick an element a of order 2 from G′ \ G. Then a ∈ CenG′(G). Therefore, G′ is the direct
product G × 〈a〉 and involutions—au with u running over involutions of G′ \ G—generate G. Since those
generators of G are also in CenG′(G), the group G is abelian. Conclude: |Aut(G)| is even unless G = Z/2.

So, groups distinct from Z/2, with odd order automorphism group, aren’t monodromy groups of a
cover over R with only real branch points. Here is how to get such a group. Consider a p-group P with p
odd. Then, Aut(P ) acts on the frattini quotient module P/[P, P ]P p with kernel a p-group [Hu; Satz 3.17,
p. 274]. There exists P with any desired nontrivial representation occurs in the frattini quotient [BK; Th. 1].
In particular, choose P so that its automorphism group is odd.

§1.3. A corollary of Theorem 1.1: Recall that a cover of a group G is a surjective homomorphism
ψ : F → G. The cover is finite if F is a finite group. It is totally nonsplit if F has no proper subgroup that
maps surjectively to G. This is equivalent to the condition for a frattini cover as after Lemma 1.3 below.
The frattini subgroup of a group H is the intersection of all the maximal proper open subgroups of H.

Corollary 1.2: Let G be any finite group. Then there is a totally nonsplit finite cover ψ : F → G of G
where F isn’t the group of a regular Galois extension of R(X) with only real branch points.

Corollary 1.2 follows from Theorem 1.1 (a) and this lemma.

Lemma 1.3: Let G be a finite group. There is a totally nonsplit finite cover ψ : F → G of G where F isn’t
generated by elements of order 2.

Consider a homomorphism ψ : H → K of profinite groups: projective limits of finite groups. Call it a frattini
cover if the equivalent conditions (i) or (ii) hold.

(i) ψ is surjective and ker(ψ) is contained in the frattini group of H.
(ii) A subset S of H generates H if and only if ψ(S) generates K.

The main result for frattini covers is the existence of a universal frattini cover for any profinite group. This
is the cover G̃ in the following statement.

Proposition 1.4 ([FrJ; Prop. 20.33]): Each profinite group G has a cover ψ̃ : G̃ → G, unique up to
isomorphism, satisfying this condition. If ψ : H → G is any frattini cover of G, there exists a cover γ : G̃ → H
such that ψ ◦ γ = ψ̃. Furthermore, G̃ is a profinite projective group.

§1.4. Proof of Lemma 1.3: We may assume G �= {1}. Consider the universal frattini cover, ψ̃ : G̃ → G, of
G. Let N = {Ni | i ∈ I} be the collection of all normal subgroups of finite index of G̃. Let Fi = G̃/Ni, i ∈ I,
and for 2 indices i, j ∈ I such that Nj ⊇ Ni, let πij : Fi → Fj be the natural homomorphism. The system
〈Fi, πij〉 is projective. From compactness of G̃, lim← Fi = G̃. Take n = |G|. For each i ∈ I, let gen2(Fi) be the
subset of Fn

i consisting of all n-tuples ααα = (α1, . . . , αn) such that 〈α1, . . . , αn〉 = Fi and α2
i = 1, i = 1, . . . , n.

For i, j ∈ I with Nj ⊇ Ni, denote the restriction to gen2(Fi) of the natural map induced by πij on Fn
i by

πij : gen2(Fi) → gen2(Fj).
The system {gen2(Fi), πij} is projective. An element of lim← gen2(Fi) is an n-tuple α̃αα = (α̃1, . . . , α̃n)

such that 〈α̃1, . . . , α̃n〉 = G̃ and α̃2
i = 1 for i = 1, . . . , n. Yet, such an n-tuple cannot exist. Indeed, from

Prop. 1.4, G̃ is projective. Therefore, it has no nontrivial element of finite order [FrJ; Cor. 20.14]. Conclude
that lim← gen2(Fi) is empty. For all i ∈ I, gen2(Fi) is finite, hence compact. Thus, gen2(Fi) is empty for
some i ∈ I. That is, elements of order 2 in Fi don’t generate Fi.
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Next, set F = G̃/(ker ψ̃∩Ni). We easily see that the natural map ψ : F → G is a frattini cover. From
Axiom (ii) for frattini covers, the elements of order 2 in F don’t generate F . The finite cover ψ : F → G is
the required cover.

§1.5. Persistence of condition (1.2) to frattini covers:. The collection of finite groups has no practical
topology on it. Therefore, a statement about a property being general for finite groups has traditionally
been applied by restricting consideration to natural sequences of finite groups. For example, a statement
that indexes the subscript n among the alternating groups An is typical.

On the other hand, suppose a property P can be interpreted for all finite groups. Assume that G has
property P . As above, consider those frattini covers of G that also have property P . For one, Proposition 1.4
shows these groups—as a collection—intrinsically attach to G. Therefore, persistence of property P to hold
for frattini covers is intrinsic to the immediate seed group G. In addition, the kernel of the universal frattini
cover G̃ of G is pro-nilpotent. Thus, there are measures of the persistence of property P . The following
question introduces an analog of Lemma 1.3 that fits the above discussion.

Question 1.5: Consider a group G that satisfies condition (1.2). Does its universal frattini cover satisfy
(1.2)?

If “Yes” is the answer to Question 1.5, then a cofinal family of finite frattini covers of G satisfies (1.2).
If G is a p-group, then the universal frattini cover G̃ of G is a free pro-p-group. In addition, in all

cases, G̃ has the same rank—minimal number of generators—as G [FrJ; §20.8].

Observation 1.6: Question 1.5 has a positive answer when G is a p-group satisfying (1.2).

Proof: A characteristic subgroup of G̃ gives the quotient G. Since G̃ is a free group, there is an automorphism
of G̃ satisfying (1.2) that extends condition (1.2) for G.

Let C be a nontrivial family of finite groups containing at least one non-cyclic group. We say C is
full [FrJ; p. 189] if C is closed under taking subgroups, quotients, and middle terms of short exact sequences
with end terms in C. If C is full, there is a unique free pro-C-group of any given rank [FrJ; Prop. 15.17].
For the case of rank s, denote this by F̂s(C). In fact, the free pro-C-group on s generators clearly has an
automorphism h that satisfies (1.2).

If G is not a p-group, then we don’t know the answer to Question 1.5. We conclude this section by
showing that the universal frattini cover G̃ of G isn’t of the form F̂s(C). Here C can be any full family of
finite groups. In particular, this suggests a negative answer to Question 1.5 for such a G.

Suppose, on the contrary that F̂s(C) = G̃. Let p′ and p′′ be distinct primes that divide |G|. Then,
the kernel of G̃ → G is pro-nilpotent with at least two sylow subgroups, Pp′ and Pp′′ corresponding to these
primes. These are nontrivial free pro-p-groups of finite rank. Since ker(G̃ → G) is a subgroup of finite index
of F̂s(C), it is of the form F̂s′(C) for some finite number s′ > s [FrJ; Prop. 15.27]. The next result gives a
contradiction by showing that F̂s′(C) has a non-nilpotent quotient. For this, denote the primes p′ and p′′

as p and q. Let Z/p act on A = (Z/q)p as cyclic permutations of the coordinates. Consider the semi-direct
product B = A ×sZ/p generated by this action.

Proposition 1.7: The group B is a non-nilpotent group of rank 2. Assume that pq divides |G|. Then, G̃
isn’t of the form F̂s(C) for some full family C.

Proof: Assume we’ve shown B to have the properties of the proposition. From above, we are done if the
non-nilpotent group B is a quotient of F̂s′(C). We know that C is full family, containing groups whose orders
are divisible by p and q. Thus, C contains B. Since s′ ≥ 2, there is a surjection of F̂s′(C) on B. It remains
to show the properties of B.
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Here are two generators of B: α = (1, 0, . . . , 0) ∈ A and τ = 1 ∈ Z/p. Indeed, the Z/p orbit of α
gives a basis for A. Finally, Z/p is a p-sylow for B. It isn’t, however, normal: ατα−1 is (1,−1, 0, . . . , 0)× τ .
Thus, B isn’t nilpotent.

§2. BASIC TOOLS.

§2.1. Identification of Galois and monodromy actions: Let y1 be a primitive element of the regular
extension Y/K(X). Take P ∈ K[X, Y ] to be an irreducible polynomial such that P (X, y1) = 0 and degY P =
n. Identify the curve YC with projective normalization of the affine plane curve P (x, y) = 0. Here ϕ : YC →
P1 is projection: (x, y) → x. Take x0 to be distinct from the branch points of the cover.

Let Ŷ C be the Galois closure of Y C/C(X). The Galois group G(Ŷ C/C(X)) is the geometric Galois
group of the extension Y/K(X). Embed it in Sn through its action on the n conjugates y1, . . . , yn of y1.
Since we assume Y/K(X) is regular, it is a transitive action.

Identify the points p1, . . . , pn in the fiber ϕ−1(x0) and the conjugates y1, . . . , yn of y1 as follows. Each
embedding Y C → C((X − x0)) in the Laurent series around x0 determines a point pi ∈ Y above x0. Since
x0 isn’t a branch point, there are n such embeddings. Each corresponds to one of the yis.

From now on, fix an embedding Ŷ C → C((X − x0)). That is, regard Ŷ C as a subfield of C((X − x0))
and label the points p1, . . . , pn so that pi corresponds to the power series yi in C((X−x0)), i = 1,. . . ,n. From
classical analytic continuation theory, for this labeling, the images in Sn of both T (π1) and the geometric
Galois group G(Ŷ C/C(X)) are the same. Denote this common group by ΓY (or simply Γ). Furthermore,
denote the image in Γ of an element s ∈ T (π1) by s̄, and the image in Γ of an element σ ∈ G(Ŷ C/C(X)) by
σ̄. Even in the case where YC → P1 is Galois, automorphisms of this cover do not naturally identify with
automorphisms of Ŷ C/C(X). In particular, restriction of the former automorphisms to the fiber over x0

don’t correspond to automorphisms of Ŷ C/C(X).
We make an assumption a little stronger than saying that x0 isn’t a branch point. We ask that

∂
∂Y (P (x0, Y )) has no repeated zeros. Then, the first term yi(x0) determines each of the power series yi.
Thus, for the labeling above, identify pi with the geometric point (x0, yi(x0)) on the affine plane curve
P (x, y) = 0.

