
MODULAR TOWERS

PIERRE DÈBES

Abstract. A modular tower is a tower (Hr(Gn,Cn)))n≥0 of Hur-
witz spaces (with maps going down); the branch point number
r ≥ 3 is fixed, the groups and the conjugacy classes in the pro-
jective sequence (Gn,Cn)n≥0 come from a universal Frattini con-
struction starting with a finite group G, r conjugacy classes of G
and a prime p. The tower of modular curves (X1(pn))n>0 is the
original example: G is then the dihedral group Dp given with the
involution class repeated 4 times. The first parts of the paper
are devoted to the foundations of the modular tower theory. Per-
sistence of rational points on high levels Hr(Gn,Cn) is the main
diophantine question of the theory. It corresponds to the possibil-
ity of realizing regularly all groups Gn with a bounded number of
branch points and inertia groups of prime-to-p order. There are
deep diophantine obstructions related to boundedness results on
torsion on abelian varieties when the base field is a number field.
Over `-adic fields, the tendancy is the opposite. The last parts of
the paper focus on these diophantine questions.
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Prerequisites: we freely use basics from algebraic geometry, field
arithmetic, finite and profinite group theory and arithmetic of curve
covers. We will sometimes use more advanced results from these areas
or other areas like abelian varieties; we will then give statements, ex-
plain them, sometimes sketch the proof and give some references. Our
lectures also rest on previous lectures on Hurwitz spaces. Our vade
mecum in §1 recapitulates what we will be using.

1. Hurwitz spaces vade mecum

1.1. Covers and their equivalences. Hurwitz spaces are moduli
spaces of covers of P1 with fixed group1 G (given as a subgroup of
the symmetric group Sd with d the degree of the cover) and with a
fixed number r ≥ 3 of branch points. The basic notation for it is
Hr(G) and a point representing a cover f , or more exactly its equiv-
alence class, is denoted by [f ]. There are several variants of Hurwitz
spaces, depending

first, on whether one is interested in
- the mere cover situation: the covers are not necessarily Galois, or
- the G-cover situation: the covers are Galois covers given with an

isomorphism between their automorphism group and the group G, and,

second, on which cover equivalence is used:
- the original equivalence: two covers f : X → P1 and g : Y → P1

are equivalent if there exists an isomorphism χ : X → Y such that
g ◦ χ = f , or

1that is, the topological monodromy group of the cover, or, equivalently, the
Galois group of the Galois closure of the associated function field extension.
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- the PGL2-reduced equivalence: f : X → P1 and g : Y → P1 2 are
equivalent if there exist two isomorphisms χ : X → Y and α : P1 → P1

such that g ◦ χ = α ◦ f ,

with for both equivalences the extra condition that χ : X → Y be
compatible with the actions of G in the G-cover situation.

1.2. Hurwitz spaces as complex varieties. Covers are first consid-
ered over the complex field C and for the original equivalence. The
corresponding moduli space is then a complex smooth quasi-projective
variety, denoted by H∞

r (G). The central moduli space property is that

(*) There is a bijective correspondence between the set of complex points3

on H∞
r (G) and the set of isomorphism classes of complex covers with

group G and r branch points. Moreover, this correspondence is functo-
rial in the group G.

Given an unordered r-tuple4 C = {C1, . . . , Cr} of conjugacy classes
of G, we let H∞

r (G,C) be the union of all components5 of H∞
r (G) whose

points correspond to covers with ramification type6 equal to C. Fixing
the ramification type can be regarded analogous to fixing the genus in
the theory of curves and their moduli spaces.

For each τ ∈ Aut(C), the conjugate space H∞
r (G,C)τ is still a Hur-

witz space, which only depends on the restriction τ |Qab ∈ Gal(Qab/Q);

namely it is H∞
r (G,Cχ(τ)), where χ is the cyclotomic character and

Cχ(τ) = {Cχ(τ)
1 , . . . , C

χ(τ)
r }. Thus the (generally reducible) varieties

H∞
r (G) and H∞

r (G,C) can be defined over Q and Qab respectively, in
the sense that their components are permuted transitively by Gal(Q/Q)

2over a non algebraically closed field, the base space should really be some genus
0 curve.

3more generally, the complex field can be replaced by any algebraically closed
field k of characteristic 0.

4that is, an r-tuple regarded modulo the action of the symmetric group Sr.
5by component we mean irreducible or connected components; due to smoothness

of H∞r (G), these coincide.
6the ramification type is the r-tuple of conjugacy classes (in the monodromy

group G) of the monodromy branch cycles associated to sample loops revolving
about the r branch points. It is locally constant on H∞r (G)(C), thus is constant
on each connected component of H∞r (G)(C). More arithmetically, the ramification
type corresponds to the inertia canonical invariant. This invariant is the collection
(Ct)t of conjugacy classes Ct (in the Galois group of the Galois closure) of distin-
guished generators of inertia groups above t as t ranges over the branch points of
the cover. The distinguished generator of some inertia group I, say of order e, is
the generator that corresponds to e2iπ/e in the natural isomorphism between I and
the group µe of e-th roots of 1. For more details see [Dèb07, §3].
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and Gal(Q/Qab) respectively. Furthermore H∞
r (G,C) is itself defined

over Q if C is a rational union of conjugacy classes of G, i.e., if for
every integer m prime to |G|, there exists σ ∈ Sr such that Cm

i = Cσ(i).

More generally, given a field k ⊂ Qab, the tuple C is said to be a k-
rational union of conjugacy classes of G if the same property holds for
all integers m ≡ χ(τ) modulo |G| with τ ∈ Gal(Qab/k). Under this
condition, the Hurwitz space H∞

r (G,C) is defined over k. For example,
the field generated by all roots of unity of order |G| is a rationality field
for C. For arithmetical use, the main point of Hurwitz spaces is that

(**) For any field k of characteristic 0, any k-rational point [f ] on
H∞

r (G)(k) and any τ ∈ Gal(k/k), we have [f ]τ = [f τ ]. In particular,
the set H∞

r (G)(k) is in bijection with the set of isomorphism classes of
covers [f ] with r branch points, group G and field of moduli7 k.

1.3. Topological viewpoint.

1.3.1. Nielsen classes. Denote the configuration space for finite subsets
of P1 of cardinality r by Ur and then by Ψr : H∞

r (G) → Ur ⊗Z C
the map sending each point [f ] ∈ H∞

r (G)(C) to the branch point set
t = {t1, . . . , tr} ∈ Ur(C) of the cover f . A key to the theory, based
on Riemann’s existence theorem, is that this map is an etale cover
(of algebraic varieties); furthermore there is a one-one correspondence
between the fiber Ψ−1

r (t) and the set called the Nielsen class:

ni(G,C)• =

(g1, . . . , gr) ∈ Gr

∣∣∣∣∣∣∣∣
g1 · · · gr = 1
< g1, . . . , gr >= G
gi ∈ Cσ(i), i = 1, . . . , r

for some σ ∈ Sr

 / ∼

Here by “/ ∼”, we mean that the tuples (g1, . . . , gr) are regarded up
to componentwise conjugation by elements of a certain subgroup of
Sd (depending on the situation: for example it is G for G-covers with
the original equivalence, it is the normalizer NorSd

(G) for mere covers,
etc.). The related straight Nielsen class sni(G,C)• is sometimes more
practical: compared to ni(G,C)•, the only change in the definition is
that the third condition is replaced by “gi ∈ Ci, i = 1, . . . , r”.

7that is the fixed field in k of the subgroup of Gal(k/k) of all τ such that f and
fτ are isomorphic (i.e. [f ]τ = [fτ ]). The field of moduli is a field of definition in
many circumstances though it is not in general.
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1.3.2. Hurwitz braid action. The identification Ψ−1
r (t) ' ni(G,C)• is

given by the monodromy representation: for any choice of a topological
bouquet8 Γ = (Γ1, . . . ,Γr) for P1 \ {t} based at some point t0 /∈ t, the
map BCDΓ

9, sending each complex cover f : X → P1 to the r-tuple
with entries the monodromy permutations of f−1(t0) associated with
Γ1, . . . ,Γr, provides the correspondence Ψ−1

r (t) → ni(G,C)•. There is
a classical outer action of the Hurwitz braid group10 Hr = πtop

1 (Ur, t)
on πtop

1 (P1(C) \ t, t0), which induces an action on the fiber Ψ−1
r (t),

and on ni(C)• via maps BCDΓ. This induced action on Ψ−1
r (t) is

the monodromy action corresponding to the topological cover Ψr :
H∞

r (G)(C) → Ur(C). It can be explicitly determined: π1(Ur, t)
top has

generators Q1, . . . , Qr−1 whose action on Ψ−1
r (t), when computed rela-

tive to some suitable topological bouquet Γ, corresponds to the follow-
ing action on ni(G,C)•:

(g1, . . . , gr)
Qi−−−−→(g1, . . . , gi−1, gigi+1g

−1
i , gi, gi+2, . . . , gr)

(i = 1, . . . , r − 1)

Components of H∞
r (G,C) correspond to orbits of the Hurwitz braid

group action.

1.4. Geometric construction. There is a more geometric construc-
tion of Hurwitz spaces, which leads to a definition of Hr(G) and of

some compactification Hr(G) as schemes over Spec(Z[1/|G|]). For each
prime p not dividing |G|, the corresponding fibers above p are denoted

by Hp
r(G) and Hp

r(G). This includes the case p = ∞ for which one
recovers the space H∞

r (G).
There is good reduction of Hr(G) at those primes p 6 | |G|: the fiber

Hp
r(G) is a (reducible) smooth variety defined over Fp and its compo-

nents correspond to those of H∞
r (G) through the reduction process.

Furthermore, each Hp
r(G) is a moduli space, for covers of P1 with r

branch points and monodromy group G, over algebraically closed fields
of characteristic p.

