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0. Introduction

This paper is devoted to irreducibility questions for families of polynomials in several 
indeterminates x1, . . . , x� parametrized by further indeterminates t1, . . . , ts. We assume 
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that � � 2 and the base field k is algebraically closed; the more arithmetic case � = 1
depends on the base field and involves different tools and techniques.

Set t = {t1, . . . , ts}, x = {x1, . . . , x�} and consider a polynomial F ∈ k[t, x], irre-
ducible in k(t)[x] (where k(t) is the algebraic closure of k(t)); F is said to be generically 
irreducible. The core question is about the irreducibility of the polynomials obtained by 
substituting elements t∗1, . . . , t∗s ∈ k for the corresponding parameters t1, . . . , ts – the 
specializations of F .

More specifically we wish to investigate the following problem, as explicitly as possible:
– when the generic irreducibility property is satisfied, show some boundedness results 

on the following set, which we call the spectrum of F :

sp(F ) = {t∗ = (t∗1, . . . , t∗s) ∈ ks | F (t∗, x) is reducible in k[x]} ,

and some density results for its complement,
– find some criteria for the generic irreducibility property to be satisfied and deduce 

some new specific examples.
A first approach rests on classical results of Noether and Bertini and a second one 

involves more combinatorial tools like the Newton polygon and the associated Minkowski 
theorem. We contribute to these approaches by implementing some ideas and results 
coming from connected areas, notably of Grothendieck (Arithmetic Geometry) and Gao 
(Polyhedral Combinatorics). This leads to new answers to the problem together with an 
improved and unified presentation of results from our previous papers [BDN09a,BDN09b]
and other related papers. Those were concerned with special cases of the general situation 
considered here. In particular polynomials f(x, y) − t and variants of those have been 
much studied and the word “spectrum” refers to the classical terminology used in this 
special case.

§1 briefly reviews the classical background and introduces our contribution, which is 
then detailed in §2 and §3.

1. The classical approaches and our contribution

1.1. The arithmetico-geometric approach

Fix F ∈ k[t, x] and assume as above that it is generically irreducible.

1.1.1. Noether
Denote by UF the open Zariski subset of all t∗ ∈ ks such that deg(F (t∗, x)) =

degx F (t, x). The spectrum sp(F ) is a proper Zariski closed subset of UF : there exist 
non-zero polynomials h1, . . . , hν ∈ k[t] such that

(1) sp(F ) ∩ UF = Z(h1, . . . , hν) ∩ UF

where Z(h1, . . . , hν) denotes the zero set of h1, . . . , hν . In other words, for t∗ ∈ ks such 
that deg(F (t∗, x)) = degx F (t, x),
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(2) F (t∗, x) is reducible in k[x] if and only if hm(t∗) = 0 for each m = 1, . . . , ν.

This is the classical Noether theorem (e.g. [Sch00, §3.1 theorem 32]) which follows from 
elimination theory. Namely recall that for a given degree d and a given number of in-
determinates �, if (ai)i∈I�,d are indeterminates that correspond to the coefficients of a 
polynomial of degree d in � indeterminates, then there exist finitely many homogeneous 
forms Nj(ai) (j = 1, . . . , D) in the ai (i ∈ I�,d) and with coefficients in Z such that:

(3) for a polynomial P of degree d in � indeterminates and with coefficients (a∗i )i∈I�,d

in an algebraically closed field K (in such a way that a∗i corresponds to ai), the polyno-
mial P , if it is of degree d, is reducible in K[x] if and only if Nj(a∗i ) = 0, j = 1, . . . , D.

Furthermore some subsequent works of Ruppert, Kaltofen, Gao and Chèze–Busé–Najib 
provide the following bounds for the degree of the Noether forms Nj:⎧⎪⎨⎪⎩

deg(Nj) � d2 − 1 if k is of characteristic 0 [Rup86]
or p > d(d− 1) [Gao03, th.2.3] [BCN11, th.1]

deg(Nj) � 12d6 in general [Kal95]

Description (1) of sp(F ) follows, as explained in [BDN09b, §2.3.1]: one can take for 
h1, . . . , hν ∈ k[t] the values of the Noether forms at the coefficients in k[t] of the polyno-
mial F . The above bounds yield, in each case

(4) degti(hm) � degti(F ) ×
{

d2 − 1
12d6 (i = 1, . . . , s, m = 1, . . . , ν)

1.1.2. Bertini–Noether
Every non-zero polynomial h in the ideal 〈h1, . . . , hν〉 of k[t] has this Bertini–Noether 

property: for every t∗ ∈ ks such that deg(F (t∗, x)) = degx F (t, x),

(5) if h(t∗) �= 0 then F (t∗, x) is irreducible in k[x].

Taking for h one of the non-zero polynomials h1, . . . , hν yields, for s = 1 and k of 
characteristic 0 or p > d(d − 1),

(6) card(sp(F ) ∩ UF ) � (d2 − 1) degt1(F )

More generally, if s � 1, we have this conclusion:

(7) For every i = 1, . . . , s, the set of t∗i ∈k such that the polynomial F (t1, . . . , ti−1, t∗i , ti+1,

. . . , ts, x) is of degree d and reducible in the polynomial ring k(t1, . . . , ti−1, ti+1, . . . , ts)[x]
is of cardinality � (d2 − 1) degti(F ).