§2.2. The Arithmetic Galois group: From here on, assume the base point x0 is in P1(Q). Consider the
automorphism group Aut(C). An automorphism τ ∈ Aut(C) acts coordinatewise on the geometric points
of any affine variety defined over C. This action transforms the affine curve with equation P (x, y) = 0 into
the affine curve of equation P τ (x, y) = 0. Denote the projective normalization of the curve P τ (x, y) = 0 by
Y τ

C and the associated cover by ϕτ
C : Y τ

C → P1.
On the other hand, there is a natural extension of τ to C((X − x0)). Apply τ to the coefficients of

a power series y to get yτ . Indicate the transform of a subfield F of C((X − x0)) by F τ . This action maps
the power series y1, . . . , yn onto the n roots yτ

1 , . . . , yτ
n in C((X − x0)) of the polynomial P τ . Also, the field

extension (Y C)τ/C(X) is the function field extension of the cover ϕτ
C : Y τ

C → P1.
Points on Y τ

C above x0 correspond to the power series yτ
1 , . . . , yτ

n. Label these, respectively, pτ
1 , . . . , pτ

n.
As in §2.1, pτ

i corresponds to the point (x0, yi(x0)τ ) on the affine curve of equation P τ (x, y) = 0. Conclude
that the effect of τ on p1, . . . , pn agrees with the action on the power series and with coordinatewise action
on the geometric points.
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Denote the subgroup of Aut(C) consisting of all automorphisms that fix K by AutK(C). Assume,
in addition, that τ ∈ AutK(C). Then P = P τ , Ŷ C = Ŷ C

τ
and τ permutes the points p1, . . . , pn in the

fiber ϕ−1(x0). Thus, τ induces a permutation τ̄ ∈ Sn. Now consider Ŷ , the Galois closure over K(X) of the
extension Y/K(X). Call the Galois group G(Ŷ /K(X)) the arithmetic Galois group of the extension. Label
the image of y ∈ Ŷ under the automorphism σ ∈ G(Ŷ /K(X)) by σ(y). Also, denote the permutation of
{1, . . . , n} induced by σ on {y1, . . . , yn} by σ̄. Use Γ̂ for the group {σ̄ | σ ∈ G(Ŷ /K(X))}. Note that τ̄ ∈ Γ̂,
for all τ ∈ AutK(C).

Proposition 2.1: The group Γ is normal in Γ̂. The quotient group Γ̂/Γ consists of the cosets modulo Γ of
the elements τ̄ , with τ ∈ AutK(C).

Proof: Let K̂ be the constant field of the extension Ŷ /K(X): K̂ = Ŷ ∩ K̄. Clearly, Ŷ C = Ŷ C; restriction
G(Ŷ C/C(X)) → G(Ŷ /K̂(X)) is an isomorphism. In particular, Γ is the image of G(Ŷ /K̂(X)) in Sn. It
is a normal subgroup of Γ̂ because K̂/K is Galois. The map AutK(C) to G(K̂/K) is onto. Therefore, τ̄ ,
with τ ∈ AutK(C), form a full set of representatives (perhaps not distinct) for the quotient Γ̂/Γ. The result
follows.

§2.3. Complex conjugation and monodromy: Retain §2.1–§2.2 notation. We know generators for the
fundamental group π1 = π1(P1 \ {x1, . . . , xr}, x0). These are homotopy classes [γi] of suitably chosen loops
starting from x0 around the branch points xi, i = 1, . . . , r. These freely generate except for one relation,
[γ1][γ2] · · · [γr] = 1. For i = 1, . . . , r, set si = T ([γi]); the sis generate the monodromy group of the cover
and satisfy s1s2 · · · sr = 1.

Call the r-tuple (s1, . . . , sr) the branch cycle description of the cover associated with the data (or
bouquet) (γ1, . . . , γr). It is an element of Sr

n when we label the points p1, . . . , pn in the fiber ϕ−1(x0). Another
labeling of the fiber ϕ−1(x0) defines an element of Sr

n that is coordinatewise conjugate by an element of Sn

to the first branch cycle description. Riemann’s Existence Theorem [Gr] associates to the cover a branch
cycle description of the cover coming from the bouquet (γ1, . . . , γr). This produces a one-one correspondence
between the following sets:

• degree n covers ϕ : YC → P1 (up to equivalence of covers) ramified over the points x1, . . . , xr; and
• r-tuples (s1, . . . , sr) ∈ Sr

n (modulo coordinatewise conjugation by Sn) with
s1s2 · · · sr = 1 and 〈s1, . . . , sr〉 transitive on 1, . . . , n.

Unless otherwise specified, assume from here the following.

(2.1) Branch points x1, . . . , xr, r ≥ 3, are in P1(R) and x1 < x2 < · · · < xr ≤ ∞.

Fix the base point x0 ∈ P1(Q) \ {∞} on the arc between x1 and xr not containing x2 on the real projective
line. Denote complex conjugation on C by c. It maps the homotopy class [γ] ∈ π1 of a closed path γ based
at x0 to the homotopy class [γc] of the conjugate path γc. With suitable loops around the xis, we write this
action explicitly. For the rest of §2 and §3 use the specific bouquet (γ1, . . . , γr) from [FrD; §2.1]. For this we
have the following.

Proposition 2.2: The paths γc
1, . . . , γ

c
r are respectively homotopic to

(γ2 · · · γr)−1γ1
−1(γ2 · · · γr),(γ3 · · · γr)−1γ2

−1(γ3 · · · γr),

. . . , (γr)−1γr−1
−1γr, γr

−1.

Hurwitz knew these formulas. [Hur; p. 357]. Krull and Neukirch [KN] investigated them further. We
consider them deriving from the action of a general operator. Suppose we have a group U and an integer
r > 0. Define C. r : Ur → Ur to send uuu = (u1, . . . , ur) ∈ Ur to C. r(uuu) def= (uC.

1 , . . . , uC.
r ) with uC.

r = u−1
r and

(2.2) uC.
i = (ui+1 · · ·ur)−1u−1

i (ui+1 · · ·ur), i = 1, . . . , r−1.
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We also have

(2.3) uC.
i · · ·uC.

r = (ui · · ·ur)−1, i = 1, . . . , r−1.

Consider a cover ϕ : YC → P1 and its conjugate ϕc : Y c
C → P1. The fiber (ϕc)−1(x0) consists of

the points pc
1, . . . , p

c
n. Let T c denote the monodromy action on the fiber (ϕc)−1(x0). For any closed path γ

based at x0, we have T c([γc])(pc
i ) = [T ([γ])(pi)]c. Replace γ by γc and apply c to both sides. This gives the

equivalent expression:

(2.4) T c([γ])(pc
i )

c = T ([γc])(pi).

From (2.4):

(2.5) the r-tuple (T ([γc
1]), . . . , T ([γc

r ])) is the branch cycle description of the cover
ϕc : Y c

C → P1 associated with the bouquet (γ1, . . . , γr).

The (a) part of the next proposition rephrases (2.4) and (2.5). The (b) part follows because the assumptions
imply Y c

C = YC .

Proposition 2.3: (a) Suppose sss = (s1, . . . , sr) is the branch cycle description of the cover ϕ : YC → P1

associated with the bouquet (γ1, . . . , γr). Then, C. r(sss) = (sC.1 , . . . , sC.r ) is the branch cycle description of the
cover ϕc : Y c

C → P1 associated with the bouquet (γ1, . . . , γr).
(b) If R ⊃ K then C. r(s̄ss) = c̄s̄ssc̄. That is s̄C.i = c̄s̄ic̄, i = 1, . . . , r.

§2.4. Descending the base field—Weil’s method: We now descend the base field in the second part
of the proof of Theorem 1.1. Without condition (ii) below, it results from Prop. 2.5 of [CoH]. Here is the
framework. Let Ψ : E → P1 be a Galois cover, and let H be the subgroup of Aut(C) given as

{τ ∈ Aut(C/Q) | Ψ : E → P1 and Ψτ : Eτ → P1 are equivalent covers}.

Take K = CH , the fixed field of H in C. Then, K is the field of moduli of the cover. Choose x0, a point in
Q distinct from the branch points of the cover.

Theorem 2.4: Assume the conditions of the paragraph above. There exists an extension Y/K(X), regular
over K, such that
(i) the cover ϕ : YC → P1 is equivalent to the cover Ψ : E → P1, and
(ii) K((X − x0)) contains Y .

Condition (ii) is equivalent to the following.

(ii)′ Permutations τ̄ acting on the Galois closure of Y/K(X) have a common fixed point for all τ ∈ H
(notation as in §2.2).

Danger: Y/K(X) need not be Galois. It is Galois if and only if τ̄ = 1, for all τ ∈ H. That is, one point
of the cover over x0 is defined over K. Thus, if the cover is Galois, all points over x0 must be defined over
K. In the other direction, let K̂ be the constants of the Galois closure of the extension Y/K(X). Then,
K̂ = K if and only if Y/K(X) is Galois. We know the field generated by coordinates of the collection of
points above x0 contains K̂. Therefore, if these points are defined over K, then K̂ = K.

Proof: By definition, for each τ ∈ H, there is an isomorphism δτ : E → Eτ such that Ψτ ◦ δτ = Ψ. The
automorphism δτ sends the fiber Ψ−1(x0) = {e1, . . . , en} to the fiber (Ψτ )−1(x0) = {eτ

1 , . . . , eτ
n}. The cover

Ψτ : Eτ → P1 is Galois. Thus, there exists an automorphism χτ : Eτ → Eτ such that χτ ◦ δτ sends e1 to eτ
1 .

Denote the isomorphism χτ ◦δτ by cτ . The collection {cτ}τ∈H satisfies the cocycle condition: cτ2
τ1
◦cτ2 = cτ1τ2

for all τ1, τ2 ∈ H. Indeed:

cτ2
τ1

◦ cτ2(e1) = cτ2
τ1

(eτ2
1 ) = cτ1(e1)τ2 = eτ1τ2

1 = cτ1τ2(e1).
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Weil’s cocycle criterion now reduces the field of definition [We]. There exists a cover ϕK : Ek → P1,
defined over K with the following properties. There is an isomorphism Θ : EK → E (defined over C) such
that

Ψ ◦ Θ =ϕK , and(2.6)(a)
Θτ ◦ Θ−1 =cτ , for all τ ∈ H.(b)

Define Y to be the function field over K of EK . The extension Y/K(X) is regular and satisfies condition
(i). In fact, ϕ : YC → P1 is the cover ϕK : EK → P1.

Finally, consider the point p1 = Θ−1(e1) on EK . From (2.6) (b), pτ
1 = p1, for all τ ∈ H. That is,

p1 ∈ EK is K-rational. As before, let y1 be the power series corresponding to p1. Then y1 ∈ K((X − x0)).
Since Y = K(X, y1), K((X − x0)) ⊃ Y .

§3. PROOF OF THEOREM 1.1.

§3.1 Proof of Theorem 1.1 (b) ⇒: Let Y/R(X) be a degree n regular extension whose associated cover
ϕ : YC → P1 has monodromy group ΓY = G. Let sss = (s1, . . . , sr) be the branch cycle description of
ϕ : YC → P1 associated to the bouquet (γ1, . . . , γr) of Prop. 2.2. From Prop. 2.3 (b), we have sC.i = c̄s̄ic̄,
i = 1, . . . , r. Apply (2.3). Then, (s̄i · · · s̄r)−1 = c̄(s̄i · · · s̄r)c̄, i = 1, . . . , r. Set αi = s̄i+1 · · · s̄r, i = 1, . . . , r−1.
Thus

(3.1) c̄αic̄ = α−1
i , i = 1, . . . , r−1.

