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§1 Introduction

There has been recent progress on the Inverse Galois Problem. Most of it consists
of results on the absolute Galois group G(K (7)) when K is a field with various good
arithmetic properties. This paper is a survey of that recent progress. Our goal is also to
try to unify the results and the questions that have arisen in the last few years.

Historically the Inverse Galois Problem (IGP) is: is each finite group the Galois group
G(F/Q) of an extension of Q7 The modern approach consists in studying rather the
Regular Inverse Galois Problem (RIGP): is each finite group the Galois group G(E/Q(T'))
of a Galois extension E/Q(T) with E/Q a regular extension? (As usual, we just say in the
sequel regular Galois extension E/Q(T)). Regular means that ENQ = Q, or, equivalently,
G(E/Q(T)) = G(EQ/Q(T)). Here are three reasons why considering this problem is more
natural:

(1) A positive answer to the RIGP implies a positive answer to the IGP. This classically
follows from Hilbert’s irreducibility theorem.

(2) Regular Galois extensions E/Q(T) correspond to Galois covers f : X — P! that are
defined over Q along with their automorphisms. Thus the RIGP essentially consists in
studying the action of G(Q) on covers of the projective line. This fits the general feeling
that the action of G(Q) on geometric objects is expected to reflect much of its structure.

(3) The RIGP can be formulated more generally for an arbitrary field K (possibly of
positive characteristic) in place of Q. Given any field K, each group might well be the
Galois group of a regular Galois extension of K (7T'): at least, no counter-example is known.
In contrast with the IGP, the RIGP might not depend on the base field K but rest on
some universal property of the field K (T') of rational functions.

Because of the regularity condition, solving the RIGP (in an affirmative way) over a

given field automatically solves it over each overfield. Therefore it is sufficient to solve
the RIGP over each prime field Q. The RIGP has been solved over each algebraically



closed field: the real problem is the descent from Q to Q. Roughly speaking there are
then two directions of work. Group theorists fix a group and try to realize it over Q(T")
regularly (i.e., as the Galois group of a regular Galois extension of Q(7")). Thanks to the
so-called rigidity criterion and its developments, there have been since the late 70" many
results in that direction for simple groups in particular. We refer the reader to the works
of Matzat ([Mat], [MatMa]) and his students for that aspect of the question (see also
[Del]). On the other hand, arithmetic geometers try to realize regularly all finite groups
over K(T') with K a given algebraic extension (as small as possible) of 3. There has been
more recently some progress in that direction. We will focus on this second aspect of the
problem, which was developed in particular by Fried, Harbater and Pop. Of course this
distinction is somewhat artificial for in practice there is a strong interaction between the
group theory and the arithmetic.

Basically most of the recent progress can be summarized by saying that the RIGP is
solved if the base field is “large”. By large we actually mean the following precise property,
which was introduced by F. Pop: each smooth geometrically irreducible curve defined over
K has infinitely many K-rational points provided there is at least one. We will study
this property more precisely in §3. Haran and Jarden call it “ample” in [HaJa|, which
expresses a certain tendency of these fields to develop abundantly through the points of
a variety. We note that AMPLE can also be understood as a property of “Automatique
Multiplication des Points Lisses Existants”. We will use this terminology.

The statement above however does not account for a second series of results of the
same spirit. Similarly, the general RIGP does not account for a second series of classical
conjectures of the area. Those results and conjectures give, or predict, under certain
conditions, the exact structure of some absolute Galois groups. Historically, the starting
problem of this second circle is the conjecture of Shafarevich: the absolute Galois group
G(Q™) is a free profinite group (on countably many generators).

These two circles of the area are closely related. They are both concerned with the
structure of absolute Galois groups. The methods use the same kind of arguments, namely
some patching and gluing techniques for analytic covers and some specialization arguments
for ample fields. Still it was our feeling that the exact connection had never been made
completely clear. The goal of this paper is

(1) to state a conjecture that unifies all classical questions. This conjecture is the Main
Conjecture. We state it in §1 and show the connection with all other conjectures.

(2) to state a theorem that summarizes most recent results of the area. This theorem is
the Main Theorem. It merely asserts that the Main Conjecture is true if the base field K
is ample. This contains the above statement that the RIGP is solved if K is ample. The



Main Theorem is precisely stated in §2 where we also show how to deduce most recent
results as special cases. A general proof of the Main Theorem was given by F. Pop [Po4].

(3) to explain the main arguments of the proof of Main Theorem. For simplicity, we will
restrict to the solution of the RIGP over large fields.

