
GALOIS COVERS AND
THE HILBERT-GRUNWALD PROPERTY

PIERRE DÈBES AND NOUR GHAZI

Abstract. Our main result combines three topics: it contains a
Grunwald-Wang type conclusion, a version of Hilbert’s irreducibil-
ity theorem and a p-adic form à la Harbater, but with good re-
duction, of the Regular Inverse Galois Problem. As a consequence
we obtain a statement that questions the RIGP over Q. The gen-
eral strategy is to study and exploit the good reduction of certain
twisted models of the covers and of the associated moduli spaces.

1. Introduction

1.1. The Grunwald problem. Given a field K, a finite set S of in-
dependent non-trivial discrete valuations of K and a finite group G,
a natural question, which we call the Grunwald problem, is whether
there exist Galois extensions E/K with group G which have prescribed
v-completions Ev/Kv (v ∈ S). More precisely, given some homomor-
phisms1 ϕv : GKv → G (v ∈ S), with GKv the absolute Galois group
of Kv, does there exist an epimorphism ϕ : GK → G which, composed
with the restriction maps GKv → GK , yields the local maps ϕv?

When K is a number field, the answer is known to be positive in the
following cases: when G is cyclic of odd order (Grunwald with a cor-
rection of Wang, see [NSW08, (9.2.8)]), and when G is solvable of order
prime to the number of roots of 1 in K (Neukirch [Neu79], [NSW08,
(9.5.5)]). More specifically, in these cases, the following Grunwald map

GrK,S : Epi(GK , G) →
∏
v∈S

Hom(GKv , G)≡

is surjective for every finite set S of finite places; here Epi(GK , G)
denotes the set of all epimorphisms from GK to G and the superscript
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≡ in Hom(GKv , G)≡ means that homomorphisms are considered up to
conjugation by an element of G (depending on v).

Definition 1.1. Elements ϕ = (ϕv : GKv → G)v∈S of
∏

v∈S Hom(GKv , G)≡

are called Grunwald problems. Given a finite Galois extension L/K to-
tally split in Kv for each v ∈ S, we say that ϕ ∈ Epi(GL, G) is an
L-solution to the Grunwald problem ϕ if GrL,S(ϕ) = ϕ. The Grunwald

problem ϕ is said to be unramified if Gal(Kv/K
ur
v ) ⊂ ker(ϕv) (v ∈ S).

K-solutions are of primary interest. Scalar extension to fields L as
in definition 1.1 is however a natural operation; it does not change the
Grunwald problem to solve.

The general question we address is whether solutions to some Grun-
wald problem can be found among the specializations of some Galois
G-cover f : X → P1. For every point t0 ∈ P1(K) not a branch point,
what we call the specialization of f at t0 is the residue field, denoted
by K(X)t0 , of some point in X above t0; viewed as an homomorphism
GK → G, it is the action of GK on the fiber f−1(t0) (see §2.1).

1.2. Main theorems. As above, let K be a field, S be a set of inde-
pendent non-trivial discrete valuations of K and G be a finite group.
For each place v, denote the valuation ring of Kv by Ov, the valu-
ation ideal by pv, the order of the residue field of Kv by qv and its
characteristic by pv.

The constant c(|G|, r) that appears in theorem 1.2 below only de-
pends on the order of G and the branch point number r of the cover
involved; it is explicitly defined in §3.1.

Theorem 1.2. Assume that K is a number field, that pv 6 | |G| and
qv ≥ c(|G|, r) (v ∈ S). Let f : X → P1 be a G-cover of group G
and r branch points, defined over K and satisfying the following good
reduction condition:

(good-red) for each v ∈ S, the branch divisor t = {t1, . . . , tr} is étale
and there is no vertical ramification in the cover f at v.2

Then f has the following Hilbert-Grunwald specialization property:

2Specifically, t = {t1, . . . , tr} étale means that no two K-points ti, tj ∈ K ∪{∞}
coalesce at v, and coalescing at v that |ti|v ≤ 1, |tj |v ≤ 1 and |ti − tj |v < 1, or
else |ti|v ≥ 1, |tj |v ≥ 1 and |t−1

i − t−1
j |v < 1, where v is any prolongation of v to

K. For more on non vertical ramification, see addendum 1.4 (c) and §2.3. (good-
red) is indeed a good reduction criterion: if t is étale and pv 6 | |G|, f acquires
good reduction at v after some finite scalar extension L/K [Ful69]; under the extra
non-vertical ramification assumption, one can take L = K; see §2.4.3 and §2.4.4.
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(HGr-spec) For each unramified Grunwald problem (ϕv : GKv → G)v∈S,
there exist specializations of f at points t0 ∈ A1(K) \ t that are K-
solution to it. More precisely the set of all such t0 contains a set
A1(K) ∩

∏
v∈S∪S0

Uv where each Uv ⊂ A1(Ov) is a coset of Ov modulo
pv and S0 is a finite set of finite places v /∈ S which can be chosen
depending only on f .

The constant c(G) that appears in theorem 1.3 below depends only
on the group G; it is explicitly defined in §5.

Theorem 1.3. Assume that K is a number field, pv 6 | 6|G| and qv ≥
c(G) (v ∈ S). Then there exist a Galois extension L/K totally split
in Kv (v ∈ S) and a G-cover f : X → P1 of group G, defined over L
that satisfies the good reduction condition (good-red) and the Hilbert-
Grunwald specialization property (HGr-spec) with K replaced by L.

Addendum 1.4. (a) We will prove a more general version of theorem
1.2 with P1 replaced by a higher dimensional variety B and K by
the quotient field of some Dedekind domain (theorem 3.2). Further
applications, notably to the situations K is PAC or is finite or is a
function field κ(x), are discussed in [DGar].

(b) The G-cover f : X → P1 of theorem 1.3 depends on the set S. We
will however be able to fix in our construction the branch point number
r and the ramification type C 3. That is, the corresponding points
on the moduli spaces will lie on the same Hurwitz space Hr(G,C);
they will more precisely be on some Harbater-Mumford component
HM ⊂ Hr(G,C) defined over K [Fri95] [DE06]4.

(c) Non-vertical ramification (precisely defined in §2.3) is automatic in
(good-red) if the group G is of trivial center (under assumption “t étale
and pv 6 | |G|”). This is shown in [Bec91] and will be used in the proof of
theorem 1.3 (§5). Another practical test for non-vertical ramification
is this: for each v ∈ S, if an affine equation P (t, y) = 0 of X is given
with t corresponding to f and P monic in y with integral coefficients
(relative to v), then v is unramified in f if the discriminant ∆(t) of P
with respect to y is non-zero modulo the valuation ideal of v.

3Recall that the ramification type, also called inertia canonical invariant, is the
collection of conjugacy classes in G of the distinguished generators of the inertia
groups above the branch points, i.e., those which map to exp(2iπ/e) through the
canonical isomorphism between inertia groups and groups of e-th roots of 1; the
integer e is the corresponding ramification index. See e.g. [Dèb01] or [Dèb09].