Components in Hr(G) are closures of components in H∞
r (G). The

natural étale morphism Ψr : Hr(G) → Ur extends to a ramified cover

Hr(G) → Ur. Points on the boundary Ur \ Ur represent degenerations

8i.e., a r-tuple Γ = (Γ1, . . . ,Γr) of homotopy classes of sample loops based at
some point to /∈ t generating the topological fundamental group πtop

1 (P1(C) \ t, t0)
with the unique relation Γ1 · · ·Γr = 1 (plus some other technical conditions).

9where BCD stands for “branch cycle description”.
10the Hurwitz braid group Hr has a classical presentation: it is the group on r−1

generators Q1, . . . , Qr with relations QiQj = QjQi for |i − j| > 1, Qi+1QiQi+1 =
QiQi+1Qi for 1 ≤ i ≤ r − 2 and Q1 · · ·Qr−1Qr−1 · · ·Q1 = 1.
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of tuples t = (t1, . . . , tr) for which two or more of the ti “coalesce”
(i.e. become equal). More formally they correspond to stable marked
curves of genus 0 with a root, i.e. trees of curves of genus 0 with a dis-
tinguished component T0 — the root — equipped with an isomorphism
P1 ' T0 and at least three marked points (including the double points)

on any component but the root. Points on the boundary Hr(G)\Hr(G)
represent admissible covers (in a certain sense) of stable marked curves
of genus 0.

1.5. Hurwitz stacks. Covers of P1 with r branch points and group G
actually constitute a stack — the Hurwitz stack — which is denoted
by Hr(G), and the substack of covers with ramification type C is de-
noted by Hr(G,C). We also denote the stack of r-marked projective
lines by Ur. The stacks Hr(G), Hr(G,C) and Ur have coarse moduli
spaces, which are respectively Hr(G), Hr(G,C) and Ur. There is a
natural functor Hr(G) → Ur sending each cover to the projective line
P1 marked by its branch divisor. This functor induces the previously
defined morphism Ψ : Hr(G,C) → Ur. For every field k of charac-
teristic 0, k-rational points on Hr(G,C) correspond to k-covers while
k-rational points on Hr(G,C) correspond to k-isomorphism classes of
covers with k as field of moduli.

1.6. Reduced variants. Moduli spaces also exist for the PGL2-reduced
equivalence. The corresponding moduli space, for covers with group G
and r branch points, is denoted by H≡

r (G). The subspace correspond-
ing to covers with ramification type C is denoted by H≡

r (G,C). These
spaces are called PGL2-reduced Hurwitz spaces. The induced mor-
phism Hr(G,C)→ H≡

r (G,C) can be identified with the geometric quo-
tient of Hr(G,C) by PGL2 and the finite morphism Ψ : Hr(G,C)→ Ur

induces a finite morphism Ψ≡ : H≡
r (G,C)→ Ur/PGL2.

The map Hr(G,C)→ H≡
r (G,C) has these further properties:

(*) The components of the PGL2-reduced Hurwitz space H≡
r (G,C) are

in bijection with the components of the Hurwitz space Hr(G,C).

(**) There exists a constant d(r) such that every point on the PGL2-
reduced Hurwitz space H≡

r (G,C), rational over some field k, can be
lifted to some point on the original Hurwitz space Hr(G,C) rational,
together with the associated branch points, over some extension of k
of degree ≤ d(r). [Cada, corollary 3.12]

2. Foundations of Modular Towers

2.1. p-universal Frattini cover. Our main reference here is [FJ04].
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2.1.1. Preliminaries. We recall some definitions and classical results
from the profinite group theory.

A surjective profinite group homomorphism ψ : H → G is often
called a cover and the group H a cover of G. If p is a prime, a p-cover
is a cover with kernel a pro-p-group.

A profinite group G is said to be projective if every embedding prob-
lem of profinite groups for G is weakly solvable. If p is a prime, a
pro-p group G is said to be p-projective if every embedding problem of
profinite groups for G with kernel a pro-p-group is weakly solvable.

The Frattini subgroup of a profinite group G is defined to be the
intersection of all maximal open subgroups of G and is denoted by
Φ(G). An equivalent definition is: if H ⊂ G is a closed subgroup such
that 〈H,Φ(G)〉 = G, then H = G. The Frattini subgroup Φ(G) is a
pro-nilpotent group [FJ04, 22.1.2] 11. A cover ψ : H → G is said to be
a Frattini cover if its kernel is contained in Φ(H), or, equivalently, if
for each closed subgroup H ′ of H, ψ(H ′) = G ⇒ H ′ = H. A Frattini
cover that is also a p-cover is called a p-Frattini cover.

For pro-p groups, we have this basic result [FJ04, 22.7.4].

Lemma 2.1. Let G be a pro-p-group of rank m. Then Φ(G) = Gp[G,G]
and G/Φ(G) is isomorphic to the vector space Fm

p .

Sketch of proof. Maximal open subgroups of the pro-p group G are
open normal subgroups of index p. It follows that there is a canonical
embedding G/Φ(G) →

∏
G/N where N ranges over all open normal

subgroups of index p. The product can be regarded as a vector space
over Fp. As a subspace, so does G/Φ(G). Whence G/Φ(G) ' Fρ

p with
ρ = rank(G/Φ(G)). But from the Frattini property, rank(G/Φ(G)) =
rank(G) [FJ04, 22.5.3].

It follows next from G/Φ(G) ' Fm
p that the subgroup G0 = Gp[G,G]

maps to {1} modulo Φ(G). Whence G0 ⊂ Φ(G). The quotient group
G/G0 is a product of copies of Z/pZ. If x /∈ G0, there is at least one
such copy where x does not go to 0, i.e., is not in the kernel of the cor-
responding map G → Z/pZ, which is a maximal open subgroup of G.
Thus x /∈ Φ(G), which proves the other containment Φ(G) ⊂ G0. �

An important consequence is Tate’s theorem [FJ04, 22.7.6 & 22.7.7].

11Here is the argument, in the case G is finite. If P is a p-Sylow subgroup
of Φ(G), then for each g ∈ G, P g is also a p-Sylow subgroup of Φ(G). Hence
there exists a ∈ Φ(G) such that P g = P a. Therefore ga−1 is in the normalizer
NorG(P ). This shows that G = NorG(P )Φ(G). From the Frattini property, we
deduce G = NorG(P ), that is, P is normal in G, and so also in Φ(G). Classically,
the p-Sylow subgroups being normal subgroups characterize nilpotent groups.
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Theorem 2.2. A pro-p group is projective if and only if it is free pro-p.
A closed subgroup of a free pro-p-group is free pro-p. In particular, a
projective pro-p-group has no non-trivial element of finite order.

Sketch of proof. A free pro-p group F is projective [FJ04, 22.4.5]. If
G is a closed subgroup of a free pro-p group F , it is projective as a
closed subgroup of a projective group [FJ04, 22.4.7], and it is a pro-p
group [FJ04, 17.3.1]. Let m be the rank of the projective pro-p group
G. Lemma 2.1 provides G/Φ(G) ' Fm

p which rewrites G/Φ(G) '
F̂m(p)/Φ(F̂m(p)), where F̂m(p) is the free pro-p group of rank m [FJ04,
§17.4]. Now due to the Frattini property and the projectivity of G, this

implies G ' F̂m(p) [FJ04, 22.5.10]. �

We also recall two classical and useful results.

Lemma 2.3 (Nielsen-Schreier). Let C be a full formation of finite
groups (i.e., a family of finite groups closed under taking quotients,
subgroups and extensions). Let F be a free pro-C-group (i.e., an in-
verse limit of groups in C). Then every open subgroup H ⊂ F is a free
pro-C-group. Moreover rank(H) = 1+[F : H] (rank(F )−1) if rank(F )
is finite and rank(H) = rank(F ) if rank(F ) is infinite. Consequently,
an open subgroup of index n of a profinite group of rank ≤ e is of finite
rank ≤ 1 + n(e− 1).

Proof. see [FJ04, 17.6.2 & 17.6.3] �

Lemma 2.4 (Schur-Zassenhaus). Let N be a closed normal subgroup
of a profinite group G. Assume |N | and [G : N ] are relatively prime.
Then N has a complement in G. Furthermore, all complements to N
in G are conjugate.

Proof. see [FJ04, 22.10.1] �

2.1.2. p-universal Frattini cover. The following statement summarizes
the definition and properties of the universal Frattini cover and of the
universal p-Frattini cover.

The covers of a group G are partially ordered as follows. Given two
covers θi : Hi → G, i = 1, 2 we write θ2 ≥ θ1 if there is a cover
θ : H2 → H1 with θ1 ◦ θ = θ2.

Theorem 2.5. Each profinite group G has a cover ϕ̃ : G̃ → G and,
for each prime p, a p-cover pϕ̃ : pG̃→ G, all unique, up to an isomor-
phism, respectively called the universal Frattini cover and the universal
p-Frattini cover of G, that satisfy the following equivalent conditions:

for ϕ̃ : G̃→ G:
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(a) ϕ̃ : G̃→ G is a projective Frattini cover of G.
(b) ϕ̃ : G̃→ G is the largest Frattini cover of G.
(c) ϕ̃ : G̃→ G is the smallest projective cover of G.

for pϕ̃ : pG̃→ G:

p(a) pϕ̃ : pG̃→ G is a p-projective Frattini p-cover of G.

p(b) pϕ̃ : pG̃→ G is the largest Frattini p-cover of G.

p(c) pϕ̃ : pG̃→ G is the smallest p-projective p-cover of G.

The groups G̃ and pG̃ are profinite groups of rank equal to rank(G).

The subgroup ker(pϕ̃) and the p-Sylow subgroups of pG̃ are open and
free pro-p of finite rank.