The necessary background on the arithmetic of fields and the theory of covers can be
found in the Fried-Jarden book [FrJa] and in the recent books [MatMal] by Matzat-Malle
and [Vo| by Volklein.

We wish to thank M. Fried, D. Haran, D. Harbater, M. Jarden, F. Pop, H. Volklein
for very helpful comments and many valuable suggestions.

82 Conjectures

2.1 Classical conjectures.

2.1.1 First circle. Recall from the introduction these various conjectures around the
Inverse Galois Problem. The Galois group of a Galois extension E/k is denoted by
G(E/k). Given a field K, we denote by K, (resp. by K) a separable (resp. algebraic)
closure of K and by G(K) the absolute Galois group G(K) = G(K,/K) of K.

Conjecture (RIGP/k(y)  For every field K and for every finite group G, there exists
a reqular Galois extension Eg/K(T) such that G(Eq/K(T)) =G.

Conjecture (IGP/k nup) — For every hilbertian field K and for each finite group G,
there exists a Galois extension Eg/K such that G(Fg/K) = G. Or, equivalently, each
finite group G is a quotient of the absolute Galois group G(K) of K.

Conjecture (IGP) — For each finite group G, there exists a Galois extension Eg/Q
such that G(Eg/Q) = G.

We have: RIGP/K(T) — IGP/K hilb. — I1GP

Proof. Indeed, it follows from the hilbertian property that, if Er/K(T) is a regular
Galois extension of Galois group (G, then there exists some specialization t € K of T such
that the specialized extension FE;/K is a Galois extension of Galois group G. Whence
RIGP/ k) = IGP/k pap.. From Hilbert’s irreducibility theorem, Q is a hilbertian field.
So IGP/K nin. = IGP. O



2.1.2 Second circle. Conjectures of this second circle are conjectures about embedding
problems. Recall that an embedding problem for a group I is a diagram of group homo-
morphisms
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where the horizontal sequence is exact and the map f : I' — H is surjective. A proper
solution is a surjective group homomorphism ¢g : I' — G such that ag = f. Without
the condition “g surjective”, such a map g is said to be a weak solution. The embedding
problem is said to be finite if GG is finite. It is said to be split if a : G — H has a
group-theoretic section.

A profinite group I' is said to be projective if each finite embedding problem for I' is
weakly solvable. Free profinite groups are some examples of projective groups. Finally
recall that, given a weakly solvable embedding problem for a group I', there exists a
standard procedure that generally allows to reduce to a split situation. More precisely,
this procedure (e.g. [Po4;§1 B) 2)]) uses a weak solution to construct a split embedding
problem for I' such that existence of a proper solution for it implies existence of a proper
solution for the original one. We will use this reduction in several occasions. For simplicity,
we call it the weak— split reduction.

Conjecture (Fried-Volklein [FrVo2]) — Let K be a hilbertian countable field such that
G(K) is projective (e.g. cohdim(K) < 1), then G(K) is pro-free.

Conjecture (Shafarevich) — G(Q) is pro-free.

These conjectures are more or less classical. We will denote them respectively by
FrVo and SHA. The latter is actually a special case of the former. Indeed, from a result
of Kuyk, Q% is hilbertian, see [FrJa,Th.15.6]; and Q% is of cohomological dimension
< 1: this follows from the fact that any division algebra over every number field has a
cyclotomic splitting field [CaFr]. In turn, FrVo is a consequence of the two following
equivalent conjectures about embedding problems.



Conjecture (Split EP/x 1)) — Let K be an arbitrary field. Then each split embedding
problem for G(K(T')) has a proper solution.

Conjecture (Split EP/k i)  Let K be a hilbertian field. Then each split embedding
problem for G(K) has a proper solution.

We call these conjectures the Split Embedding Problem congjecture over K(T') (resp.
over hilbertian fields). We have:

Proof of Split EP /) < Split EP/k . (<) follows from the fact that for every
field K, the field K(7') is hilbertian [FrJa;Th.12.10].

(=): Given a split embedding problem for G(X) with K hilbertian, consider the
embedding problem for G(K(T')) obtained by composition with the map G(K(T')) —
G(K). The Split EP /gy conjecture provides a proper solution. Then, as in the proof
of RIGP /g1y = IGP /K nin. above, use the hilbertian property to specialize this proper
solution to a proper solution of the original embedding problem for G(K). O

Proof of Split EP/x . = FrVo. We will show that any given embedding problem for
G(K) has a proper solution. Conclusion “G(K’) pro-free” will follow then from Iwasawa’s
theorem recalled below. Since G(K) is assumed to be projective, the given embedding
problem has a weak solution. From the weak—split reduction, one may assume that the
embedding problem is split. Therefore, from the Split EP/j . conjecture, this split
embedding problem has a proper solution. O

Theorem 2.1 (Iwasawa [Iw],[FrJa;Cor.24.2]) — Let K be a countable field, G(K) is
pro-free if and only if each finite embedding problem for G(K) has a proper solution.