4Deformation or patching techniques used in that paper then show that
HM(Kv) 6= ∅ for all places v of K (as in [Des95]). This yields realizations over
all corresponding Kvs of the group G and the ramification type C. These however
have bad reduction and cannot be guaranteed to satisfy condition (HGr-spec).
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Theorems 1.2 and 1.3 relate to several classical topics: Hilbert’s ir-
reducibility theorem — Galois covers of P1 over Q (or some number
field K) have specializations that preserve the Galois group — the
Grunwald-Wang theorem — these specializations can also have some
local unramified behaviour prescribed at any finitely many suitably
large primes — and the Regular Inverse Galois Problem — a cover
with these properties does exist, maybe not defined over Q but over
some number field L totally split in Qp for each of the same primes p.
We elaborate below on this triple aspect.

1.3. The Grunwald-Wang theorem and the RIGP. As an imme-
diate consequence of theorem 1.3, we obtain this Grunwald-Wang type
conclusion: with notation as in §1.2, if pv 6 | 6|G| and qv ≥ c(G) (v ∈ S),
then every unramified Grunwald problem ϕ = (ϕv : GKv → G)v∈S has
a solution over some Galois extension L/K totally split in Kv (v ∈ S).

Furthermore one can take L = K for an interesting class of groups.
Assume indeed that G is a regular Galois group over K, that is, can be
realized as the Galois group of some K-G-cover f : X → P1; this is con-
jecturally true for all groups (the RIGP) and known for many. Taking
pv � 1 guarantees condition (good-red). Thus, from theorem 1.2, the
one cover f can be used to solve over K all unramified Grunwald prob-
lems ϕ with pv � 1. We obtain the following, where Homur(GKv , G)
denotes the subset of Hom(GKv , G) of all unramified homomorphisms.

Corollary 1.5. Every regular Galois group G over K has the following
unramified Grunwald property: for all finite sets S of finite places v of
K with pv �G 1 (v ∈ S),

(Gr-ur) the set
∏

v∈S Homur(GKv , G)≡ is in the image of the Grunwald
map GrK,S : Epi(GK , G) →

∏
v∈S Hom(GKv , G)≡.

Equivalently, condition (Gr-ur), which only depends on G and K, is
a necessary condition (possibly vacuous) for G to be a regular Galois
group over K. Corollary 1.5 can be compared to Saltmann’s result that
existence of some generic extension for G over K (which is stronger
than being a regular Galois group over K) implies the full surjectivity
of the Grunwald map GrK,S [Sal82, theorem 5.8]. Recall Saltmann used
Wang’s counter-example to Grunwald’s theorem — condition (Gr-ur)
does not hold for K = Q, S = {2}, G = Z/8Z — to show that there
can be no generic extension for Z/8Z over Q and consequently that the
Noether program does not work in general [Sal82, theorem 5.11].

Corollary 1.6 below and the more general corollary 4.1 (both proven
in §4) provide even stronger obstructions (though still possibly vacuous)
to the Regular Inverse Galois Problem. Given a Galois extension E/Q,
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let πE
nts(x) denote the number of primes p ≤ x that are not totally split

or are ramified in E/Q. From the Čebotarev density theorem we have

πE
nts(x) ∼E (1− 1

|G|
)

x

log x
(when x →∞)

Corollary 1.6. Let G be a finite group. Assume there exist two func-
tions `(x) and m(x) tending to ∞ with x such that the following holds:
if E/Q is a Galois extension of group G and discriminant dE,

(∗) πE
nts(x) ≥ m(x) if log |dE| ≤ x `(x)

Then G is not a regular Galois group over Q.

The Čebotarev theorem has the following effective version, proved by
Lagarias and Odlyzko ([LO77]; see also [Ser81, §2.2]): if π(x) denotes
the number of primes ≤ x, then

(∗∗) πE
nts(x) ≥ π(x)− 2

|G|
x

log x
if β |G| log2 |dE| ≤ log x

for some absolute constant β. Thus condition (*) holds for all finite
groups G if log |dE| ≤ x `(x) is replaced by β|G| log2 |dE| ≤ log x (or
by β|G| log |dE| ≤

√
x/ log x under GRH). Producing a single group

satisfying the exact condition (*) would disprove the RIGP.
Classical methods for establishing such analytic estimates as (**)

depend on the possiblity of finding appropriate zero-free regions for
Hecke L-functions. It would be interesting to investigate to what ex-
tent the Galois structure can be taken advantage of to improve these
estimates for some specific groups. The difference between (*) and
(**) is essentially a “log” in the condition on dE. We note that a “log”
can be gained in a related problem: concerning the least prime ideal
in the Čebotarev density theorem (instead of the number of primes),
Linnick’s theorem shows that difference between the general estimate
and that of the specific situation of Dirichlet’s theorem (see [LMO79]).

Remark 1.7. We have considered the totally split behaviour for sim-
plicity of exposition. Similar conclusions hold for any possible local
behaviour. See corollary 4.1 which is a more general and fully effec-
tive version of the above results. Also note that for groups G that are
known to be regular Galois groups over Q, corollary 4.1 can be used
positively to produce Galois extensions Ex/Q of groups G that are to-
tally split at almost all primes ≤ x and for which an upper bound for
dEx that compares to the Lagarias-Odlyzko bound can be given.
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1.4. The RIGP over p-adic fields. Conclusion of theorem 1.3 im-
plies that the G-cover f : X → P1 is defined over the field KtotS of
all totally S-adic algebraic numbers (that is, all numbers x ∈ K such
that K-conjugates of x are in Kv for each v ∈ S). Existence of a real-
izing KtotS-G-cover, for any group G, is a classical application of the
so-called patching methods [Har87], [Dèb95], [Pop96]. However these
methods lead by essence to covers with bad reduction. Here, as the
cover f : X → P1 also satisfies (good-red) and pv 6 | |G|, we obtain:

Corollary 1.8. Given K, S, G as before, assume as in theorem 1.3
that pv 6 | 6|G| and qv ≥ c(G) (v ∈ S). Then there exists a G-cover
f : X → P1 of group G defined over KtotS and with good reduction at
every place v ∈ S (including no vertical ramification).

Consequently, for the same places v, G is a regular Galois group over
the finite fields Fqv . That each finite group is a regular Galois group
over all big enough fields Fq was proved in [FV91] and [Pop96]; our
results and approach also relate to these works.

1.5. The Hilbert aspect. Conclusion (HGr-spec) includes the Hilbert
property: the specializations K(X)t0/K have a Galois group equal to
the generic Galois group G. Our method leads to some bound for the
least integer t0 > 0 for which the specialization K(X)t0/K has group G
that depends only on |G|, r and the number bb(t) of primes for which
the (good-red) condition from §1.2 does not hold (see §4)5. Existing
bounds usually involve the height H of some affine equation of f . Re-
call that conjecturally — notably under Lang’s conjecture on rational
points on higher dimensional varieties — neither bb(t) nor H(f) are
necessary; a bound should exist depending only on |G| and r [DW08].

