Some Arithmetic Properties
of Algebraic Covers

PIERRE DEBES

ABSTRACT. Consider a Galois extension F//K and an algebraic cover f:X— B a priori defined
over F'. The cover f may have several models (and possibly none) over each given subfield
E of F'. How do these models compare to each other? Are there better models than others?
‘We establish here a structure result for the set of all various models which can be used to
investigate these questions. The structure, which is of cohomological nature, yields an inter-
esting arithmetical tool: K-covers can be ‘twisted’ to provide other K-models with possibly
better properties. One application is concerned with the Beckmann-Black problem. E. Black
conjectures that each Galois extension E/K is the specialization of a Galois branched cover
of P! defined over K with the same Galois group G. We show the conjecture holds when
G is abelian and K is an arbitrary field; this was known for number fields from results of
S. Beckmann (1992) and E. Black (1995). Other applications include discussions of existence
for a given cover, of a “good” model, a stable model, a model with a totally rational fiber,
etc. Also we clarify an inacurracy in a result of Fried about field of moduli and extensions
of constants. Finally, we continue our study of local-global principles for covers: if a cover is
defined over each Qp, does it follow it is defined over Q7 Here we consider the case of Galois
covers of a general base space B.

1. Introduction

This paper is organized as follows. §2 is devoted to the structure result mentioned in
the abstract for the set of all K-models of a given cover f : X — B a priori defined over a
Galois extension of K. There are two versions. In the first one (§2.4) we assume that the
base space B of the cover satisfies a certain condition introduced in [DeDol] and called
the (Seq/Split) condition. That condition, which is recalled in §2.3, holds for example if
the base space has unramified K-rational points. The general case of the structure result
is given in §2.5. §2.1-§2.3 review some basics relative to the arithmetic of covers.

§2 is used in §3 to study two questions about the realization of covers with some
arithmetical constraint on some fiber. The first one (§3.1) is known as the Beckmann-
Black problem: given a field K, is every finite Galois extension F/K the specialization of
a Galois branched cover of P! which is defined over K and has the same Galois group?
Beckmann and Black answered positively when G is abelian and K is a number field.
We extend this result to arbitrary fields K. The second question (§3.2) is about the
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existence for a given K-cover of an unramified totally K-rational fiber. We comment on
this property: in particular we recapitulate what is known about it and review several
situations where it revealed helpful.

84 is about field of moduli (§4.2) and extension of constants (§2.5.1). Given a K-cover
fK, consider, on one hand, the Galois closure fj\( of fx over K and, on the other hand,
the Galois closure fof fx @k K5 over the separable closure K of K. Th.4.1 (§4.3) relates
the extension of constants of fx in ]/”;\( and the field of moduli of f as G-cover. Two
consequences are given (§4.4). The first one is a criterion for the field of moduli of fto
be a field of definition (as G-cover). The second one clarifies an inacurracy in a result of
Fried about extensions of constants in a cover with centerless group. A counter-example
to Fried’s original statement is given in §4.1.

The theme of §5 is the local-to-global principle for covers: if a cover is defined over
each @, does it follow it is defined over Q7 The state of the question is recalled in §5.1.
Essentially the local-to-global principle holds for G-covers; and for mere covers, it holds
under some additional hypotheses on the monodromy group and is conjectured not to hold
in general. We consider the case of mere covers that are Galois over Q. The local-to-global
principle is known to hold then if the base space B satisfies the (Seq/Split) condition. Here
we consider the general case, that is, we do not assume the (Seq/Split) condition. Our
main result appears in §5.3. Our approach uses the notion of Galois covers given with the
action of a subgroup of the automorphism group. These objects, called SG-covers, and

which generalize both mere covers and G-covers, are introduced in §5.2.

NoTATION — Given a Galois extension E/k, its Galois group is denoted by G(E/k). Given
a field k, we denote by ks a separable closure of k and by G(k) the absolute Galois group

G(ks/k).

2. Structure result for models of a cover

2.1. Mere covers and (G-covers. The main topic of this paper is the arithmetic of
covers. There are classically two situations. One is concerned with not necessarily Galois
covers — traditionally called “mere covers” — while the other one considers “G-covers”,
i.e., Galois covers given with the Galois action.

Given a field K, a regular projective geometrically irreducible variety B defined over
K, mere covers f : X — B over K correspond (via an equivalence of categories) to finite
separable regular field extensions K (X)/K(B) while G-covers of B of group G over K
correspond to regular Galois extensions K (X)/K(B) given with an isomorphism of the
Galois group G(K(X)/K(B)) with G.
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We denote the variety B with the reduced ramification divisor D removed by B* and
the K-arithmetic fundamendal group of B* by Il (B*) or simply by IIx when the context
is clear. Degree d mere covers of B over F, unramified over B* correspond to transitive
representations ¥ : IIp(B*) — Sg such that the restriction to Il (B*) is transitive. G-
covers of B of group G over F correspond to surjective homomorphisms ® : IIp(B*) — G
such that ®(Ilp, (B*)) = G.

We freely use these notions in the sequel; see [DeDol;§2] for more details. In the rest

of this section we fix a field K and a variety B as above.