Conjugating G by c̄ ∈ Sn gives the h that Theorem 1.1 (b) requires.

§3.2. Proof of Theorem 1.1 (a) ⇒: Here, Y/R(X) is a degree n Galois regular extension with group
ΓY = G. So (3.1) of §3.1 still holds. In addition, since Γ̂Y = ΓY , we have c̄ ∈ G (statement prior to
Prop. 2.1). Thus, c̄, c̄ᾱ1, . . . , c̄ᾱr−1 are of order ≤ 2 and they generate G.

§3.3. Proof of Theorem 1.1 (b) ⇐: Let G be a group with property (1.2). Let r = s+1 and n = |G|.
Regard G as a subgroup of Sn through its regular representation. Consider the r-tuple sss = (s1, . . . , sr) ∈ Sr

n

defined by

(3.2) sss = (α1, α
−1
1 α2, α

−1
2 α3, . . . , α

−1
r−2αr−1, α

−1
r−1).

The sis generate G. They also satisfy s1 · · · sr = 1. Fix r+1 points x0, x1, . . . , xr in P1(R) and a bouquet
(γ1, . . . , γr) as in §2.3. From Riemann’s Existence Theorem (§2.3), there exists a cover Ψ : E → P1, unique up
to equivalence of covers, with the following properties. Its branch points are x1, . . . , xr, and sss = (s1, . . . , sr) is
the branch cycle description of the cover associated to the bouquet (γ1, . . . , γr). Furthermore, since G → Sn

is the regular representation, Ψ : E → P1 is a Galois cover with automorphism group G.
From Prop. 2.3 (a), C. r(sss) = (sC.1 , . . . , sC.r ) is the branch cycle description of the cover Ψc : Ec → P1

associated to the bouquet (γ1, . . . , γr). From the definition of C. r and (1.2) check easily that sC.i = h(si),
i = 1, . . . , r. Suppose that conjugation by κ ∈ Sn coincides with the automorphism h on G. Thus:

(3.3) sC.i = κsiκ
−1 for i = 1, . . . , r.

From Riemann’s Existence Theorem (§2.3), the covers Ψ : E → P1 and Ψc : Ec → P1 are equivalent covers.
Apply Theorem 2.4 to conclude there exists a regular extension Y/R(X) with these properties.

(i) ϕ : YC → P1 is equivalent to the cover Ψc : Ec → P1.
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(ii) R((X − x0)) contains Y .

The cover ϕ : YC → P1 is defined over R. It is the desired cover.

§3.4. Proof of Theorem 1.1 (a) ⇐: Let G be a group generated by involutions α1, . . . , αs. In particular,
G has property (1.2) with h = 1. Thus, the construction around (3.3) holds, with h = 1, κ = 1. Consider the
regular extension Y/R(X) produced in §3.3. It is Galois over C(X) with (geometric) Galois group G. Also,
R((X − x0)) contains Y . The branch cycle description sss = (s1, . . . , sr) of the cover ϕ : YC → P1 associated
with the bouquet (γ1, . . . , γr), has this property:

(3.4) sC.i = si for i = 1, . . . , r.

From Prop. 2.3 (b), we also have sC.i = c̄sic̄, i = 1, . . . , r. Therefore, c̄ ∈ CenSn
(G). Since R((X−x0))

contains Y , c̄ has a fixed point. Conclude that c̄ = 1. Therefore, from Prop.2.1, Γ̂Y = ΓY : Y/R(X) is a
Galois regular extension with Galois group ΓY = G.

Remark: In the above argument, c̄ = 1. That is, the fiber ϕ−1(x0) has only real points. Equivalently, R
contains the residue class algebra Yx0 .

§3.5. Comments: This section consists of three elaborate comments. Each uses the proof of Theorem 1.1
for further exploration. These are the topics.

• Branch points need not be real.
• The cover need not be Galois.
• You can decide when the field of moduli of a cover is R.

Comment1: Dropping the assumption “the branch points are real.” The “real branch point situation”
of Theorem 1.1 allowed special generators [γ1], . . . , [γr] of the fundamental group π1 from §2.3. Explicit
formulas gave [γc

1], . . . , [γ
c
r ] as words in [γ1], . . . , [γr] (cf. Prop. 2.2). We can work with the general cover

defined over R similarly.
Here, the branch points consist of r1 real points and r2 complex conjugate pairs, where r = r1 + 2r2.

Use the paths of [FrD; §2.2] for which we know the complex conjugation action explicitly. Slight adjustments
to the proof above lead to this more general result.

Theorem 3.1: Finite group G is the group of a regular extension Y/R(X) with r branch points, r1 of these
real, exactly when G has special generators. Specifically, (r+r1)/2 elements generate G with at least r1 of
them involutions.

More precisely, the following statements are equivalent.
(a) There exists a Galois regular extension Y/R(X) of group G, with r branch points t1, . . . , tr1 , z̄r2 , . . . , z̄1, z1, . . . , zr2 ,

where ti ∈ R, i = 1, . . . , r1, and zi /∈ R, i = 1, . . . , r2.
(b) There exists (g′1, . . . , g

′
r) ∈ Gr which satisfy these conditions:

g′1 · · · g′r = 1(i)
〈g′1, . . . , g′r〉 = G(ii)
∃g′0 ∈ G such that (g′0 · · · g′i)2 = 1, i = 0, . . . , r1−1,(iii)
g′r−i = g′0(g

′
r1+1+i)

−1g′0, i = 0, . . . , r2−1.

The special case r = r1 corresponds to Theorem 1.1 (a). For r1 = 0, we get a result from the
introduction. Namely, every finite group G is the Galois group of a Galois regular extension of R(X).
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Comment 2: Nonregular representations. Here, suppose G has an embedding in Sn (not necessarily the
regular representation). Assume α1, . . . , αs are generators for which (1.2) holds. Denote the r-tuple of (3.2)
by sss(ααα). Let x0, x1, . . . , xr be r+1 points in P1(R). Take (γ1, . . . , γr) to be a bouquet as in §2.3 with sss(ααα)
the associated branch cycle description of the cover with x1, . . . , xr as branch points. Denote the degree n
(not necessarily Galois) cover from §3.3 by Ψsss(ααα),xxx : E → P1. We ask if we can define this cover over R.

We showed the answer to be positive in the Galois case, thanks to Theorem 2.4. In greater generality,
the answer is yes whenever you can construct a collection {cτ}τ∈G(C/R) as in Theorem 2.4. It must satisfy
the cocycle condition cτ2

τ1
◦ cτ2 = cτ1τ2 , for all τ1, τ2 ∈ G(C/R). For example, you can do this when the cover

Ψ : E → P1 has no nontrivial automorphism. This is the same as the condition CenSn
(G) = {1}.

Comment 3—from E. Dew [D]: When the field of moduli is R. Suppose ψ : E → P1 is a Galois cover
and complex conjugation gives an equivalent cover ψc : Ec → P1. We say R contains the field of moduli.
Suppose also that the covers have real branch points. Let γγγ = (γ1, . . . , γr) be a bouquet as in §2.3 and let
(s1, . . . , sr) be the branch cycle description associated to the bouquet γγγ. With αi = s1 · · · si, i = 1, ..., r − 1,
Prop. 2.3 gives this:

(*) The set Nααα = {κ ∈ Sn : καiκ
−1 = α−1

i , i = 1, . . . , r−1} is nonempty.
Thus, (*) is a necessary condition. We want to know what to add to this for an if and only if condition

for the following:

(**) There is a cover equivalent to ψ : E → P1 defined and Galois over R.

It is tempting to answer: Nααα ∩G is nonempty. Here G denotes the monodromy group of the cover. Yet, this
condition may not be sufficient in general. The correct answer is this:

(***) ∃κ ∈ Nααα ∩ G with κ2 = 1 .

Note: In the addition following Theorem 1.1 (b) we selected the sis so κ = 1 lies in Nααα. Also, (***) is
equivalent to asking that κ2 be the square of an element of the center Z(G): divide κ by this element.

Proof of the equivalence of (**) and (***): Assume that the cover ψ : E → P1 is defined and Galois
over R. Then the element c̄ (see §2.2 for the definition of c̄), is in Nααα ∩ G and it satisfies c̄2 = 1.

In the other direction, assume (***). Following the proof of Theorem 2.4 we use Weil’s criterion.
Here, however, we choose a different cocycle. Let H = {1, c} denote the Galois group of C/R. Recall the
dictionary between covers and branch cycle descriptions (for the bouquet γγγ). An isomorphism δ : E → Ec

such that ψc ◦ δ = ψ comes from an element κ in Nααα.
To use (***), label points ppp on E above the basepoint x0. Apply c to ppp, then permute the naming of

the image points pppc by κ. The new points κ(pppc) give us points above x0 in Ec. These produce exactly the
same branch cycle description (relative to γγγ) for Ec as do the points ppp for E. Thus, these respective namings
of the points give a unique isomorphism δc : E → Ec that sends points ppp to the respective points κ(pppc). In
addition to ψc ◦ δ = ψ, δc satisfies these two conditions:

(†) δc
c ◦ δc = 1; and

(††) δc commutes with the action of c that takes automorphisms of E → P1 to automorphisms of Ec → P1.

Indeed, (†) follows because the effect of the left side of (†) on ppp is given by κ2. As for (††), automor-
phisms of the covers commute with a renaming of the points of ppp.

For convenience take δ1 to be the identity. Condition (†) guarantees that the collection {δτ} satisfies
the cocycle condition

δτ2
τ1

◦ δτ2 = δτ1τ2 .

Therefore, one can descend the field of definition of the cover to R. Condition (††) assures that the auto-
morphisms are also defined over R.
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§3.6 gives a more algebraic approach to the above. In particular, the equivalence of (**) and (***)
follows immediately from Lemma 3.3.

§3.6. Serre’s Approach: Serre suggested the algebraic fundamental group, rather than the topological
fundamental group, would be more convenient for proving Theorem 1.1 (a). We follow Serre’s exposition
[Se3; cf. Ch. 7, 8, 9].

Assume K has characteristic 0. Let x1, . . . , xr be r distinct points in P1(K̄). Denote the maximal
algebraic extension of K̄(X) unramified outside x1, . . . , xr by Ω. The extension Ω/K̄(X) is Galois. Its group
is the algebraic fundamental group of P1(K̄) \ {x1, . . . , xr}. Denote this profinite group by πalg.

When K̄ = C, πalg is the profinite completion π̂ of the topological fundamental group π [Se3; Th. 7.5,
p. 69]. By analogy with the complex case, denote the free group on r generators Γ1, . . . ,Γr with the single
relation Γ1 · · ·Γr = 1 by π. There is a map i : π → πalg with the following properties.