1.6. Earlier works. Similar Hilbert-Grunwald-RIGP questions are ad-
dressed in a paper of Plans and Vila [PV05], for a few groups and for
specific G-covers X → P1, generally derived from the rigidity method.
Here, G can be any group in theorem 1.3 and theorem 1.2 a priori
applies to all K-G-covers X → P1. We have however a big enough
condition on qv and pv for v ∈ S. This condition can in fact not be
removed: as Wang’s counter-example to Grunwald’s theorem or other
examples in [PV05] show, there are situations where some local un-
ramified behaviours cannot occur. These counter-examples however
all involve the prime p = 2 and it seems unknown whether counter-
examples exist with other primes.

5Note however that these bounds are for regular Galois extensions. A classi-
cal argument to deduce the full situation of Hilbert’s irreducibility theorem uses
Čebotarev’s theorem, which may lead to constants involving other parameters.
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From earlier works on the ramification of specializations of covers,
it also seems difficult to remove the unramified assumption on the ϕv

(though it remains an interesting question in general). The specializa-
tions t0 from conclusion (HGr-spec) will indeed be constructed so not
to reduce to branch points of the cover modulo the valuation ideal of
v. From [Bec91] or more general results of Grothendieck [Gro71], the
specializations K(X)t0/K are then necessarily unramified at v unless
v is one from a finite list of bad places.

Theorem 1.2 is in the line of a series of works, of Eichler [Eic39], Fried
[Fri74], Ekedahl [Eke90], Colliot-Thélène [Ser92, §3] on the Hilbert spe-
cialization property. Our method rests on the same basic idea — go
to finite fields — and is in fact rather similar to that of Ekedahl. Our
contribution is the Grunwald aspect: we realize given local extensions
at some given places while it suffices, for Hilbert’s irreducibility the-
orem, to realize suitable decomposition groups, at any possible places.
This has led us to closely investigate the local situation and prevented
from using asymptotic arguments. Our results are totally explicit and
effective (see corollary 4.1). With the starting twisting lemma 2.1 we
also offer a new approach that unifies earlier works over various fields
like PAC and finite fields. For example Fried’s Čebotarev theorem for
rational function fields κ(x) over a finite field κ and Colliot-Thélène’s
result that varieties over a number field with the “weak weak approxi-
mation property” have the Hilbert property can be obtained as special
cases of our approach; this is detailed in [DGar].

1.7. Strategy and organization of the paper. We first prove the-
orem 1.2. The starting point is the “twisting lemma” that gives a
general answer to the question of whether a field extension E/K is a
specialization of some K-G-cover: K-rational points should exist on a
certain twisted K-variety (lemma 2.1). The next step is to establish
some good reduction properties of this variety (§2.4). Thanks to the
Lang-Weil estimates which remain as for our predecessors a basic tool,
we can then deduce a local form of our result (proposition 2.2). Con-
joined with some globalization arguments, this leads to theorem 1.2
and its higher dimensional version (theorem 3.2) in §3.

In order to obtain theorem 1.3 (in §5), we first explain how to reduce
to the situation Z(G) = {1} where the vertical ramification can be
better controlled. Then we show in that case how to find a G-cover
f : X → P1 defined over some number field L as in theorem 1.3 and
satisfying the (good-red) condition. For this we use the Hurwitz space
theory to construct a K-component of some Hurwitz space of G-covers
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of group G that has Kv-rational points corresponding to covers with
good reduction (v ∈ S).

Acknowledgments. We wish to thank Anna Cadoret, Michel Em-
salem, Marc Perret, Olivier Ramaré and Lorenzo Ramero for their help
and their interest in our paper.

2. The local situation

We will work with covers of a more general base B than P1.

2.1. Basic notation. For more details, we refer to [DD97, §2] and
[Dèb99b, §2].

Given a field k, we denote by k an algebraic closure, its separable
closure in k by ksep and its absolute Galois group by Gk. If k′ is an
overfield of k, we use the notation ⊗kk

′ for the scalar extension from k
to k′: for example, if X is a k-curve, X ⊗k k′ is the k′-curve obtained
by scalar extension.

Given a regular projective geometrically irreducible k-variety B, a
k-mere cover of B is a finite and generically unramified morphism
f : X → B defined over k with X a normal and geometrically irre-
ducible k-variety. Mere covers f : X → B over k correspond to finite
separable field extensions k(X)/k(B) that are regular over k through
the function field functor. The term “mere” is meant to distinguish
mere covers from G-covers. By k-G-cover of B of group G, we mean
a Galois cover f : X → B over k given together with an isomorphism
G → Gal(k(X)/k(B)). G-covers of B of group G over k correspond to
regular Galois extensions k(X)/k(B) given with an isomorphism of the
Galois group Gal(k(X)/k(B)) with G. By group and branch divisor of
a k-cover f , we mean those of the ksep-cover f ⊗k ksep 6.

Given a reduced positive divisor D ⊂ B, denote the k-fundamental
group of B \ D by π1(B \ D, t)k where t ∈ B(k) \ D is a base point.
Mere covers of B of degree d (resp. G-covers of B of group G) with
branch divisor contained in D correspond to homomorphisms π1(B \
D, t)k → Sd such that the restriction to π1(B \ D, t)ksep is transitive
(resp. to epimorphisms π1(B \D, t)k → G such that the restriction to
π1(B \D, t)ksep is onto).

Each k-rational point t0 ∈ B(k) \ D provides a section st0 : Gk →
π1(B \D, t)k of the exact sequence

6The group of a ksep-cover X → B is the Galois group of the Galois closure
of the extension ksep(X)/ksep(B). The branch divisor is the formal sum of all
hypersurfaces of B such that the associated discrete valuations are ramified in the
extension ksep(X)/ksep(B).
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1 → π1(B \D, t)ksep → π1(B \D, t)k → Gk → 1

well-defined up to conjugation by elements in π1(B \ D, t)ksep . Given
a mere cover representation φ : π1(B \ D, t)k → Sd, the morphism
φst0 : Gk → Sd is the arithmetic action of Gk on the fiber above t0. If
φ : π1(B \D, t)k → G represents a G-cover f : X → B, the morphism
φst0 : Gk → G is the specialization representation of f at t0. The fixed
field in ksep of ker(φst0) is the residue field of k(X)/k(B) at some point
above t0. We denote it by k(X)t0 and call the extension k(X)t0/k the
specialization of f at t0.

2.2. Twisting G-covers. We will use a notion of “twisted covers”
introduced in [Dèb99a, §2] for covers of P1. As we indicate below, their
definition and main properties readily extend to k-covers f : X → B.

Let k be a field and f : X → B be a k-G-cover. Let φ : π1(B \
D, t)k → G be the epimorphism corresponding to the G-cover f and
let ϕ : Gk → G be an homomorphism (not necessarily onto).