2.2. Descent of the field of definition of [G-]covers. As in [DeDol], we frequently
use the word “|G-]cover” for the phrase “mere cover [resp. G-cover|”. Suppose given a
Galois extension F'/K and a [G-]cover f : X — B a priori defined over F' and such that
the ramification divisor D is defined over K. In the mere cover situation, we will always
assume that the Galois closure over F' of the mere cover is, as G-cover, defined over F.
This insures that the group of the cover (i.e., the Galois group of the Galois closure) is
the same over F' as over F;. This is of course not restrictive in the absolute situation, i.e.,
when F' is separably closed.

A K-model of the [G-]cover f is a [G-]cover fx : X — B over K such that the [G-
|cover over F' obtained from fx by extension of scalars from K to F, which we denote by
fx @k F, is isomorphic to f over F. A [G-]cover f is said to be defined over K if it has a
K-model fx. A significant problem is to study the descent of the field of definition of the
[G-]cover f, and, more generally, to find its k-models for K C k C F. We introduce some
notation that makes it possible to handle these questions simultaneously in both the mere
cover and G-cover situations.

Let ¥ : IIp(B*) — Sy [resp. @ : [Ix(B*) — G] the representation of Iz corresponding
to the mere cover [resp. G-cover| f: X — B. In both cases let G denote the group of the

cover. Then set

G in the G-cover case
N =
Norg,G in the mere cover case
Z(Q) in the G-cover case
C = CennyG =
Ceng,G in the mere cover case

where Z(G) is the center of G and Norg,G and Ceng,G are respectively the normalizer
and the centralizer of GG in S4. Finally regard N as a subgroup of S; where d is the degree
of f: in the mere cover case, an embedding N — S; is given by definition; in the G-cover

case, embed N = (G in S, by the regular representation of G.
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Then, in both the mere cover and G-cover situations, the [G-]cover f : X — B corre-
sponds to the representation ¢ : IIp(B*) — G C N and the following holds [DeDol].

Proposition 2.1 — (a) The K-models of f correspond to the homomorphisms i (B*) —
N that extend the homomorphism ¢ : llp(B*) — G C N. In particular, the [G-]cover f
can be defined over the field K if and only if the homomorphism ¢ : llp(B*) — G C N

extends to an homomorphism g (B*) — N,

(b) Two [G-Jcovers over F are isomorphic if and only if the corresponding representa-
tions ¢ and ¢' of Iy are conjugate by an element @ in the group N, that is, ¢'(x) =
0p(x)p~t for all x € g (B*)

A representation IIx(B*) — N extending ¢ : [Ip(B*) — G C N will be called a K-
model of ¢. From (a), K-models of the representation ¢ correspond to K-models of the

[G-]cover f.

2.3. Fibers of a cover.

2.8.1. Condition (Seq/Split). Fix a Galois extension F/K, a divisor D of B with
simple components defined over K and assume that the exact sequence of fundamental

groups

1 — HF(B*) — HK(B*) — G(F/K) —1

splits. This condition was introduced in [DeDol| where it is called (Seq/Split).
Consider the special case F' = K and the base space B has K-rational points off the
branch point set D. Then condition (Seq/Split) classically holds: indeed each unramified

K-rational point t, provides a section S;, : G(K) — Ik .

2.8.2.  Arithmetic action of G(F/K) on a fiber. Suppose given a degree d mere
cover fix @ Xk — B over K unramified over B* and let ¢ : i (B*) — Norg,G be
the associated representation. Given an unramified K-rational point ¢, on B, denote the
compositum of all fields of definition over K of points in the fiber fl;l(to) by Kyt
equivalently, Ky, ; is the compositum of all residue fields at Z, of the Galois closure of
the extension K(X)/K(B). We call the field Ky, ; the splitting field of fx at t,.

On the other hand, condition (Seq/Split) does not always hold: an example in which it does not is given in
[DeEm].
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Proposition 2.2 [Del;Prop.2.1] — For each 7 € G(K), the element (¢px St,)(T) is conju-
gate in Sy to the action of T on the fiber f;l(to). Furthermore, the splitting field Ky, ;, of
fx att, corresponds via Galois theory to the homomorphism ¢ Sy, : G(K) — N; that is,
it is the fized field in K, of Ker(¢x St,) and the Galois group of the extension K¢, 1+ /K

s the image group of ¢x S¢, -

Return to the general case: let s : G(F/K) — Il denote a section to the map Iy —
— G(F/K) (not necessarily of the form s;, ). Each element of Ilx induces a permutation
of the different embeddings of the function field K(Xg) in a separable closure (K(B))s
of K(B). This set of embeddings K(Xg) — (K(B))s can be viewed as the geometric
generic fiber of the cover. By analogy with the case s = S;,, for each 7 € G(F/K), the
element (¢ S)(7) is called the arithmetic action of T on the generic fiber associated with
the section s [DeDo1;§2.9]. Furthermore, the fixed field in F' of Ker(¢x$S) is denoted by
Ky, s and called the splitting field of f at S; the Galois group of the extension Ky, /K is
the image group of ¢xS.