Consequently, the polynomial F (t∗, x) is irreducible in k[x] provided that
– t∗1 ∈ k stays out of a certain finite set E1 of cardinality � d2 degt1(F ),
– t∗2 ∈ k stays out of a certain finite set E2 of cardinality � d2 degt2(F )
(E2 depending on t∗1),

– · · ·
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– t∗s ∈ k stays out of a certain finite set Es of cardinality � d2 degts(F )
(Es depending on t∗1, . . . , t

∗
s−1).

1.1.3. Grothendieck and our contribution
We offer an approach in which we replace elimination theory and the Noether theorem 

by the Grothendieck good reduction criterion for algebraic covers. We base it on [Dèb16]
which revisits Grothendieck’s work [Gro71,GM71] with a polynomial viewpoint.

For polynomials F (t, T, Y ) with � = 2 indeterminates T, Y , monic in Y , which this 
approach is more naturally concerned with, we produce an explicit polynomial BF ∈ k[t], 
called the bad prime divisor of F , that has the Bertini–Noether property (5):

(Corollary 2.8) Assume char(k) = 0. If t∗ ∈ ks satisfies BF (t∗) �= 0, then the polynomial 
F (t∗, T, Y ) ∈ k[T, Y ] is irreducible in k[T, Y ].

The polynomial BF is directly computable from the coefficients of F through elemen-
tary operations, starting with the discriminant ΔF ∈ k[t][T ] of F relative to Y (§2.2). 
This general bound for the degree of BF follows:

(8) degti(BF ) � 16d5 degti(F ), (i = 1, . . . , s).

It is not as good as (4); the advantage of BF lies in its full explicitness (which may 
lead to better bounds in specific cases (see §2.2.6)) and in its arithmetic meaning, where 
the name “bad prime divisor” originates: if BF (t∗) �= 0, the distinct roots (in k(t)) of 
ΔF remain defined and distinct after specialization of t to t∗ ∈ ks. The construction 
improves on [BDN09a, §3], which used a result of Zannier rather than the Grothendieck 
reduction theory.

We also explain how to get rid of the “monic” assumption in Corollary 2.8, to relax the 
condition on the characteristic of k and to pass from 2 to any number � of indeterminates. 
We finally obtain a statement like Corollary 2.8 above but in the bigger generality. 
The polynomial BF has to be adjusted but is still explicitly described (see §2.3 and 
Corollary 2.10).

1.2. The more combinatorial approach

This second approach uses the Newton representation of polynomials as polyhedrons 
and the associated Minkowski irreducibility criterion. We will also review another related 
approach, based on the Bertini–Krull theorem and compare the two.

1.2.1. Newton–Minkowski
The Newton representation identifies monomials xi1

1 · · ·xi�
� with the corresponding 

�-tuples (i1, . . . , i�) ∈ R�. Given a polynomial P ∈ k[x], define its support supp(P ) as the 
set of monomials appearing in P with a non-zero coefficient and the Newton polyhedron
Γ(P ) of P as the convex closure in R� of supp(P ). Also define Γ0(P ) to be the convex 
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closure of supp(P ) ∪ {0}. For example, the polynomial P (x, y) = x2y3 + x3y2 + x4y2 +
x4y4 + x5y3 + x7y3 has the following Newton polygons Γ(P ) and Γ0(P ):

x

y

Γ(P )

x

y

0

Γ0(P )

The Minkowski theorem is this irreducibility criterion, where the sum A + B of the 
two subsets A and B of R� is A + B = {a + b | a ∈ A, b ∈ B}:

(9) If P = P1 ·P2, with P1, P2 ∈ k[x], then Γ(P ) = Γ(P1) +Γ(P2). Consequently, if Γ(P )
is not summable, then P is irreducible in k[x],

where we say that Γ(P ) is summable if it writes as the sum A +B of two convex subsets 
A and B with integral vertices (in N�), each of them having at least two points. The 
converse is false: (x − y + 1)(x + y + 1) + 1 is irreducible but its Newton polygon is 
summable as it is also that of (x − y + 1)(x + y + 1).

1.2.2. Our perspective
The Minkowski theorem can be viewed as follows. Suppose given a non-summable

convex subset Γ ⊂ R� with a set VΓ of vertices contained in N�. Consider the polynomial 
obtained by summing all the monomials ti xi1

1 · · ·xi�
� where i = (i1, . . . , i�) ranges over 

all the set IΓ of all monomials inside Γ and the corresponding ti are indeterminates, 
forming a set tΓ. Denote this polynomial by FΓ, which is in k[tΓ, x].

(10) FΓ is generically irreducible and even satisfies this stronger irreducibility property: 
FΓ(t∗Γ, x) is irreducible in k[x], for every specialization t∗Γ such that t∗i �= 0 if i ∈ VΓ.

The condition on the specialization t∗Γ indeed assures that the Newton polyhedron of 
FΓ(t∗Γ, x) is Γ. This yields this combinatorial version of the Bertini–Noether conclusion.

Proposition 1.1. Let F (t, x) ∈ k[t, x] be a polynomial with Newton polyhedron Γ (as a 
polynomial in x). Denote its coefficients by hi(t) (i ∈ IΓ). If Γ is not summable then 
F (t∗, x) is irreducible in k[x] for every specialization t∗ such that hi(t∗) �= 0 for each 
i ∈ VΓ. Consequently, inequalities (6), (7) from §1.1.2 hold with (d2−1) degti(F ) replaced 
by card(VΓ) degti(F ).
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1.2.3. Bertini–Krull, Gao and our contribution
There exist efficient criteria and algorithms to decide whether a given convex set is 

summable, notably in a series of papers by Gao et al. [Gao01,GL01,ASGL04]. We use 
them in §3.2 to produce some new classes of generically irreducible polynomials.