Denote the right-regular (resp. left-regular) representation of G by
δ : G → Sd (resp. by γ : G → Sd) where d = |G|. Define ϕ∗ : Gk → G

by ϕ∗(g) = ϕ(g)−1. Consider the map φ̃ϕ : π1(B \D, t)k → Sd defined
by the following formula, where r is the restriction map π1(B\D, t)k →
Gk and × is the multiplication in the symmetric group Sd:

φ̃ϕ(θ) = γφ(θ)× δϕ∗r(θ) (θ ∈ π1(B \D, t)k)

It is easily checked that φ̃ϕ is a group homomorphism with the same
restriction on π1(B \D, t)ksep as φ. The associated mere cover is a K-

model of the mere cover f ⊗k ksep. We denote it by f̃ϕ : X̃ϕ → B and
call it the twisted cover of f by ϕ. The following statement contains
the main property of the twisted cover.

Twisting lemma 2.1. Let t0 ∈ B(k) \ D. The specialization repre-
sentation φst0 : Gk → G of the G-cover f at t0 is conjugate in G to ϕ :

Gk → G if and only if there exists x0 ∈ X̃ϕ(k) such that f̃ϕ(x0) = t0.

Furthermore, it is readily checked that the twisting operation com-
mutes with extension of scalars: if k′ is an overfield of k, then the
twisted cover of f ⊗k k′ by the restriction of ϕ : Gk → G to Gk′ equals

the cover f̃ϕ ⊗k k′.

Proof of twisting lemma. Consider the section st0 : Gk → π1(B \D, t)k

associated with t0. The arithmetic action of Gk on the fiber (f̃ϕ)−1(t0)

is φ̃ϕ st0 . Hence for each τ ∈ Gk, the action of τ on the fiber (f̃ϕ)−1(t0)
is given by
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φ̃ϕ(st0(τ)) = γφ(st0(τ)) δϕ∗(τ)

In Sd the element γφ(st0(τ)) ∈ G is the multiplication on the left by
φ(st0(τ)) in G while the element δϕ∗(τ) is the multiplication on the

right by ϕ(τ)−1. If the elements φ̃ϕ(st0(τ)) (τ ∈ Gk) have a common
fixed point, say ω ∈ G, then we obtain φ(st0(τ)) = ω ϕ(τ) ω−1. This
proves the converse part. For the direct part assume φ st0 = ω ϕ ω−1

for some ω ∈ G. Then it is straightforwardly checked that ω is fixed

under every permutation φ̃ϕ(st0(τ)) (τ ∈ Gk). The corresponding point

x0 ∈ X̃ϕ above t0 is k-rational. �

For example, from Faltings’ theorem, it follows from lemma 2.1 that
if k is a number field and X is a curve of genus ≥ 2, then a given
extension E/k can be a specialization of some k-G-cover f : X → P1

at only finitely many points t0 ∈ P1(k). In the rest of the paper, we
are interested in situations where it is possible to produce k-rational

points on the twisted variety X̃ϕ.

2.3. Local specialization result. Assume k is the quotient field of
some complete discrete valuation ring A. Denote the valuation ideal
by p, the residue field A/p by κ, assumed to be perfect, and its char-
acteristic by p.

Let B be a smooth projective and geometrically irreducible k-variety
and assume it is given with an integral smooth projective model B over
A; in particular B is regular [Gro67, proposition 17.5.8].

Let f : X → B be a k-G-cover of group G. Denote by F : X → B the
normalization of B in k(X); it is a finite morphism [Mil80, proposition
1.1]. Denote its special fiber by F0 : X0 → B0 and the Zariski closure
of D in B by D.

A finite and flat morphism F ′ : X ′ → B with X ′ normal is called
an A-model of (f ⊗k ksep,F0 ⊗κ κ) if F ′ ⊗A k is a k-cover that is ksep-
isomorphic to f ⊗k ksep and the special fiber F ′

0 : X ′
0 → B0 is a κ-cover

that is κ-isomorphic to F0 ⊗κ κ.
The cover f is said to have no vertical ramification at p if F : X → B

is unramified above p viewed as a prime divisor of B, or in other words,
is unramified above the special fiber B0. An homomorphism ϕ : Gk →
G is said to be unramified at p if the inertia subgroup Ip ⊂ Gk above p
is contained in ker(ϕ).

Proposition 2.2. Given a k-G-cover f : X → B of group G and an
unramified homomorphism ϕ : Gk → G, assume that p 6 | |G| and that
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(good-red) D is a smooth divisor, D∪B0 is regular with normal cross-
ings over A and f has no vertical ramification at p, and

(κ-big-enough) for every A-model F ′ : X ′ → B of (f ⊗k ksep,F0 ⊗κ κ),
there exist κ-rational points on X ′

0 that do not lie above any point in
the closed subset D0 ⊗κ κ.

Then there exists t0 ∈ B(k) \ D such that the specialization represen-
tation of f at t0 is conjugate in G to the morphism ϕ : Gk → G.
Furthermore the set of all such points t0 contains the preimage via the
map B(A) → B0(κ) of a non-empty subset F ⊂ B0(κ) \ D0.

As we will show in §2.5, condition (κ-big-enough) holds if κ is a big
enough finite field (lemma 2.4). Also, in the case B = P1, the condition
on D ∪ B0 can be omitted in the (good-red) assumption as it follows
from the two other conditions (lemma 2.6).

2.4. Proof of proposition 2.2. Consider the cover f̃ϕ : X̃ϕ → B

obtained by twisting f by ϕ. Denote by F̃ϕ : X̃ ϕ → B the morphism

obtained by normalizing B in k(X̃ϕ). By definition we have F̃ϕ⊗A k =

f̃ϕ; hence F̃ϕ ⊗A k is a k-cover that is ksep-isomorphic to f ⊗k ksep.

Below we prove the rest of the condition that makes F̃ϕ an A-model
of (f ⊗k ksep,F0 ⊗κ κ) so we can apply assumption (κ-big-enough).

2.4.1. F̃ϕ is flat. In order to show this claim, we will use this criterion:
a cover is flat if it is tamely ramified along a regular divisor with normal
crossings [GM71]. From our assumption that p 6 | |G|, all covers involved
in the argument will be tamely ramified. As a first step, note that the

k-cover f̃ϕ : X̃ϕ → B is flat: its branch divisor D is regular with

normal crossings over k (as it is over A from (good-red)) and f̃ϕ is
étale above B \D [Mil80, theorem 3.21]. Now as B \D = B \ (D∪B0),

we have that F̃ϕ is étale above B \ (D ∪ B0) and can use again the
above criterion and the assumption (good-red), applied this time over
the ring A, to conclude our claim. 7

2.4.2. F̃ϕ is étale above B \ D. As f̃ϕ : X̃ϕ → B is unramified over
B \D, it suffices, thanks to the Purity of Branch Locus, to check that

p is unramified in F̃ϕ. Let E be the fixed field of ker(ϕ) in ksep. The
homomorphism ϕ being unramified at p means that p is unramified in
the extension E/k (more exactly in the integral closure A′

E of A in E).
This conjoined with f having no vertical ramification at p implies that

7As pointed out by the referee, if B is a curve, flatness does not require tame
ramification: a normal cover of a regular surface is flat over the base.
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p is unramified in the normalization of B in E(X) [Bec91, lemma 2.1].