For example, for G = Z/(p1 · · · pr)Z, we have G̃ = Zp1 × · · · × Zpr

and p1G̃ = Zp1 × Z/p2Z · · · × Z/prZ.
From the Schur-Zassenhaus lemma (2.4) and the Frattini property,

for p not dividing |G| there is no non-trivial Frattini cover of G with
p-group kernel, and so the universal p-Frattini cover of G is trivial.

Proof. The equivalences to be shown are rather straightforward. For
example, if ϕ̃ : G̃ → G satisfies (a) and h : H → G is a Frattini
cover, then from the projectivity of ϕ̃ : G̃→ G, there exists a morphim
θ : G̃→ H such that h◦θ = ϕ̃; from the Frattini property of ϕ̃ : G̃→ G,
we have θ(G̃) = H, which proves (b). For a detailed proof of the other
equivalences, we refer to [FJ04, §22.6 & §22.11]. Below we focus on the
construction of G̃ and pG̃ and their main properties.

Classically, there exists an epimorphism ϕ : F → G with F a free
profinite group [FJ04, §17.4.8]. Using Zorn’s lemma, one can show
F has a minimal closed subgroup H such that ϕ(H) = G: indeed
if (Hi)i∈I is a decreasing chain of closed subgroups of F such that
ϕ(Hi) = G (i ∈ I), then ϕ(

⋂
i∈I Hi) = G. The restriction ϕ|H : H → G

is a Frattini cover and as H is projective (as a closed subgroup of a
projective group), it satisfies condition (a).

Set then K = ker(ϕ̃) where ϕ̃ is the universal Frattini cover of G,
for example the cover just constructed. Then K ⊂ Φ(G̃) and so is pro-
nilpotent, as Φ(G̃) is [FJ04, §22.1.2] (see also footnote 2.1.1). Therefore
K is the direct product

∏
`K` of its `-Sylows K`, which are normal in

G̃. Since G̃ is projective, each K` is projective, hence free pro-`.
Set K ′

p =
∏

` 6=pK`. Then K ′
p is a closed normal subgroup of G̃. Put

Ĝ = G̃/K ′
p, K̄ = K/K ′

p and ϕ̂ : Ĝ→ G the epimorphism induced by ϕ̃.

Then K̄ = ker(ϕ̂), K̄ ' Kp is free pro-p and K̄ ⊂ Φ(Ĝ). In particular
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ϕ̂ : Ĝ→ G is a Frattini p-cover. The argument below shows that Ĝ is
p-projective and so ϕ̂ : Ĝ→ G satisfies condition p(a).

Consider an embedding problem for Ĝ with kernel a p-group N .
Using the map G̃→ Ĝ, extend it to an embedding problem for G̃. As
G̃ is projective, this embedding problem has a weak solution ψ. Now
we have ψ(K ′

p) = {1}: indeed we have both ψ(K ′
p)∩N = {1} (as N is

a p-group) and ψ(K ′
p) = 1 modulo N (as the embedding problem for G̃

factors through G̃/K ′
p = Ĝ). Therefore the solution ψ factors through

G̃/K ′
p to provide a weak solution to the original embedding problem.

Finally let G̃p be a p-Sylow of G̃; it is projective as a closed subgroup

of a projective group. We have G̃p ∩ K ′
p = {1}, hence G̃pK

′
p/K

′
p '

G̃p. Now G̃pK
′
p/K

′
p is a p-Sylow of G̃/K ′

p = Ĝ [FJ04, §22.9.2]. It is

projective hence a free pro-p group, and it is of finite index in Ĝ as
G̃pK

′
p ⊃ KpK

′
p = K and K/K ′

p is of finite index in Ĝ = G̃/K ′
p. That

it is of finite rank follows from the Nielsen-Schreier lemma (2.3). �

2.2. Characteristic quotients and lifting lemma. Fix a prime p
and assume we are given an extension

1→ P̃ → G̃→ G0 → 1

of some finite group G0 by a free pro-p group P̃ of finite rank ρ ≥ 1.

For example, G̃ → G0 can be taken to be the universal p-Frattini
cover of G0 (§2.1). In the sequel, we talk of this special situation as
Fried’s original context.

Consider next the Frattini series (P̃n)n≥0 of P̃ defined by:{
P̃0 = P̃

P̃n = Φ(P̃n−1) = P̃ p
n−1[P̃n−1, P̃n−1] (n ≥ 1)

For example, for G̃→ G0 the map Zp → Z/pZ, we have P̃n = pn+1Zp.

Lemma 2.6. The groups P̃n are characteristic free pro-p subgroups of

P̃ and form a fundamental system of open neighborhoods of 1. Conse-

quently the quotients Gn = G̃/P̃n are finite and G̃ is the inverse limit
of its “characteristic quotients” Gn.

Proof. The groups P̃n are clearly characteristic closed subgroups of P̃ .
In particular, they are pro-p groups [FJ04, 17.3.1]. From lemma 2.1,

[P̃n−1 : P̃n] < ∞, which, joint to [G̃ : P̃ ] = |G0| < ∞, shows the

subgroups P̃n are of finite index in P̃ . Thus they are open subgroups

and so from lemma 2.3, they are free pro-p subgroups of P̃ . If U is
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an open normal subgroup of P̃ , then P̃ /U is a finite p-group and so

Φn(P̃ /U) = {1} for some n. Check then that Φn(P̃ /U) = Φn(P̃ )U/U

and conclude that Φn(P̃ ) = P̃n ⊂ U . This shows the groups P̃n form
a fundamental system of open neighborhoods of 1. The final assertion,

i.e. G̃ = lim←−Gn, then follows [FJ04, 1.2.4]. �

Fix an integer r ≥ 3 and an unordered r-tuple C = {C1, . . . , Cr} of
conjugacy classes of G0 of prime-to-p order12. We will always assume
sni(G0,C)• 6= ∅. In particular, G0 is of rank ≤ r and it is p-perfect,
i.e., it is generated by its elements of prime-to-p order, or, equivalently,
G0 has no Z/pZ quotient (for example, this excludes p-groups).

Lemma 2.7 (Lifting Lemma). If C is a conjugacy class of Gn of order
ρ prime to p, then there exists a unique conjugacy class of Gn+1 that
lifts C and is of order ρ.

Proof. Let φn : Gn+1 → Gn be the natural surjection. Let g ∈ C and

H = φ−1
n (〈g〉). We have an exact sequence 1 → P̃n/P̃n+1 → H →

〈g〉 → 1. From the Schur-Zassenhaus lemma (2.4), since g is of order
prime to p, the sequence splits; furthermore, the section 〈g〉 → H is
unique, up to conjugation. �

2.3. Towers of moduli spaces.

2.3.1. Hurwitz towers. Suppose given a projective system (Gn)n≥0 of

finite groups with limit a profinite group G̃. Suppose also given an

unordered tuple C̃ = {C̃1, . . . , C̃r} of conjugacy classes of G̃. For each
integer n ≥ 0, denote by Cin the conjugacy class of Gn naturally ob-

tained from C̃i, i = 1, . . . , r, and the corresponding tuple by Cn.
Consider the associated Hurwitz spaces Hr(Gn,Cn), which we denote

for short by Hn. By functoriality, the canonical surjections Gn → Gn−1

induce algebraic maps Hn → Hn−1 (n ≥ 1).

Definition 2.8. The collection (Hn)n≥0 given with the maps Hn → Hn−1

is called a Hurwitz tower. It is denoted by Hr(G̃, C̃).

Hurwitz stacks Hn = Hr(Gn,Cn) are defined similarly. The collec-
tion (Hn)n≥0 with the corresponding maps Hn → Hn−1 is the stack

tower associated with G̃, r and C̃; we denote it by Hr(G̃, C̃).

12by order, we mean the common order of the elements in the conjugacy class.
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2.3.2. Modular towers. Modular towers are defined in the context of
§2.2, that is, we fix a prime p, assume we are given an extension

1→ P̃ → G̃→ G0 → 1

of some finite group G0 by a free pro-p group P̃ of finite rank ρ ≥ 1,
fix an integer r ≥ 3 and an unordered r-tuple C = {C1, . . . , Cr} of
conjugacy classes of G0 of prime-to-p order such that sni(G0,C)• 6= ∅.

From the lifting lemma (2.7), each class Ci can be uniquely lifted via
the natural surjection Gn → G0 to a conjugacy class Cn

i of Gn with the
same order as Ci to provide an unordered r-tuple Cn = {Cn

1 , . . . , C
n
r }

of conjugacy classes of Gn. When in turn n tends to∞, Cn determines

an unordered r-tuple C̃ = {C̃1, . . . , C̃r} of conjugacy classes of G̃.

Definition 2.9. In this situation, the Hurwitz tower Hr(G̃, C̃) from

§2.3.1 is called the modular tower associated with G̃ → G0, r, p and

C. It is denoted by Hr(G̃→ G0, p,C). The corresponding stack tower

is denoted by Hr(G̃→ G0, p,C). In Fried’s original context, that is for

G̃ → G0 the universal p-Frattini cover pG̃0 → G0, the modular tower
is denoted by Hr(G0, p,C) and the stack tower by Hr(G0, p,C).

There is a reduced variant of Hurwitz towers, for which the Hurwitz
spaces Hn should be replaced by the PGL2-reduced versions Hn,≡.

Definition 2.10. The collection (Hn,≡)n≥0 with maps Hn+1,≡ → Hn,≡ is

called PGL2-reduced modular tower and denoted by H≡
r (G̃→ G0, p,C),

and by H≡
r (G0, p,C) in Fried’s original context.

The natural morphisms Hn → Hn,≡ induce a morphism of towers

Hr(G̃→ G0, p,C)→ H≡
r (G̃→ G0, p,C).