The polynomial FΓ from (10) is linear in the parameters ti and we will focus on this 
special situation. That is: we will assume F is of the form

(11) F = P (x) − t1Q1(x) − · · · − tsQs(x)

with P, Q1, . . . , Qs ∈ k[x], which can be viewed as a deformation of the polynomial P
by the polynomials Q1, . . . , Qs. Here is an example of a result that can be deduced from 
Gao’s criteria.

(Corollary 3.4) Let P, Q ∈ k[x] such that
(α) Γ(P ) is contained in a hyperplane H ⊂ R� not passing through the origin,
(β) the coordinates of all the vertices of Γ(P ) are relatively prime,
(γ) Q(0, . . . , 0) �= 0, Γ(Q) ⊂ Γ0(P ) and no monomial of Q is a vertex of Γ(P ).

Then the polynomial F = P − tQ is generically irreducible and even has this stronger 
property: P − t∗Q is irreducible in k[x] for every t∗ ∈ k \ {0}.

For example, if p, q, r are 3 relatively prime positive integers, the polynomial

F (t, x, y, z) = xp + yq + zr + t (
∑

i
p+ j

q + k
r <1

ai,j,kx
iyjzk ) with a0,0,0 �= 0

satisfies the conclusion of Corollary 3.4 (as shown in Example 3.7, condition a0,0,0 �= 0
can in fact be removed). Note further that the assumptions on P , Q in Corollary 3.4
only depend on the Newton polyhedrons Γ(P ) and Γ(Q).

Before getting to applications of Gao’s results, we review in §3.1 a more classical 
approach for polynomials as in (11), based on the Bertini–Krull theorem. The special 
case P − tQ has been much studied due to its connection with the indecomposability 
and the spectrum of the rational function P/Q. The even more special case Q = 1 is of 
particular interest since a famous theorem of Stein provides an optimal bound for the 
cardinality of sp(P − t) which is sharper than the Bertini–Noether bound. This bound 
issue leads us to discuss to what extent the spectrum of a rational function can be 
prescribed. Finally we review and compare with Gao’s results some results of [BDN09b]
concerned with the special case of (11) that Q1, . . . , Qs are monomials, for which the 
Bertini–Krull theorem is also a main ingredient.

2. The Grothendieck arithmetico-geometric approach

This section elaborates on §1.1.3. §2.1 explains the reduction to the situation of � = 2
indeterminates. §2.2 introduces the bad prime divisor and the Grothendieck approach. 
Finally, §2.3 conjoins §2.1 and §2.2.

The general notation introduced in §1 is retained.
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2.1. Reduction to the situation � = 2

The main result of this subsection is the following statement. For more generality, 
several polynomials F1, . . . , Fh replace the single polynomial F from §1.

The following additional notation is needed. Given a polynomial P in the indetermi-
nates y = (y1, . . . , yN ) with coefficients in some integral domain and B = (bij)1�i,j�N a 
N ×N -matrix with entries in the same domain, set

P (B · y) = P (
N∑
j=1

b1jyj , . . . ,

N∑
j=1

bNjyj)

Theorem 2.1. Let F1, . . . , Fh ∈ k[t, x], assumed to be irreducible in k(t)[x] and κ ⊂ k be 
an infinite subfield. There is a matrix B = (bij)i,j ∈ GL�(κ) such that the polynomial 
Fi(t, B · x), which is of the form

Fi(t1, . . . , ts,
�∑

j=1
b1jxj , . . . ,

�∑
j=1

b�jxj) (i = 1, . . . , h)

is irreducible in k(t, x1, . . . , x�−2)[x�−1, x�] and satisfies the degree condition
degx�−1,x�

(Fi(t, B · x)) = degx(Fi(t, x)).

Remark 2.2. If F1, . . . , Fh are only irreducible in k(t)[x], the same conclusion holds with 
these adjustments: B should be a matrix B = (bij)i,j ∈ GLs+�(κ) that applies to the 
s + � indeterminates t1, . . . , ts, x1, . . . , x�; the resulting polynomial Fi(B · (t, x)) is of the 
form

Fi(β1(x) + τ1(t), . . . , βs+�(x) + τs+�(t)) (i = 1, . . . , h)

for some κ-linear forms β1(x), . . . , βs+�(x) ∈ κ[x] and τ1(t), . . . , τs+�(t) ∈ κ[t].

The main tool in the proof of Theorem 2.1 is Proposition 2.3 below. Let A be an 
integral domain with fraction field K and let y = {y1, . . . , yN}, z = {z1, . . . , zM} be two 
sets of indeterminates with N � 2, M � 1.

Proposition 2.3. Let κ ⊂ A be an infinite subfield and P1, . . . , Ph ∈ A[z, y] be h polyno-
mials, irreducible in K[z, y]. There exists a matrix B = (bij)i,j ∈ GLM+N (κ) such that 
for i = 1, . . . , h,

(a) the polynomial Pi(B · (z, y)), which is of the form

Pi(β1(y) + τ1(z), . . . , βM+N (y) + τM+N (z))

for some κ-linear forms β1(y), . . . , βM+N (y) ∈ κ[y]
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and some κ-linear forms τ1(z), . . . , τM+N (z) ∈ κ[z],

is irreducible in K(z)[y],
(b) furthermore degy(Pi(B · (z, y))) = degz,y(Pi).