As k(X̃ϕ) ⊂ E(X) = E(X̃ϕ), this is stronger than what we need.

2.4.3. Good reduction. We can now resort to a classical good reduction
criterion for covers due to Grothendieck et al. [Gro71] [GM71]: in
the situation above where we have a smooth divisor D with normal
crossings of the smooth proper and geometrically irreducible scheme B
over the complete discrete valuation ring A, the reduction process yields
an equivalence between the category of covers of B tamely ramified
along D and that of those covers of the special fiber of B0 that are
tamely ramified above D0. From the properties we already know about

F̃ϕ : X̃ ϕ → B, we deduce that F̃ϕ
0 : X̃ ϕ

0 → B0 is finite, flat, étale above

(B \D)0 and that X̃ ϕ
0 is normal and irreducible (X̃ ϕ is irreducible as it

contains X̃ϕ which is irreducible as a dense subset). We show in §2.4.4

below that X̃ ϕ
0 is geometrically irreducible.

2.4.4. Geometric behaviour. Denote the integral closure of A in ksep

by Asep and the normalization of Bsep = B ⊗A Asep in ksep(X) by

F sep : X sep → Bsep. The same argument as the one used for F̃ϕ shows
that F sep is étale above (B \ D)⊗A Asep and the same good reduction
criterion leads to the same conclusions about the special fiber F sep

0 as

those deduced above for F̃ϕ
0 : X̃ ϕ

0 → B0. In particular X sep
0 is normal

and irreducible. Lemma 2.3 compares F sep
0 and F̃ϕ

0 ⊗κ κ.

Lemma 2.3. F sep and F̃ϕ⊗A Asep are isomorphic above a non-empty

open subset V ⊂ Bsep. Consequently X̃ ϕ
0 is geometrically irreducible

and F̃ϕ is an A-model of (f ⊗k ksep,F0 ⊗κ κ).

Proof. As F̃ϕ is étale above B\D, we can find a non-empty affine open
subset U = Spec(β) ⊂ B \ D meeting B0 and such that the integral

closure β′
k( eXϕ)

of β in k(X̃ϕ) is a free β-module of rank [k(X̃ϕ) : k(B)].

Up to shrinking U , we may assume that the open subset U ⊗A Asep =
Spec(β ⊗A Asep) of (B \ D)⊗A Asep has the property that the integral
closure (β ⊗A Asep)′

ksep(X)
of β ⊗A Asep in ksep(X) is a free β ⊗A Asep-

module of rank [ksep(X) : ksep(B)]. Furthermore if f1, . . . , fd is a basis
of the β-module β′

k( eXϕ)
, it is also a basis of the β ⊗A Asep-module

(β⊗A Asep)′
ksep(X)

: this follows from its discriminant being invertible in

β (so in β⊗AAsep too) conjoined with ksep(X) = ksep(X̃ϕ) and [k(X̃ϕ) :
k(B)] = [ksep(X) : ksep(B)]. Conclude that (F sep)−1(U ⊗A Asep) and

(F̃ϕ)−1(U)⊗A Asep are isomorphic above U ⊗A Asep, thus proving first
claim of lemma 2.3.
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It follows that X sep
0 and X̃ ϕ

0 ⊗κ κ are birationally isomorphic. As

the former is irreducible, X̃ ϕ
0 is geometrically irreducible. As X sep

0

and X̃ ϕ
0 ⊗κ κ are also normal, the equivalence between function field

extensions and covers recalled in §2.1 yields that the κ-covers F sep
0 and

F̃ϕ
0 ⊗κ κ are isomorphic (and not just birationally isomorphic). Using

this in the special case ϕ = 1 yields that these two covers are also
isomorphic to F0 ⊗κ κ. �

2.4.5. End of proof of proposition 2.2. It follows from assumption (κ-

big-enough) that there are κ-rational points on X̃ ϕ
0 not lying above

any point in D0. Define F to be the set F̃ϕ
0 (X̃ ϕ

0 (κ)) \ D0. Let t0 ∈
F , x ∈ X̃ ϕ

0 (κ) above t0 and t0 ∈ B(A) be a lift of t0; such a lift
exists from Hensel’s lemma applied to the smooth variety B. From

Hensel’s lemma applied to the morphism F̃ϕ : X̃ ϕ → B which is étale

at the neighborhood of t0, x can be lifted to some point in X̃ ϕ(A); the

corresponding point x on the generic fiber X̃ϕ is k-rational and lies
above t0 (viewed in B(k)). The twisting lemma 2.1 finishes the proof
of proposition 2.2.

2.5. On the hypotheses of proposition 2.2. The following two lem-
mas provide practical conditions that guarantee the hypotheses (κ-big-
enough) and (good-red) of proposition 2.2.

Lemma 2.4. Condition (κ-big-enough) holds if κ is a finite field of
order bigger than a constant c, which is described in addendum 2.5.

Proof. The proof rests on the Lang-Weil inequality and more specifi-
cally on this statement:

Lang-Weil inequality. Let V be a proper geometrically irreducible
variety of dimension d ≥ 1 over a finite field κ with q elements. There
exists a constant β depending only on the κ-variety Vκ = V ⊗κ κ such
that |#V (κ) − qd| ≤ β

√
q2d−1. For each prime ` 6= p, the constant β

can be taken to be the largest dimension β`(Vκ) of the `-adic cohomology
groups H i(Vκ, Q`), i = 0, 1, . . . , 2d, viewed as Q`-vector spaces.

(This follows from the works of Grothendieck and Deligne on Weil’s
conjectures, for which we refer to [Del74] and [Del80]; references to
[AGV73] about Grothendieck’s contribution are given in [Del74, §I].
For any prime ` 6= p, Grothendieck has defined some `-adic cohomology
groups H i(Vκ, Q`), which are finite dimensional Q`-vector spaces and

relate to #V (κ) via the formula #V (κ) =
∑2d

i=0(−1)i Tr(F, H i(Vκ, Q`)),
where Tr(F, H i(Vκ, Q`)) is the trace of the Frobenius automorphism in-
duced on H i(Vκ, Q`). By Deligne’s theorem [Del80, théorème 3.3.1], the
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eigenvalues of the Frobenius automorphisms acting on H i(Vκ, Q`) are

of absolute value ≤
√

qi. Furthermore the main term in the sum above
is for i = 2d: Tr(F, H2d(Vκ, Q`)) = qd).