(i) i(Γi)
def= Γi is a generator of an inertia group of the extension Ω/K̄(X) above xi, i = 1, . . . , r.

(ii) The map i extends to an isomorphism î : π̂ → πalg.

If the divisor (x1) + (x2) + · · · + (xr) of P1 is K-rational, the extension Ω/K(X) is Galois. Let πK

denote the Galois group of this extension. We have this exact sequence:

(3.5) 1 → πalg → πK → ΛK → 1.

Here ΛK denotes the Galois group of the extension K̄/K. Note: the map πK → ΛK has many sections.
Indeed, for each x0 ∈ P1(K) \ {x1, . . . , xr}, we can embed Ω in K̄((X − x0)) where the elements of ΛK act
naturally (cf. §2.2).

Given a finite group G, a surjective homomorphism ψ ∈ Hom(πalg, G) produces a Galois extension
E/K̄(X) with Galois group G. We say E descends to K if there exists a Galois regular extension EK/K(X)
with CEK = E. This happens if and only if the homomorphism ψ extends to πK .

In our context, K = R and the branch points x1, . . . , xr are real. §2.3 gives generators Γ1, . . . ,Γr of
πalg so that complex conjugation c ∈ ΛR acts on them by the formulas (2.2). Recall from §2.3 the operator
C. in our next result.

Proposition 3.2: Assume the branch points x1, . . . , xr are real. Then, πK is isomorphic to the semi-direct
product πalg ×sZ/2 with c = 1 ∈ Z/2 mapping Γ ∈ πalg to Γc satisfies

(3.6) Γc
i = ΓC.

i , i = 1, . . . , r.

The group theoretical observation that supports Theorem 1.1 (a) now appears clearly.

Lemma 3.3: Let ψ ∈ Hom(πalg, G) and gi = ψ(Γ1) · · ·ψ(Γi), i = 1, . . . , r. Then, ψ extends to ψ̃ ∈
Hom(πalg ×sZ/2, G) if and only if there exists an involution κ ∈ G with all of κg1, . . . , κgr involutions.

Proof: Assume ψ̃ ∈ Hom(πalg ×sZ/2, G) extends ψ. Set κ = ψ̃(c); |κ| = 2 and

(3.7) ψ(Γc) = κψ(Γ)κ

for each Γ ∈ πalg. Substitute Γi for Γ and use (2.3) to get g−1
i = κgiκ, i = 1, . . . , r.

For the converse, define ψ̃ ∈ πalg ×s Z/2 by ψ̃(Γ, ε) = ψ(Γ)κε for each Γ ∈ πalg and ε = 0, 1. Use
(3.6) to check that (3.7) holds for Γ = Γi, i = 1, . . . , r, and so for all Γ ∈ πalg. This guarantees that ψ̃ is a
homomorphism of groups.
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§3.7. p-adic Analogs: Prop. 3.2 gives the effect of complex conjugation c:
(3.8) Γc

i is conjugate in π to Γ−1
i , i = 1, . . . , r.

The exponent −1 comes from the “branch cycle argument” ([Fr1; p. 62] or [DFr; §1.4 Prop. 1.9]). We explain
this. Consider the cyclotomic character χ : ΛK → ∏

N G(K(μN )/K), i = 1, . . . , r . Here μN denotes the
group of N -th roots of 1. The action of each τ ∈ ΛK on the group πalg looks like this:

(3.9) Γτ
i is conjugate in πalg to Γχ(τ)

j where xj = xτ
i .

Now take K = Qp. It is natural to ask if the Frobenius Fp ∈ ΛQp satisfies an analog of (3.8). One
cannot just replace the exponent -1 in (3.8) by the exponent p. Indeed, if this was true, conjugates of Γp

i ,
i = 1, . . . , r would generate π. This, however, would imply that a group generated by elements of order p
would be trivial, a contradiction.

We aren’t tempted to use the exponent p when we recognize a simple property of the Frobenius Fp.
It acts on μN as p-th powers only when p does not divide N . Question 3.4 below is subtler. Say that a
finite extension L/Q̄p(X) is p′-ramified if p does not divide any of the orders ei of the inertia groups above
xi, i = 1, . . . , r. For such extensions, p is relatively prime to N = lcm(e1, . . . , er). In this case, the value
in G(K(μN )/K) of the cyclotomic character at Fp is p. Define πalg

p to be the projective limit lim← πalg/D.
Here D ranges over normal subgroups of π of finite index where the field extension corresponding to D is
p′-ramified.

Question 3.4: Is the action of the Frobenius Fp on π̃ ∼= πalg
p induced by an action on π such that ΓFp

i is

conjugate in π to Γp
j where xj = x

Fp

i , i = 1, . . . , r?

We believe the answer is still “No!” Here is an outline in this direction in the case of covers with branch
points in Qp. Such a “frobenius” action would give a formula like this:

(3.10) FpσiF
−1
p = ωi(σσσ)σp

i ω−1
i (σσσ), i = 1, . . . , r.

Here ωi(σσσ) is a word in the entries of σσσ. To regard the formula as similar to that over R requires some
conditions on the words ωωω(σσσ). At the minimum, they should be independent of considerable data describing
the cover.

Suppose we ask that ωωω(σσσ) be independent of the branch points and the choice of elements in the
conjugacy classes given by the entries of σσσ. Then, such a formula implies the existence of a correspondence—
much like a Hecke correspondence—on the naturally attached Hurwitz space. We conclude by showing how
this gives a contradiction.

When r = 4, consider the observation of [Fr, 2; §4.2]. This relates all Hurwitz spaces to curves defined
by the action of a subgroup of finite index in SL2(Z) on the upper half plane. Our assumptions on ωωω(σ)
would imply the existence of an actual nontrivial Hecke theory on these curves. Some of these curves are
modular curves, and they have a well-known Hecke theory. Still, most aren’t. For these, this contradicts a
result of Atkin [A]: noncongruence subgroup curves have only trivial Hecke correspondences.

Remark: The existence of a Galois regular extension of Qp(X) with group any given group G was proved
by Harbater [H]. In this subsection we wanted more. An analog of Lemma 3.3 would be a practical criterion
for defining a given cover over Qp.
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§4. HURWITZ SPACES AND RATIONALITY OVER Q.

§4.1 Reduction of the problem: Suppose G is a group with an embedding G → Sn. This need not be
the regular representation. Let α1, . . . , αs be generators for which condition (1.2) holds. Denote a specific
cover produced by Comment 2 of §3.5 by Ψsss(ααα),xxx : E → P1. Finally, we assume either

(4.1) G → Sn is the regular representation or CenSn
(G) = {1}.

From Comment 2 of §3.5, we can define Ψsss(ααα),xxx : E → P1 over R. In this section, we try to descend to Q.

Question 4.1: Is there some choice of branch points x1, . . . , xr in P1(R) that gives a cover Ψsss(ααα),xxx : E → P1

produced by Comment 2 of §3.5 and defined over the rational number field Q.

We use Nielsen classes and Hurwitz families to investigate this. Branch cycle descriptions provide
much information (c.f. §2.3 and [DFr] §1.1). Still, they depend on many choices: a base point x0, a labeling of
the points in the fiber Φ−1(x0), an ordering of the branch points x1, . . . , xr and a sample bouquet γ1, . . . , γr.
There an intrinsic notion.

Consider the data attached to any branch cycle description (s1, . . . , sr) of a cover. Most importantly,
there is the group < sss > generated by the sis. Up to conjugation by Sn, this is the monodromy group of the
cover. Secondly, there is the collection {C1, . . . ,Cr} of conjugacy classes of s1, . . . , sr in the group < sss >.
From Lemma 1 of [Fr1], up to conjugation by Sn, this data is an invariant of the cover. This observation
gives the definition of the Nielsen class of a cover.

Let G be a subgroup of Sn and let C = (C1, . . . ,Cr) be an r-tuple of nontrivial (not necessarily
distinct) conjugacy classes of G.

Definition 4.2: To the data (G,C) we associate its Nielsen class:

ni(C) = {s ∈ Gr |< sss > = G, s1 · · · sr = 1
and there exists ω ∈ Sr, s(i)ω ∈ Ci, i = 1, . . . , r}.

Suppose a cover Ψ : E → P1 has any branch cycle description sss, up to conjugation by elements of
Sn, in ni(C). We say the cover is in ni(C). Alternatively, ni(C) is the Nielsen class of the cover. The order
we list the conjugacy classes doesn’t matter. The straight Nielsen class of (C, G) is

sni(C) = {sss ∈ ni(C) | si ∈ Ci, i = 1, . . . , r}.

We speak of a cover Ψ : E → P1 with an ordering of its branch points being in sni(C). This means,
up to conjugation by elements of Sn, that any branch cycle description of the cover with this ordering is in
sni(C). The normalizer (resp., the straight normalizer) of the Nielsen class is

N(C) = {κ ∈ Sn | conjugation by κ permutes C1, . . . ,Cr}
SN(C) = {κ ∈ Sn | conjugation by κ fixes C1, . . . ,Cr}.

Note that N(C) acts on the Nielsen class ni(C) by conjugation: κ ∈ N(C) maps sss ∈ ni(C) to κsssκ−1 ∈ ni(C).
Similarly, SN(C) acts on the straight Nielsen class sni(C). Denote the quotients of these actions by ni(C)ab,
sni(C)ab, the absolute Nielsen classes.

Under certain assumptions, there is a space representing a solution to a natural moduli problem. This
is the problem of parametrizing equivalence classes of covers in a given Nielsen class. Hurwitz monodromy
action interprets properties of this moduli space. We explain the monodromy action.
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Consider the free group on r generators, Qi, i = 1, . . . , r−1, with these relations:

QiQi+1Qi = Qi+1QiQi+1, i = 1, . . . , r − 2;(4.2)(a)
QiQj = QjQi, |i − j| > 1; and(b)
Q1Q2 · · ·Qr−1Qr−1 · · ·Q1 = 1.(c)

This group, a quotient of the Artin braid group [Bo], is called the Hurwitz monodromy group of degree r.
We denote it by Hr. The Qis act on ni(C)ab by this formula: for sss ∈ ni(C)ab

(4.3) (sss)Qi = (s1, . . . , si−1, sisi+1s
−1
i , si, si+2, . . . , sr), i = 1, . . . , r − 1.

Thus they induce a permutation representation of Hr on ni(C)ab: the Hurwitz monodromy action on the
Nielsen class ni(C)ab.

Denote the kernel of the natural permutation representation Hr → Sr sending Qi to the 2-cycle
(i i + 1) by SHr. This is the straight Hurwitz monodromy group. The group SHr acts on the straight
Nielsen class sni(C)ab. The next statement summarizes the basic moduli space properties in the special case
that all of the conjugacy classes are rational ([Fr1; §4 and 5] or [DFr; §1]). (A conjugacy class is rational if
it is closed under putting elements to powers relatively prime to the order of elements in the class.)

