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Abstract. The prevailing theme of the project is Inverse Galois Theory (IGT): realizing
certain algebraic systems with a given Galois structure. Our target is the situation over
the field Q of rationals. Beyond the fundamental Inverse Galois Problem (IGP) – realize
Galois extensions of Q with a given group G – and further classical problems: RIGP,
Noether, Grunwald, we introduce a few more. Some are stronger than the classical ones,
some are weaker; we wish to surround the main issues. The aim is to offer a structuring
picture of IGT. Three coherent sub-topics from which the picture is built are revealed,
also corresponding to three different sub-projects:
1. Lifting and parametrizing problems.
2. IGT with a Hilbert perspective.
3. Pre-Galois Theory.
The prospects and techniques may somehow differ but our plan in the end is that the
combined achievements on these various facets contribute to some significant advances,
including on the IGP. Another goal is to obtain a consistent and graded vision (even
partially conjectural) of the distribution of groups w.r.t. to our IGT structured picture.
Our IGT issues can be considered over other fields k than Q, thereby inducing new
problems, which for some are interesting for they own sake and in any case serve as a
guidance for the fundamental situation over Q. We consider local, Hilbertian, PAC fields,
and although we mostly restrict to characteristic 0, the positive characteristic situation is
a possible direction of our project. Realizing finite groups is our main focus, but solving
embedding problems and moving to profinite groups are natural generalizations. Finally
having a moduli space view is a further enriching and always rewarding approach.

Two hundred years ago, Galois drastically changed the world of polynomials. By provi-
ding a new viewpoint – Group Theory – he in fact opened a new era in mathematics.
Yet, while Galois Theory has become ubiquitous, some fundamental mystery remains:
to what extent can it be reversed? Notably, do all finite groups occur as Galois groups
of polynomials with rational coefficients? This issue is the gist of the project, with the
original situation over the field Q as our ultimate and resolute goal.

1. The territory of the project

1.1. Our IGT picture. The diagram next page summarizes the target area and the
milestones of our project. We refer to our glossary in §3 for a full definition of our abbre-
viated IGT statements (which experts will easily recognize). All implications shown on
the picture are either classical or easy.

There are two main divisions in our picture: vertical and horizontal.

1.1.1. Vertical division. Left side consists of geometric statements while right side is con-
cerned with arithmetic ones. Presence of indeterminates is the recognition sign of the
former. Specialization connects the two sides. We specialize a k-regular Galois extension
F/k(T ) or the corresponding k-cover f : X → P1

T in two ways1:
- for t0 ∈ k, Ft0/k, also denoted by ft0 , is the classical specialized extension of F at t0:
the residue field extension at some prime ideal above t0 in the extension F/k(T ).
- if T0 ∈ k(U) \ k, fT0 : XT0 → P1

U is the pull-back of f along T0 : P1 → P1, which corre-
sponds to specializing T to T0(U). We use the prefix G for this G(eometric) specialization,
which stays on the left side.

Hilbert Irreducibility Theorem (HIT) is the fundamental specialization tool making the con-
nection between geometric and arithmetic sides, notably proving R(egular)IGP ⇒ IGP.

1Here the base space is the projective line P1. Considering more general ones: varieties with Hilbert
property, with some approximation property, unirational varieties, is a possible direction of our project.
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Our IGT picture
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1.1.2. Horizontal division. The 4th line implication RIGP⇒ IGP between the two Inverse
Galois Problems (Regular and classical) is the dividing line. Statements above it are strong
forms of the two historical statements. They may well be all too strong. Disproving them
and thereby setting boundaries to the truth in IGT would be a first goal. For most of
them, even very strong ones, it is a real issue. For all, a bigger goal is to investigate further
(ideally classify) which groups satisfy the statements and which do not. Statements below
RIGP ⇒ IGP are weak forms of the problems, maybe more plausible and accessible.
Proving them this time is a goal of the project.

1.2. The three sub-projects. The group G = Z/8Z is a classical counter-example
to (Grunwald) over Q. Demarche-LucchiniArteche-Neftin have recently given new ones,
over number fields with enough roots of unity [DGN17]. Thus (Grunwald) and the three
statements above, which are old dreams of IGT, are false in general. They are however
still investigated, for various types of groups. For example, by Buhler-Reichstein [BR97],

(*) the only groups with a generic extension F/Q(T ) are the four subgroups of S3.