2.1.8 Conclusion. Finally we have Split EP/k nin. = IGP/k pap.. Indeed realizing a
group G over K amounts to solving the split embedding problem for G(K') in which the
exact sequence is 1 - G — G — 1 — 1. The following diagram summarizes §2.1.



RIGP/K(T) - IGP/K hilb. = IGP

f
Split EP/x(;y < Split EP/k i, — FrVo — SHA

Remark 2.2. Conjectures of the second circle seem to be stronger since they give results
on the structure of absolute Galois groups whereas those of the first circle only deal
with the finite quotients of absolute Galois groups. But there is in fact no other obvious
implication than Split EP /) = IGP /(1) between both these sets of conjectures. For
example there is no obvious implication between FrVo and IGP !, nor there is between
Split EP /() and RIGP /g (). The motivation of the following section is to state a
more general conjecture that unifies both these circles of the area. The difference between
the two conjectures Split EP/ k() and RIGP / k(1) Will then become clear (see Remark
2.4).

2.2 Main Conjecture

2.2.1 Statement of the Main Conjecture. Suppose given a commutative diagram of group
homomorphisms

G(K,(T)) —— G(K(T)) G(K)

/ / /
f

g/ g/ v/
| 7 — 4 g — L 1

A

r

- where the sequences in which the arrows are lined up are exact,

'The main point is that G(Q) is not projective (since G(Q) has elements of order 2) and so FrVo
cannot be applied directly to G(Q).



- where — means that the homomorphism in question is injective,
- where —» means that the homomorphism in question is surjective.

Such a diagram is called an embedding problem of exact sequences over K(T). A proper
solution is a triple (g,g,7) of surjective maps as in the diagram above, such that the
enlarged diagram commutes. If the condition “surjective” is removed, the triple (g, g,7)
is said to be a weak solution.

Main Conjecture — Let K be an arbitrary field. Then for each embedding problem EP
of exact sequences over K(T), if EP has a weak solution, then EP has a proper solution.

Remark 2.3. (a) Weak solutions (g, g,7) actually correspond in a one-one way with the
maps ¢ : G(K(T)) — G such that ag = f. Indeed, given g, take for g the restriction
of g to G(K,(T)). The containment g(G(K,(T)) C H holds because the two down-right
groups in the diagram are equal (to I'). There exists then a unique map ~ that makes the
diagram commute. The triple (g, g,7) is a weak solution.

(b) We will say that the embedding problem of exact sequences over K (7)) is split if
the map « splits. In that case, the embedding problem has a weak solution. Conversely,
it is an exercise to show if an embedding problem of exact sequences has a weak solution,
then there exists a split embedding problem of exact sequences such that existence of
a proper solution for it implies existence of a proper solution for the original one: the
weak—split reduction mentioned above for classical embedding problems generalizes with
no difficulties. Therefore, in the Main Conjecture, the condition that the embedding
problem has a weak solution can be replaced by the condition that it is split.

2.2.2 Relation with other conjectures. The Main Conjecture contains all conjectures of
§2.1. In summary we have

- RIGP/K(T) - IGP/K hilb. = 1IGP
Main Conj. i
—> Split EP/x¢y <= Split EP/k s, =— FrVo — SHA

Proof of Main Conj. = RIGP/k): From the Main Conjecture, the following em-
bedding problem of exact sequences over K(T),
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G(K(T)) —— G(K(T))

/ / /
7/ )/ »
/A Y S

4

G

A

which is obviously split, has a proper solution. This exactly means that there exists an
extension Fg/K(T) such that G(Fg/K(T)) = G(EcKs/Ks(T)) = G.

Proof of Main Conj. = Split EP/1): Consider a split embedding problem

G(K(T))

|

1 — N —— @ 2% H  —— 1

Denote the group f(G(K,(T))) by H, the natural map H — H/H by p and the kernel
of the surjective map pa by G. It is readily checked that o maps surjectively G onto H.
Thus we can form the following embedding problem of exact sequences over K (7))

G(K(T)) —— G(K(T))

G(K)




This embedding problem is split. From the Main Conjecture there exists a proper
solution (g, g,7). In particular the map ¢ is a proper solution of the original embedding

problem for G(K (7). O

Remark 2.4. Roughly speaking the Main Conjecture asserts that each split embedding
problem for G(K (7)) given with a certain constraint over K has a proper solution.
Conjectures Split EP/ k() and RIGP / k(1) correspond to the following special cases.
The Split EP /(1) conjecture is obtained by leaving out the constraint over K,. While
the RIGP/ k(1) has the constraint over K but is concerned only with the split embedding
problem for which the quotient is H = 1.