2.3.3. Remarks on K-points versus K -sections.

(a) Assume F = K, and call K-sections on B* the sections to the map Ilx(B*) —
G(K). For simplicity, assume char(K) = 0. It is unclear how big is the set of K-sections
on B* that do not come from K-rational points on B. This set need not be empty. Take
for K a non PAC field of cohomological dimension < 1 (e.g. K = Q); there is a smooth
projective K-curve B with no K-rational points but from condition cd(K) < 1 there are

K-sections on B*.

(b) For some purposes, K-sections can be as useful as K-rational points. For example,
assume a finite group G can be realized as the Galois group of a regular Galois extension
E/K(B); let ¢ : IIx — G be the associated representation. Assume B is a K-rational
variety and K is hilbertian. Using Prop.2.2, the hilbertian property can be rephrased to
assert that there exists an unramified K-rational point t, € P! such that the composed
map ¢x St, : G(K) — G is onto, thus yielding a realization of G as Galois group over K.
In fact any K-section such that ¢xs: G(K) — G is onto would be just as good. So the
question arises whether there is a weaker assumption on B than “B is K-rational” that
guarantees that if K is hilbertian, there exists a K-section s such that ¢xs: G(K) — G

is onto.

(¢) Consider the Fried-Vélklein/Pop theorem: a field that is countable, PAC and hilber-
tian necessarily has a pro-free absolute Galois group of countable rank. At some point, the

proof uses the existence of K-rational points on some K-variety. If K-rational points could
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be replaced in the proof by K-sections, then the assumption PAC could be replaced by
“cd(K) < 1”. Thus the Fried-Vélklein conjecture — c¢d(K) < 1 and K hilbertian implies
G(K) pro-free of countable rank, for countable fields — would follow. And the Shafarevich

conjecture — Q@ pro-free —, which is a special case, would follow as well.

2.4. Structure result under (Seq/Split). Assume condition (Seq/Split) holds and
let s : G(F/K) — IIk be a section to the map IIx — G(F/K). Let f: X — B be a
[G-]cover defined over F', unramified over B* and ¢ : [Ip(B*) — G C N be the associated
representation. The following notation is used below. Given two maps «, (3, the composed
map is denoted by a3 (when it exists); for maps from a set S to a group G, the product
map, sending each s € S to a(s)3(s), is denoted below by « - (3.

Proposition 2.3 — Assume f is defined over K. Let ¢ : Ilg — N be the representation
associated with some K-model f7 of f and set p° = ¢%S. Then the set of all K-models
bk of ¢ is in one-one correspondence with the 1-cochain set Z*(G(F/K),C, ¢°) (precisely
defined in the proof).

More precisely, the K-models of ¢ are those maps ¢ : g — N which equal ¢ on Il g
and equal 0 - ©° on G(F/K) (via s), for some 0 € Z'(G(F/K), C, ¢°).

Furthermore, if s’ is a section to the map llx — G(F/K), then s’ = o - S for some
o € ZYG(F/K),lg,s) and the arithmetic action of G(F/K) on the generic fiber of ¢x

associated with the section S’ is given by
p=¢o-0-¢°

Proof. The field K is the field of moduli of the [G-]cover f relative to the extension F/K
(since f is defined over K). From [DeDol]| (see Main Theorem (III)), we have the following.
Let @ : lIx — N/C be the representation of Il modulo C' given by the field of moduli
condition [DeDol1;§2.7]. The K-models of f correspond in a one-one way to the liftings
¢ : G(F/K) — N of the map $s. More precisely, to each given lifting ¢ : G(F/K) - N
corresponds a K-model of the representation ¢, namely the one that equals ¢ on IIx and
equals ¢ on G(F/K) (via s). This K-model has the further property that the action
¢ :G(F/K)— N C S is the arithmetic action of G(F/K) on the generic fiber associated
with the section S.

The map ¢° is a lifting of ©S. Therefore the set of all liftings exactly consists of those
maps ¢ : G(F/K) — N of the form ¢ = 0-¢° where @ is any element of Z'(G(F/K), C, ©°),
i.e., is any map G(F/K) — C satisfying the cocycle condition



Arithmetic properties of covers 7

0(uv) = 0(u) O(v)?" ™

Finally, let s’ be a section to the map Ix — G(F/K). Then o = s’s™! satisfies the

cocycle condition

o(uv) = o(u) o(v)*®

thus, lies in Z'(K,If_,s). The arithmetic action on the generic fiber of ¢x associated

with the section 8’ is given by

¢KS,:¢K(U-S):¢O‘-0-QOO ]

2.5. Structure result (General Case). We fix a Galois extension F'/K and a divisor

D of B with simple components defined over K. We no longer assume that condition
(Seq/Split) holds.

2.5.1. Eztension of constants in the Galois closure ([DeDol;§2.8|. Let fx : Xk — B
be a [G-]cover over K and let ¢ : IIx(B*) — N be the associated representation of
IIx (B*). Consider the function field extension K(Xg)/K(B) associated to fx. Denote

—

the Galois closure of the extension K (Xg)/K(B) by K(Xk)/K(B); its Galois group is the
arithmetic Galois group of fx; denote it by G. Consider then the field K = K (Xg)NF.

The extension K /K is called the extension of constants in the Galois closure of fi of f.
Denote by A the unique homomorphism G(K) — N/G that makes the following dia-

gram commute.