2.4. The dihedral group example. Take G̃ → G0 to be the pro-
dihedral extension Dp∞ = Zp o Z/2Z → Dp (p an odd prime), r = 4
and C consisting of 4 copies of the involution class of Dp. Then the
PGL2-reduced modular tower, in the G-cover situation, is isomorphic
to the tower of modular curves Y1(p

n+1) (n ≥ 0).
We recall below the origin of the isomorphism Y1(p

n+1) ' H≡
r (Gn,C

n),
that is how modular curves can be presented as Hurwitz spaces of di-
hedral covers of P1 branched at 4 points. For more details, see [Fri78,
§2.B] and [Fri80].

For each n ≥ 0, Gn is the dihedral group Dpn+1 = Z/pn+1 o Z/2 and
the r = 4 classes Cn

i are the involution class Cn of Gn.
Suppose given a cover f : E → P1 defined and Galois over some

field k, of group Gn, with 4 branch points and with inertia Cn. The
Riemann-Hurwitz formula yields the genus g ofE: 2g−2 = 2pn+1(−2)+
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4pn+1, that is g = 1. The Jacobian Pico(E) has a k-rational point and
so is an elliptic curve over k. Elements of order pn+1 in Gn are au-
tomorphisms of Pico(E) of order pn+1 defined over k. Thus they are
translations by some pn+1-torsion point P defined over k. The data
(Pico(E),P) classically corresponds to some point on the modular curve
Y1(p

n+1) different from the cusps.
Conversely, let (E,P) be an elliptic curve given with a pn+1-torsion

point, both defined over k. The cover E → E/ < P > is cyclic of
degree pn+1. The curve Eo = E/ < P > is an elliptic curve over k.
Composing the above cover with the cover Eo → Eo/ < −1 >= P1

(where −1 is the canonical involution of E), gives a cover E → P1

defined and Galois over k, of group Dpn+1 , with 4 branch points and
with inertia Cn.

3. The Modular Tower Conjecture

To state the main conjectures, we place ourselves in Fried’s original

context: the group G̃ is the p-universal Frattini cover of some finite
group G0. This is a special case of the more general context for which

is given an extension 1 → P̃ → G̃ → G0 → 1 of a finite group by
a pro-p group of finite positive rank. The conjectures below can be
understood in this more general context (see remark 3.3).

We use the notation introduced in §2.2 and §2.3.
We often abbreviate “Modular Towers” as “MT”.
We only consider the G-cover situation in this section.

3.1. The Main Conjecture. There are two forms a priori but we
show in §3.3 that they are essentially equivalent.

In addition to the above, fix an integer r ≥ 3 and an unordered r-
tuple C = {C1, . . . , Cr} of conjugacy classes of G0 of prime-to-p order.
Associated with the data, we have a modular tower Hr(G0, p,C); its
levels are the Hurwitz spaces Hn = Hr(Gn,C

n), which correspond to

the characteristic quotients Gn = G̃/P̃n.

Conjecture 3.1 (Modular Tower Realization Conjecture). Let K be
a number field. Then only finitely many groups Gn can be regularly
realized over K with at most r branch points.

Conjecture 3.2 (Modular Tower Diophantine Conjecture). Let K be
a number field. If n suitably large (depending on G0, r and K)

(for stacks) there are no K-rational points on the n-th level Hn of the
stack tower Hr(G0, p,C).

(for moduli spaces) there are no K-rational points on the n-th level Hn

of the modular tower Hr(G0, p,C).
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Remark 3.3. As said above, these conjectures can be understood in the
more general context from §2.2. They are then stronger than in Fried’s
original context. The conjectures are stated in an even more general
context in [CT07]: there the modular towers are replaced by general

Hurwitz towers as in §2.3.1, with the only assumption of G̃ that it
contains an open subgroup admitting a quotient isomorphic to Zp.

The moduli space version of conjecture 3.2 is a priori stronger than
the stack version but they can be shown to be equivalent; and they
also are in the more general context from §2.2 if the dependence in K
of the constants is through [K : Q] (see §3.4).

There is an analog of the MT Diophantine Conjecture for PGL2-
reduced modular towers. It is a priori stronger than the original one
but the two versions are equivalent if the dependence in K of the con-
stants is through [K : Q] (see §3.5).

3.2. The dihedral group example. Consider the dihedral group sit-

uation from §2.4: G̃→ G0 is the extension Dp∞ → Dp (p an odd prime)
and C consists of r copies of the involution class of Dp.

Conjecture 3.1 implies the following statement, which is still open
for r > 5. The proof for r ≤ 5, originally in [DF94], is given in §4.3
(corollary 4.11).

Conjecture 3.4 (Dihedral Group Conjecture). Given a number field
K and an integer r ≥ 3, only finitely many groups G = Dpn with p an
odd prime and n ≥ 1 can be regularly realized over K with at most r
branch points.

For r = 4 the reduced form of the MT Diophantine Conjecture
amounts to the classical result that there are no K-rational points
on the modular curve Y1(p

n+1) is n is suitably large.

3.3. The Fried-Kopeliovich theorem. The following result origi-
nally appeared in [FK97].

Theorem 3.5. Let r0 ≥ 3 be an integer and K be a number field.

Suppose each characteristic quotient Gn of G̃ can be regularly realized
over K(T ) with no more than ro branch points (n ≥ 0). Then there
exists an integer r ≤ r0 and an r-tuple C of conjugacy classes of G0 of
prime-to-p order such that the stack tower Hr(G0, p,C) has K-rational
points at every level.

Consequently, in order to prove the MT Realization Conjecture 3.1
with K, G0, p and r0 ≥ 3 given, it is sufficient to prove the stack form
of the MT Diophantine Conjecture 3.2 for K, G0, p and every r ≤ r0.
The converse is clear so we have the following.
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Corollary 3.6. The MT Realization Conjecture 3.1 is equivalent to
the stack version of the MT Diophantine Conjecture 3.2.

A basic ingredient of the proof is the classical Branch Cycle Lemma
which we recall below; for more details, we refer to [Dèb07, §3], [Völ96,
p.34] or [DF08].

Denote the cyclotomic character of K by χK : for each root of unity
ζ, say of order n ≥ 1, and τ ∈ Gal(K/K), χ(τ) is the element of
(Z/nZ)× such that ζτ = ζχ(τ). This defines the cyclotomic character

χK as a morphism from Gal(K/K) to the group Ẑ (the inverse limit
of all groups (Z/nZ) (n ≥ 1)).

Lemma 3.7 (Branch Cycle Lemma). Let K be a field of characteristic
0 and f : X → P1 be a G-cover defined over K. Let G, t = {t1, . . . , tr}
and C = {C1, . . . , Cr} be respectively the group, the branch point set
and the ramification type of the cover. Assume moreover that Ci is the
conjugacy class corresponding to the branch point ti, i = 1, . . . , r. Then
for each τ ∈ Gal(K/K), we have

{(tτ1, C
1/χK(τ)
1 ), . . . , (tτr , C

1/χK(τ)
r )} = {(t1, C1), . . . , (tr, Cr)}

Proof of theorem 3.5. We reproduce here the proof given in [Dèb06].
However, for a later use, we weaken the assumption on K to only
suppose it is any field of characteristic 0 with cyclotomic closure of
infinite degree.

As for each level n ≥ 0, there are only finitely many possible choices
of tuples Cn of conjugacy classes of Gn with no more than r0 entries
and that any regular realization of Gn with ramification type Cn yields
a realization of Gn−1 with ramification type the tuple induced from Cn

by the map Gn → Gn−1 (n > 1), the assumption of theorem 3.5 implies

that all characteristic quotients Gn of G̃ can be regularly realized over
K(T ) with some ramification types Cn = (Cn1, . . . , Cnr) that are com-
patible all along the tower; in particular, the number r of branch points
is the same for all n ≥ 0. We suppose given such a set of realizations.

We now make the following hypothesis and show that it leads to a
contradiction:

(H) There exists an integer n0 ≥ 0 such that for all n ≥ n0 at least one
inertia group is of order divisible by p in the given realization of Gn.

We may and will assume that Cno1 is of order divisible by p; then so

is Cn1 for all n ≥ no. Fix g = (gn)n≥0 ∈ G̃ such that gn ∈ Cn1 for all
n ≥ 0. For each n ≥ 0, let νn = νn(g) be the number of non-conjugate
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g
χK(τ)
n in G with τ ranging over χK(Gal(K/K)). The Branch Cycle

Lemma (lemma 3.7) yields

(*) νn(g) ≤ ro for all n ≥ 0

Write the order of g0 in the form αpk0 with k0 ≥ 0, α ≥ 1 and
(p, α) = 1. We will show (*) is impossible. To do so, one may, up to

changing g into gαpk0 , assume that g is an element of P̃ of p-power
order: just note that νn(gαpk0 ) ≤ νn(g) for all n ≥ 0. Also note

that for each n ≥ 0, gn is of order αpkn with kn ≥ k0 (as gαpk0

n lies in

P̃0/P̃n which is a p-group) and that the sequence (kn)n≥0 is unbounded.
Otherwise, gα would be an element of finite p-power order and non-

trivial (p divides the order of gn0), but the p-Sylows of G̃ are free-pro-p
(theorem 2.5).

Let ν0 = maxn≥0νn(g), and, for some level k with νk(g) = ν0, let

gµ1

k , . . . , g
µν0
k be some representatives of the g

χK(τ)
k (τ ∈ Gal(K/K))

modulo conjugation in Gk. As at higher levels n ≥ k, gµ1
n , . . . , g

µν0
n re-

main non-conjugate, for every level n ≥ 0 and for each τ ∈ Gal(K/K),

(**) g
χK(τ)
n is conjugate to gµi

n for some i ∈ {1, . . . , ν0}.