Theorem 4.3: Assume that (4.1) holds, that G has no center, that SHr acts transitively on sni(C)ab and
that C1, . . . ,Cr are rational conjugacy classes. Then there is an algebraic family F(C) of covers of P1 (a
priori over C )

F(C) : T (C) → H(C) × P1.

This, the universal Hurwitz family associated to ni(C), satisfies (4.4)–(4.7).

(4.4) F(C) is a finite morphism of quasiprojective varieties, H(C) is irreducible and the generic fiber of
pr1 ◦ F(C) : T (C) → H(C) is irreducible.

(4.5) The family F(C) is defined over Q.
(4.6) Each cover Ψ : E → P1 in the Nielsen class ni(C)ab is equivalent to a unique fiber cover F(C)hhh :

T (C)hhh → P1 (with h ∈ H(C)) of the family F(C). Also, F(C)hhh : T (C)hhh → P1 is defined over
Q(hhh), the field of definition of the point hhh on the algebraic variety H(C); Q(hhh) is the smallest field
of definition for a cover that is equivalent to the cover Ψ : E → P1.

(4.7) Denote the subvariety of (P1)r consisting of r-tuples with distinct coordinates by Ur. Then, consider
the algebraic variety Ur/Sr = Ur given by the quotient action of Sr. The “branch point reference
map” Ψ(C) : H(C) → Ur sends each hhh ∈ H(C) to the branch point set of the fiber cover F(C)hhh :
T (C)hhh → P1. This is an étale morphism of degree |ni(C)ab| defined over Q.

The original conjugacy classes, C1, . . . ,Cr, are the conjugacy classes in G of the entries of the r-tuple sss(ααα).
Theorem 4.3 has this consequence.

Proposition 4.4: Assume the hypotheses of Theorem 4.3. The answer to Question 4.1 is yes if and only
if there are branch points, x1, . . . , xr ∈ P1(Q), so that the point hhh ∈ H(C) that corresponds to the cover
Ψsss(ααα),xxx : E → P1 is a Q-rational point on H(C).

§4.2. Description of H(C) for r = 4: See [BFr; §1, Lemma 1.6)], [Fr2; §4.1]. Both our examples will
be 4 branch point situations. In this case, H(C) has a more explicit description. Consider natural map
Ur → Ur. Let H(C)′ be an irreducible component of the fiber product H(C) ×Ur

Ur and p : H(C)′ → Ur

the natural projection. Theorem 4.5 uses the permutations of sni(C)ab induced by these elements of SHr:
Q2

1; Q−1
1 Q2

2Q1; Q−1
1 Q−1

2 Q2
3Q2Q1. Denote these by a12, a13, a14 respectively. These act on sni(C)ab. The

transitivity hypothesis of Theorem 4.3 implies that the a1js are transitive on sni(C)ab.
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Theorem 4.5: For each (x2, x3, x4) ∈ U3, denote the inverse image
p−1(P 1 × (x2, x3, x4)) by H(C)′(x2, x3, x4). Composition of p with projection Ur → P1 on the first factor
gives an unramified cover

H(C)′(x2, x3, x4) → P1 \ {x2, x3, x4}.
Complete this to a (ramified) cover C(C) → P1 of projective nonsingular curves. This will have the following
properties.
(4.8) The points x2, x3, x4 are the 3 branch points of the cover.
(4.9) (a12, a13, a14) (acting on sni(C)ab) is a branch cycle description of the cover.
(4.10) The cover is defined over Q.

Corollary 4.6: The variety H(C)′ is birational to C(C) × P1 × P1 × P1.

Proof: For (x2, x3, x4) take the generic point of U3 in the above. The birational equivalence H(C)′(x2, x3, x4) ∼=
C(C) induces a birational map

H(C)′ → C(C) × P1 × P1 × P1.

§4.3 has examples where C(C) is P1 (over Q). Consequently, the space H(C)′ is a Q-rational variety.
In particular, the Q-rational points on H(C)′ form a dense subset of H(C)′(R) (for the complex topology)
and Question 4.1 has an affirmative answer.

§4.3. A formula for the genus of the curve C(C): The Riemann-Hurwitz formula gives the genus g(C)
of the curve C(C) (cf. Theorem 4.5):

(4.11) ind(a12) + ind(a13) + ind(a14) = 2(N + g(C) − 1) with N = |sni(C)ab|.
Here is how we compute ind(a1j). Denote the length of the orbit of sss ∈ sni(C)ab under a1j by i1j(sss),
j = 1, 2, 3. Then

(4.12) ind(a1j) =
∑

sss∈sni(C)ab

i1j(sss) − 1
i1j(sss)

.

Check easily that

(sss)a12 =((s1s2)s1(s1s2)
−1, s1s2s

−1
1 , s3, s4)(4.13)

=(s1, s2, (s1s2)
−1s3(s1s2), (s1s2)

−1s4(s1s2)) (in sni(C)ab).

Thus, a12 acts by conjugation by s1s2 on the third and fourth components and leaves the others unchanged.
It follows that (sss)(a12)q = sss in sni(C)ab if and only if

(4.14) (s1, s2, (s1s2)
−qs3(s1s2)

q, (s1s2)
−qs4(s1s2)

q) = κ(s1, s2, s3, s4)κ−1

for some κ ∈ SN(C). For any subset A of G =< sss >, denote the centralizer of A in SN(C) by Z(A). Then,
condition (4.14) is equivalent to this:

(4.15) There exists γ ∈ Z(s1, s2) such that γ(s1s2)−q ∈ Z(s3).

Hence, i12(sss) is the smallest integer q > 0 with (s1s2)−q ∈ Z(s1, s2)Z(s3). Therefore, the factor group
< s1s2 > / < s1s2 > ∩Z(s1, s2)Z(s3) has order i12(sss). Similarly, check that

(sss)a12 = ((s2s4)−1s1(s2s4), s2, (s4s2)−1s3(s4s2), s4), and

(sss)a14 = (s1, (s4s1)−1s2(s4s1), (s4s1)−1s3(s4s1), s4) (in sni(C)ab).
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Thus, the integer i13(sss) (resp., i14(sss)) is the smallest integer q > 0 such that (s4s2)q ∈ Z(s2, s4)Z(s3) (resp.,
(s4s1)q ∈ Z(s1, s4)Z(s3) ). Finally, we get

i12(sss) = | < s1s2 > / < s1s2 > ∩Z(s1, s2)Z(s3)|(4.16)
i13(sss) = | < s4s2 > / < s4s2 > ∩Z(s4, s2)Z(s3)|
i14(sss) = | < s4s1 > / < s4s1 > ∩Z(s4, s1)Z(s3)|.

Theorem 4.7: Assume the hypotheses of Theorem 4.3 and Theorem 4.5. Then, (4.11) gives the genus
g(C), where (4.12) and (4.16) give ind(a12), ind(a13) and ind(a14).

§4.4. Symmetric groups: In this section, n = 2p + 1 is an odd prime number and the group G is the
symmetric group Sn embedded in itself. Condition (4.1) holds. Consider the following involutions of Sn:

α1 = (2n−1)(3n−2) · · · (p−1 p+3)(p p+2);
α2 = (1n)(2n−1)(3n−2) · · · (p−1 p+3)(p p+2);
α3 = (1n−1)(2n−2)(3n−3) · · · (p−1 p+2)(p p+1).

Since these generate a transitive subgroup of Sn, it is easy to see that they generate all of Sn. Indeed, as
n is a prime, the representation is primitive. It is well known that a primitive subgroup of Sn containing a
2-cycle is all of Sn. As α1α2 is a 2-cycle, we are done. Therefore, condition (1.2) is satisfied.

Here is the 4-tuple sss(α) = (s1, s2, s3, s4) of (3.2):

s1 = α1 = (2n−1)(3n−2) · · · (p−1 p+3)(p p+2);
s2 = α1α2 = (1n);
s3 = α2α3 = (n n−1 . . . 2 1);
s4 = α3 = (1n−1)(2n−2)(3n−3) · · · (p−1 p+2)(p p+1).

Order C1,C2,C3,C4 so they respectively denote the conjugacy classes of s4, s1, s2, s3. Thus (s1, s2, s3, s4) ∈
ni(C)ab and (s4, s1, s2, s3) ∈ sni(C)ab. Specifically, we have: C1 = {products of p disjoint 2-cycles};
C2 = {products of p−1 disjoint 2- cycles}; C3 = { 2-cycles}; C4 = {n-cycles}. Any conjugacy class in
Sn is rational. In particular, these are.

We now investigate the Hurwitz monodromy action on sni(C)ab. First, a lemma that helps us list
the elements in sni(C)ab. In the following, for any s, ω ∈ Sn, we let sω denote the conjugate of s under ω
(i.e., sω = ω−1sω). For i ∈ {1, . . . , n}, iω is the integer (i)ω.

Lemma 4.8: Let a, b ∈ Sn be involutions. Let O be a disjoint cycle in ab that contains an integer ρ0 fixed
by b. There are two possibilities.
(i) O = (ρ0ρ1 . . . ρtρ

b
t . . . ρb

1) with t ≥ 0 and none of the integers ρi, i > 0, fixed by b; ρt is then fixed by a
and O is a cycle of odd length.
(ii) O = (ρ0ρ1 . . . ρtρ

∗
0ρ

b
t . . . ρb

1) with t ≥ 0 and none of the integers ρi, i > 0, fixed by b; ρ∗0 is then fixed by b
and O is a cycle of even length.
Conversely, we have these partial products from Ob.
(i′) (ρ0ρ1 . . . ρtρ

b
t . . . ρb

1)(ρ1ρ
b
1) . . . (ρtρ

b
t) is a product of t disjoint 2-cycles.

(ii′) (ρ0ρ1 . . . ρtρ
∗
0ρ

b
t . . . ρb

1)(ρ1ρ
b
1) . . . (ρtρ

b
t) is a product of t + 1 disjoint 2-cycles.

Proof: Conjugation by b turns ab into (ab)−1. Therefore (Ob)−1 is a disjoint cycle in ab. Since O and (Ob)−1

have an integer in common, namely ρ0, we obtain O = (Ob)−1. The only cycles with that property are those
described in statement (i) and (ii) of Lemma 4.8. The converse statements (i′) and (ii′) are immediate.
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We now show there is a one-to-one correspondence between the elements of sni(C)ab and the subset
S of N3 of triples [μ, β, γ] satisfying

1 ≤ μ ≤ p; 1 ≤ β ≤ 2μ − 1; p + μ + 1 ≤ γ ≤ n.

Start with this observation. Every element of the absolute straight Nielsen class sni(C)ab has a unique
representative σσσ = (σ1, σ2, σ3, σ4) with σ4 = (n n−1 . . . 1) and σ3 = (1 2μ), μ ∈ {1, . . . , p}. Existence is easy.
Lemma 4.9 below (and Cen(Sn) = {1}) gives uniqueness.

Lemma 4.9: The group Sn is generated by σ3 and σ4.