2.2.8 Further comments. (a) The Main Conjecture can be generalized in two directions.
First the field K(T') can be replaced by the function field K(C') of any smooth projective
K-curve. That is, the upper exact sequence of the diagram in §2.2.1 is replaced by the
exact sequence

1 - G(Ks(C)) - G(K(C) = G(K) — 1

Harbater [Har4] and Pop [Po2| work in this more general context. An extra difficulty
is that this exact sequence need not be split in general, in contrast with the special case
C =Pl

A second generalization is to replace the absolute Galois group G(K(C)) by the al-
gebraic fundamental group m(C'—D) where D is a reduced G(K)-invariant divisor of
C. That is, the upper exact sequence of the diagram in §2.2.1 is replaced by the exact
sequence

1 - m(C—D) — 1 (C—-D) — G(K) — 1

where C—D = (C—D) @k K,. However, with that change, the conjecture is false. Take
K =C, C =P"and |D| > 0. Since m;(P'—D) is pro-free of rank |D| — 1, an embedding
problem



1 ——— N —— G —% H — 1

with G of rank > | D| cannot have any proper solution. But the Main Conjecture predicts
that the embedding problem has a proper solution if some extra branch points are allowed.
More precisely, the Main Conjecture can be rephrased as follows:

(*) given a split embedding problem for the exact sequence above of fundamental groups,
there exists a finite set D’ C C' such that the embedding problem for the exact sequence

1 - m(C-(DuUD)) - m(C—(DUD)) - G(K) -1
obtained by composing with the map m1(C'—(D U D’) — m1(C'—D) has a proper solution.

The equivalence “Statement (*) < Main Conj.” follows from:

C(K(C)) = mm (D)

D

Further questions of interest then arise: how should the extra banch points be selected?
how many of them are needed?, etc.

(b) Conjecturally, if K is an arbitrary field, both the Split Embedding Problem con-
jecture and the Inverse Galois Problem hold over K (7). This is not true anymore if K(7")
is replaced by K. Specifically, there exist fields K such that each finite group is a Galois
group over K but for which there exist some split embedding problems for G(K') with no
proper solution. An example was given by Fried and Vélklein [FrVo2;§2 Example| (see
also [Jal;Ex.3.5]).

Fried and Valklein say a field K is RG-hilbertian if the Hilbert specialization property
is true for all polynomials P(T,Y) € K(T)[Y] such that the associated extension of K (T')
is Galois and regular. They showed that there exists a countable field K of characteristic
0 that is RG-hilbertian but not hilbertian and that is PAC (Cf. §3.1 Ex.1). It follows
from Cor.3.5 below and the RG-hilbertianity that each finite group is a Galois group over
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K. (For PAC fields of characteristic 0, the RG-hilbertianity and the property that each
finite group is a Galois group over K are actually equivalent [FrVo2;Th.BJ).

Assume now that each split embedding problem for G(K') has a proper solution.
Then from the weak—split reduction, each weakly solvable embedding problem for G(K)
has a proper solution. But from a result of Ax, since K is PAC, G(K) is projective
[FrJa,Th.10.17] and each embedding problem for G(K) is weakly solvable. Finally, this
proves that any embedding problem for G(K) has a proper solution. From Iwasawa’s
theorem, G(K) is pro-free. But Roquette showed that a PAC field such that G(K) is
pro-free is necessarily hilbertian [FrJa;Cor.24.38]. A contradiction. Conclude that there
exists some split embedding problem for G(K') with no proper solution.

83 Results
3.1 Ample fields

Definition 3.1 — A field K is said to be ample if for each geometrically irreducible
smooth curve C' defined over K we have

C(K) # 0 = C(K) infinite

This definition is due to F. Pop who calls it large. We prefer to follow Jarden who calls
it ample and to keep the word large for informal contexts. Before giving some examples of
ample fields, we state an nice observation of F. Pop, which is used in the proof of the Main
Theorem (§4): ample fields are ezistentially closed in the field K((z)) of formal Laurent
series over K.