As condition (**) at level n with some conjugation factor hτ,n implies
the same condition at lower levels with the same exponent µi and with
conjugation factors those induced by hτ,n and that both the exponents
µi and the conjugation factors vary in finite sets, we obtain that for each

τ ∈ Gal(K/K), there exist i(τ) ∈ {1, . . . , ν0} and hτ = (hτ,n)n≥0 ∈ G̃
such that

(***) gχK(τ) = hτ gµi(τ) h−1
τ in G̃.

From above the order of gn tends to ∞ with n. Let κ ≥ 0 be the

smallest integer such that g ∈ P̃κ \ P̃κ+1. From the assumption on
K, the set χK(Gal(K/K)) is infinite. So if n is suitably large, there

exist τ, τ ′ ∈ Gal(K/K) such that g
χ(τ)
n 6= g

χ(τ ′)
n with i(τ) = i(τ ′) and

hτ,κ = hτ ′,κ. This yields

(****) gχK(τ ′) = (hτ ′h
−1
τ )gχK(τ) (hτ ′h

−1
τ )−1 with hτ ′h

−1
τ ∈ P̃κ

Complement g with elements g2, . . . ,gl so that the profinite sub-

groups B = 〈g〉 and D = 〈g2, . . . ,gl〉 freely generate P̃κ [RZ00, 7.6.10].
From (****), for h′ = hm′h−1

m , we have h′B(h′)−1 = B. In this situa-
tion, we get h′ ∈ B [RZ00, 9.1.12]. But as B = 〈g〉 is abelian, (****)
would rewrite gχ(τ ′) = gχ(τ) — a contradiction.
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Conclude that (H) does not hold. Therefore, in the given set of
regular realizations over K(T ) of groups Gn (n ≥ 0), there exists in-
finitely many levels n ≥ 0 such that all inertia classes Cn1, . . . , Cnr are
of prime-to-p order. Obviously, this is then true for all levels n ≥ 0.
In addition, as the kernels of the maps Gn+1 → Gn are p-groups, for
each i = 1, . . . , r, Cni has the same order as C0i (n ≥ 0). But then, it
follows from the Lifting Lemma (lemma 2.7) that the conjugacy classes
Cn1, . . . , Cnr are the unique lifts of the conjugacy classes C01, . . . , C0r of
G (respectively), i.e., with the notation of §2.3, Cni = Cn

0i, i = 1, . . . , r,
n ≥ 0. Setting C = (C0i, . . . , C0r), we have obtained that there are
K-rational points on each level of the stack tower Hr(G0, p,C). �

Remark 3.8. If the starting realizations of the groups Gn are by G-
covers with field of moduli K (but not necessarily defined over K),
the conclusion of theorem 3.5 holds with the stack tower Hr(G0, p,C)
replaced by the modular tower Hr(G0, p,C). The proof is the same;
just note that the Branch Cycle Lemma holds under the more general
“field of moduli” assumption. Finally we have this result of M. Fried
[Fri02, theorem 2.10]: if G0 is p-perfect and has trivial center, than so
do all the Gn. So then, at each level, the field of moduli is a field of
definition [DD97]. The same Fried’s result has this further conclusion:
suppose p divides the order of g ∈ Gk. Then, any lift g̃ ∈ Gk+1 has
order p times the order of g. This is more precise than the argument
we used in the proof above to show that the order of gn tends to ∞.

3.4. Moduli space and stack versions of the MT conjecture.
Notation is that of §3.1.

Theorem 3.9. The moduli space and stack versions of the MT dio-
phantine conjecture are equivalent in Fried’s original context. They also
are equivalent in the more general context from §2.2 if the dependence
in K of the constants involved is through [K : Q].

Proof. For the first part, we refer to [Fri06, proposition 3.3 and remark
3.4], [Fri08, appendix C] and [Kim05]. Here is a sketch of the method.
Start from a modular tower H(−) with levels corresponding to the
characteristic quotients Gn of the p-universal Frattini cover of some p-
perfect G0. The main point is that a p-perfect group G0 has a quotient
G0 such that the characteristic quotients Gn of the p-universal Frattini
cover ofG0 have trivial center. This makes it possible, using the natural
epimorphisms Gn → Gn, to construct a modular tower H(−), with the
property that the levels, which correspond to the groups Gn, are fine
moduli spaces. Thus under the MT diophantine conjecture for stacks,
rational points over some number field K disappear beyond a certain
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level of the modular tower H(−). This property holds a fortiori for the
modular tower H(−) as H(−) is a quotient of H(−).

For the second part, we refer to [CD07, appendix]. �

3.5. Original and reduced forms of the MT conjecture. Nota-
tion is that of §3.1.

Proposition 3.10. The reduced MT Diophantine Conjecture is equiv-
alent to the original form if the dependence in K of the constants in-
volved is through [K : Q].

Proof. The proof follows from [Cada, corollary 3.12] (§1.6 (**)). �

4. Galois Covers, Abelian Varieties and Modular Towers

This section reproduces parts of the paper [CD07] by A. Cadoret
and the author. In addition to the material of this Summer School,
are used some classical results from the theory of abelian varieties and
Jacobian varieties. References are given.

The central idea is this. Suppose we are given a finite Galois cover
Y → P1 over some field k with Galois group G and with ramification
indices prime to some prime divisor p of the order of G. Then if P is
a p-Sylow subgroup of G, the containment [P, P ] ⊂ P corresponds, via
Galois theory, to a non-trivial unramified abelian curve cover Z → X
(with group the abelianization P ab). This imposes some non-trivial
condition on the Jacobian Jac(X). This leads to interesting conclusions
in the context of modular towers.

Unless otherwise specified, fields are of arbitrary characteristic. The
separable closure of a field k is denoted by ks and its absolute Galois
group by Gal(ks/k).

The following definition is used throughout the section. Suppose
given a field F with a discrete valuation v with valuation ring R and a
F -curve B 13 with a model BR over Spec(R) with good reduction.

Definition 4.1. A proper closed subset D ⊂ BF is said to be smooth
at v (or modulo its valuation ideal p) if each geometric point of D is
defined over F s and if no two F s-points of D coalesce at any prime over
p, i.e. for any two F s-points of D, their closures in BRs do not meet
on the fiber over any prime of Rs lying over p, where Rs is the integral
closure in F s.

13By F -curve, we mean a smooth projective and geometrically connected F -
scheme of dimension 1.
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For B = P1, this last condition can be rephrased more explicitly:
View P1

F s as the t-line and consider two geometric points α = (t =
a) and α′ = (t = a′), where a, a′ ∈ F s ∪ {∞}. Then α, α′ coa-
lesce at a prime ps of Rs over p if |a|ps ≤ 1, |a′|ps ≤ 1, and |a −
a′|ps < 1, or else if |a|ps ≥ 1, |a′|ps ≥ 1, and |a−1 − a′−1|ps < 1. We
sometimes say D has good reduction at v instead of “smooth at v”.
In the opposite case, we say D is singular or has bad reduction at v.

4.1. Central Results.

4.1.1. Statements.

Theorem 4.2. Let G be a finite group, k be a henselian field (for a
discrete valuation v) with finite residue field Fq of characteristic prime
to |G|. Let f : Y → P1 be a ks-G-cover of group G, field of moduli k
and branch divisor smooth at v. If P is any non trivial subgroup of G
of order prime to each of the ramification indices e1, . . . , er of f and
P ab is its abelianization, then we have

|P ab| ≤ e (2
√

e g)[G:P ]−1 qg

where g = 1 + 1
2
[G : P ](r − 2−

∑r
i=1 1/ei) and e = 2, 718 . . . .

Assume G has a regular realization over some number field K, i.e.
there exists a G-cover f : Y → P1 of group G defined over K. If P is a
subgroup of G as above, it follows from theorem 4.2 that |P ab| can be
bounded in terms of K, [G : P ], r and the places of bad reduction of
the branch divisor. We conjecture the last dependence is unnecessary.

Conjecture 4.3. Let m0 ≥ 1 and r ≥ 0 be two integers. Let G be the
Galois group of some G-cover f : Y → P1 defined over the number field
K with at most r branch points. If P is any subgroup of G of order
prime to each of the ramification indices e1, . . . , er of f and of index
[G : P ] ≤ m0, then the order of its abelianization P ab can be bounded
by a constant depending only on r, m0 and K.

There are several variants of the conjecture: its conclusion may be
required to hold only for p-subgroups P ⊂ G (with a constant also
depending on p); or the exponent of P ab, instead of its order, may be
claimed to be bounded; the dependence of the constant in K may only
involve the degree [K : Q], etc. We will specify when necessary which
variant may or should be used.

4.1.2. A new constraint in inverse Galois theory. The case P is a non
trivial p-Sylow subgroup of G is of special interest as the order pn of
P ab is ≥ p (and even ≥ p2 if |P | ≥ p2). Assume as above a regular
realization f : Y → P1

K of G defined over the number field K is given
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with at most r branch points and prime-to-p ramification. Conjecture
4.3 predicts that pn should be bounded in terms of r, m = [G : P ] and
K. Theorem 4.2 yields the following.

Corollary 4.4. The branch divisor of f is singular modulo every prime
` 6 | |G| such that e (2

√
e γ)m−1 `γ[K:Q] < pn 14, where γ = 1+m(r−2)/2.

This includes at least one prime ` if pn is bigger than some constant
depending only on r, m and [K : Q].

For instance, if |G| = 3 . 97N with N ≥ 2, then every 4-branch-
point regular realization of G over Q with prime-to-97 ramification
necessarily has branch points that coalesce modulo 2. The modular
tower context will provide other more structured examples.

It was already known that the branch points of potential regular
realizations of some finite group G over some number field K should
satisfy certain conditions: their number should be bigger than the rank
of G (a topological condition); actions of Gal(K/K) on them and on
the ramification type should be compatible (an arithmetical condition
known as the “branch cycle argument” [Völ96, p.34]). Corollary 4.4 is
a new constraint.