In order to deduce the (κ-big-enough) condition, consider a A-model
F ′ : X ′ → B of (f ⊗k ksep,F0⊗κ κ) and apply the Lang-Weil inequality

to get a lower bound of the form qd−β`(Vκ)
√

q2d−1 for the total number
of κ-rational points on V = X ′

0. As X ′
0 ⊗κ κ is isomorphic to X0 ⊗κ

κ, we have in fact β`(Vκ) = β`(X0 ⊗κ κ). Next bound from above
the number of these κ-rational points that may lie above the closed
subset D0 ⊗κ κ. This number, say N , is bounded by the degree of f
multiplied by the number of κ-rational points lying on some irreducible
component of D0⊗κκ defined over κ. Due to the (good-red) assumption
(conjoined with p 6 | |G|), the components of D0⊗κ κ correspond via the
reduction process to the irreducible components of D ⊗k ksep. Denote
their number by r(D). Using Lang-Weil again, we obtain that for any
prime ` 6= p, we have N ≤ |G| r(D) (1 + b`(D)) qd−1 where b`(D) is the
maximum of the β`(Vκ) where V ranges over the components of the
divisor D0 ⊗κ κ. As the main term in the lower bound is in qd, we
obtain the desired conclusion if q is suitably large. �

Addendum 2.5. More precisely, the condition on q is as follows. For each
prime ` 6= p, there is a constant c` depending on r(D), |G|, β`(X0⊗κ κ)
and b`(D) and q should be bigger than one of these c`. For covers of
B = P1 and with B = P1

A, β`(X0 ⊗κ κ) is the genus of X0 ⊗κ κ which
here equals the genus g of X and can be bounded in terms of r and
|G| by the Riemann-Hurwitz formula; and b`(D) = 0. The constant c`

depends only on r and |G|, and no longer on the prime `. It can be
made totally explicit: we have #X0(κ)− (q +1) ≥ −2g

√
q; the number

q should satisfy q + 1− 2g
√

q > |G| r.

Lemma 2.6. For B = P1, the (good-red) condition holds if the divisor
D is étale over A, p 6 | |G| and f has no vertical ramification at p.

Proof. As in §1.2 where B = P1, denote the branch divisor D by
{t1, . . . , tr}. We may assume that t1, . . . , tr are in the valuation ring A.
The divisor D then corresponds to a polynomial of the form D(T ) =
δ
∏r

i=j(T−ti) with δ ∈ A\p. Assume that D∪B0 does not have normal

crossings. The polynomial D′(T ) then vanishes at some ti modulo p,
or, equivalently, ti is a multiple root of D(T ) modulo p. But then there
is some other root tj 6= ti of D(T ) equal to ti modulo p, contradicting
that D is étale. �
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3. Globalization

We explain how in the situation of theorem 1.2, local information
can be obtained for each place v ∈ S from the specialization result of
§2.3 and then globalized to deduce the desired result.

3.1. Generalization. We will prove a more general statement. As in
§1.2 we have a finite group G, a field K, a finite set S of finite places
of K and a G-cover f .

The field K is assumed to be the quotient field of some Dedekind
domain R and S is a finite set of places of K corresponding to some
prime ideals in R. For every place v, the completion of K is denoted
by Kv, the valuation ring by Rv, the valuation ideal by pv, the residue
field Rv/pv by κv, the order of κv by qv and its characteristic by pv.

The G-cover X → B has here a more general base space than P1; we
assume the following on B:

(*) B is a smooth projective and geometrically integral K-variety and
is given with an integral model B over R such that Bv = B ⊗R Rv is
smooth for each v ∈ S.

Denote the branch divisor of f by D and its Zariski closure in B and
Bv by D and Dv respectively.

The G-cover f is assumed to be defined over K and we retain the
good reduction assumption (good-red) from §1.2, generalized as follows
for a K-G-cover of B:

(good-red) for each v ∈ S, pv 6 | |G|, Dv is a smooth divisor, Dv ∪ (Bv)0

is regular with normal crossings (over Rv) and f ⊗K Kv has no vertical
ramification at pv.

Finally we assume that for each v ∈ S, the residue field κv is finite
of order qv ≥ C(f,B) where the constant C(f,B) replaces the constant
c(|G|, r) of theorem 1.2; it depends on f and B and is described in the
proof of the following lemma 3.1.

Lemma 3.1. For each v ∈ S, assumption qv ≥ C(f,B) guarantees
that condition (κv-big-enough) from proposition 2.2 holds for the Kv-
G-cover f ⊗K Kv and A = Rv.

Proof. It suffices to show that the constant c from lemma 2.4 can be
chosen depending only on f and B. Fix a prime ` 6= pv for all v ∈ S.
From addendum 2.5, for each v ∈ S, there is a constant c` depending
on r(D), |G|, β`(X0 ⊗κv κv) and b`(D) and qv should be bigger than
c`. Here X0 is the special fiber of the Rv-scheme obtained by scalar
extension from the R-scheme corresponding to the normalization of
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B in K(X); in other words, all κv-varieties X0 come from a global K-
variety. In this situation we have this “standard” property of the `-adic
cohomology groups:
(**) the Q`-dimensions of H i(X0 ⊗κv κv, Q`) can be bounded by a con-
stant depending only on X (and independent of v).

(Specifically this follows from exposé VI of [Gro73] by J.-P. Jouanolou,
and in particular from proposition 1.2.6 there which shows that for
every `-adic constructible sheaf F on a locally noetherian prescheme X,
there exists a constructible stratification of X such that the restriction
of F to each stratum is a “twisted constant” `-adic sheaf).

The same remark applies to the parameter b`(D) to provide the desired
conclusion. The constant C(f,B) can be made more precise; in par-
ticular, in the case B = P1, it can be expressed as a constant c(|G|, r)
depending only on |G| and r. �

3.2. Argument. Under the assumptions in §3.1, the argument below
leads to theorem 3.2 which is the announced generalization of thm 1.2.

For each v ∈ S, consider the Kv-G-cover fv : Xv → Bv obtained
from f by scalar extension from K to Kv. Fix an unramified Grun-
wald problem ϕ = (ϕv : GKv → G)v∈S. From our assumptions, condi-
tions (good-red) and (κ-big-enough) from the local specialization result
(proposition 2.2) are satisfied for the cover fv, and the homomorphism
ϕv is unramified, for each v ∈ S.

Conclude from proposition 2.2 that, for each v ∈ S, the set of all
tv ∈ B(Kv) \D such that the specialization representation of fv at tv
is conjugate in G to ϕv : GKv → G contains a non-empty open subset
Uv ⊂ B(Kv) \D. If points t0 exist in the set B(K)∩

∏
v∈S Uv, then for

each v ∈ S, the specialization representation of fv at t0 is conjugate in
G to ϕv : GKv → G; hence the Galois group Gal(K(X)t0/K) contains
a conjugate Hgv

v in G of the subgroup Hv = ϕv(GKv) ⊂ G.