Ig(B*) —— G(K)

| |

N SN N/G
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Proposition 2.4 [DeDol;Prop.2.3] — The homomorphism A corresponds to the extension
of constants K /K in the Galois closure of the model fi of fr. That is, G(F/K) = Ker(A).
The field K can also be described as the smallest extension k of K such that ¢ (I1;) C G,

—

or, equivalently, such that kK(Xg)/k is a reqular extension.

The homomorphism A : G(K) — N/G is called the constant extension map (in Galois
closure) of fi. For G-covers, N/G = {1}, A is trivial and K = K: by definition, G-covers

over K do not have any extension of constants in their Galois closure.

Proposition 2.5 — Let f be a [G-]cover over F and ¢ : Ip(B*) — G C N be the
associated representation. Assume f is defined over K. Let ¢ : llg(B*) — N be the
representation associated with some K-model f7. of f.

Then the set of all K-models ¢ of ¢ with the same constant extension map A as ¢ is
in one-one correspondence with the 1-cochain set Z'(G(F/K), Z(G), ). More precisely,
the K-models of ¢ are those maps ¢ : llg — N which are of the form (OP)- ¢S, for some
© € ZYG(F/K), Z(G),A) and where P is the natural surjection P : Il — G(F/K).

Proof. From [DeDol|, a K-model ¢x with constant extension map A is any homomor-
phism ¢k : I — N extending ¢ : Il — N and inducing the map A : G(F/K) — N/G.
Furthermore, ¢ should also necessarily induce the representation @ : lIx — N/C given
by the field of moduli condition. Consequently § = ¢ -(¢%)~" has values in CNG = Z(G)
and factors through G(F/K). Prop.2.5 immediately follows. [

3. Covers with prescribed fibers

In this section, the base space B is the projective line P! and F = K,. In particular,
condition (Seq/Split) holds. We retain this conclusion from Prop.2.3. If a K-model of a
[G-]cover f (a priori defined over Kj) is known, then other K-models can be obtained by
“twisting” by elements of a 1-cochain set Z!(G(K), C, —). More precisely, let t, € P}(K) be
an unramified point and S;, the associated section G(K) — IIx. The representations ¢ :
[T — N associated with K-models of f are completely determined by their restriction to
I, (which is given) and their restriction ¢ = ¢x S¢, to G(K). If one K-model is known
that has ¢ = ¢°, others are obtained by replacing ° by 6-¢°, for any § € Z'(G(K), C, ¢©°).

This arithmetical twist is an important ingredient of the results of this section.
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3.1. The Beckmann-Black problem. In [Be2|, S. Beckmann asks the following
question: is every finite Galois extension £ /Q the specialization of a Galois branched cover
of P! which is defined over Q and has the same Galois group? A finite group G is said
to have the lifting property (over Q) when the answer is “Yes” for every Galois extension
E/Q of group G. She shows that finite abelian groups and symmetric groups have the
lifting property. This problem has also been considered by E. Black who conjectured that
each finite group has the lifting property over each field K (instead of Q) and proposed a
cohomological approach. Her main result is that over a hilbertian field K, a semi-direct
product of a finite cyclic group A with a group H having the lifting property also has the
lifting property if (|H|,|A|) = 1 and (char(K),|A|) = 1 [BI2]. That includes the case of
abelian groups and also gives new examples of groups with the lifting property, e.g. the
dihedral groups D,, of order 2n when n is odd (see also [Bl1]). Using our terminology,

E. Black’s conjecture can be reformulated as follows.

Conjecture 3.1 (E. Black) — Let K be an arbitrary field, G be a finite group and E/K
be a Galois extension of group G. Then there exists a G-cover f : X — P! of group G
defined over K and some unramified pointt, € P*(K) such that the splitting field extension
Ko t,/K of fx att, (see §2.3.2) is K-isomorphic to E/K.

The main result of this section is the following one, which improves on the initial results
of Beckmann and Black in that the field K is here an arbitrary field.

Theorem 3.2 — The Black conjecture holds if G is an abelian group and K is an
arbitrary field. In particular, the conjecture holds if G(K) is abelian (e.g. K is finite).

Proof. Here is our strategy. We realize G as the group of a [G-]cover f : X — P! defined
over K. The splitting field extension Ky, /K of f at the given point ¢, is some extension
of K. Then we twist the K-model in such a way that the splitting field extension at t,
equals the given extension F/K.

More specifically, suppose given a finite abelian group G and an extension E/K of group
G. Realize it as the Galois group of a G-cover f% : Xx — P! over K with at least one
unramified point t, € P!(K). This is easy if K is infinite. Indeed, take any regular Galois
extension F'/K(T) of group G (such extensions exist (e.g. [MatMa;Ch.4,Th.2.4])); there
exists K-rational points on P! different from the branch points of the extension F/K(T').
However this is more difficult if K is a finite field, especially when the order of G is divisible

by the characteristic of K. Nevertheless, this is possible: see [De3| where it is proved that
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each finite abelian group G can be realized as the Galois group of a G-cover defined over
K and unramified over each element of a finite subset D C P}(K) given in advance.