4.1.3. Proof of theorem 4.2. Let f : Y → P1 be a ks-G-cover of group
G, field of moduli k and branch divisor smooth at v, with G, k and v
as in the statement. From [DH98, theorem 3.1], f : Y → P1 is defined
over its field of moduli as G-cover. Let fk : Yk → P1

k be a k-model of f .
Let P ⊂ G be a subgroup as in the statement. The k-G-cover

fk : Yk → P1
k factors as shown on the diagram below

Yk

fk

��

[P,P ]

  B
BB

BB
BB

B

P
��
Xk

��

Zk
Pab
oo

P1
k

where Yk → Xk is a k-G-cover with group P and which is unramified
due to the assumption on |P | (in particular Xk is of genus g 6= 0) and
Xk → P1

k is a k-cover of degree [G : P ]. In turn the k-G-cover Yk → Xk

factors through some unramified k-G-cover Yk → Zk with group the

14Bounding the cardinality q of the residue field Fq of places of K by `[K:Q] with
` the characteristic of Fq makes the inequality of theorem 4.2 independent of the
place v above `. That is why we may use primes of Q here.
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commutator subgroup [P, P ] of P . The corresponding quotient Zk →
Xk is an unramified k-G-cover with group P ab.

The abelian etale cover Zk → Xk induces a k-isogeny α : A →
Jac(Xk) with the property that its geometric kernel ker(α)(ks) is iso-
morphic to the trivial Gal(ks/k)-module P ab [Cadb, lemma 1.4] 15; in
particular, ker(α)(ks) is contained both in the |P ab|-torsion part of A
and in A(k).

From [Ful69, theorem 3.3], the cover Xk → P1
k has good reduction

at v and so do the curve Xk and its Jacobian Jac(Xk) [Mil86, corollary
12.3]. As we assume (q, |G|) = 1, the isogeny α reduces modulo v to

an isogeny α : A → Jac(Xk) [BLR90, proposition 7.3.6]; in particular,

|A(Fq)| = |Jac(Xk)(Fq)| [Tat66]. Furthermore reduction modulo v is
injective on the |P ab|-torsion part of A [BLR90, lemma 7.3.2] and so
also on ker(α)(ks) ⊂ A(k). Whence

|ker(α)(ks)| = |P ab| divides |A(Fq)| = |Jac(Xk)(Fq)|
The right-hand side term in the desired inequality corresponds to the
upper bound, due to Lachaud and Martin-Deschamps [LMD90], for the
number of rational points over Fq on the Jacobian of a curve C of genus
g given as a cover C → P1 of degree [G : P ] 16. The value of g given in
the statement comes from the Riemann-Hurwitz formula. �

4.1.4. The conjecture for r = 3. The case r ≤ 2 is trivial both in
theorem 4.2 and in conjecture 4.3. From now on we will always assume
r ≥ 3. We consider here the case r = 3.

Corollary 4.5. Conjecture 4.3 with P ⊂ G a p-subgroup holds for 3
branch point covers.

Using a stronger form of theorem 4.2, the restriction “with P ⊂ G
a p-subgroup” can be removed: conjecture 4.3 with P any subgroup of
G holds for 3 branch point covers (see [CD07]).

Proof. Let f : Y → P1 be a G-cover as in the statement of conjecture
4.3 with at most 3 branch points. These branch points are defined over
an extension K0/K of degree ≤ 6. Up to composing f with a linear
fractional transformation defined over K0, one may assume they are 0,

15This is classical when k is algebraically closed [Ser59, Chap.6, §2.12] [Mil86,
Prop.9.1]. The paper [Cadb] extends this result to arbitrary fields.

16More specifically the bound is obtained from [LMD90] by conjoining their
lemma 3 with the inequalities given in the proof of their theorem 3. In some cases,
the more standard Weil’s inequality |Jac(Xk)(Fq)| ≤ (q + 1 + 2

√
q)g is better than

this one; it can be used alternatively.
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1 or ∞. Let P ⊂ G be a p-subgroup with p not dividing any of the
ramification indices e1, . . . , er and of index ≤ m0. Pick a prime ` 6= p
bigger than m0. Thus ` does not divide |G|. Theorem 4.2 applies with
k = Q`K0 to give |P ab| ≤ e (2

√
e γ)m0−1 `6γ[K:Q] with γ = 1+m0/2. �

4.2. Torsion of abelian varieties. A central point of the proof of
theorem 4.2 is that

(*) given a G-cover Y → P1 defined over a field K with group G and
r branch points, if P ⊂ G is a non-trivial subgroup of order prime to
each of the ramification indices e1, . . . , er of f , then a K-curve XK of
genus g = 1+ 1

2
[G : P ](r−2−

∑r
i=1 1/ei) ≥ 1 and a K-isogeny α : A→

Jac(XK) can be constructed with the property that its geometric kernel
ker(α)(Ks) is isomorphic to the trivial Gal(Ks/K)-module P ab.

If K is a number field, standard conjectures on torsion of abelian
varieties, which we recall below, impose sharp bounds on |P ab|.
Torsion Conjecture. Let A be an abelian variety of dimension g ≥ 1
and defined over some number field K. Then the order of the torsion
subgroup of A(K) can be bounded in terms of g and K.

There is also a p-Torsion Conjecture in which a prime p is fixed and
it is the p-part of the torsion subgroup of A(K) that is bounded, by a
constant also depending on p. Strong variants have the dependence in
K of the constant only involve the degree [K : Q].

The discussion above, conjoined with the fact that g can be bounded
in terms of the index [G : P ] and r, shows the following.

Proposition 4.6. The Torsion Conjecture implies conjecture 4.3. The
p-Torsion Conjecture implies the weaker form of conjecture 4.3 in which
P ⊂ G is a p-subgroup. Furthermore the possible dependence of the
constants in K through [K : Q] is preserved via these implications.

The Torsion Conjecture is known in the case g = 1, i.e. for elliptic
curves: this is the Mazur-Merel theorem; furthermore, the constants
involved only depend on [K : Q].

4.3. Application to the MT conjecture. Let G̃→ G0, r and C be
as in §3.1.

4.3.1. The weak MT Conjecture. As a consequence of theorem 4.2, we
obtain the following results.

Corollary 4.7 (weak MT Realization Conjecture). Let r ≥ 0 be an in-
teger, k be a henselian field with finite residue field Fq with (q, p|G0|) =
1 and n be an integer such that
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pn > e (2
√

e γ)|G0|−1 qγ with γ = 1 + |G0|(r − 2)/2

Then every ks-G-cover fn : Y → P1 of group Gn with field of moduli k,
with at most r branch points and with prime-to-p ramification indices
necessarily has a singular branch divisor.

Proof. The result follows from theorem 4.2 applied to the p-subgroup

P = P̃ /P̃n of G = G̃/P̃n. Note that [G : P ] = |G0| and that P ab '
(Z/pnZ)ρ. For the last isomorphism, just write

P ab ' P̃

P̃n[P̃ , P̃ ]
' P̃ /[P̃ , P̃ ]

P̃n[P̃ , P̃ ]/[P̃ , P̃ ]
' P̃ ab

(P̃ ab)n

' (Z/pnZ)ρ

where in the third isomorphism (P̃ ab)n is the n-th term of the Frattini

series of P̃ ab and (P̃ ab)n ' P̃n[P̃ , P̃ ]/[P̃ , P̃ ] is easily established by in-

duction; the last isomorphism comes from P̃ ab ' Zρ
p (use the universal

property of free pro-p groups). �

In modular terms, corollary 4.7 restates as follows.

Corollary 4.8 (weak MT Diophantine Conjecture). Let k be a hen-
selian field of characteristic 0 and with finite residue field Fq with
(q, p|G0|) = 1. Then for every integer n such that

pn > e (2
√

e γ)|G0|−1 qγ with γ = 1 + |G|(r − 2)/2

all k-rational points on the n-th level of the modular tower Hr(G0, p,C)
correspond to G-covers with a singular branch divisor.

Assume for every n ≥ 0 there is a G-cover fn : Yn → P1 as in corollary
4.7 but with some number field as field of moduli (the same for each
n, or, more generally, with a uniformly bounded degree). Corollary 4.7
yields this conclusion, which will be refined later (see corollary 4.13):

The set of primes ` 6 | p|G0| of bad reduction of the branch divisor class
of fn tends to the whole set of primes ` 6 | p|G0|, that is, includes every
prescribed finite set of primes ` 6 | p|G0| provided n is suitably large.

Conjecture 4.3 provides a stronger conclusion than theorem 4.2.

Corollary 4.9. Conjecture 4.3 (and more precisely its version with
P ⊂ G a p-subgroup and a constant possibly depending on p), implies
the MT Diophantine Conjecture (both for stacks and moduli spaces)
and so also the MT Realization Conjecture.
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Proof. Consider as above the p-subgroup P = P̃ /P̃n of G = G̃/P̃n and
apply conjecture 4.3 with m0 = |G0|. As |P ab| ≥ pn, conclusion “|P ab|
is bounded in terms of r, |G0| and K” can only hold for finitely many
integers n; the corresponding groups Gn are the only ones that can
be regularly realized over K with at most r branch points and prime-
to-p ramification. The result then follows from the Fried-Kopeliovich
theorem (corollary 3.6) and theorem 3.9). �

Remark 4.10 (dependence in K). If the constant involved in conjecture
4.3 only depends on K through [K : Q], then we have this stronger
conclusion for the MT Realization Conjecture: given an integer d ≥ 1,
only finitely many groups Gn can be regularly realized with at most
r branch points over some number field of degree ≤ d. This requires
the version of the Fried-Kopeliovich theorem that we proved in §3.3 for
which the base field K is a field of characteristic 0 with a cyclotomic
closure of infinite degree: the field K can then be taken to be the
compositum Q(d) of all number fields of degree ≤ d 17.