Proof: Consider a partition I of {1, . . . , n}. We say that I is a set of imprimitivity for a subgroup H of Sn,
if H permutes the elements of I. Sets of imprimitivity of the n-cycle (n n−1 . . . 1) are the cosets modulo a
nontrivial divisor of n. Since n is prime, < σ3, σ4 > is a primitive subgroup of Sn, which contains a 2-cycle.
Therefore, it is all of Sn.

For the representative σσσ = (σ1, σ2, σ3, σ4) above, we obtain

σ1σ2 = (σ3σ4)−1 = (1 2 . . . 2μ−1)(2μ 2μ+1 . . . n).

Both σ1 and σ2 are of order 2 and σ2 fixes 3 integers. Lemma 4.8 shows that only one of of these integers, say
β, occurs in the odd length cycle (1 2 . . . 2μ−1) of σ1σ2. The two other integers fixed by σ2 appear in the even
length cycle (2μ 2μ+1 . . . n). Denote the integer fixed by σ2 that is in the second half of {2μ, 2μ+1, . . . , n}
by γ. That is, γ is in the set {p+μ+1, . . . , n}. This defines a triple [μ, β, γ] which lies in the set S. The next
proposition gives us the genus of covers with branch cycles coming from our previous lemmas. In §4.5 we
draw conclusions from this about Question 4.1. Since the result isn’t terribly positive, §4.6 makes further
comment on what we can expect from variations of this technique.

Proposition 4.10: The map sni(C)ab → S that assigns to each element of sni(C)ab the triple [μ, β, γ]
defined above is one-one and onto. In particular,

|sni(C)ab| =
∑

1≤μ≤p

(2μ − 1)(p − μ + 1) =
p(p + 1)(2p + 1)

6
.

Proof: Let [μ, β, γ] be a triple in S. Set σ4 = (n n− 1 . . . 1) and σ3 = (1 2μ). We need to show that there is
a unique pair (σ1, σ2) with these properties:

(4.16) σσσ = (σ1, σ2, σ3, σ4) ∈ sni(C) and β and γ are fixed by σ2.

Existence : One has (σ3σ4)−1 = (1 2 . . . 2μ−1)(2μ 2μ+1 . . . n). Using Lemma 4.8 (i′) and (ii′), write
(1 2 . . . 2μ−1) = a′b′ with a′ and b′ products of (μ− 1) 2-cycles with support in {1, 2, . . . , 2μ−1} and β fixed
by b′. Also, (2μ 2μ+1 . . . n) = a′′b′′ with a′′ and b′′ products of respectively (n−2μ+1)/2 and (n−2μ−1)/2
2-cycles with support in {2μ, 2μ+1, . . . , n} and γ fixed by b′′. Take σ1 = a′a′′ and σ2 = b′b′′. The 4-tuple
σσσ = (σ1, σ2, σ3, σ4) has the required properties (4.16).

Uniqueness: σ1 and σ2 satisfy σ1σ2 = (1 2 . . . 2μ−1)(2μ 2μ+1 . . . n). From Lemma 4.8 (i) and (ii), (1 2 . . . 2μ−1)
is of the form (ρ0ρ1 . . . ρtρ

σ2
t . . . ρσ2

1 ) with ρ0 = β, and (2μ2μ + 1 . . . n) is of the form (τ0τ1 . . . τtτ
∗
0 τσ2

t . . . τσ2
1 )

with τ0 = γ. This determines σ2 on {1, 2, . . . , 2μ−1} and on {2μ, 2μ+1, . . . , n} (i.e., on all of {1, . . . , n}).

In the rest of this section identify each element of sni(C)ab with its image in S. The next step consists
in computing indices of a12, a13, a14 acting on sni(C)ab.
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Index of a12: Let sss = [μ, β, γ] ∈ sni(C)ab; the centralizer Z(s1, s2) is the subgroup of Sn generated by
(2μ 2μ+1 . . . n)p−μ+1. Indeed, let t ∈ Z(s1, s2). Then t commutes with s1s2 = (1 2 . . . 2μ−1)(2μ 2μ+1 . . . n).
Therefore t is of the form (1 2 . . . 2μ−1)h(2μ 2μ+1 . . . n)k. Since t fixes β and permutes the 2 other fixed
points of s2, h = 0 and k = λ(p−μ+1), for some integer λ. Recall from §4.3, the integer i12(sss) is the smallest
integer q > 0 such that, for some integer λ,

(1 2 . . . 2μ−1)q(2μ 2μ+1 . . . n)q−λ(p+μ−1)

commutes with s3 = (1 2μ) (i.e., fixes the pair {1, 2μ}).
The two disjoint cycles (1 2 . . . 2μ−1) and (2μ 2μ+1 . . . n) of s1s2 are of relatively prime order. Thus,

i12(sss) = (2μ−1)(p−μ+1). Formula (4.16) gives this:

ind(a12) =
∑

1≤μ≤p

(2μ − 1)(p − μ + 1)(1 − 1
(2μ − 1)(p − 2μ + 1)

)

= N − p =
p(p − 1)(2p + 5)

6

Index of a13: Let sss = [μ, β, γ] ∈ sni(C)ab. We easily see the centralizer Z(s2, s4) is trivial. The integer
i13(sss) is the smallest integer q > 0 such that (s4s2)q fixes the pair {1, 2μ}. Let a and b in {1, . . . , n}. These
observations are helpful:

if as4 = b ∈ {2μ, . . . , n} and bs2 �= 2μ, then a(s4s2)2 = as3 ;(4.17)(i)
if as4 = b ∈ {1, . . . , 2μ − 1} and bs2 �= 1, then a(s4s2)2 = as3 .(ii)

We prove (i)—(ii) is similar. From Lemma 4.8, s2 fixes the set {2μ, . . . , n}. Thus, bs2 ∈ {2μ, . . . , n} and
bs2 �= 2μ. Therefore (bs2)s3 = bs2 and

(a)(s4s2)2 = (bs2)s3s2s1s2 = (b)s1s2 = (a)s3s2s1s1s2 = (a)s3.

Let a = 1. We have 1s4 = n ∈ {2μ, . . . , n} and ns2 �= 2μ. Indeed, from Lemma 4.8 (ii), no two
consecutive integers in the even length orbit of s1s2 can be images of one another by s2. The even length
orbit of s1s2 is (2μ 2μ+1 . . . n). From (4.17)(i), (1)(s4s2)2 = 2μ. Let a = 2μ. We have (2μ)s4 = 2μ−1 ∈
{1, . . . , 2μ−1}. Lemma 4.8 (i) implies (2μ−1)s2 = 1 if and only if 2μ − 1 = ρt. Distinguish two cases.

• If 2μ− 1 �= ρt, (4.17) (ii) gives (2μ)(s4s2)2 = 1 and i13(sss) = 2. (Note: i13(sss) �= 1 because (1)(s4s2) =
ns2 �= 1, 2μ.)

•• If 2μ − 1 = ρt, we obtain (2μ)(s4s2)3 = 2μ and (1)(s4s2)3 = 1. Hence i13(sss) = 3.

The number of occurrences of •• is

∑
1≤μ≤p

(p − μ + 1) =
p(p + 1)

2
,

p − μ + 1 for each value of μ. Therefore, ind(a13) = p(p+1)2

6 .

Index of a14: Let sss = [μ, β, γ] ∈ sni(C)ab. Again, the centralizer Z(s1, s4) is trivial. The integer i14(sss)
is the smallest integer q > 0 such that (s4s1)q = (s2s3)−q fixes the pair {1, 2μ}. The calculation depends
on the intersection set {1, 2μ} ∩ {1s2 , (2μ)s2}. Note: By construction of [μ, β, γ], 1 ≤ 1s2 ≤ 2μ−1 and
2μ ≤ (2μ)s2 ≤ n. So we only have 4 cases to consider.

1st case: 1s2 = 1 and (2μ)s2 = 2μ. That is, sss = [μ, 1, μ+p+1]. Here, i14(sss) = 1.
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2nd case: 1s2 �= 1 and (2μ)s2 = 2μ. That is, sss = [μ, β, μ+p+1] with β �= 1. Here, (2μ)(s2s3)3 = 2μ and
therefore (1)(s2s3)3 = 1. Thus i14(sss) = 3. (Note that i14(sss) �= 1 since 1s2 �= 1, 2μ.)

3rd case: 1s2 = 1 and (2μ)s2 �= 2μ. That is , sss = [μ, 1, γ] with γ �= μ + p + 1. This is exactly as in the 2nd
case.

4th case: 1s2 �= 1 and (2μ)s2 �= 2μ. Here, (1)(s2s3)2 = 2μ and thus (2μ)(s2s3)2 = 1. Therefore i14(sss) = 2.
We have only to count the possibilities for sss in each case: p for the first case, (2μ− 2) for each μ for

the second case, (p − μ) for each μ for the third case and the rest for the fourth case. The result:

ind(a14) =
∑

1≤μ≤p

2
3
(μ + p − 2) +

1
2
[N − p −

∑
1≤μ≤p

(μ + p − 2)].

Finally, ind(a14) = p(p−1)(p+4)
6 .

Now (4.11) gives the genus g(C) of the curve C(C) (cf. Theorem 4.5):

g(C) =
(p − 2)(p − 3)

6
.

Thus, Question 4.1 has a positive answer for p = 2, 3 (i.e., n = 5, 7). There is one condition, however,
in Theorem 4.3 we haven’t checked yet: transitivity of SHr on sni(C)ab. We proceed in two steps.

From (4.13), a12 = Q2
1 conjugates by s1s2 on the first two components of the 4-tuple sss and leaves

the others unchanged. So for sss = [μ, β, γ], we obtain:

[μ, β, γ]a12 = [μ, (β)(s1s2)−1, (γ)(s1s2)−1].

Still, the two disjoint cycles (1 2 . . . 2μ−1) and (2μ 2μ+1 . . . n) of s1s2 are of relatively prime order. Therefore,
the group generated by s1s2 acts transitively on the ordered pairs (β, γ) with 1 ≤ β ≤ 2μ−1 and p+μ+1 ≤
γ ≤ n. Conclude that the orbits of a12 are the p subsets of sni(C)ab corresponding to each value of μ.

Now consider a13. We are done if we show that for any μ = 1, . . . , p, a13 sends some element [1, 1, γ]
to some element [μ, β′, γ′]. For sss = [1, 1, γ], a13 leaves s2 and s4 unchanged and turns s3 = (1 2) into

(s4s2)−1s3(s4s2) = (1s4s2 2s4s2) = (ns2 1).

That is, a13 sends some element [1, 1, γ] on some element [μ, β′, γ′] with (1 2μ) = (1ns2), up to conjugation
by a power of s4.