Strikingly, the status of all other problems was still open. Making progress on them is a
goal. We pursue it via 3 sub-projects, corresponding to a 3-part division of the global
picture. They grew out of and rest on several seminal works: [Dèb17], [Dèb18], the PhD
thesis of my student Legrand [Leg13] and a joint work in progress with Harbater [DH17].
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1.2.1. Upper left: Lifting and parametrizing problems. Problems on 2nd Line are variants
of the idea that a group G could have a universal Galois realization, like Q(

√
T )/Q(T ) for

G = Z/2Z, i.e., that would generate all Galois extensions E/k, or Galois covers X → P1
k,

of group G, by specialization, classical or G(eometric). The first two parametric state-
ments, with one parameter, are introduced in [Dèb18] and [Leg13]. The third one allows
several parameters, but requests genericity, i.e., parametricity over every extension of k.

The first two statements on 3rd Line are weaker lifting properties: they only request
that for every set of N Galois extensions, or Galois covers, there is a Galois realization
that generates them by (G-)specialization. (BB-N), short for Beckmann-Black Arithmetic
lifting property, is fairly classical; the regular analog (reg-BB-N) is introduced in [Dèb18].

Disproving the whole 2nd Line and (reg-BB-2) is a first achievement of our project
(theorem 2.2). No counter-example is known yet for (BB-N) over Q 2, which is known to
hold for N = 1 for Sn, An, abelian, odd dihedral groups and a few other sparse groups.
Proving or disproving (BB-1) over Q, even for a single N, would be a breakthrough.

1.2.2. Upper right: IGT with a Hilbert perspective. (Grunwald) on 3rd Line is also a lif-
ting property, of local extensions to some global extension of k. Its proof by Neukirch
for solvable groups of order prime to the number of roots of 1 in k was a culminating
point of the Abelian approach, initiated by Shafarevich. However (Grunwald) is false in
general and wide open for non-solvable groups. Last statement (Malle) refers to the Malle
conjecture, a celebrated quantitative version of (IGP), known to hold for nilpotent groups
[KM04], again via the Abelian approach.

We offer a specialization approach (4th Line). As a weak (and more reasonable) form

of (Grunwald), [DG12] introduces (UR-Grunwald[) which limits the local extensions to be
lifted to the UnRamified ones with big enough residue characteristic. As to (LB-Malle), it
stands for the Lower Bound part of the Malle conjecture (which also has an upper bound
part). A base result for our project, theorem 2.1 below, connects these statements.

1.2.3. Lower half: Pre-Galois theory. The weak versions of (R)IGP on Last two Lines
come from a joint work in progress with D. Harbater [DH17]. Potentially Galois exten-
sions are those field extensions E/k which become Galois after some linearly disjoint base
change L/k. The pre-Galois variant requires further that the base change be Galois. Ge-
ometrically Galois extensions of κ(T ), for which L = κ(T ), are special cases. Statements
(geo-IGP), (pre-IGP) and (potential IGP) are the corresponding variants of (IGP).

Requiring that a geometrically Galois extension F/k(T ) is Galois over k but not neces-
sarily over k avoids dealing with constant extension in the Galois closure, a main difficulty
of RIGP. Others remain; (geo-IGP) is an ambitious goal of the project, as is its conse-
quence (pre-IGP). An encouraging result is that (Potential-IGP) is true for every group
over Q and over every Hilbertian field [DH17].

2. Methodology and expectations

Below we describe each sub-project: genesis, goals, approach, tools, and then discuss
the expected convergence of the three sub-projects.

2.1. IGT with a Hilbert perspective. Theorem 2.1 improves on (RIGP) ⇒ (IGP).

Theorem 2.1. Over a number field k, (RIGP) implies this unified version of (LB-Malle)

and (UR-Grunwald[): there is a Malle lower bound yα (for some specific α > 0) for the
number of Galois extensions E/k with group G, discriminant of norm |Nk/Q(dE)| ≤ y (as
in (Malle)) and which in addition are solution of a given unramified Grunwald problem.

After nilpotent groups, theorem 2.1 extends the set of groups satisfying (LB-Malle)
to regular Galois groups over Q, the second big category of groups known to be Galois
groups over Q. It is unclear whether the third big approach to realize groups over Q,
using Galois representations, can lead to results in the line of (Malle).

2Two are known, due to Colliot-Thélène, over some number field for Z/8Z and for some p-group over
some ample field.
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Theorem 2.1 is already proved in [Dèb17] for k = Q and will be for a general number
field in the PhD thesis of my student F. Motte. This generalization involves that of a
fundamental Diophantine result which provides fully explicit bounds for the number of
integral points on a curve within a box of bounded size. This result was proved, over Q,
by my former student Walkowiak [Wal05] by refining techniques of Heath-Brown.
Already exciting for itself, the generalization yields an unconditional version of LB-Malle:

(**) for every group G, there is a number field k such that (LB-Malle) holds. One can
take for k any field over which (RIGP) holds.