3.3. Conclusion. The following conditions respectively guarantee that
B(K) ∩

∏
v∈S Uv 6= ∅ and Gal(K(X)t/K) = G in the argument. The-

orem 3.2 is our conclusion under these additional assumptions.

(WA/S) The variety B has the weak approximation property with re-
spect to S, i.e. B(K) is dense is

∏
v∈S B(Kv).

(g-complete) If Cv is the conjugacy class of some generator hv of Hv,
the set {Cv | v ∈ S} is g-complete, that is, no proper subgroup of G
intersects each of the conjugacy classes Cv (v ∈ S).

The second condition was introduced by M. Fried [Fri95] (in another
context). It does not depend on the generator hv of Hv.
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Theorem 3.2. Let K, S, G, B, f be as in §3.1. Assume condition
(WA/S) holds. We have this Hilbert-Grunwald specialization property:

(HGr-spec) for each unramified Grunwald problem (ϕv : GKv → G)v∈S

for which condition (g-complete) holds, there exist open subsets Uv ⊂
B(Kv) \ D (v ∈ S) such that B(K) ∩

∏
v∈S Uv 6= ∅ and each element

t0 in this set yields a specialization of f that is a K-solution to the
Grunwald problem (ϕv : GKv → G)v∈S.

3.4. Final reduction. If the group-theoretical condition (g-complete)
does not hold, it is possible to reduce to it at the cost of throwing
in more places in S, and assuming that the approximation condition
(WA/S) holds for this bigger S. This explains the appearance of the
set S0 in conclusion (HGr-spec) of theorem 1.2 (whereas S0 = ∅ in
theorem 3.2). We recall below the argument, which has already been
used in various versions in earlier works. This reduction ends the proof
of theorem 1.2.

The main point is to construct, for each g ∈ G, a place vg of K
and an unramified homomorphism ϕvg : GKvg

→ G with the following
properties:

(a) for each g ∈ G, the Galois group Hvg = ϕvg(GKvg
) s conjugate to

the subgroup 〈g〉 of G,

(b) for each g ∈ G, there is an open subset Uvg ⊂ B(Kvg) \ D such
that each t ∈ Uvg yields a specialization Kvg(X)t/Kvg of Galois group
conjugate to Hvg in G,

(c) the set S0 = {vg | g ∈ G} is disjoint from S.

If then T = S∪S0 and t0 ∈ B(K)∩(
∏

v∈T Uv), the specialization of f
at t0 still satisfies the desired Grunwald property regarding the places
v ∈ S but has this extra property: for each g ∈ G, the conjugacy class of
g meets the group Gal(K(X)t0/K). From a classical lemma of Jordan
[Jor72], the set of all conjugacy classes of a finite group is g-complete.
So the Galois group Gal(K(X)t0/K) is all of G and the specialization
K(X)t0/K is a K-solution to the initial Grunwald problem.

Existence of such additional places vg and associated ϕvg is guaran-
teed under the following conditions, which are satisfied if as in theorem
1.2, K is a number field and B = P1:

- D is a smooth divisor with normal crossings over the field K,
- there exist infinitely many places v with κv finite of characteristic not
dividing |G| and of order ≥ C(f,B).
These two conditions make it possible to find additional places vg sat-
isfying the assumptions of theorem 3.2 (the (good-red) condition and
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qv ≥ C(f,B)) and such that 〈g〉 is a Galois group of some unramified
extension of Kvg (g ∈ G).

The set S0 can further be chosen disjoint from any prescribed finite
set of places.

4. Effectiveness and application to the RIGP

Our approach leads to interesting types of bounds. Assume B = P1

and K = Q (for simplicity). The following result is a fully effective
version of theorem 1.2. For short, a prime p is said to be good below
(for the regular extension F/Q(T )) if the branch divisor t = {t1, . . . , tr}
is étale and there is no vertical ramification at p, and bad otherwise.

Corollary 4.1. Let G be a finite group and F/Q(T ) be a regular Galois
extension of group G. There exist integers m0, β, δ > 0 depending only
on F/Q(T ) such that for every x ≥ m0, the following holds. Let Sx be
the set of good primes p with m0 < p ≤ x and ϕ = (ϕp : GQp → G)p∈Sx

be an unramified Grunwald problem. Then there exists an integer t0(x)
such that

(i) 0 ≤ t0(x) ≤ β
∏
p∈Sx

p ,

(ii) for each integer t ≡ t0(x) modulo (β
∏

p∈Sx
p), t is not a branch

point of F/Q(T ) and the specialization Ft/Q at t of the extension
F/Q(T ) is a solution to the Grunwald problem ϕ,

(iii) log |dFt0(x)
| ≤ δ x.

Addendum 4.2 (more on the constants). Denote the number of non-
trivial conjugacy classes of G by cc(G), the number of branch points
of F/Q(T ) by r and the number of bad primes by br(t). One can
take m0 such that the interval [4r2|G|2, m0] contains at least br(t) +
cc(G) distinct primes, and β to be the product of cc(G) good primes
in [4r2|G|2, m0]. The constants m0 and β only depend on |G|, r and
br(t). The constant δ can also be made explicit but is more involved.

In particular, for x = m0 for which Sx = ∅, assertion (ii) concludes
that Gal(Ft0(x)/Q) ' G. So t0(m0) is a specialization for which the
conclusion of Hilbert’s irreducibility theorem holds and it is bounded
only in terms of |G|, r and br(t). Note also that this special situation
corresponds to some result originally proved in [Eic39] and [Fri74]: any
Hilbert subset associated with a K-G-cover f : X → P1 contains an
arithmetic progression (am + b)m∈Z.

Proof. The proof consists in making effective the arguments used to
prove theorem 1.2. Condition p ≥ 4r2|G|2 assures that p 6 | |G| and
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p ≥ c(|G|, r); recall that in our specific situation the latter amounts to
p + 1 − 2g

√
p > |G| r (addendum 2.5) and so our claim easily follows

from the Riemann-Hurwitz formula.
Fix a subset S0 ⊂ [4r2|G|2, m0] of cc(G) good primes and associate

in a one-one way a non trivial conjugacy class Cp to each prime p ∈ S0.
For each p ∈ S0, pick an element gp ∈ Cp and construct an unramified
epimorphism ϕp : GQp → 〈gp〉 (in other words an unramified Galois
extension Ep/Qp with group 〈gp〉). Consider the Grunwald problem
ϕ = (ϕp)p∈Sx∪S0 . As all primes p ∈ Sx ∪ S0 are ≥ 4r2|G|2, proposi-
tion 2.2 applies to show that one can find a coset Up of some integer
tp(x) modulo pZp such that for all t ∈ Up, t is not a branch point of
F/Q(T ) and the specialization (FQp)t/Qp corresponds to the epimor-
phism ϕp : GQp → 〈gp〉 (p ∈ Sx ∪ S0). Use next the chinese remainder
theorem to find an integer t0(x) ∈ Z such that t0(x) ≡ tp(x) modulo
p for all p ∈ Sx ∪ S0; such an integer can be chosen satisfying con-
dition (i). Condition (ii) follows from already explained globalization
arguments; the primes in the subset S0 ⊂ [4r2|G|2, m0] and the associ-
ated morphisms ϕp are used to guarantee that Gal(Ft/Q) meets each
conjugacy class of G and so equals G (as explained in §3.4).