We have s1s2 = (1)(2 3 . . . n). Lemma 4.8 (ii) implies the cycle (2 3 . . . n) has form (ρ0ρ1 . . . ρtρ
∗
0ρ

b
t . . . ρb

1)
with ρ0 = γ. Check easily that when γ ranges over {p+2, . . . , n}, ns2 takes on all values in {3, 5, ..., n}. That
is, 2μ takes on all values in {2, 4, . . . , n − 1}.
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§4.5. Conclusions from §4.4 Example:

Theorem 4.11: For n = 5, 7, Sn is the Galois group of a regular extension E/Q(T ) with these properties :
(i) E/Q(T ) is ramified over 4 rational points; and
(ii) for all t in a nonempty interval of the real line, the residue class extension Et/Q is a totally real extension.

End of proof: For n = 5, 7, (4.18) yields g(C) = 0. Hence, the curve C(C) is P1 if it has a Q-rational
point. The disjoint cycles in the permutation a12 of sni(C)ab are in 1-1 correspondence with the points over
the branch point x2 ∈ P1 in the cover C(C) → P1 of Theorem 4.5. The previous study of a12 shows, for
n = 5 (resp., n = 7), there are 2 ramified points (resp., 3 ramified points) over x2 of ramification indices 1,
3 (resp., 3, 5, 6). Each of these points has a unique ramification index. Thus, these points are rational over
Q(x2, x3, x4).

Consider (y, x2, x3, x4) on C(C) × P1 × P1 × P1 with y not lying over one of x2, x3, x4. From
Prop. 4.4 and Corollary 4.6, each such Q-rational point corresponds to a cover ψ : YC → P1 defined over
Q. Equivalently, such a point corresponds to a regular extension Y/Q(T ), with 4 rational branch points and
monodromy group S5 (resp., S7).

Pick a Q-rational point (y, x2, x3, x4) that corresponds to a cover having the 4-tuple (α1, α1α2, α2α3, α3)
as a branch cycle description. (This is with respect to a bouquet as in Section 2.3.) The Q-points are dense
in the space H(C)′(R). Thus, such a choice of point is possible. Choose x0 between x1 and x4 on the
real projective line. The remark in §3.4 shows that the action of complex conjugation is trivial on the fiber
ψ−1(x0). That is, in the notation of §3.4, c̄ = 1. Let E/Q(T ) be the Galois closure of the extension Y/Q(T ).
It is a regular extension with properties (i) and (ii).

4.6. Additions to Theorem 4.11:

Comment (1): The §4.4 method applies to any 3-tuple (α1, α2, α3) of generators of Sn of order 2. For
example, we have computed with n = 2p where p is an odd prime and

α1 = (1n)
α2 = (2n)(3n−1)(4n−2) · · · (p−1 p+3)(p p+2)
α3 = (1n)(2n−1)(3n−2) · · · (p−1 p+2)(p p+1).

The associated curve C(C) has genus g(C) = 1
8 (p−3)(p−5). That is, the conclusion of Theorem 4.11

holds for n = 6 and n = 10. It also holds for the special case n = 4. Here, take α1 = (2 3), α2 = (1 4)(2 3)
and α3 = (1 3).

Comment (2): There is only one centerless group G for which Theorem 4.11 is true with 3 branch points
instead of 4 branch points: G = S3 ([Se2], [FrD]). If we allow a center, there are other candidates: the groups
Z/m ×sZ/2, for m = 2, 4, 6. Moreover, the group Z/2 × Z/2 does satisfy the conclusions of Theorem 4.11
for 3 branch points.
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§5. TWO FURTHER APPLICATIONS

The dihedral group Dm is the easiest non-abelian finite group. The reader must be surprised to hear there
are serious questions about realizing it as a Galois group of a regular extension L/Q(x). The problem isn’t
realizing the group, it is realizing it with extensions having few branch points. The problem is similar to
that of §4: finding rational points on variants of Hurwitz spaces defined over Q as in §4.5. There we could
only precede when we knew that a certain curve C(C) was of genus 0.

Suppose, however, that curve is of genus greater than 0. It could still have rational points on it.
One rational point was all we needed to conclude realization of the groups with the properties of §4.5. With
dihedral groups we can interpret existence of rational points even when the number of branch points is large.
We owe this to identifications of the particular Hurwitz spaces with variants on classical modular curves.
§5.1 gives a definitive result when the number of branch points is less than 6. §5.2 considers larger values of
r based on generalizations of Mazur’s theorem.

Finally, we illustrate a new large field over which we know that all groups are Galois groups of regular
extensions. For each prime p, there is a field Qtp, the totally p-adic algebraic numbers. An algebraic number
α is in Qtp if each conjugate of α is in Qp, the p-adic numbers. §5.3 considers the case of the real valuation.

§5.1. Dihedral groups with r small: In this section, m is an odd prime. Consider the dihedral group
Dm = Z/m ×sZ/2 in its regular representation. The order of Dm is n = 2m. Two involutions generate it.

Theorem 5.1: For m > 7 a prime, Dm is not the Galois group of a regular extension of Q(X) with 5 or
fewer branch points.

Proof: Assume that G = Dm is the Galois group of a regular extension Y/Q(X). Let Φ : YC → P1 be the
associated cover. Take x1, . . . , xr to be an ordering of the branch points. Identify G with the monodromy
group of the cover. For i = 1, . . . , r, let Ci be the conjugacy class of the branch cycles associated with xi.
That is, the cover is in sni(C1, . . . ,Cr). We divide the proof into 2 cases. Let C be the conjugacy class of all
involutions in G: C = {(a, 1) | a ∈ Z/m}.
1st case: One of C1, . . . ,Cr, say Ci, is different from C. Let (a, 0) ∈ Ci. This is an element of prime order
and its nontrivial powers lie in (m− 1)/2 distinct conjugacy classes of G. We show that r ≥ (m− 1)/2 ≥ 5.
Indeed, this follows from the rationality properties that the inertia groups inherit from the rationality of the
cover. Specifically, apply the branch cycle argument §3.7, expression (3.9) in the following form. The order
of Ci is the order of the elements in Ci.

(5.1) For each i ∈ {1, . . . , r}, for all α relatively prime to the order of Ci, Cα
i = Cj for some j ∈ {1, . . . , r}.

To complete the first case we show r �= 5. For r = 5, G = D11 and C1, . . . ,C5 are conjugacy classes
of 11-cycles. These classes, however, don’t generate D11, a contradiction.

2nd case: C1 = · · · = Cr = C. Observe that r �= 2 when G is not a cyclic group. Also, that r �= 3, 5; the
relation s1 . . . sr = 1 implies that r is even. Assume r = 4. The Riemann-Hurwitz formula yields the genus
g of the cover Φ : YC → P1:

m + m + m + m = 2(n + g − 1).

That is, g = 1. In addition, the elliptic curve YC has an automorphism χ of order m, for example (1,0).
Assume first that YC(Q) �= ∅. That is, YC is an elliptic curve over Q. Translation by a point ppp of

order m on YC gives χ. Since Y/Q(X) is regular, χ is defined over Q and ppp is a rational point on YC .
Thus, we have produced an elliptic curve YC and a point ppp of order m. Both are defined over Q. It

is classical that the data (YC , ppp) corresponds to a rational point on the modular curve X1(m) \ {cusps}. As
m > 7, this contradicts Mazur’s theorem [Se1; Theorem 3] (or [M], [MS]).
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If YC(Q) = ∅, the same argument works on the Jacobian Pic0(YC) of YC . Recall: Pic0(YC) consists
of divisor classes of degree 0 on YC . The automorphism group of YC naturally embeds as automorphisms of
Pic0(YC). Thus, this is an elliptic curve over Q. And, it has an automorphism of order m defined over Q.
Therefore, r �= 4.

§5.2. Bounding r with dihedral groups:
This subsection discusses Conjecture 5.2.

Conjecture 5.2: Let m run over odd primes. There is no finite r0 such that each Dm is the group of a
regular Galois extension L/Q(x) with at most r0 branch points.

Kamienny and Mazur have recent results that approach what we need to show this conjecture [KM].
Suppose that such a bound r0 as in the conjecture exists. The proof of Theorem 5.1 shows we can realize
only a finite number of the Dms under the following conditions. At least one inertia group generator is an
m-cycle and there are no more than r0 branch points. We restate the conjecture as follows.

Conjecture 5.2’: Realization of L/Q(x) with group Dm and all inertia group generators involutions requires
more than r0 branch points if m is suitably large.

We call a Galois realization of Dm over bQ satisfying the condition that all inertia group generators
are involutions an involution realization of Dm. Consider such an involution realization.

The fixed field T of an automorphism of order m is a degree 2 extension of Q(x) ramified over r
(even) points. Also, L/T is a cyclic unramified extension of degree m. That is, T is the function field of a
hyperelliptic curve of genus r−2

2 .

We want ϕ : X̂ → P1 of degree 2m with a description of the branch cycles of form (σ1, . . . , σr). Here,
each σi is in the conjugacy class C (§5.1) of involutions. A complete combinatorial count of these is easy.
At least two of these aren’t equal (to generate Dm). Write σi = (ai, 1). Then, the product of the σs is 1
reduces to a1 − a2 + . . . − ar = 0. Calculations are sufficiently easy to compute elements a1j , j = 2, . . . , r
that generalize those in the §4.2. Their action on sni(C) is transitive. Formula (4.11), with r replacing 4,
gives the genus of the analog of C(C). The computation shows this grows quadratically with r when m is
fixed. The 1st complex cohomology group of a projective algebraic variety is a birational invariant. Consider
the analog for general r of Theorem 4.5. Conclude that the variety H(C)′ for this Nielsen class cannot be
unirational if r is large. (See Problem 5.6.)

The variety H(C)′ covers the actual variety H(C) = H(r, m) that parametrizes the equivalence classes
of covers that we want. Consider H(C)′ as the parameter space for these covers with some ordering on the
branch points of the covers. From [FrV2] there is a variety H(C)in = H(r, m)in, defined over Q, whose rational
points give us the desired extensions. Rational points exactly correspond to regular extensions L/Q(x) that
give involution realizations of Dm. Below we use cover notation. These field extensions correspond to Galois
covers ϕ : X̂ → P1 defined over Q with group Dm. Our problem is to decide if H(r, m)in has Q points. We
relate H(r, m)in to more classical looking objects.

Take α ∈ Dm of order m. Form X̂/〈α〉 = Y , the quotient of X̂ by the group generated by α. The
degree 2 cover Y → P1 presents Y as a hyperelliptic curve of genus r−2

2 . Also, X̂ is a cyclic degree m

unramified cover of Y . Lemma 5.3 interprets existence of X̂ as a property of Pic0(Y ), the Picard group
of divisor classes of degree 0 on Y . Denote the points of order m on Pic0(Y ) by Tm = Tm(Y ). Then,
G(Q̄/Q) = GQ acts on Tm. If ppp ∈ Tm \ {0} is a point defined over Q, then G(Q̄/Q) has trivial action on
< ppp >. When a point has this property, denote the group it generates by Z/m. This says GQ has trivial
action on it.
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Similarly, GQ acts on the m-th roots of 1. This is another copy of Z/m, but to show GQ has
a particular nontrivial action on it, denote it by μm. Consider the set Gm(d), d = r−2

2 , of involution
realizations of Dm, as above with r branch points, defined over Q. Let Pic1(Y ) be the Picard space of
divisor classes of degree 1 on Y .