Next set s = s;,. Let ¢° : G(K) — G be the arithmetic action of G(K) on the
fiber above t,. The given extension E/K corresponds to some surjective homomorphism
¢ : G(K) — G. For abelian G-covers, the set Z'(K, C, °) involved in Prop.2.3 is merely
Hom(G(K),G) (since here C = Z(G) = G)). Consequently, the cover ff ®x K, has
another K-model fx (as G-cover) such that the arithmetic action on the fiber above t,
equals : indeed take § = (°)~! in Prop.2.3. This concludes the proof of the first part
of Th.3.2. The second part readily follows. ]

3.2. Models with a totally rational fiber. In Th.3.2, the extension £E/K can be
more generally any Galois extension of group H C G (instead of H = G). In particular
for H = {1} we obtain that each finite abelian group is the Galois group a G-cover of P!
over K with a totally K-rational unramified fiber fgl(to). Furthermore, the point ¢, can
be prescribed in advance in P!(K). This had been noticed in [Del] and [Des].

Recall that, given a cover fr : Xx — P! and a point t, € P!(K) not a branch point,
the fiber f;c!(t,) is said to be totally K -rational if it consists only of K-rational points on
X k. Below we comment on this condition; in particular we review some situations where

the existence of a totally rational fiber revealed helpful.

3.2.1. Existence results. It is known that a finite group G is the Galois group a G-cover

of P! over K with a totally K-rational fiber in the following situations:
e K is an arbitrary field and G is an abelian group (see above).

e K is an ample field and G is an arbitrary group: this result is essentially due to Har-
bater and Pop (see e.g. [DeDes]). Recall a field K is called ample if every smooth K-curve
with at least one K-rational point has infinitely many K-rational points. Algebraically
closed fields, separably closed fields, more generally PAC fields are ample. Local fields are
ample too. The fields Q' [resp. Q] of all totally real [resp p-adic] algebraic numbers are

other typical examples of ample fields.

It is unclear whether this existence result holds for any field K and any group G. That
would follow from a generalization of E. Black’s conjecture, where the extension E/K

would be allowed to be any Galois extension of group contained in the given group G.

3.2.2. Field of definition of G-covers. A mere cover over K which is Galois over K

and has a totally K-rational fiber is then automatically defined over K as [G-]cover [Del].
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3.2.8. Patching covers. D. Harbater showed that, over a complete valued field K,
G-covers with a totally K-rational fiber can be patched and glued to provide a G-cover
still defined over K and of group the group generated by the groups of the initial covers.
This patching and gluing result is an essential tool in the proof of the Regular Inverse
Galois Problem over a complete valued field [Hal| and also in the proof of Abhyankar’s

conjecture [Ha2].

3.2.4. Stable models. 1 proved in [Del] that a [G-]cover fx defined over a Galois
extension K of k and which has a totally K-rational unramified fiber, is then stable over k.
That is, the field of moduli of fx relative to the extension K /k equals the field of moduli
of f = fx @ ks relative to the extension kg /k. D. Harbater and I combined this Stability
Criterion with a Good Models result due to S. Beckmann [Bel] to prove the following
result [DeHa]. A G-cover of P! over Q, is defined over its field of moduli (relative to
the extension @p/ Qp), except possibly if p is a bad prime, i.e., if p divides the order of
the group of the cover or if the branch points of the cover coalesce modulo p. The result
actually holds in a more general situation where Q,, is replaced by the fraction field of a
henselian discrete valuation ring, with a perfect residue field of cohomological dimension

< 1. M. Emsalem recently extended this result to mere covers [Em].

3.2.5. The Beckmann-Black problem. In [De2] I prove, for ample fields, a mere form
of the conjecture where the Galois cover is required to be defined over K but only as mere
cover. Existence of a G-cover defined over K with a totally K-rational unramified fiber is

also a key ingredient of the proof.

4. Field of moduli and extension of constants

4.1. On a result of M. Fried. In [Fr;Prop.2], M. Fried states that if f : X — P! is
a mere cover defined over K with group a centerless group G then the arithmetic Galois
group G (see §2.5.1) satisfies: G N Ceng,G = {1} (where d is the degree of f). It seems
that this statement is not exactly correct. Here is an argument showing why. Here again,
we use the structure result (Prop.2.3) and the derived arithmetical ‘twist’ on K-models of
a cover.

We use the function field viewpoint. Start with a regular Galois extension E/K(T') of
group G and with a totally K-rational fiber above some K-rational unramified point ¢,:
if K is an ample field, this can be achieved for any group G. Let ¢i : llx — G be the
representation of IIx associated with the extension E/K(T') and ¢ be the restriction of
¢r to Il : for x € I, and 7 € G(K), we have, using Prop.2.2,
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P (25¢,(7)) = p(x)

Let C = Ceng,G be the centralizer of G in its regular representation and ¢ : G(K) —
C be any homomorphism. From Prop.2.3, the representation ¢ has a K-model ¢% :
IIx — Norg,G which equals ¢ on IIx, and equals ¢ on (G(K) (via S) (since here ¢ €
ZYHG(K),C,1) = Hom(G(K),C)). Let E¥/K(T) be the field extension associated with
the “twisted” representation ¢%-: this extension is still Galois over K, but no longer over K.
The arithmetic Galois group is the group generated by G and ¢(G(K)). This contradicts
Prop.2 of [Fr] since elements in ¢(G(K)) centralize G.