Definition 3.2 — Let Q/K be a reqular extension. The field K is said to be existentially
closed in Q if the following equivalent properties hold:
(1) For each smooth geometrically irreducible K -variety V,

V(Q) £ 0= V(K)#0

(2) For each smooth geometrically irreducible K-variety V,
KV)cQ=V(K)#0
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(3) For each smooth geometrically irreducible K-variety V',
V() Zariski-dense = V(K) Zariski-dense

[(8) = (1): Pick € € V(Q). Consider the Zariski closure of ¢ in the K-variety V: it is an irreducible closed subscheme W
of V. Tt follows from K(W) = K(§) C Q and the regularity of the extension Q/K that the extension K(W)/K is regular.
Hence W is a geometrically irreducible sub-variety of V. It follows from (3) that W (K) # @ and so V(K) # 0.

(1) = (2): If K(V) C 9, the generic point £ of V is in V() (since K(§) = K(V)). It follows from (1) that V(K) # 0.

(2) = (3): Pick € € V(Q2). Consider the Zariski closure of £ in the K-variety V. As explained above, W is a geometrically
irreducible sub-variety of V. It follows from (2) that W(K) # @ and so V(K) # 0. The same argument holds with V'
replaced by an open subset of V. Conclude that V(K) is Zariski-dense.]

Theorem 3.3 (Pop, [Po4;Prop.1.1]) — A field K is ample if and only if it is existentially
closed in its formal Laurent series field K((x))

Examples: (1) PAC fields are ample. This follows from the definition of PAC: a field
K is P(seudo) A(lgebraically) C(losed) if V(K) # 0 for each geometrically irreducible
variety defined over K) [FrJa;Ch.10]. Clearly, algebraically closed fields are PAC. So are
separably closed fields. There are many other examples of PAC fields, even inside Q. For
example, from Pop’s theorem stated below (Th.3.4), the field Q" (y/—1) is PAC, where
Q' is the field of totally real algebraic numbers.

(2) Complete valued fields (e.g. K = Q,, R, k((z)), etc.) are ample. This follows
immediately from the Implicit Function Theorem. The following argument shows directly
(i.e., without Th.3.3) that a complete valued field (K, v) is existentially closed in K ((z)).
Let V be a variety defined over K. Assume that condition (2) of the definition holds, i.e.,
that K(V)) C K((z)). Denote the Henselian closure of K (z) in K((z)) by KA(EJ) The field
KA(;c) is known to be existentially closed in K ((z)) [Jal; Lemmas 2.2 and 2.3|. Therefore
V(Kf(va:)) # 0. Now Kf(vac) is the algebraic closure of K(z) in K((z)). Consequently
elements of K/(Vx) are formal power series with a positive radius of convergence (e.g.

[De3;Prop.p.387]). Pick a point Mx € V(K (z)). Specializing = to some element £ # 0
in the disk of convergence of the series involved in the coordinates of M, yields a point
M; € V(K).

(3) For each prime number p, denote by Q the field of totally p-adic algebraic numbers
(i.e., such that all conjugates over Q lie in a given copy of Q,). We use the notation Q" for
the field of totally real algebraic numbers, which corresponds to the case p = co. Then for
each prime number p (including p = co), the field Q" is ample. This immediately follows
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from the preceding example and the following result of Pop [Po5| (see also [GrPoRo],
[Po4;App.1], [Ja3]).

Theorem 3.4 (Pop) — Let V' be a smooth geometrically irreducible variety defined over
Q™. then V(Q) # 0 provided that V(Qg) # 0 for each o € G(Q,). (This last condition
can be replaced by V(Q,) # 0 if V' is defined over Q).

This example can be generalized to consider the field K* of totally S-adic elements
of a global field K. Here S is a finite set of places of K and K?° is the subfield of K,
of all elements such that, for all v € S, all conjugates over K lie in a given copy of the
completion K,. Pop’s result is shown to hold in this generality. The field K is ample.

(4) The field Q is not ample. More generally, from Faltings’s theorem, no number field is
ample. Jarden mentioned to us that, using Faltings’s theorem and the theorem of Manin
and Grauert, one could show that no field which is finitely generated over its prime field
is ample.

3.2 Main results
Main Theorem — The Main Conjecture is true if the base field K is ample.

The Main Theorem is built from a series of results. The main contributions are due
to Fried, Harbater and Pop. The idea of working with families of covers goes back to
Fried [Fr]. Harbater [Har2] introduced some very efficient patching and gluing techniques
for covers, especially over complete and algebraically closed fields. Pop developed these
gluing techniques and the arithmetic aspect of the method. In particular he introduced
and studied the notion of ample fields. An equivalent form of the Main Theorem along
with a proof can be found in Pop’s papers ([Po2],[Po4]). Others took an active part to the
Main Theorem, in particular, Debes, Jarden, Haran, Liu, Vo6lklein. The Main Theorem
has two main consequences (Cor.3.5 and Cor.3.6). We show below that they contain most
recent results on this topic.