Lemma 5.3: Continue the notation above. The set of involution realizations of Dm associated to a fixed Y
as above naturally inject into the set of GQ equivariant injections from μm into Tm(Y ). The image of this
map includes all GQ equivariant injections μm → Tm(Y ) when Pic1(Y ) has a Q point.

Proof: Consider multiplication by m on Pic0(Y ). Denote this endomorphism by ψm. The kernel is exactly
Tm. Since Y consists of positive divisors of degree 1, Y naturally embeds in Pic1(Y ) (assuming g(Y ) > 0—
that is, r ≥ 4). Suppose we have an involution realization of Dm attached to Y as above. Universal properties
of Pic0(Y ) produce a natural surjective GQ equivariant map Tm(Y ) → Z/m. Here Z/m represents the Galois
group of the cover X̂ → Y as above. The end of this proof shows how this gives an injection from μm into
Tm(Y ).

Suppose qqq ∈ Pic1(Y ) is defined over Q. Define translation λqqq : Pic1(Y ) → Pic0(Y ) as the map that
takes a divisor class [D] of degree 1 to [D−qqq]. Denote the image of Y under λqqq by Yqqq. This curve in Pic0(Y )
is isomorphic to Y over Q. The preimage ψ−1

m (Y ) = Ym,qqq is the maximal exponent m abelian unramified
geometric cover of Y . At least that is correct over Q̄. We can’t expect the automorphisms to be defined over
Q.

We want a GQ invariant hyperplane V in Tm such that the quotient Tm/V is a copy of Z/m.
That is, GQ acts trivially on the quotient. In more homological terms, we want a surjective element β ∈
HomGQ

(Tm, Z/m) def= M . Then, V is the kernel of β.
Conclude: The quotient Ym,qqq/V → Ym,qqq/Tm = Yqqq is the cyclic unramified cover we seek. We have

identified its automorphism group with Z/m with trivial GQ action. That is, the automorphisms are defined
over Q. The lemma is complete—from the first paragraph of proof—when we have shown how to go from
an injective map β′ : μm → Tm to a β above.

The abelian variety Pic0(Y ) is principally polarized. That means it is isomorphic to its dual abelian
variety. This is the abelian variety of linear equivalence classes of divisors on Pic0(Y ) that are algebraically
equivalent to 0. In particular, the Weil pairing produces a nondegenerate symplectic form w : Tm×Tm → μm

[L]. Thus, HomGQ
(Tm, μm) is isomorphic to Tm as a GQ module.

Apply HomGQ
(·, μm) to the map β′ : μm → Tm. This gives β : HomGQ

(Tm, μm) → HomGQ
(μm, μm).

The first term identifies to Tm. Check easily that the second term is just Z/m acting as multiplications.

Remark 5.4: When Pic1(Y )(Q) is empty. The proof of Lemma 5.3 used a Q point in Pic1(Y ) to construct
the cover Ym → Y canonically. We haven’t shown that a μp point on Pic0(Y ) produces the Galois sequence
of an involution realization of Dm. This is a subtler problem.

We can interpret this as a question on the fibers of a map of the Hurwitz space H(C)in = H(r, m)in

to the space of cyclic order m subgroups of m division points on hyperelliptic jacobians. These fibers are
homogeneous spaces for the action of PGL(2). If the image of a fiber is μm point, when does the fiber have
a rational point?

We list some boundedness assertions. Then, we comment how these effect Conjecture 5.2.
(1) Let S(d) be primes that are orders of rational points on elliptic curve defined over some number field

K with [K : Q] ≤ d.
(2) Let T (d) be primes that are orders of rational points on some abelian variety of dimension d over Q.
(3) Let V (d) be primes m that are orders of subgroups of abelian varieties over Q of dimension d that

are GQ modules isomorphic to μm.
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(4) Let W (d) be elements of V (d) from jacobians of hyperelliptic curves of genus d.
The results of [KM] include this: S(d) is finite for d < 9. In addition, S(d) is of density zero for all

d. According to Lemma 5.3, a density 0 result for V (d) would be a satisfactory contribution to Conjecture
5.2. Mazur communicated the following observations.

Proposition 5.5: We have S(d) ⊂ T (d). Also, if m ∈ V (d), then m ∈ T ((m − 1)d).

Proof: Suppose E is an elliptic curve over K with [K : Q] ≤ d. Denote the Galois closure of K/Q by K̂. It
is common to call the following formalism, “taking the Weil trace” of the elliptic curve over the number field
down to Q. Choose a primitive element α = α1 for K/Q. Let α1, . . . , αd be the complete list of conjugates
of α1.

Each conjugate αi gives a conjugate elliptic curve Ei, defined over Q(αi). Let G = G(K̂/Q) act on
A = E1 × E2 × · · · × Ed by permutation of the coordinates. For σ ∈ G indicate this action by T (σ)(A). In
addition, regard σ as giving a conjugate of A by its action on the coefficients of the equations for A. Call
the conjugate Aσ. Thus, for each σ ∈ G, the sets T (σ−1)(Aσ) and A are identical. Now apply Weil’s cocycle
condition to assert we can define A over Q. To draw the strongest conclusions, we note this construction is
universal in the following sense [FrJ; Prop. 9.34].

Consider An defined over K. There is a linear map L : And → An defined over K with the following
general property. For any subvariety V ⊂ An defined K, there is a subvariety W ⊂ And defined over Q such
that (L1, L2, . . . , Ld) : And → (An)d maps W isomorphically to V1×· · ·×Vd. Here the Lis are the conjugates
of L and the Vis are the conjugates of V . This means that we also can apply this to the K subvarieties in V .
This produces a Q rational subvariety of W from the product of their conjugates. Thus, conjugates of a K
point ppp ∈ E of order m produce a Q point of order m on the Q form of A. From this conclude S(d) ⊂ T (d).

Now suppose m ∈ V (d). Apply the Weil trace to K = Q(ζm) as above to conclude that m ∈
T ((m − 1)d).

Problem 5.6: For each prime m consider the spaces H(r, m)in at the beginning of this subsection. Is there
a value r0 such that H(r, m)in is unirational over C for r > r0?

A variety W is unirational if there is a map ϕ : Pt → W defined on an open subset of Pt with image
a zariski open subset of W . If W and ϕ are defined over Q, we say W is unirational over Q. Since Pt has
so many rational points, this would imply W has a dense set of rational points. Thus, if Problem 5.6 has
an affirmative answer for a given prime m, there are many involution realizations of Dm. We don’t yet,
however, know how to produce an involution realization of Dm for an arbitrary prime m. (Although it isn’t
hard to realize Dm as a Galois group of a regular extension of Q(X).)

§5.3. Descent to the totally real algebraic number field: Denote the field of all totally real algebraic
numbers by Qtr. These are the algebraic numbers whose complete set of conjugates are real. In this section
we prove the following result.

Theorem 5.7: Each finite group G is the Galois group of a regular extension of Qtr(X).

§4.1 recalls the theory of Hurwitz spaces of covers. [FrV2] develops a similar theory, but for G-
covers—Galois covers given with their automorphisms. Consider a centerless group G and an r-tuple of
conjugacy classes of G. The Hurwitz space Hin(G,C) is a (reducible) algebraic variety defined over an
explicitly computable field K(C). Here is the key property of this space. Let K be a field containing K(C).
Then, G-covers in the Nielsen class ni(C), defined over K, correspond to K-rational points on Hin(G,C).

Proof of Theorem 5.7: Consider a finite group G. Lemma 2 of [FrV2] constructs a cover G′ → G with
these properties.

(5.2) the center of G′ is trivial and commutators generate the Schur multiplier of G′.
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We don’t explain the commutator statement in (5.2). If appears as a condition in the main theorem of [FrV2]
which carefully explains it. Suppose we realize G′ as a Galois group of a regular extension of Qtr(X). Then
we automatically realize the quotient G as such a Galois group. Therefore, without loss, assume G satisfies
(5.2).

Let b be an integer. Let C1, . . . ,Cs be an ordering of nontrivial conjugacy classes of G. Assume each
conjugacy class of G appears in this list with the same multiplicity, say m. Choose m suitably large that we
can pick gi out of each conjugacy class Ci so that

(5.3) ggg = (g1, . . . , gs) generate G.

With r = 2sb, consider the r-tuple C

(C−1
s , . . . ,C−1

1 , . . . ,C−1
s , . . . ,C−1

1 ,C1, . . . ,Cs, . . . ,C1, . . . ,Cs).

Here, the first sb components are the conjugacy classes C−1
s , . . . ,C−1

1 repeated in this order b times. The
last sb components are the conjugacy classes C1, . . . ,Cs repeated in this order b times. The Nielsen class
ni(C) is not empty. With ggg from (5.3), the r-tuple

(g−1
s , . . . , g−1

1 , . . . , g−1
s , . . . , g−1

1 , g1, . . . , gs, . . . , g1, . . . , gs)

lies in the Nielsen class ni(C). Observe that all conjugacy classes appear the same number of times, namely
2bm, in the r-tuple C.

The main theorem of [FrV2; Appendix] shows that, if b is suitably large, then H = Hin(G,C) is
defined over Q and irreducible over Q̄. This uses (5.2) to apply a theorem of Conway and Parker [FrV2;
Appendix].

We are left with finding Qtr-points on the absolutely irreducible variety H. Pop [P] proved that
every absolutely irreducible variety defined over Qtr has Qtr-points provided it has R-points. This reduces
the problem to finding R-points on Hin(G,C). And their existence follows from Theorem 3.1. Indeed,
take g′0 = 1 and r1 = 1 in (iii) of condition (b) of Theorem 3.1. This shows that (g1, . . . , gr) satisfies the
hypotheses of that theorem.

Remark: [FrV] consists of applications of [FrV2]. In particular, this observes that each finite complex
extension L of Qtr is

P(seudo)A(lgebraically)C(losed)

and Hilbertian. A field P has the PAC property if each absolutely irreducible variety over P has a P -point.
The main theorem of [FrV] applies to show that the absolute Galois group G(Q̄/L) is a free profinite group.

On the other hand, Qtr isn’t even Hilbertian. In fact, involutions—conjugates of complex conjugation—
generate the absolute Galois group of Qtr. Thus, Galois extensions of Qtr have only groups that are generated
by involutions.
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Séminaire Bourbaki, 27e année (1974/75), Exposé 469, Lecture Notes in Math., Springer-Verlag
514 (1976), 238–255.

[P] F. Pop, Fields of totally Σ-adic numbers, preprint 1991.
[Se1] J.-P. Serre, Points rationnels des courbes modulaires, Séminaire Bourbaki, 30ème année n• 511
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