In the proof of Prop.2 of [Fr], it seems that an inaccuracy occurs when the author says

—

(after display (2.6)): “Therefore F°(Y) C F°(Y°) C F(Y)”. Indeed Y° — X is obtained

by descent from a cover Y — X which is defined only up to ﬁ—isomorphism. Thus the

containments above hold only up to ﬁ—isomorphism (but not up to F-isomorphism).
However it is possible to modify Fried’s statement so it holds true. The rectified version

is the second consequence of Th.4.1 (Cor.4.3 below).

4.2. Field of moduli [DeDol;§2]. We recall below some basics about fields of moduli.
Fix a Galois extension F//K. Given a mere cover [resp. G-cover| f : X — B a prioridefined
over F, for each 7 € G(F/K), let fT: X™ — BT denote the corresponding conjugate [G-
|cover. Consider the subgroup M (f) [resp. Ma(f)] of G(F/K) consisting of all elements
7 € G(F/K) such that the covers [resp., the G-covers] f and f7 are isomorphic over F.
Then the field of moduli of the cover f [resp., the G-cover f] (relative to the extension
F/K) is defined to be the fixed field FM) [resp. FM&(N] of M (f) [resp. Mg(f)]in F. The
field of moduli of a [G-]cover is contained in each field of definition k such that K C k C F.
So it is the smallest field of definition provided that it is a field of definition.

Assume ¢ : IIp(B*) — G C N is the representation corresponding to the [G-]cover
f+ X — Bover F. Then K is the field of moduli of the [G-|cover f relative to the
extension F'/K if and only if the ramification divisor D is defined over K and the following
condition — called the field of moduli condition —, holds.

(FMod)  For each U € IIx(B*), there exists ¢, € N such that

¢(a") = pud(a) ey (for all z € TIF(B"))
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4.3. Statement of the result. Let fx : Xx — B be a mere cover over K and
ok : U (B*) — G C Sy be the associated representation. Set f = fx @k F and let
f: X — B be the Galois closure over F of the mere cover f: X — B. Recall from §2.2
that we assume that f is defined over F' as G-cover, in other words, that FFK (/)?K) is a
regular extension of F'; this assumption is not restrictive if F' = Ky (i.e., in the absolute

situation). The aim of this section is the following result.

Theorem 4.1 — Let I?/K be the extension of constants in the Galois closure of fx and
G be the arithmetic Galois group. Let Kg be the field of moduli off as G-cover (relative
to the extension F/K ). Then K is an extension of K of degree

[K : Kg] = [Ceng,GNG : Z(G))

4.4. Consequences. In this paragraph, we suppose given a mere cover f : X — B
over F and its Galois closure f : X — B over F and let ¢ : Ip(B*) — G be the
representation corresponding to ]? Let K¢ be the field of moduli of fas G-cover (relative
to the extension F/K).

Corollary 4.2 — Assume that f is defined over K and that Ceng,G = Z(G). Then
f: X — B is defined over its field of moduli K¢ (as G-cover).

Proof. Let fx be a K-model of f as mere cover. Apply Th.4.1 to get K= Kqa. Now K
is a field of definition of the G-cover f (Prop.2.4). O

Corollary 4.3 — Assume that Z(G) = {1}. Then f has a unique Kg-model fi, :
Xk, — B with no extension of constants in its Galois closure (up to Kg-isomorphism,).

Furthermore the arithmetic Galois group G of each K-model fx : X — B of fk, satisfies
@ N CenSdG = {1}

4.1 shows the last conclusion may fail if fx is a model of f that is not a model of fx.,.

-~

Proof. The assumption Z(G) = {1} insures that the Galois cover f is defined over its
field of moduli K¢ [DeDol;Cor.3.2]. That is, the homomorphism ¢ : IIp — G extends to

an homomorphism ¢g. : lIx, — G. The representation ¢ : IIr — S; associated with

G
the mere cover f is obtained by composing ¢ with some embedding i : G — S;. The

homomorphim ¢ extends to an homomorphism Ilx, — Sy, namely the homomorphism
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1K, By construction, the associated Kg-model of f has no extension of constants in its
Galois closure. The uniqueness of such a Kg-model of f follows from Prop.2.5.
Suppose given a K-model fx of fk., i.e., an extension 9y : IlIx — Sq of Yr.. It
follows from
Vr(ke) = Ve (ks) CG

and the definition of K (§2.5.1) that K C K. On the other hand, K is a field of definition
of fas G-cover. Therefore Ko C K. Whence K = Kg. Thus Th.4.1 yields

Ceng,GNG = Z(G) = {1} O

4.5. Proof of Theorem 4.1. The field K is a field of definition of the G-cover f
Therefore K contains K which is the field of moduli of the G-cover f

Let A : G(F/K) — N/G be the constant extension map of fx (in Galois closure) where
as usual N = Norg,G. From Prop.2.4, G(F/K) = Ker(A) and for each field k such that
K C k C K, the kernel of the restriction of A to G(F/k) is G(F/k) N G(F/K) = G(F/K).
Conclude that