Corollary 3.5 — The RIGP/ky conjecture holds if K ample. That is, if K is ample,
each finite group is the Galois group of a reqular Galois extension of K(T).

This result contains the following special cases:

e K = C (Riemann),
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e K =R (Hurwitz (1890)),

e K algebraically closed (Harbater (1984) [Harl)),

e K =Q, (Harbater (1985) [Har2]),

e K PAC (Fried-Volklein for char K = 0 (1991) [FrVol], Pop in general (1993) [Po4]),
e K = Q" (Debes-Fried (1991) [DeFr]),

o K = Q% (Débes (1993) [De2]; Pop (1993) [Po4]),

e K ample (Pop (1995) [Po4]).

Corollary 3.6 — The Split EP /1y conjecture holds if the base field K is ample. In
particular, the Fried-Volklein conjecture ¥rVo is true if K is ample.

Corollary 3.7 — For every countable field K, G(K(T)) is pro-free.

Proof:_ From Iwasawa’s theorem (Th.2.1), we need to show that each embedding problem
for G(K(T')) has a proper solution. From Tsen’s theorem, G(K(T)) is projective. There-
fore a given embedding problem for G(K (7)) has a weak solution. From the weak—split
reduction, one may then assume that the embedding problem is split. But since the
algebraically closed field K is ample, the Split Embedding conjecture holds over K(T').
Hence, the given embedding problem has indeed a proper solution. O

Cor.3.7 is due to:

e Douady in char K =0 [Do| (1964),

e Harbater [Har4| and Pop [Po2] in general (1993).
Corollary 3.8 — For every countable Hilbertian and PAC field K, G(K) is pro-free.

Proof: From a result of Ax [FrJa;Th.10.17], if K is PAC then G(K) is projective. Fur-
thermore PAC fields are ample. The Fried-Volklein conjecture, which is true for ample
fields, gives the conclusion. O
Cor.3.8 is due to:

e I'ried-Volklein [FrVo2| in char K =0 (1992),

e Pop in general [Po4| (1993).
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Remark 3.9. (a) Conjecture (RIGP/ () predicts in particular that, given a finite
group G, then, for every finite field F', G is the Galois group of a regular Galois extension
E/F(T). Cor.3.5 allows to show that at least this is known for all but finitely many
finite fields F'. The proof uses the following model-theoretical argument. Suppose on the
contrary that, for some finite group G, the set £ of all finite fields F' for which G is not the
Galois group of a regular Galois extension £/F(T) is infinite. Consider a non-principal
ultraproduct K of the set of finite fields in £ [FrJa;Ch.6]. Then [FrJa, Cor.10.6] says
that K is a PAC field (essentially this rests on the Lang-Weil estimate for the number
of rational points on a curve over a finite field [FrJa;Th.4.9]). So, from Cor.3.5, if G is a
finite group, then G can be realized regularly as a Galois group over K (7). But every first
order statement true about K is true about all but finitely many F' in ¢ [FrJa;Cor.6.12].
A contradiction.

This consequence of Cor.3.5 first appeared in the 1991 paper of Fried-Vélklein [FrVol;
Cor.2], in a slightly weaker form where only finite prime fields are considered. In that
context, the ultraproduct K above is a PAC field of characteristic 0 and the argument
works with the special case of Cor.3.5 proved by Fried and Vélklein. In their paper they
also give an alternate more geometrical exposition of the argument above. The general
case of the above argument requires the version of Cor.3.5 for PAC fields of arbitrary
characteristic proved by Pop [Po4]|. This result of Pop already appeared in some form in
a letter of Roquette of 1991.

(b) For K = Q®, conclusion “G(K) pro-free” of Cor.3.8 would yield Shafarevich’s
conjecture. But Frey noted that Q% is not PAC [FrJa;Cor.10.15]. So Cor.3.8 cannot be
applied to K = Q. On the other hand, it follows from Cor.3.7 that G(F,(T)) is pro-free.
This can be regarded as the functional analog of Shafarevich’s conjecture: F,(T)) is indeed
the maximal cyclotomic extension F,(T)%¥“ of F,(T) (just as Q® = Q%¥). Similarly the
absolute Galois group of the maximal cyclotomic extension of K = Q" is pro-free. Indeed
Qi) = Qtr(/=1); from Cor.3.8, G(Q!"(v/—1)) is pro-free (since Q" (v/—1) is PAC (by
Th.3.4) and is hilbertian (by Weissauer’s theorem [FrJa;Prop.12.14 ])).