Remark 2.4. There are several variants of Proposition 2.3 in the literature: [Sch76, ch5, 
theorem 3d] for 1 polynomial (h = 1) and 1 parameter (M = 1), [Kal95, lemma 7] for 
h = 1, [Naj05, proposition 1] for M = 1. Our version has several polynomials and several 
parameters and the produced matrix has coefficients in any given infinite subfield of the 
ring A.

Theorem 2.1 corresponds to the following special case of Proposition 2.3: z =
(x1, . . . , x�−2), y = (x�−1, x�) and A = k[t] while Remark 2.2 corresponds to the special 
case: z = (t1, . . . , ts, x1, . . . , x�−2), y = (x�−1, x�) and A = k.

Proof of Proposition 2.3. Proposition 2.3 is a generalization of [Naj05, proposition 1], 
which corresponds to the special situation: z = z1 and κ = A = K.

First we generalize [Naj05, proposition 1] to the situation “κ ⊂ A infinite” (but still 
with z = z1). This only requires to adjust the proof of [Naj05]: the matrices that are 
constructed there with coefficients in K can be chosen with coefficients in κ, the main 
point being that κ is infinite. The core of the proof is the Matsusaka–Zariski theorem 
[FJ04, proposition 10.5.2].

This generalized [Naj05, proposition 1], applied to the situation of Proposition 2.3, 
provides a matrix B1 ∈ GLM+N (κ) such that Pi(B1 · (z, y)) is irreducible in 
k(z1)[z2, . . . , zM , y1, . . . , yN ] and satisfies the degree condition

degz2,...,zM ,y(Pi(B1 · (z, y))) = degz,y(Pi) (i = 1, . . . , h).

Apply next the generalized [Naj05, proposition 1] to the polynomials Pi(B1 · (z, y)), 
i = 1, . . . , h, viewed as polynomials in the indeterminates z2, . . . , zM , y and to the same 
infinite subfield κ (of the coefficient field k(z1) of these polynomials). This provides a 
matrix B2 ∈ GLM+N−1(κ) which we make a matrix B2 ∈ GLM+N (κ) by letting it be the 
identity on the missing coordinate z1 and is such that the polynomial Pi(B1B2 · (z, y))
is irreducible in k(z1, z2)[z3, . . . , zM , y] and satisfies degz3,...,zM ,y(Pi(B1B2 · (z, y))) =
degz,y(Pi) (i = 1, . . . , h). Iterating this process leads to the desired statement. �
2.2. The bad prime divisor and the Grothendieck approach

This subsection is based on [Dèb16]. The context there is that of polynomials F ∈
A[T, Y ] with coefficients in a Dedekind domain A, with A = Z and A = k[t] as typical 
examples. Here we focus on the situation A = k[t], which is not a Dedekind domain if 
s � 2. We can however specialize one by one the parameters t1, . . . , ts so as to work at 
each step with the ring A = k(t1, . . . , ti)[ti+1] which is a Dedekind domain (see §2.2.4).
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Let A be an integral domain with fraction field K and F ∈ A[T, Y ] be a polynomial, 
irreducible in K[T, Y ]. Up to switching Y and T , one may assume that n = degY (F ) � 1. 
Assume further n � 2; the remaining case n = 1 is trivial (see Remark 2.6). Set 
m = degT (F ); m � 1. Assume A is of characteristic 0 or p > (2n2 − n)m. Para-
graphs §2.2.1–2.2.3 recall from [Dèb16] the construction of the bad prime divisor and its 
Bertini–Noether property.

2.2.1. Preliminary reduction to a monic polynomial
First reduce to the situation where F is monic in Y by replacing

F (T, Y ) = F0Y
n + F1Y

n−1 + · · · + Fn

with F0, F1, . . . , Fn ∈ A[T ],

by

Q(T, Y ) = Fn−1
0 F (T, Y

F0
) = Y n + F1Y

n−1 + · · · + Fn−1
0 Fn

We have degY (Q) = n and degT (Q) � nm, so p > (2 degY (Q) − 1) degT (Q) in the 
case p > 0. Consequently the polynomial Q, as a polynomial in Y , has only simple 
roots in K(T ) and so do the irreducible factors in K[T ] of its discriminant w.r.t. Y , as 
polynomials in T ; they have only simple roots in K. This is a starting hypothesis in 
[Dèb16].

2.2.2. Definition of the bad prime divisor
Assume from now on, in addition to F ∈ A[T, Y ], irreducible in K[T, Y ], that F is 

monic in Y , n = degY (F ) � 2, m = degT (F ) � 1, that the characteristic of A is 0 or 
p > (2n − 1)m and that A is integrally closed.

Denote the discriminant of F relative to Y by

ΔF = discY (F )

We have ΔF ∈ A[T ] and ΔF �= 0. Consider the reduced discriminant:

Δred
F = (ΔF,0)ρ

∏ρ
i=1(T − τi)

where ΔF,0 is the leading coefficient of ΔF and τ1, . . . , τρ are the distinct roots of ΔF in 
K. From [Dèb16, lemma 2.1], we have Δred

F ∈ A[T ] and

Δred
F = Δρ−1

F,0
ΔF

gcd(ΔF ,Δ′
F )

where the gcd is calculated in the ring K[T ] and made to be monic by multiplying by the 
suitable non-zero constant. Furthermore the discriminant of this reduced discriminant:
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disc(Δred
F ) = (ΔF,0)2ρ(ρ−1)

∏
1�i�=j�ρ

(τj − τi)

is an element of A and is non-zero as by construction Δred
F (T ) has no multiple root in 

K. Define then an element BF by

BF = ΔF,0 · disc(Δred
F )

We have BF ∈ A and BF �= 0.