(1) K : k] = [A (G(F/k))|

Denote the quotient group G - (Ceng,G N G)/G by T; it is a subgroup of G/G. We
claim that A (G(F/K¢)) C T. Indeed, since K¢ is the field of moduli of the G-cover f,
for each U € Ilg,,, there exists some ¢, € G such that

o) = pud(@)pe"  (x€Tlp)

where ¢ : [Ip — G is the restriction of ¢ to IIp. Now the above formula also holds with
wy replaced by ¢ (U). Conclude that ¢k (U) lies in G, up to an element in Ceng,G (which
also obviously lies in G = ¢x (IIx)). This proves the claim since the map A is the map
induced modulo G by ¢x over G(F/K). Formula (1) then yields

(2) K : Kg] < |T)|

Let k be the fixed field in F' of A~1(T"). We claim that Kg C k. Indeed, let 7 € G(F/k),
i.e., A(T7) € T'. Pick an element U € IIx mapping to 7 via the map IIx — G(F/K). The
element ¢k (U) can be written ¢x(U) = ¢g-c with g € G and ¢ € Ceng,G. Thus we obtain
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o(z") = o(x)? (z € 1lp)

This shows that 7 € G(K¢) and proves the claim. Using formula (1), we obtain

(3) (K : Kg] > [K : k] = [A(A"Y(T))] = T

which together with (2) completes the proof (the equality |[A(A=(T'))| = |T'| holds since
INe @/G and that @/G is the image group of A). [

5. The local-to-global principle

5.1. The problem. We retain the notation of previous sections and assume further
that K is a number field and F = Q. Assume that the [G-]cover f : X — B can be defined
over each completion K, of K. Does it follow that the cover can be defined over K7 We
say that the local-to-global principle holds when the answer is “Yes”. In his thesis, E. Dew
conjectured that the local-to-global principle for G-covers of P! over number fields. This
was proved in [Del] except possibly for number fields that are exceptions to Grunwald’s
theorem (the field Q is not exceptional). This result was extended to G-covers of a general
base space B in [DeDol|. The case of mere covers was then considered in [DeDo2|: the
local-to-global principle was shown to hold under some additional assumptions on the
group G of the cover and the monodromy representation G — S, (with d = deg(f)). Here
we will consider the special case of mere covers that are Galois over Q.

Recall that the field of moduli of a cover embeds in each field of definition. Therefore
if a cover is defined over each K, then its field of moduli is K (relative to the extension
K /K). Hence if the field of moduli is a field of definition, then the local-to-global principle
holds. From [DeDol] that is the case if the cover is Galois over Q and condition (Seq/Split)
(see §2.3.1) holds. The goal of this section is to investigate the problem when the cover is

Galois over Q but condition (Seq/Split) is not assumed.

5.2. SG-covers. Our treatment uses SG-covers which are more general objects
than [G-]covers. They were originally introduced in [DeDol;Final Note| (under a different
name). Here we will only consider Galois SG-covers. Given a group G and a subgroup
I' C G, a Galois SG-cover of fixed subgroup I' C G over K is a mere cover f : X — B over
K which is Galois over K and is given with an isomorphism G ~ G(K(X)/K(B)) and an
embedding T" < Aut(K(X)/K(B)) such that the following square diagram commutes
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G —— G(K(X)/K(B))

| |

I — Aut(K(X)/K(B))

For T" = {1}, SG-covers are mere covers; for I' = G, SG-covers are G-covers. A SG-cover
f: X — Bover K is defined over K if the mere cover f together with the automorphisms
in I' can be defined over K.

From [DeDol;Final Note], isomorphism classes of SG-covers of fixed subgroup I' C G
f: X — B over K correspond to surjective homomorphisms ¢ : II7(B*) — G regarded

modulo conjugation by elements of the group

(1) N = Norg,G N Ceng, (T'™)

where

- the embedding G C Sy is given by the (free transitive) action of G on the d conjugates
of a primitive element of the extension K(X)/K(B), and

- I'* is the image of I' via the classical anti-isomorphism * : G — Ceng,G: identify each
g € G with the element in S; induced by the left-multiplication by g; then the map * send
g on the right-multiplication by g.

For T = {1} (mere cover case), we have N = Norg, (G); for I' = G (G-cover case), we have
N = @. Thus in general, we have G C N C Norg, (G).
As in both the mere cover and G-cover situations, we have the following assertions

(which generalize Prop.2.1). The group N is the one given in (1).

(2) (a) A SG-cover f: X — B of fixed subgroup T' C G over K corresponds to a repre-
sentation ¢ : g (B*) - G C N

(b) The K-models of f (as SG-cover) correspond to the homomorphisms Il (B*) — N
that extend the homomorphism ¢ : Ik (B*) — G. In particular, the SG-cover f can be
defined over the field K if and only if the homomorphism ¢ : i (B*) — G C N extends

to an homomorphism M (B*) — N,
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(¢) Two [G-]covers over K are isomorphic if and only if the corresponding repre-

sentations ¢ and ¢' are conjugate by an element ¢ in the group N, that is, ¢'(x) =
op(x)p™t for all x € g (B*)

The map * can be described more intrinsecally. Denote by G the group

Gy = G x* Aut(G)

The group G is isomorphic to Norg, (G) (e.g. [DeDol;Prop.3.1]). Next use the embedding
G — G sending g to (g, 1) to identify G with a subgroup of G (still denoted by G). For
each g € G, denote the conjugation by g by ¢, (¢4(h) = ghg™'). Then the anti-isomorphism

* is the map

{G—>G+
g9—g"=(g.¢,")

Some groups play a central role in [DeDol] and [DeDo2]: they are N (defined in (1)),
O = Cenn(G), N/C and CG/G ~ C/Z(G) 2.