(c) Cor.3.7 also holds in the uncountable case: for any field K, the group G(K (7))
is pro-free (of rank card(K)). This can be proved by the same methods but some ad-
justments are needed. Namely, one should use the following generalization of Iwasawa’s
theorem. If m is an infinite cardinal, then an iff condition for a profinite group F' to be
pro-free of rank m is that each finite embedding problem for F' with a non-trivial kernel
has exactly m proper solutions (see [Ja2;Lemma 2.1] where this generalization is credited
to Z. Chatzidakis). So, for the general case of Cor.3.7, we have to prove that each embed-
ding problem for G(K(T)) with a non-trivial kernel has card(K) proper solutions, which
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requires more precise statements than the mere existence result of a proper solution given
by the Main Theorem (see [Har4| and [Po2)).

(d) A field K is said to be w-free if every finite embedding problem for G(K) has
a proper solution. From Iwasawa’s theorem, “w-free” is equivalent to “pro-free” if K is
countable. M. Jarden [Ja3;Remark 11.3] observed that if the conclusion “G(K’) pro-free”
is replaced by “G(K) w-free” then Cor.3.8 also holds for uncountable fields. That is,
we have “PAC + hilbertian = w-free” in general. On the other hand, the implication
“PAC + hilbertian = pro-free” is false in general. There are fields which are PAC and
Hilbertian but with a non pro-free absolute Galois group [Ja2;Example 3.2].

84 Main arguments

In this section we sketch the proof of Cor.3.5. That is, we show that, if K is an ample
field, then each finite group G is the Galois group of a regular Galois extension of K (7).
The proof of this special case of the Main Theorem contains the main arguments of the
method. There are two stages. The first one consists in solving the problem over the field
K((x)) of formal power series with coefficients in K. The second one uses a specialization
argument to descend from K((z)) to K.

4.1 The Regular Inverse Galois Problem over K ((z))(7). The main
tool is this patching and gluing result.

Theorem 4.1 — Let k be a local field. Let G be a finite group generated by two subgroups
G1 and Gy. Assume that for i = 1,2, there exists a reqular Galois extension F;/k(T) of
Galois group G; and with an unramified prime of degree 1. Then there exists a reqular
Galois extension F/k(T) of Galois group G and with an unramified prime of degree 1.

This result reduces the problem to the realization of cyclic groups (regularly over
E(T) and with an unramified prime of degree 1). In [Har2] Harbater uses some results of
Saltman to handle this case (see also [Li] and [Vo;Ch.11]). In characteristic 0, Deschamps
recently gave a simpler proof, which, in addition, provides some precise information on
the ramification of the constructed extension [Des2;Lemme 2.1.2].

Th.4.1 is due to Harbater [Har2]. The main tools of his proof are a patching and
gluing result for formal analytic spaces along with a formal GAGA theorem. Harbater’s
result was revisited from the point of view of rigid geometry by Liu ([Li], see also [Desl]),
following a suggestion of Serre [Se;p.93]. Pop and Harbater developed then independently

16



the patching and gluing procedure: in particular they showed it could be used not only
to realize groups but also to solve embedding problems. Pop also managed to keep some
arithmetic control on the procedure. That led him to his so-called “1/2-Riemann’s exis-
tence theorem” [Pol]. The patching and gluing procedure is also an essential ingredient
of the proof of Abhyankar’s conjecture on Galois groups over curves: the case of the affine
line was first proved by Raynaud [Ral; using formal patching, Harbater could then prove
the general case [Har3|; an alternate proof of the general case from Raynaud’s result,
using rigid patching, was given a little later by Pop [Po3]. There is now an elementary
exposition of the proof of Th.4.1 which does not need any geometric background by Haran
and Volklein ([HaVol, [Vo;Ch.11]).

4.2 Specialization argument (see also [Ja4;Prop.2.2]). Let Q be a prime
field. From the first stage, we know that, for each finite group G, there exists a regular
Galois extension Fx/Q((z))(T) of Galois group G.

Let F//Q be an extension of finite type with F C Q((x)) such that the irreducible
polynomial of y over Q((x))(T) lies in F(T)[Y] and such that all conjugates of y over
Q((x))(T) lie in F(T,y). Set E = F(T,y). The extension E/F(T) is a regular Galois
extension of (1) such that G(E/F(T")) = G.