Definition 2.5. The maximal ideals p ⊂ A that contain BF are called the bad primes of 
F ∈ A[T, Y ] and BF is called the bad prime divisor. Maximal ideals p ⊂ A that are not 
bad are said to be good.

Remark 2.6. In the case degY (P ) = 1, degT (P ) � 1, the construction leads to BF = 1. 
All maximal ideals p ⊂ A are good and the main result, Theorem 2.7 below, trivially 
holds.

2.2.3. The main result
In addition to the assumptions of §2.2.2, assume that A is a Dedekind domain. Let G

be the Galois group of the splitting field of F over K(T ).
If p ⊂ A is a prime ideal, denote the residue field A/p by κp, the reduction map by 

sp : A → κp, the localized ring of A by p by Ap and the polynomial obtained by reducing 
the coefficients of P by sp(P ).

Theorem 2.7 (theorem 2.6 of [Dèb16]). Let p ⊂ A be a good prime of F such that |G| /∈ p. 
Then we have these two conclusions:

(Good Behavior) We have Bsp(F ) = sp(BF ) �= 0.
(Good Reduction) The polynomial sp(F ) is irreducible in κp[T, Y ].

Condition Bsp(F ) = sp(BF ) �= 0 rephrases as saying that no distinct roots τi and τj of 
ΔF meet modulo p and none of the roots τi meets ∞ modulo p.

2.2.4. Specializations in families of polynomials
Take A = k[t] and consider a polynomial F ∈ k[t][T, Y ] as in §2.2.2. The bad prime 

divisor BF is an element of k[t] and the bad primes are the s-tuples t∗ = (t∗1, . . . , t∗s) such 
that BF (t∗) = 0.

Theorem 2.7 cannot be applied directly if s � 2 as A = k[t] is not a Dedekind domain 
but can be applied to F viewed in k(t1, . . . , ts−1)[ts][T, Y ]. It is readily checked that the 
bad prime divisor relative to k(t1, . . . , ts−1)[ts] is the same as relative to the smaller ring 
k[t1, . . . , ts]. Hence it is the polynomial BF in k[t1, . . . , ts] introduced above.

From the assumptions, k is of characteristic 0 or p > (2n − 1)m � n. Therefore, as 
|G| divides n!, p cannot divide |G| and |G| is in no prime ideal p of k[t]. Let t∗s ∈ k such 
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that BF (t1, . . . , ts−1, t∗s) �= 0. From Theorem 2.7, F (t1, . . . , ts−1, t∗s, T, Y ) is irreducible 
in k(t1, . . . , ts−1)[T, Y ] and its bad prime divisor is BF (t1, . . . , ts−1, t∗s) ∈ k[t1, . . . , ts−1]. 
Theorem 2.7 can then be applied to F (t1, . . . , ts−1, t∗s, T, Y ) to specialize ts−1. An induc-
tive argument finally leads to this conclusion:

Corollary 2.8. If (t∗1, . . . , t∗s) ∈ ks satisfies BF (t∗1, . . . , t∗s) �= 0, then the polynomial 
F (t∗1, . . . , t∗s, T, Y ) ∈ k[T, Y ] is irreducible in k[T, Y ].

2.2.5. Reduction modulo p
The unifying context “F ∈ A[T, Y ] with A a Dedekind domain” also allows the special 

case F ∈ Z[T, Y ] and the prime p is a prime number p. In this situation the bad prime 
divisor BF is a non-zero integer, the bad primes are the prime numbers dividing BF and 
Theorem 2.7 yields this effective version of Ostrowski’s theorem:

Corollary 2.9. If p is a prime number not dividing BF nor |G|, then the reduced polynomial 
F is irreducible in Fp[T, Y ].

2.2.6. Explicitness of BF

In the two typical situations A = k[t] and A = Z, one can explicitly bound the bad 
prime divisor BF . However as already alluded to in §1.1.3, the bounds are big and do 
not improve on previously known ones. On the other hand, one can compute the exact 
value of BF for specific polynomials via a simple computer program, which may be more 
precise in some cases.

For example, many bounds have been given in the situation A = Z over the years 
(Schmidt [Sch76], Kaltofen [Kal95], Ruppert [Rup86,Rup99], Zannier [Zan97], Gao–
Rodrigues [GR03]), the best one being the last one by Gao–Rodrigues who proved that an 
absolutely irreducible polynomial F (T, Y ) =

∑
i,i aijT

iY j ∈ Z[T, Y ] remains irreducible 
modulo every prime

p > (
√

m2 + n2 ||F ||2)2τ−3

where m = degT (F ), n = degY (F ), ||F ||2 =
√∑

i,j a
2
ij and τ is the number of integral 

points inside the Newton polygon of F [GR03, theorem 1].
For F (T, Y ) = Y 3 −6T 2 +TY −2, Gao–Rodrigues concludes to irreducibility modulo 

every prime p > 1311/2 · 4211/2. On the other hand, we obtain BF = 216 · 319 · 431 · 433, 
which is bigger but only the prime divisors of BF should be tested. It can be checked 
that F is irreducible modulo 5 for example (though 5 is smaller than the Gao–Rodrigues 
bound), that F is reducible modulo the prime 2, which divides BF , and is irreducible 
modulo 3 although 3 divides BF ; the bad prime divisor is not optimal.