Corollary 4.11. The MT Realization Conjecture holds in each of these
situations:

(a) if the p-Torsion Conjecture holds,
(b) for covers with at most 3 branch points,
(c) in the Dihedral Group situation with r ≤ 5. In other words, the

Dihedral Group Conjecture holds for r ≤ 5.

Proof. (a) follows from corollary 4.9 and proposition 4.6, (b) from corol-
lary 4.9 and corollary 4.5. Consider the dihedral group situation from
§2.4 with r ≤ 5. Assume each dihedral group Dpn is regularly realized
with r ≤ 5 branch points. From the Fried-Kopeliovich theorem (theo-
rem 3.5), one may restrict to the case that all inertia classes C1, . . . Cr

are the involution class. Observe then that r 6= 2 (Dpn not cyclic) and
r 6= 3, 5 (an odd product of involutions of Dpn cannot be 1). Thus
r = 4 but then the genus of the curve XK from §4.2 (*) is g = 1, and
in this case, the Torsion Conjecture is known18. �

17Indeed the Galois group of the Galois closure of any number field k of degree
d is of order ≤ d! and so the Galois group Gal(Q(d)/Q) is a (d!)!-torsion group.
Therefore the cyclotomic closure Q(d)cycl is an infinite degree extension of Q(d),
for otherwise the Galois group Gal(Q(d)cycl/Q) would be a torsion group and the
same would then be true of the Galois group Gal(Qcycl/Q).

18More explicitly: using the correspondence from §2.4, the starting realization
of Dpn yields some elliptic curve E defined over K with a K-rational point of order
pn on E, which, from the Mazur-Merel theorem cannot exist if pn > 7.
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4.3.2. The weak reduced MT Conjecture. Given a field F (of character-
istic 0) with a discrete valuation v, we say that a proper closed subset
D ⊂ P1

F
regarded modulo PGL2 is smooth (or has good reduction) at

v if some representative χ(D) with χ(D) ⊃ {0, 1,∞} (for some lin-
ear fractional transformation χ) is smooth at v; as before we use the
phrases singular or bad reduction in the opposite case. The follow-
ing statement is a PGL2-reduced variant of our weak form of the MT
Conjecture (corollary 4.7).

Corollary 4.12 (weak reduced MT Conjecture). Let G̃ → G0, r and
C be as above. Let k be a henselian field of characteristic 0 and with
residue field Fq with (q, p|G0|) = 1. Then there exists a constant d(r)
depending only on r such that for every integer n satisfying

pn > e (2
√

e γ)|G0|−1 qγd(r) with γ = 1 + |G0|(r − 2)/2

all the k-rational points on the n-th level Hn,≡ of the PGL2-reduced

modular tower H≡
r (G̃ → G0, p,C) correspond to classes modulo PGL2

of G-covers of P1 with a singular branch divisor class modulo PGL2.

Proof. Let h≡ ∈ Hn,≡(k) with n as in the statement. From [Cada,
corollary 3.12] (§1.6 (**)), there exists a constant d(r) such that h≡

can be lifted to some point h on the original Hurwitz space Hn that is
rational, together with each of the associated branch points t1, . . . , tr,
over some extension k0/k of degree ≤ d(r). If χ is some linear frac-
tional transformation such that {0, 1,∞} ⊂ {χ(t1), . . . , χ(tr)}, then χ
is defined over k0. Thus if f is the k-G-cover corresponding to h, then
the G-cover χ ◦ f has field of moduli k0. It follows from corollary 4.7
that χ(D) is singular at v. �

Further implications to the MT Conjecture are collected in this result.

Corollary 4.13 (weak reduced MT Conjecture (continued)). Let G̃→
G0, r and C be as above and K be a number field. Assume the PGL2-

reduced modular tower H≡
r (G̃ → G0, p,C) has at least one K-rational

point on every level Hn,≡. Then this holds:
(a) The set of primes ` 6 | p|G0| of Q of bad reduction of the branch

divisor class modulo PGL2 of covers in Hn,≡(K) tends to the whole
set of primes ` 6 | p|G0| when n → ∞, uniformly in h ∈ Hn,≡(K). In
particular, there is no projective system of K-rational points on the
PGL2-reduced modular tower.

(b) For every finite set S of primes ` 6 | p|G0|, every level Hm,≡ has
K-rational points corresponding to covers with singular branch divisor
class modulo every prime ` ∈ S (m ≥ 0). In particular there are
infinitely many K-rational points on every level.
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(c) If in addition r = 4, then each level Hn,≡ has an irreducible
component that is a curve of genus 0 or 1 (n ≥ 0). Furthermore, given
a finite set S of primes ` 6 | p|G0|, for every integer n such that

pn > e (2
√

e γ)|G0|−1max(S)γd(4) with γ = 1 + |G0|(r − 2)/2

the image of the map Ψ≡ : Hn,≡(K)→ P1(K)\{0, 1,∞} 19 is contained
in the subset {|λ|v 6= 1} ∪ {|λ− 1|v < 1} for every place v of K above
some prime ` ∈ S.

Remark 4.14. The non-existence of projective systems of K-rational
points on a modular tower first appeared in the Bailey-Fried paper
[BF02]; the result was then refined and extended to more general sit-
uations by Kimura [Kim05] and the first author [Cad04] [Cadb]. The
case r = 4 has been thoroughly studied by Fried [BF02], [Fri06]. A
proof of the MT Diophantine Conjecture in this case has recently been
announced by the first author and A. Tamagawa [CT07].

Proof. (a) Let S be a finite set of primes ` 6 | p|G0|. Apply corollary 4.12
with k = KQ` and ` ∈ S. For every integer n satisfying the inequality
of the statement with ` = max(S), we obtain that S is contained in
the set of primes ` 6 | p|G0| of bad reduction of the branch divisor class
modulo PGL2 of any point in Hn,≡(K); such a K-rational point exists
by assumption. The second part of (a) is immediate as the branch
divisor class is constant in a projective system of points.

(b) Fix an integer m ≥ 0 and a finite set S of primes ` 6 | p|G0|. Use
(a) to consider an integer n ≥ m such that all points in Hn,≡(K) have
the property that the associated branch divisor classes modulo PGL2

are singular modulo each prime in S. Such K-rational points induce
K-rational points on Hm,≡ with the same branch divisor, and so with
the same property. This property guarantees existence of K-rational
points on Hm,≡ with a branch divisor class singular at some given prime
not already in the finite list of primes of bad reduction of a given finite
set of points on Hm,≡. In particular Hm,≡(K) is infinite.

(c) Assume furthermore r = 4. The reduced Hurwitz spaces Hn,≡

are then of dimension r − 3 = 1: they are curves. The first assertion
then follows from Faltings’ theorem [Fal83]. The rest of statement (c)
follows straightforwardly from corollary 4.12 and the definition of bad
reduction for some set {0, 1,∞, λ}. �

4.4. `-adic points on Harbater-Mumford modular towers. Corol-
lary 4.7 asserts there is necessarily bad reduction of the branch divisor

19We have identified U4/PGL2 with P1 \ {0, 1,∞}.
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of covers corresponding to rational points over a henselian field k on
high levels of a modular tower. A natural question is whether there
exist k-rational points at all on every level of a modular tower. We ex-
plain below that, under some assumptions, the answer is positive, and
even more is true, namely, there exist projective systems of k-rational
points.

As before fix a finite group G0, a prime divisor p of |G0| and an un-
ordered r-tuple C = {C1, . . . , Cr} of conjugacy classes of G0 of prime-
to-p order such that sni(G0,C)• 6= ∅. Assume further that C is of
H(arbater)-M(umford) type, i.e. has the shape (C1, C

−1
1 , . . . , Cs, C

−1
s ).

Fix a henselian field k (for a rank 1 valuation) of characteristic 0,
of residue characteristic ` ≥ 0 and containing all N -th roots of 1 with
N the l.c.m. of the orders of C1, . . . , Cs, e.g. k = Q`(ζN) or k =
Q(ζN)((x)) where ζN = exp(2iπ/N).

Theorem 4.15. There exist projective systems of k-rational points on
the associated modular stack tower Hr(G0, p,C).

Comments on proof. The proof is given in a bigger generality in [DD04].
It consists in constructing a tower (Kn)n≥0 of regular Galois extensions
of k(T ) that realizes the projective system (Gn)n≥0 of characteristic

quotients of G̃ = pG̃0. For each level n of the tower, patching methods
can be used. However it should be done in such a way that the invari-
ants of the extensions Kn/k(T ) (branch points, ramification type) be
compatible all along the tower. This however does not guarantee that
the extensions themselves are compatible. The strategy is to throw
in further constraints on the required realizations so as to leave only
finitely many possibilities (but at least one) for the extensions Kn/k(T )
(n ≥ 0): we request that the fiber above some fixed unramified point
t0 ∈ P1(k) in every extension Kn/k(T ) consist only of k-rational points.
That is what makes “passing to infinity” possible, via the classical
compactness argument (a projective limit of non-empty finite sets is
non-empty).

We note a condition of importance that makes the construction pos-
sible and which is satisfied in the modular tower context:

(*) for each i = 1, . . . , n, the conjugacy classes Cn
i , n ≥ 0 have the

same (prime-to-p) order.

The Branch Cycle Lemma (lemma 3.7) shows this kind of asssumption
cannot be removed in general: the classical example is the profinite
group Zp which is not the Galois group of a regular Galois extension
E/Q`(T ) (see e.g. [Dèb07, ch.3]). In the construction from [DD04], this
obstruction corresponds to Hypothesis (iii) there. We refer to [Cadb]
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for a thorough study of similar obstructions and the proof of a wide
class of profinite groups not being regular Galois groups over k(T ).