Interestingly enough, it shows that the arithmetic statement (LB-Malle) behaves like
geometric ones which become true after some base change.

The production of solutions to Grunwald problems by specialization is another devel-
opment of our approach. An interesting point is that the groups involved are typically
non-solvable groups, for which little is known regarding the Grunwald problem. Recent
works of König-Legrand-Neftin even aim at extending the approach to the situation that
the local extensions to be lifted may be ramified.

On the other hand, the outcome of our approach may look too strong for certain (solv-
able) groups, for example the possibility of constructing Galois extensions E/Q with
“many” consecutive totally split primes (“many” compared to the discriminant size). This
may question (RIGP) for these groups. Implementing techniques from analytic number
theory, in the line of the Lagarias-Montgomery-Odlyzko work, is promising.

2.2. Lifting and parametrizing problems. The following results, which already show
some significant progress, demonstrate the potential of our approach.

Theorem 2.2. (a) (Dèbes [Dèb18]) Over any field k ⊂ C, statement (reg-BB-2) does
not hold for Sn, An, with n > 6, infinitely many PSL2(Fp), the Monster group, etc.
Consequently, these groups do not have a k-regularly parametric cover.

(b) (Koenig-Legrand-Neftin [KL18] [KLN]) Over a number field k, none of these groups:
Sn, An, n > 3, abelian groups of order neither a prime nor 4, dihedral groups D2n with
n 6= 1, 9, p (p any prime), have a k-parametric extension F/k(T ).

A big part of the basic material for this sub-project comes from [Dèb18] and Legrand’s
thesis [Leg13] (which has given rise to the papers [DL13], [DL12], [Leg16], [Leg15]), for
example the general Legrand’s non-parametricity criteria, which are used in [KL18].

[Dèb18] contains several other tools, which have become of daily use. First, an Invariant
Comparizon Theorem which compares the invariants of a Galois cover f : X → P1 with
those of G-specializations fT0 : XT0 → P1. For example it provides this key information
when dealing with lifting and parametrizing problems:

(*) the branch point number cannot drop under a rational pull-back T0 : P1 → P1 if fT0
remains connected,

which supplements the Grothendieck-Beckmann theorem on ramification in specializations.
[Dèb18] also contains the twisting lemma for families. The twisting lemma, which goes

back to [DG12] (even to [Dèb99]), turns specialization questions into Diophantine ones.
Starting from two Galois covers f and g of group G, the last family version produces a

polynomial Q̃ ∈ k[U, T, Y ], obtained by “twisting f by g” and which has this property,
for all but finitely u0 ∈ k and t0 ∈ k:

(**) ft0 = gu0 if and only if ∃y0 ∈ k such that Q̃(u0, t0, y0) = 0,

and this conclusion extends to analogous G-specialization issues.
[Dèb18] also introduces the idea of investigating the questions on Hurwitz moduli spaces

of covers (instead of a single cover). This has led to an on-going development, joint with
Koenig-Legrand-Neftin [DKLN18], around questions like whether a Hurwitz space HG,r

(for covers of group G and r branch points) can be regularly parametric, i.e., whether
all covers of group G can be obtained by rational pull-back from those in a given Hur-
witz space. We proved the following which somehow settles the upper left part of the
IGT picture over C.
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Theorem 2.3. For k = C, the following are equivalent.

(a) G ⊂ PGL2(C),

(b) G has a regularly parametric cover f : X → P1
C,

(c) HG,≤r0 =
⋃
r≤r0HG,r is regularly parametric for some r0 ≥ 0.

Furthermore, among the groups from (a), the groups Z/nZ (n ≥ 1) and D2n (n odd) are
the only ones with a generic extension F/C(T ). This last part was known from [BR97]
and their essential dimension theory, but our tools, beside offering another proof, lead to
more precise conclusions, giving the generic extensions on top of the groups.

Many questions remain of interest, like studying systematically the ordered structure of
the set of Galois covers X → P1 with fixed group G, for this order:

(*) f ≺ g if there exists T0 ∈ C(U) \ C such that g is isomorphic to fT0.

Of interest is the surface Q̃(u0, t0, y0) = 0 of (**) which, under mild hypotheses, should
be of general type. The hyperbolicity conjecture of Green-Griffiths-Lang on the rational
curves on a surface and Miyaoka’s results towards it could then be advantageously used
to prove some finiteness results in our context, namely that two C-Galois covers may only
have finitely many minimal common pull-backs. Undoubtably this part over C has plenty
to offer and seems the right way into the main situation over number fields (see §2.4).