Similar comments apply to the situation A = k[t]. We refer to [Dèb16, §4.2] for the 
estimate degt (BF ) � 16d5 degt (F ) given in §1.1.3. For F (t, T, Y ) = T 2Y +2TY 2+Y 3+
i i
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3T +3Y + t (in case A = Q[t]), one obtains BF = t2 · (t − 1)3 · (t +1)3. It can be checked 
that F (2, T, Y ) is irreducible, F (0, T, Y ) is reducible and F (1, T, Y ) is irreducible.

We mention a construction of Busé–Chèze for polynomials F = P (T, Y ) − tQ(T, Y ) ∈
k[t, T, Y ] [BC11, theorems 8 and 10]: building on a method of Ruppert, they produce a 
matrix with entries in k[t] with the property that the points t∗ ∈ k where the rank drops 
are exactly those for which P (T, Y ) − t∗Q(T, Y ) is reducible. They deduce a polynomial 
B(t) which plays the role of our polynomial BF . For our example above, they obtain 
B(t) = t3 whose root 0 is indeed the unique spectral value of F . Their method extends 
to more general situations which include our example above in situation A = Z for which 
they obtain B = 6.

2.3. Conjoining §2.1 and §2.2

In our original situation, we have a polynomial F ∈ k[t, x] assumed to be irreducible 
in k(t)[x]. Assume further that k is of characteristic 0 or p > 2 deg(F )3.

Corollary 2.10. There is a non-zero polynomial B̃F (t, x) ∈ k[t, x], explicitly constructed 
in the proof, with the following property. For every t∗ ∈ ks such that B̃F (t∗, x) �= 0 (in 
k[x]), the polynomial F (t∗, x) is irreducible in k[x].

Proof. The number of indeterminates x1, . . . , x� being � � 2, we may assume degxj
(F ) �

1 for j = � − 1, �. Set T = x�−1, Y = x�, A = k[t, x1, . . . , x�−2] and K = Frac(A). From 
Theorem 2.1, there is a matrix B ∈ GL�(k) such that the polynomial

F (t, B · x)

is in A[T, Y ] and is irreducible in K[T, Y ]. The assumption on the characteristic of k
guarantees that the one made on the characteristic of A in §2.2 is satisfied. Apply §2.2.1
to make F monic in Y . Denote then its bad prime divisor by B̃F ; it is a non-zero element 
of k[t, x1, . . . , x�−2] ⊂ k[t, x].

Let t∗ ∈ ks such that B̃F (t∗, x) �= 0 (in k[x]). The set of (� −2)-tuples (x∗
1, . . . , x

∗
�−2) ∈

k�−2 such that B̃F (t∗, x∗
1, . . . , x

∗
�−2) = 0 is a proper Zariski closed subset Z ⊂ k�−2. 

From Corollary 2.8, for every (x∗
1, . . . , x

∗
�−2) ∈ k�−2 \ Z, the polynomial obtained from 

F (t, B · x) by specializing t to t∗ and xk to x∗
k for k = 1, . . . , � − 2, is irreducible in 

k[T, Y ]. A fortiori the polynomial obtained by only specializing t to t∗ is irreducible in 
k[x]. This polynomial is F (t∗, B ·x). The result follows as the matrix B is invertible. �

Thanks to the generality of Theorem 2.1, Corollary 2.10 extends to the situation of 
several polynomials F1, . . . , Fh: B̃F should be replaced by the product B̃F1 · · · B̃Fh

for 
some matrix B working for all F1, . . . , Fh; the two indeterminates xi which play the role 
of T and Y may however differ.
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3. Combinatorial approach to irreducibility criteria

The central aim of this section is to provide some generic irreducibility criteria; it 
elaborates on §1.2.3. §3.1 first reviews the approach based on the Bertini–Krull theorem. 
§3.2 is devoted to applications of the more recent Gao criteria for non-summability of 
polyhedrons.

In this section we assume that F is of the form

F (t, x) = P (x) − t1Q1(x) − · · · − tsQs(x)

that is, is a linear deformation of the polynomial P ∈ k[x] by the polynomials 
Q1, . . . , Qs ∈ k[x].

3.1. The Bertini–Krull approach

The Bertini–Krull theorem is a very explicit iff criterion for a polynomial F (t, x)
as above to be generically irreducible. We refer to [Sch00, theorem 37] for the precise 
statement. We recall below two applications (§3.1.1 and §3.1.2).

3.1.1. Pencil of two polynomials
Assume further that s = 1, that is:

F (t, x) = P (x) − tQ(x)

with max(deg(P ), deg(Q)) � 1. The Bertini–Krull theorem relates the generic irre-
ducibility of F to the indecomposability of the rational function P/Q. Recall that P/Q
is said to be decomposable in k(x) if there exist A, B ∈ k[x], B �= 0 and h, g ∈ k[u] with 
g �= 0 and max(deg g, deg h) � 2 such that

P

Q
= h

g

(
A

B

)
.1

Then we have

(1) F (t, x) = P (x) −tQ(x) is generically irreducible if and only if P/Q is indecomposable.

In the special “polynomial situation”, i.e. Q = 1, the condition “P indecomposable in 
k(x)” is equivalent to “P indecomposable in k[x]”, i.e. P does not write P (x) = h(A(x))
with A ∈ k[x] and h ∈ k[u] with deg h � 2. This follows from results due to Gordan and 
Noether in characteristic 0 and Igusa and Schinzel in general [Sch00, theorems 3 and 4].

1 There is also a notion of decomposability for rational functions in one indeterminate. Definitions, prob-
lems, tools and techniques are however different although there is a Hilbert like specialization theorem 
proved in [BCD12] which provides a bridge between indecomposable polynomials in several indeterminates 
and those in one indeterminate.
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Many articles have been devoted to the spectrum sp(P − tQ) in the indecomposable 
situation. We briefly recall the main questions and results in the next paragraphs.