The containment F' C Q((z)) implies in particular that £ N Q = Q. Thus F is
the function field of a geometrically irreducible algebraic variety V' defined over Q. The
equality G(E/F(T)) = G rewrites G(E/Q(V)(T)) = G.

The extension E/Q(V)(T) is a regular extension. So the Bertini-Noether theorem
(e.g. [FrJa;Prop.8.8]) applies. There exists a Zariski closed subset Z of V' such that, for
each v € V(Q)—~7, the extension E/Q(V)(T) specializes to a regular Galois extension
E,/Q)(T) of degree [E, : Q(v)(T)] = [E : Q(V)(T)]. Up to enlarging the Zariski closed
subset Z, we may:

- conclude that the specialized extension FE,/Q(v)(T) is also Galois. Then we have

G(E,/Qu)(T)) = G (for v € V(Q)—2),
- assume that the variety V is smooth.

Finally since F' = Q(V') C Q((z)), the set V(Q((z))) is Zariski-dense. We have proved
the following.

Theorem 4.2 — Let ) be a prime field. Then to each finite group G can be attached a
smooth irreducible variety V' defined over (Q such that

(1) For each field K containing Q, if V(K) is Zariski-dense then the group G is the Galois
group of a reqular extension of K(T).
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(2) V(Q((x))) is Zariski-dense.

Assume now that K is an ample field. From Th.3.3, K is existentially closed in K((z)).
Therefore, from (2) above, V(K) is Zariski-dense. Conclude from (1) that G is the Galois
group of a regular extension of K(7'), thus completing the proof of Cor.3.5.

Remark 4.3. From Th.4.1, the extension Ex/Q((x))(T) in the argument above can be
taken to have an unramified prime p of degree 1. The field F' can next be enlarged to
contain the field of definition Q(p) C Q((z) of p (viewed as a point). The specialization
argument then goes through to show this more precise form of Cor.3.5. If K is an ample
field, then each finite group is the Galois group of a regular extension of K(7') with an
unramified prime of degree 1.

From §3.1, complete valued fields are ample. Thus Th.4.2 has this other consequence.

Corollary 4.4 — To each finite group G can be attached a smooth irreducible variety V
defined over Q such that

(1) If V(Q) # 0 then G is the Galois group of a reqular extension of Q(T).
(2) V(Q,) # 0 for each prime p (including the prime p = co).

In condition (2) the field @, can actually be replaced by any complete valued field
of characteristic 0. Condition (2) however is not sufficient in general to conclude that
V(Q) # 0 (see [De2;Ex.4.2]).

Cor.4.4 is due to B. Deschamps [Des2|. His proof uses a different approach based on
the Hurwitz space theory of M. Fried [Fr|. This theory had been developed by Fried and
Volklein to reduce the Regular Inverse Galois Problem to finding rational points over
irreducible varieties ([FrVol], [Em], [Vo;Ch.10]). More specifically, to a given finite group
GG and an integer r larger than the rank of (G, can be attached a specific smooth algebraic
variety $ = 9, — called Hurwitz space — defined over Q such that, for every field K of
characteristic 0, points in $(K) correspond to regular Galois extensions F/K(T) of group
GG with at most r branch points. Under certain conditions, one has a good control on the
field of definition of the irreducible components of the algebraic variety $¢,. That indeed
reduces the problem to finding such components defined over Q with Q-rational points.

A major application was the original proof of Fried and Vélklein of the Regular Inverse
Galois Problem over PAC fields [FrVol] and of the implication “PAC + hilbertian = w-
free” [FrVo2] in characteristic 0. The algebraic variety V' constructed in §4 is replaced in
the Fried-Volklein method by some irreducible component of some Hurwitz space $¢,,. It
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is worth noting that the variety V' constructed in §4 really appears as a subvariety of some
Hurwitz space. So while the techniques are somewhat different, there is some relationship
between the two methods.

Deschamps also used the Hurwitz space approach. He managed to show that for some
suitably large integer r, there was some irreducible component of $¢ , defined over Q and
with Q,-points for all primes p. Furthermore he obtains this extra conclusion in Cor.4.4:

(3) For each prime p, there exists some point in V(Q,) such that the corresponding regular
extension E,/Q,(T) of group G has the property that its branch points lie in P*(Q®) and
are G(Q)-invariant as a set.

The Hurwitz space method is more intricate but has the advantage of being much more
explicit. The variety V' and the Zariski closed subset Z involved in Th.4.2 are precisely
described: V' is a specific component of a certain Hurwitz space ¢, and Z is the branch
locus of a certain cover ¢, — P,. Some further investigation on these spaces might be
the key to a general solution of the Regular Inverse Galois Problem.
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