2.3. Pre-Galois theory. A motivation is that while the main problems (RIGP) and
(IGP) may seem out of reach, some weaker versions can be considered. (Potential-IGP)
is that for every finite group G, there are linearly disjoint extensions E/k and L/k such
that G = Gal(EL/L); (pre-IGP) requires further that L/k be Galois. As to (geo-IGP),
it is the special case of (pre-IGP) for which k = κ(T ) and L = κ(T ) for some field κ.

We already showed that (Potential-IGP) holds over Q (and over every Hilbertian field)
for every group G [DH17]. But (geo-IGP) and (pre-IGP), though weaker than (RIGP)
and (IGP), are open. Here are two statements that help evaluate the difference.

Both (RIGP) and (geo-IGP) essentially amount to finding k-rational points on some
Hurwitz space HG,r (for some r). But for (RIGP), the Hurwitz space is of G-Galois co-
vers (with their automorphisms) while for (geo-IGP), it is of mere covers (without the
automorphisms). The former covers the latter. Concerning (pre-IGP) vs. (IGP), we know
that the former holds for G if and only if there exists a subgroup A ⊂ Aut(G) such that
(IGP) holds for the semi-direct product Go A [DH17].

The difference may not look so big. Yet we think that the weaker forms are way more
accessible. We have already established that

(a) every group G is a quotient of a group satisfying (geo-IGP), and so of a group satisfying
(pre-IGP) as well, but at the moment we know that this implies (geo-IGP) (and (pre-
IGP)) for G itself only if the quotient is characteristic,

(b) if G is simple, then some power Gn satisfies (geo-IGP) and (pre-IGP) over Q,

(c) a group G satisfies (geo-IGP) over Qab if it possesses a weakly rigid tuple, which seems
much weaker than the rigid analog for (RIGP).

A number of tools are available: rigidity, Hurwitz spaces, Descent Theory, etc., which
have been sharpened and polished in the 80’-90’. We have adjusted them to pre-Galois
theory and we feel that suitably combined with our own techniques, they could exactly
fit our pre-Galois context to show that (geo-IGP) holds over Q, or at least over Qab, at
least for simple groups.

The whole (RIGP) would still be far away as we would have to control the new constants

that appear when passing to the Galois closure F̂ /k(T ) of some regular Galois extension

F/k(T ). This new field of constants F̂ ∩ Q is far from understood and (geo-IGP) and
(pre-IGP) could be the best statements that could be obtained at this stage of knowledge.
Still, understanding better the constant extension phenomenon is another challenge.

There is a further interesting connection of our pre-Galois Theory with Hopf Algebra
Theory and the Hopf Galois extensions of Greither-Pareigis. This in particular sheds some
light on a G-torsor viewpoint that we have developed for our pre-Galois theory.
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2.4. Convergence: the ultimate stage. Our primary goal is the situation over number
fields. Our tools are available in this environment and our approach implementable. The
obstacle then is the Diophantine aspect of IGT, now well-understood but still seemingly
insurmountable.

Considering easier Diophantine situations, e.g. over local or P(seudo) A(lgebraically)
C(losed) fields, remains a good intermediate stage. Results on these fields not only help
understand and solve the “other issues” – from Group and Galois Theory, Algebraic
Geometry – but are also worthwhile for they own sake. Hilbertian PAC fields (e.g. QtotR(i)
with QtotR the totally real algebraic number field), whose absolute Galois group is pro-free
of countable rank, have some rich arithmetic. They show the way to number fields.

We insist however on considering these easier situations only in fine and on having a
more global approach, over general fields k. The goal is to pinpoint the real Diophantine
need. Here we take advantage of the explicitness of our tools, which makes it possible to
- closely follow our constructions and keep track of their definition field, and,
- unravel the various facets of the problem, and, thanks to some more focused upstream
work on the group-theoretic and geometric ones, to reduce the Diophantine scope.
The remaining Diophantine issues then either can be solved (over number fields), or can
be precisely connected to well-identified cases of standard Diophantine conjectures. Or,
in fine, they vanish in easier environments.

Recent works illustrate this line of thought, e.g. [Dèb17] [Dèb18] where non-Diophantine
preliminary considerations make it possible to use the twisting lemma over number fields,
or provide decisive constraints for some lifting problems. [KL18] is another example.

3. Glossary

A finite group G and a field k of characteristic 0 are fixed.

IGP: There exists a Galois extension E/k of group G.