To prove (iii) let ∆(T ) ∈ Z[T ] be the discriminant of the irreducible
polynomial of some primitive element of F/Q(T ), integral over Z[T ].
We have |dFt0

| ≤ |∆(t0)| ≤ c1|t0|c2 with c1, c2 depending on f . Using
that log(

∏
p∈Sx∪S0

p) ∼ x as x →∞, we obtain log |dFt0
| ≤ δ x for some

constant δ > 0 depending on f . �

Finally we explain how corollary 1.6 follows from corollary 4.1.

Proof of corollary 1.6. Fix two functions `(x) and m(x) tending to ∞
with x and a group G satisfying condition (*) of corollary 1.6. Assume
there exists a G-cover f : X → P1 of group G, defined over Q. Apply
corollary 4.1 with for each prime p ∈ Sx, ϕp : GQp → G taken to be
the trivial homomorphism. Conclude that for every x ≥ m0, there
exist specializations Ft0(x)/Q of F/Q(T ) at some t0(x) ∈ Q that are
unramified and totally split at every prime p ∈ Sx. Thus, with the

notation of corollary 1.6, we have π
Ft0(x)

nts (x) ≤ π(m0) + br(t) (with
π(m0) the number of primes ≤ m0). This contradicts assumption (*)
from corollary 1.6 for all suitably large x as from corollary 4.1 (iii) we
also have log |dFt0(x)

| ≤ δ x. �

5. Proof of theorem 1.3

As in theorem 1.3, fix a finite group G and assume that the base
space of the covers is B = P1, that K is a number field and that for
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each v ∈ S, we have pv 6 | 6|G| and qv ≥ c(G). The constant c(G) is
defined in §5.6.

5.1. 1st step: reduce to the situation of a group with a trivial center.
If Z(G) 6= {1}, use [FV91, lemma 2] to consider a group extension

ε : G̃ → G such that Z(G̃) = {1}: one can take G̃ = Γd o G with Γ
any non abelian finite simple group, d = |G| and where G acts on Γd

by permuting the factors of Γd via the regular representation of G (in

other words, G̃ is the wreath product of Γ and G). Fix Γ = PSL2(F3).
As 2 and 3 are the only primes dividing |PSL2(F3)| and no prime pv

divides 6 |G|, no pv divides |G̃| (v ∈ S). If Z(G) = {1}, just set G̃ = G.

5.2. 2nd step: construct a Hurwitz space of G-covers of group G̃ with
a component defined over Q.

This can be done thanks to a construction due to Fried. Let C1, . . . , Cs

be the list of all non-trivial conjugacy classes of G̃ and C̃ be the r-tuple
of all pairs (Ci, C

−1
i ), i = 1, . . . , s, repeated twice. Denote the Hurwitz

moduli space of G-covers of P1 of group G̃ with r branch points and

ramification type C̃ by Hr(G̃, C̃). From [Fri95], Hr(G̃, C̃) has a compo-
nent HM defined over Q; more precisely, HM is in this case the unique

Harbater-Mumford component of Hr(G̃, C̃) (see also [DE06]).

5.3. 3rd step: rational points on the reduction of Hr(G̃, C̃).

From [Wew98], Hr(G̃, C̃) can be constructed as a scheme, smooth

and of finite type over Z[1/|G̃|] and the branch point assignment in-

duces an étale morphism π : Hr(G̃, C̃) → Ur over Z[1/|G̃|] onto the
branch point configuration space Ur. Furthermore, there is a natu-

ral compactification π : Hr(G̃, C̃) → Ur with Hr(G̃, C̃) normal and

proper over Z[1/|G̃|] and π ramified only above the discriminant locus

∆r = Ur \ Ur. As pv does not divide |G̃|, the component HM has good
reduction at each place v ∈ S; in particular the special fiber HMv,0 of
HMv = HM⊗Z[1/| eG|] Rv is geometrically irreducible.

As the residue fields κv are finite then, from the Lang-Weil inequality,

if qv is suitably large (depending on r and |G̃| and so eventually only
on G), there exist κv-rational points on HMv,0 that do not lie over the
discriminant locus. These κv-rational points correspond to G-covers of

group G̃, of ramification type C̃ and with field of moduli κv. But these
G-covers are in fact defined over κv: the field of moduli is a field of
definition [DD97, corollary 3.3].
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5.4. 4th step: lift the κv-G-covers.
For each v ∈ S, use Hensel’s lemma and the smoothness of the stack

corresponding to the moduli space Hr(G̃, C̃) to lift the κv-G-covers from
3rd step to Kv-G-covers corresponding to Kv-points on the component

HM (due to Z(G̃) = {1}, the stack and the moduli space coincide,
but this is not needed here). Denote by Uv the v-adic open subset of
HM(Kv) corresponding to Kv-G-covers with an étale branch divisor at
v; by construction our lifted G-covers are in Uv (v ∈ S).

5.5. 5th step: approximation part.
Use the local-global property of KtotS [MB89] [MB01] to find KtotS-

points on HM that lie in Uv for each v ∈ S. From [DDMB04, corollary

1.4], such a point corresponds to some G-cover f̃ : X̃ → P1 that is

defined over KtotS. By construction this G-cover f̃ is defined over
some Galois extension L/K totally split in Kv (v ∈ S) and its branch

divisor is étale at each place v ∈ S. Furthermore, as Z(G̃) = {1} and
pv 6 | |G|, from [Bec91, proposition 2.3], there is no vertical ramification
at each v ∈ S. Combined with lemma 2.6, this shows that the full
condition (good-red) from theorem 1.3 holds.

5.6. 6th step: the Hilbert-Grunwald property.
Fix the constant c(G) in such a way the Lang-Weil inequality can be

applied in §5.3 and c(G) is bigger than the constant c(|G̃|, r) (defined in

§3.1). By construction, the extension ε : G̃ → G splits; let s : G → G̃
be a section. If ϕ = (ϕv : GKv → G)v∈S is a given unramified Grunwald
problem of group G, consider the unramified Grunwald problem sϕ =

(sϕv : GKv → G̃)v∈S of group G̃. Conclude from theorem 1.2 that

f̃ satisfies the Hilbert-Grunwald conclusion (HGr-spec) for the triple

(G̃, S, sϕ). Consider the G-cover f : X → P1 obtained from f̃ by
modding out by ker(ε). It is readily checked that the cover f is defined
over L and satisfies conditions (good-red) and (HGr-spec) for (G, S, ϕ).
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