On the cardinality The general Bertini–Noether bound (6) from §1 gives this inequality, 
when k is of characteristic 0 or p > d(d − 1):

(2) card(sp(P − tQ)) � d2 − 1 with d = max(degP, degQ).

We refer to [Bod08] for more details on this bound in the missing cases.
Ruppert shows further in [Rup86] that the Hesse cubic pencil

P (x, y) − tQ(x, y) = x3 + y3 + (1 + x + y)3 − 3t xy(1 + x + y)

reaches the maximal possible value for d = 3 if spectral values are counted with multi-
plicity. That is, the following is checked: sp(P − tQ) = {1, j, j2, ∞} (where 1, j, j2 are the 
cubic roots of 1)2; for each t∗ ∈ sp(P − tQ), the curve P (x, y) − t∗Q(x, y) = 0 breaks into 
3 lines; if the multiplicity 2 = 3 − 1 is affected to each of the elements of sp(P − t∗Q), 
then 4 × 2 = 8 = d2 − 1. Furthermore Nguyen asserts [Ngu11] that if the spectrum is 
counted with multiplicities as above, the Hesse cubic pencil is the only example that 
reaches the extremal value d2 − 1 (for any d � 3).

Another interesting statement from [Ngu11] is that when k = C, if P (x, y) = 0 and 
Q(x, y) = 0 are smooth plane curves, then

card(sp(P − tQ)) � 3d− 3

Furthermore, if F = x(yd−1−1) +λ(xd−1−1) +μ(xd−1−yd−1) (with d � 3) is viewed as 
a polynomial in x, y, parametrized by (λ, μ) in the plane k2, and P − tQ is obtained by 
restricting (λ, μ) in some t-line, then, generically, the pencil P − tQ realizes the bound 
3d − 3.

A major result about this issue remains Stein’s theorem for polynomials:

(3) If P ∈ k[x] is indecomposable, then card(sp(P − t)) < deg(P ).

This was first established by Stein [Ste89] in two variables and in characteristic 0, then 
extended to all characteristics by Lorenzini [Lor93] and finally generalized to more vari-
ables by Najib [Naj05].

On the spectrum itself It can be shown that generically a polynomial P (x) is inde-
composable and for deg(P ) > 2 or � > 2, the spectrum sp(P − t) is empty [BDN09a, 
proposition 2.2]. The question arises then as to whether other finite sets occur as spectra 
(within Stein’s limitations). Najib [Naj04] answers positively to this question. He shows 
that

2 The value ∞ can be moved to a finite point by a change of coordinates.



404 A. Bodin et al. / Journal of Number Theory 170 (2017) 390–408
(4) for any finite subset S ⊂ k, there exists an indecomposable polynomial P ∈ k[x] such 
that sp(P (x) − t) = S.

He can further fix in advance all but one of the irreducible factors of the polynomials 
P (x) − t∗ with t∗ ∈ S and arrange for Stein’s inequality to be an equality for P . For 
example, for every degree d � 2 and given d − 1 points t∗1, . . . , t∗d−1 ∈ k, he can construct 
an indecomposable polynomial P (x, y) of degree d such that P (x, y) − t∗i is divisible by 
x − t∗i , i = 1, . . . , d − 1. Due to Stein’s inequality, this already implies that S exactly 
equals {t∗1, . . . , t∗d−1}. Such a polynomial P (x, y) can be made explicit: take

P (x, y) = y(x− t∗1)(x− t∗2) . . . (x− t∗d−1) + x.

Furthermore some converse is stated in [Ngu11]: a degree d polynomial in two variables 
with a spectrum of cardinality d − 1 is, up to some change of variables, the polynomial 
P above.

We end this discussion with open questions.

Problem. Given an integer d � 1 and a degree d polynomial Q ∈ k[x],
(a) find a polynomial P ∈ k[x] of degree � d such that P/Q is indecomposable and 

for which the Bertini–Noether inequality (2) from §3.1.1 is an equality;
(b) given a finite subset S ⊂ k of cardinality � d2 − 1, find a polynomial P ∈ k[x]

such that deg(P ) � d, P/Q indecomposable and sp(P (x) − tQ(x)) = S.

For (b), the method from [Naj04] generalizes to construct a polynomial P such that 
deg(P ) � d, P/Q indecomposable and sp(P (x) − tQ(x)) contains any prescribed subset 
S of d − 1 elements. However the Bertini–Noether bound (2) for rational functions is 
not sharp enough (as is the Stein bound (3) for polynomials) to conclude that the 
containment is an equality.

3.1.2. Deformation by monomials
Consider the general case

F (t, x) = P (x) − t1Q1(x) − · · · − tsQs(x)

of a deformation by s polynomials but assume that Q1, . . . , Qs are monomials. [BDN09b]
shows how to handle this situation with the Bertini–Krull theorem. The following state-
ments are two selected generic irreducibility criteria from [BDN09b], which can be 
compared to the results of next subsection given by the more combinatorial approach.

Theorem 3.1. Let F (t, x) = P (x) − tQ(x) with P ∈ k[x] of degree d � 1. Assume that
(a) Q is a monomial of degree � d and is relatively prime to P ,
(b) Γ(P ) ∪ Γ(Q) is not contained in a line,
(c) Q is not a pure power (if Q(x) = axk1

1 · · ·xk�

� then gcd(k1, . . . , k�) = 1).
Then F (t, x) is generically irreducible.
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For example if P /∈ k[x1] and is not divisible by x1, then P (x) − tx1 is generically 
irreducible.