RIGP: There exists a k-regular Galois extension F/k(T ) of group G.

HIT: short for Hilbert Irreducibility Theorem.

Noether: If Y = Y1, . . . , Yd are d = |G| indeterminates, the fixed field k(Y)G of G
in k(Y), with G ↪→ Sd acting via its regular representation, is a pure transcendental
extension of k.

G has a parametric extension F/k(T1, . . . , Tr): There is a Galois extension F/k(T1, . . . , Tr)
of group G that is k-regular (F ∩ k = k) and k-parametric, i.e., every Galois extension
E/k of group contained in G is the specialized extension Ft0/k of F/k(T1, . . . , Tr) at some
point t0 ∈ kr, not in the branch locus of F/k(T1, . . . , Tr).

G has a parametric extension F/k(T ): as above with r = 1.

G has a generic extension F/k(T1, . . . , Tr): There is a k-regular Galois extension
F/k(T1, . . . , Tr) of group G such that FK/K(T1, . . . , Tr) is K-parametric for every exten-
sion K/k.

G has a generic extension F/k(T ): as above with r = 1.

G has a regularly parametric extension F/k(T ): The corresponding k-regular Galois
cover f : X → P1

k (of function field extension F/k(T )) has this property: every k-regular
Galois cover g : Y → P1

k of group G is some rational pullback fT0 : XT0 → P1
k of f (for

some T0 in k(U) \ k). Equivalently, every k-regular Galois extension L/k(U) of group G
can be obtained from the k-regular Galois extension F/k(T ) by specializing F (U)/k(U, T )
at some T0 in k(U) \ k.

BB-N (short for Beckmann-Black Arithmetic lifting property): For the given integer
N ≥ 1 and every N-tuple (Ei/k)i=1,...,N of Galois extensions of group contained in G,
there exists a k-regular Galois extension F/k(T ) of group G and N unbranched points
t1, . . . , tN such that Ei/k is the specialized extension Fti/k of F/k(T ) at ti, i = 1, . . . , N .
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reg-BB-N (short for Beckmann-Black Geometric lifting property): For the given integer
N ≥ 1 and every N-tuple (gi : Yi → P1)i=1,...,N of k-regular Galois covers of group G,
there exists a k-regular Galois cover f of group G and N rational maps Ti : P1

k → P1
k such

that gi is isomorphic to the pull-back cover fTI of f along Ti, i = 1, . . . , N .

geo-IGP: There is a k-regular extension F/k(T ) such that Fk/k(T ) is Galois of group G.

potential-IGP: There exists an extension E/k of degree |G| and an extension L/k such
that EL/L is Galois of group G.

pre-IGP: There exists an extension E/k of degree |G| and a Galois extension L/k such
that EL/L is Galois of group G.

Below, k is a number field, kv its v-completion w.r.t. a discrete valuation v and N(G, y)
the number of sub-Galois extensions E/k of k of group G and discriminant of norm
|Nk/Q(dE)| ≤ y.

Malle: For a(G) = (|G|(1 − 1/`)−1 with ` the smallest prime divisor of |G|, there exist
constants c1, c2 > 0 such that for every ε > 0, we have

c1y
a(G) ≤ N(G, y) ≤ c2y

a(G)+ε for every y ≥ y0(ε).

LB-Malle (short for Lower Bound part of Malle conjecture): There exist constants α > 0
and y0 > 0 such that N(G, y) ≥ yα for every y ≥ y0.

Grunwald: For any set S = {Ei/kvi|i = 1, . . . , N} of local Galois extensions Ei/kvi of
group Hi ⊂ G, there is a global extension E/k of group G such that Ekvi/kvi = Ei/kvi,
i = 1, . . . , N .

W-Grunwaldur: There is a finite set E of discrete valuations of k for which this is true:
for every set S = {Ei/kvi |i = 1, . . . , N} of unramified Galois extensions of group Hi ⊂ G,
with vi /∈ E, there exists a Galois extension E/k of group G such that Ekvi/kvi = Ei/kvi,
i = 1, . . . , N .

(The symbol [ indicates that compared to Grunwald, an exceptional finite set E of
discrete valuations is allowed).

LB-Malle & W-Grunwaldur: There is a finite set E of discrete valuations of k and
a constant α > 0 for which this is true: for every finite set S as in W-Grunwaldur,
the number N(G, y, S) of those extensions E/k counted by N(G, y) in LB-Malle which
additionally fullfill the conclusion of W-Grunwaldur satisfies

N(G, y, S) ≥ yα for every y ≥ y0(S).
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