Proposition 5.1 — Denote the subgroup of Aut(G) of all automorphisms x that are
trivial on T' by Autp(G). Then we have.

(a) N ={(7,x) € G¢|v € G, x € Autp(G)}.

(b) N/G = Autp(G).

(c) C = (Ceng(T))".

(d) CG/G is isomorphic to Ceng(I")/Z(G), which embeds in Autr(G).

(e) Z(G) is a direct summand of C if and only if Z(G) is a direct summand of Ceng(T).
(f) Z(G) C Z(N) if and only if for each x € Autr(G), we have x|z = 1.

Proof. By definition, N = G N Ceng, (I'*) = Ceng, (I'*) and C = Ceny(G); (a) and
(c) follow straightforwardly. The projection G4+ — Aut(G) mapping each (u, x) € G+ to
X € Aut(G) factors through G /G to yield the isomorphism G /G ~ Aut(G); (b) and (d)
follow immediately. The anti-isomorphism * sends Ceng(T') onto (Ceng(T"))" and Z(G)
onto itself. This provides an isomorphism Ceng(T")/Z(G) ~ (Ceng(T))" /Z(G) and proves
(e). Finally (f) readily follows from (a) and the definitions. [

2 Z(G) should a priori be replaced by CNG, but CNG=Z(G) in general.
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5.3. The local-to-global principle for Galois covers. [DeDo2| studies the local-
to-global problem for mere covers, i.e., SG-covers of subgroup I" = {1}. But the paper was
written in a more general setting. Namely the objects we considered were representations
¢ : g, — G C N. In [DeDo2] we were mainly interested in mere covers, which correspond
to N = Norg, (G), and G-covers, which correspond to N = G. But from (2) above, [DeDo2]
applies more generally to SG-covers provided that N is understood as in (1), C' as Ceny (G).

In this context, the second Theorem in §1 of [DeDo2| rewrites as follows (using Prop.5.1).

Theorem 5.2 — Assume that K = Q, or more generally, that K is a number field
for which the special case of Grunwald’s theorem does not occur. Then the local-to-global
principle holds for SG-covers of fixed subgroup I' C G satisfying simultaneously the five

conditions below.

(i) For each x € Autr(G), we have x|zq) =1,

(i) Z(G) is a direct summand of Ceng(T')

(iii/1) Z(Ceng(I')/Z(G)) is a direct summand of Ceng(I")/Z(G).
(i1i/2) Z(Ceng(T')/Z(G)) C Z(Autr(G)).

(iii/3) Inn(Ceng(I") /Z(G)) has a complement in Aut(Ceng(T")/Z(G)).
These five conditions hold for example if Ceng(T') = Z(G) CT.

The local-to-global principle also holds for SG-covers satisfying simultaneously conditions

(i), (ii) above and the following condition
(iii)’ Ceng(T')/Z(G) has a complement in Autp(G).

Originally we were interested by the local-to-global principle for Galois mere covers.
Th.5.2 above can be used as follows. Suppose given a Galois mere cover defined over Q,
for each p. If in addition there is a subgroup I' C G such that for each p, the mere cover
has a model defined over @, along with the automorphisms in I', then f satisfies the local
assumption of the local-to-global principle not only as mere cover but also as SG-cover and
Th.5.2 may be used. The bigger I' the stronger the hypothesis. If I' = G, i.e., is as big as
can be, then the hypothesis does insure that the mere cover is defined over Q (it is even
defined over Q as G-cover). The weakest hypothesis is for I' = {1}. Although no example
is known, it is most likely that the local-to-global principle does not hold in general.

We state some intermediate special cases. In both statements below, K = Q, or more
generally, K is a number field for which the special case of Grunwald’s theorem does not

occur.
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Corollary 5.3 — Let T be a subgroup of a group G such that Ceng(T') C T' N Z(G)
(e.g. Ceng(T') = {1} ). Then the local-to-global principle holds for all SG-covers with fized
subgroup I' C G.

Corollary 5.4 — Let T" be a subgroup of a group G such that Z(G) C T, Z(G) is a
direct summand of Ceng(I') and Ceng(I')/Z(G) has a complement in Autp(G). Then the
local-to-global principle holds for all SG-covers with fized subgroup I' C G.

Indeed, assumptions in Cor.5.3 guarantee that Ceng(I') = Z(G) C I'. Note that if they
hold, then necessarily Z(G) = Ceng(I') = Z(T'). As to Cor.5.4, the assumptions guarantee
here that conditions (i), (ii) and (iii)’ of Th.5.2 hold. Assumptions of both Cor.5.3 and
Cor.5.4 hold if I' = G, i.e., in the G-cover situation. Thus both these results generalize
Th.3.8 of [DeDol].
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