Theorem 3.2. Let P ∈ k[x] be a polynomial of degree d � 1 and Q1, . . . , Qs be monomials 
of degree � d. Assume further that

(a) s � 2 and P, Q1, . . . , Qs are relatively prime,
(b) Γ(P ) ∪ Γ(Q1) ∪ . . . ∪ Γ(Qs) is not contained in a line,
(c) if char(k) = p > 0, at least one of P, Q1, . . . , Qs is not a p-th power.

Then P (x) − t1Q1(x) − · · · − tsQs(x) is generically irreducible.

For example, in characteristic 0, for each k ∈ {1, . . . , d}, the polynomial P (x1, . . . , x�) +
t1x

k
1 + · · · + t�x

k
� is generically irreducible.

3.2. Applications of Gao’s criteria

The situation is that of polynomials

F (t, x) = P (x) − tQ(x) with P,Q ∈ k[x].

3.2.1. Gao’s first criterion
Gao gives this iff condition for a polyhedron to be non-summable [Gao01] (which he 

explains to be a generalization of the Eisenstein criterion).

Theorem 3.3 (Gao). Let P ∈ k[x] such that
(*) Γ(P ) is contained in a hyperplane H ⊂ R� not passing through the origin.

Denote the vertices of Γ(P ) by v1, . . . , vk. Then Γ0(P ) is not summable if and only if 
the coordinates of v1, . . . , vk are relatively prime.

This result leads to this generic irreducibility criterion.

Corollary 3.4. Let P ∈ k[x] satisfying (*) above and Q ∈ k[x] such that
(a) the coordinates of all the vertices of Γ(P ) are relatively prime,
(b) Q(0, . . . , 0) �= 0, Γ(Q) ⊂ Γ0(P ) and no monomial of Q is a vertex of Γ(P ).

Then the polynomial F = P − tQ is generically irreducible and even has this stronger 
property: P − t∗Q is irreducible in k[x] for every t∗ ∈ k \ {0}.

Proof. Assumptions (a) and (*) and Gao’s Theorem 3.3 show that Γ0(P ) is not 
summable. As Γ(P − tQ) = Γ0(P ), Minkowski’s theorem concludes that P − tQ is 
generically irreducible and has the stronger property. �

To completely determine sp(P − tQ), it remains to decide whether P is irreducible or 
not. Both may happen: for P (x, y) = xp − yq with gcd(p, q) = 1, we have sp(P − t) = ∅
while for P (x, y) = xp − xyq, sp(P − t) = {0}.
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The special case of Corollary 3.4 for which Q = 1 yields this conclusion: if P satisfies 
conditions (*) and (a), then P (x) − t is generically irreducible and has the stronger 
irreducibility property. For all positive and relatively prime integers a, b, c, d, P (x, y) =
xayb + xcyd is such a polynomial.

Example 3.5. Here is one further example where a polynomial P is deformed by a 
polynomial Q “below” P to obtain a polynomial P−tQ satisfying the strong generic irre-
ducibility property. Let P (x, y) = xayb+xcyd with gcd(a, b, c, d) = 1 and Q(x, y) ∈ k[x, y]
be such that: (i) Q(0, 0) �= 0 (ii) Γ(Q) ⊂ Γ0(P ) and (iii) the monomials xayb, xcyd are 
not in Γ(Q). Then we have sp(P − tQ) ⊂ {0}.

x

y

xayb

xcyd

0

Γ0(P )

3.2.2. Gao’s second criterion
The following result of [Gao01] makes it possible to construct non-summable poly-

topes, by induction on the dimension.

Theorem 3.6 (Gao). Let P ∈ k[x] such that Γ(P ) is not summable, has at least two 
points, and is contained in a hyperplane H of R�. Suppose that Q ∈ k[x] is a polynomial 
such that Γ(Q) is not included in H. Moreover suppose that there exists some monomial 
m ∈ k[x] such that Γ(Q) ⊂ Γ(P + m). Then Γ(P + Q) is not summable.

With Theorem 3.6 one can deform a polynomial P not only by a polynomial Q “below” 
P , but also by some polynomial Q “above” P .

Example 3.7. Let P (x, y) = xp + yq with p, q relatively prime. From Theorem 3.6 for 
Q(x, y) =

∑
i
p+ j

q<1 aijx
iyj (whose monomials are below those of P ) and m = 1, the 

polynomial P (x, y) − tQ(x, y) has empty spectrum. Now take a polynomial Q such that 
for some (u, v) ∈ N2, the monomials of Q lie in the triangle (p, 0), (0, q), (u, v) (and so 
are above those of P ) and are distinct from (p, 0) and (0, q). From Theorem 3.6 with 
m = xuyv, the spectrum of P (x, y) − tQ(x, y) is empty.
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xp

yq

m = xuyv

Similar examples can be given in higher dimension starting with P (x1, . . . , x�) = xp1
1 +

· · · + xp�

� with p1, . . . , p� relatively prime.

Theorem 3.6 can also be used to explicitly produce a deformation of a (possibly 
reducible) polynomial Q(x) into an irreducible one.

Example 3.8. Let Q(x, y) be any polynomial and P (x, y) = xp + yq with p, q relatively 
prime and p, q > degQ. Then the polynomial (xp + yq) − tQ(x, y) has the strong generic 
irreducibility property, so Q(x, y) + μ(xp + yq) is irreducible in k[x, y] for every μ ∈ k, 
μ �= 0.
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