Furthermore, ζN being in k makes it possible to choose the branch
points in P1(k). Condition (*) above also guarantees Hypothesis (iv)
of the general construction: if ` > 0, the `-part of the orders of the
classes Cn

i , i = 1, . . . , r, n ≥ 0 is bounded. This makes it possible to
choose the branch points organized in pairs of sufficiently close points,
as requested by the patching methods. �

Consider the modular tower Hr(G0, p,C) from theorem 4.15. The
varieties Hn are reducible in general. A next motivation is to obtain
a similar result but with the Hn geometrically irreducible and defined
over Q (n ≥ 0). This was achieved in [DE06].

Recall first these definitions. An unordered tuple C = {C1, . . . , Cr}
of conjugacy classes of a group G is said to be g-complete if it satisfies
“gi ∈ Ci, i = 1, . . . , r ⇒ 〈g1, . . . , gr〉 = G”. A tuple C with the shape
{C1, C

−1
1 , . . . , Cs, C

−1
s } is HM-g-complete if it has this property: if any

pair Ci, C
−1
i is removed then what remains is g-complete.

Theorem 4.16. In addition to the assumptions of theorem 4.15, sup-
pose C is HM-g-complete and is Q-rational (§1.2). Then there exists a
projective system (HMn)n≥0 of Q-components of (Hn)n≥0 (respectively)
with the following property:

If k is any henselian field of characteristic 0, of residue characteristic
` ≥ 0 and containing all N-th roots of 1 with N the l.c.m. of the orders
of C1, . . . , Cs, then there exist projective systems of k-rational points on
the tower (HMn)n≥0.

Comments on proof. The key is to take for HMn the Harbater-Mumford
component of Hn. Recall it is defined as the component of all points rep-
resenting complex covers with the property that some of its monodromy
branch cycle descriptions (relative to some standard topological bou-
quet of paths) are of the form (g1, g

−1
1 , . . . , gs, g

−1
s ). It is a theorem of

M. Fried that if C is HM-g-complete, all these covers fall into a single
component [Fri95, theorem 3.21]. Furthermore using Wewers’ descrip-
tion of the boundary of Hurwitz spaces [Wew98], this HM-component
can be characterized by the way the covers it carries degenerate: their
stable reduction should be a cover of a “comb” of P1s unramified at
singular points [DE06]. It follows this component is defined over Q.
We also use this characterization to show that the `-adic covers con-
structed thanks to the patching methods in [DD04] lie on this HM-
component. �
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Finally one would like to have an analog of theorem 4.16 with the r-
dimensional varieties HMn replaced by varieties of low dimension. Such
results have been obtained by A. Cadoret [Cad05]. The new varieties
are obtained as subvarieties of the HM-components HMn by specializing
all branch points but one or two; thus they are curves or surfaces. The
main problem is to preserve irreducibility, which amounts to checking
an intricate transitivity condition of some braid group action. This can
be achieved with some restriction on the group G. For example, she
obtains the following result.

Theorem 4.17. Let G be a finite non-abelian simple group and let p
and ` be two primes with p dividing |G| and ` not dividing |G|. Assume
there is a g-complete couple (C,D) of conjugacy classes of G of prime-
to-p order. Let µ be the l.c.m. of the orders of C and D and let ζµ be
a primitive µ-th root of 1. Then one can construct

- unordered r-tuples C = {C1, C
−1
1 , . . . , Cs, C

−1
s } made of repeti-

tions of the classes C and D,
- degree r − 1-divisors t ∈ Ur−1(Q),

such that on the modular tower H(G0, p,C), there is, above the sublocus
of Ur of degree r divisors with r − 1 entries in t, a projective system
(Ct,n)n≥0 of curves, geometrically irreducible and defined over Q(ζµ),
with projective systems of Q`(ζµ)-rational points on it.

The assumptions on G are satisfied for quite a few simple groups:
alternating groups Ap with p ≥ 5 prime, p 6= `, Mathieu groups M11,
M22, M23, Janko groups J2, J3, the Suzuki group Sz(8), the groups
PSL2(Fp) with p ≡ 3 [mod 4].

4.5. Generalization of the central theorem. We give here a gen-
eralization20 of theorem 4.2 where we let the base space of the cover f
be a more general curve B than P1 and drop the assumption that the
ramification indices are prime to |P |. The bound we obtain depends
on the index [G : P ] of the subgroup P ⊂ G, the number r of branch
points, the genus gB of B and the order q of the residue field.

Theorem 4.18. Let G be a finite group, k be a henselian field (for a
discrete valuation v) with finite residue field Fq of characteristic prime
to |G|. Let B a k-curve of genus gB with good reduction and f : Y → B
be a ks-G-cover of group G, field of moduli k and branch divisor smooth
at v. Then there exists a constant C(m, r, q, gB) such that if P is any
subgroup of G and P ab is its abelianization, we have

|P ab| ≤ C([G : P ], r, q, gB)

20An even more general version is given in [CD07].
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The special case with G = P abelian yields the following.

Corollary 4.19. Let k be as above and B be a k-curve with good re-
duction. Then only finitely many abelian groups with prime-to-` order
occur as the Galois group of some k-G-cover of B with r branch points.

Using results of Clark-Xarles [CXar], the prime-to-` condition on |G|
can be removed if k is of characteristic 0 [Cad07].

Proof of theorem 4.18. From [Ems99], which generalizes [DH98], it re-
mains true that, due to the assumptions (q, |G|) = 1 and “branch
divisor smooth at v”, the field of moduli of f is a field of definition. So
we may just as well assume that f : Y → B is a k-G-cover.

Similarly as in the proof of theorem 4.2, factor f : Y → B as follows:

Y

P
��

[P,P ]
//

f

��

Z
Pab

~~}}
}}

}}
}}

I
��

X

��

Z[

Pab/I

oo

B

with I ⊂ P ab the subgroup generated by all inertia subgroups of Z →
X. The abelian etale k-G-cover Z[ → X induces an isogeny α : A →
Jac(X) with kernel isomorphic to the trivial Gal(ks/k)-module P ab/I.

The same reduction argument as for theorem 4.2 leads to

|P ab|/|I | ≤ [q + 1 + 2
√
q]g

where g = 1 + 1
2
[G : P ](r + 2gB − 2−

∑
1≤i≤r 1/ei) is the genus of X.

Here we have used Weil’s bounds (rather than those from Lachaud and
Martin-Deschamps).

It remains to bound |I|. Using that the group I is an abelian quotient
of the fundamental group of the curve Z[ with the ramification points
of Z → Z[ removed, we obtain

|I | ≤ exp(I)2g
Z[+rD

where D = [G : P ] |P ab|/|I|, exp(I) is the exponent of I and gZ[ is the
genus of Z[. Using the Riemann-Hurwitz formula, the genus gZ[ can
be bounded by a constant γ depending only on r, gB and D.

We explain next how to bound, for each prime p, the p-part, say
pnp , of exp(I). Fix a prime p. For each point p ∈ Z[(ksep) above some
branch point ti of f (i = 1, . . . , r), let Ip be some inertia group of Z →
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Z[ above p, and write its order |Ip| = pnp(p)mp(p) with (p,mp(p)) = 1.
The group I is generated by all the subgroups Ip and the p-Sylow sub-

group I[p∞] of I is generated by the subgroups I
mp(p)
p . In particular,

there exists a point p such that I
mp(p)
p and I[p∞] have the same expo-

nent, that is pnp(p) = pnp . Write then I[p∞] = I
mp(p)
p ⊕N and consider

the quotient covers: f1 : Z1 = Z/(⊕q 6=pI[q
∞])→ Z[ of group I[p∞] and

f2 : Z2 = Z1/N → Z[ of group I
mp(p)
p . The cover f2 is totally ramified

above p and so the residue fields at p ∈ Z[ and at the unique point on Z2

above p are equal. Lemma 4.20 below shows that this residue field con-
tains the pnp(p)-th roots of 1. It follows that pnp | qD− 1 where D is the
degree of that residue field over k. Bound D by rD = r[G : P ] |P ab|/|I|
and use the bound for |P ab|/|I| from the first part of the proof. �

Lemma 4.20. Let k be any field, X be a k-curve and f : Y → X be
a G-cover defined over k and tamely ramified at a point P ∈ X with
ramification index e. Let Q ∈ Y be a point in the fiber above P . Then
the residue field of Q ∈ Y contains the e-th roots of unity.

Proof. The following proof is given in [Cadb]. Denote by k̃(X)P (resp.

k̃(Y )Q) the completion of the function fields k(X) at P (resp. k(Y )

at v). The extension k̃(Y )Q/k̃(X)P is Galois with group the decom-
position group of f : Y → X at Q. Denote the fixed field of the

corresponding inertia group IQ in k̃(Y )Q by k̃(X)
ur

P . The extension

k̃(Y )Q/k̃(X)
ur

P is totally ramified. In particular, the associated residue
field extension at Q is trivial. Denote by κ the residue field of Q ∈ Y .

We claim that there exists y ∈ k̃(Y )Q such that ye ∈ k̃(X)
ur

P and

k̃(Y )Q = k̃(Y )Q/k̃(X)
ur

P (y). Indeed, let a and b be some uniformizing

parameters of the places/points P and Q respectively. Then we have

be = wa for some unit w ∈ k̃(Y )Q relative the place/point Q (in other

words, the value w(Q) of w atQ in the residue field κ is non-zero). From
above, κ is also the residue field of the restriction of the place/point Q

to k̃(X)
ur

P . So up to replacing w by u−1w with u ∈ k̃(X)
ur

P such that
w(Q) = u(Q), one may assume w(Q) = 1. Then, applying Hensel’s

lemma to Xe − w produces an element w0 ∈ k̃(Y )Q such that we
0 = w

and then y = w−1
0 b has the expected property. Consequently k̃(Y )Q

contains the e-th roots of unity, hence so does κ. �
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