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1. Presentation. The main topic is the irreducibility of polynomials
obtained by reduction or specialization from a polynomial P ∈ A[T, Y ]
with coefficients in an integral domain A and assumed to be irreducible
over the algebraic closure k of the fraction field k of A. By “reduction” we
mean reduction of the coefficients modulo some prime ideal p ⊂ A, and
“specialization” means specialization of the indeterminate T to some value
t ∈ A (1). The case that A is the ring of integers of some number field k is
a typical situation. Another one is when A = R[X1, . . . , Xs] is a polynomial
ring in s new indeterminates X1, . . . , Xs over some coefficient ring R, and p
is the ideal generated by X1−x1, . . . , Xs−xs with x1, . . . , xs ∈ R. We then
think of P as a family of polynomials parametrized by the affine space As
and the reduction is a “specialization of the parameters”.

The Bertini–Noether theorem for reduction—P modulo p is irreducible
over the algebraic closure κp of the fraction field κp of A/p, for all primes p
but in a proper closed Zariski subset of Spec(A)—and Hilbert’s irreducibility
theorem (HIT) for specialization—if A is the ring of integers of some number
field k, then P (t, Y ) is irreducible in k[Y ] for infinitely many t ∈ A—are the
fundamental results. Among existing methods for these two results, some
have a common trend which is to reduce modulo “good primes”. This mainly
refers to the Grothendieck good reduction theorem (GRT) and the so-called
congruence approach to HIT, notably developed by Eichler [Eic39], Fried
[Fri74], Fried–Jarden [FJ04, §13.3], Ekedahl [Eke90], Colliot-Thélène and
Serre [Ser92, §3.5].
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(1) Specialization is also a reduction of P , but viewed as a polynomial in Y with
coefficients in A[T ]; to avoid confusion we prefer to use two different words.
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We contribute to this trend. Our approach rests on the same funda-
mental results but introduces a certain tool that somewhat unifies both the
reduction and specialization questions. We obtain fully explicit statements,
phrased in terms of polynomials rather than the corresponding algebraic cov-
ers (2) and which have new applications to issues around the effective Hilbert
irreducibility theorem. The following statement gives an idea of our results.

(Theorem 3.1) Assume k is a number field. There exist integers N , B,
C and a finite extension L/Q such that the following holds. If p1, . . . , pN
are N distinct prime numbers satisfying

(∗) pi -B, pi ≥ C and pi is totally split in L/Q, i = 1, . . . , N ,

then for any multiple a ∈ Z of p1 · · · pN , there exists b ∈ N such that the
polynomial P (am+ b, Y ) is irreducible in k[Y ] for every integer m.

N , B, C, L are precisely given in §3, making Theorem 3.1 totally explicit
and improving on previous results which only showed the existence of some
cosets aZ + b satisfying the conclusion.

The main ingredients are the GRT and the last variant of the congruence
approach, developed in [DG12], [DL13], [DL12], which we adjust and recast
in our context; Theorem 3.1 is an explicit polynomial version of [DL12,
Corollary 4.5].

Our new tool is the bad prime divisor of P . It is a certain non-zero
parameter BP ∈ A, which is directly computable from the coefficients of P
through elementary operations, starting with the discriminant ∆P ∈ A[T ]
of P relative to Y (see §2), and which articulates both the reduction and
specialization issues. The integer B of Theorem 3.1 can be taken to be the
norm Nk/Q(BP ).

The point of BP is this. When A is a Dedekind domain of characteristic 0,
the non-zero prime ideals p ⊂ A dividing BP are those for which some of the
distinct roots of ∆P become equal or infinite modulo p. Such a prime ideal
is called bad and the other ones are the good primes. Our bad/good primes
relate to more geometric versions previously introduced; an advantage of
BP is that it behaves well under morphisms: if p is a good prime such that
degY (P )! /∈ p, we have

(Theorem 2.6-a) BP mod p = BP mod p and is non-zero in A/p.

This is one conclusion of Theorem 2.6, which contains the gist of the
whole reduction-specialization approach. For p as above, we have the Bertini–
Noether conclusion:

(2) The difference is that the notion of cover identifies all the polynomial equations
of a given cover. This is illustrated by the example of P = Y 2 − 4T which, depending on
whether it is viewed as a cover or a polynomial, has good reduction at 2 or not.
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(2.6-b) The polynomial P modulo p is irreducible in κp[T, Y ] (3).

Furthermore, when A is the ring of integers of a number field k, we have
the following “Chebotarev” conclusion (4): if in addition p is of suitably large
norm (a condition leading to the integer C of Theorem 3.1) and satisfies one
last assumption (below), then

(2.6-c) Each element of the Galois group G of P over k(T ) is the Frobe-
nius at p of the splitting field of some specialization P (t0, Y ) (t0 ∈ A).

The last assumption on p involves another important phenomenon: the
possible appearance of new constants in the splitting field of P over k(T ),
and the assumption is that p be totally split in the field of new constants
(the field L of Theorem 3.1). For example, for P = Y n − T ∈ Q[T, Y ],
nth roots of unity appear. Proposition 2.8 collects some information on this
phenomenon, some of it new to our knowledge. But it remains mysterious
and hard to control. In “most cases” however, no constant extension occurs
and so the condition on p disappears. By “most cases” we mean that this
holds if G = Sn (with n = degY (P )), which in various senses is the generic
case.

We postpone the proof of Theorem 2.6 to §5 and prefer to show first how
this statement leads to explicit versions of Hilbert’s irreducibility theorem,
for one polynomial in §3, and for a family of polynomials in §4.

Theorem 3.1 discussed above is a first application. For k = Q, we deduce
bounds for the least integer t ≥ 0 such that P (t, Y ) is irreducible in Q[Y ],
along with some algorithms to find it. Bounds known so far [Dèb96], [SZ95],
[Wal05], [DW08], involve these parameters:

degY (P ) = n, degT (P ) = m and H(P ) = height of P.

Finding a bound not depending on H(P ) and so depending only on the
degree of P is an important problem. It is in particular a non-trivial test
for the far-reaching Lang conjecture on the rational points on an algebraic
variety of general type over a number field; this conjecture is indeed known
to imply that such a bound exists [DW08, §5]. Our bounds only involve the
degree n and the discriminant ∆P :

(Corollaries 3.6 & 3.8) The bounds we obtain depend on

n = degY (P ), ρ = number of distinct roots of ∆P

(3) A proof of this, not using the GRT as we do but in the special case that the residue
characteristic is positive, can be found in [Zan97].

(4) This conclusion already appears in some form in earlier papers without the explicit
conditions on p [FJ04, Lemma 13.3.4], [Eke90, Lemma 1.2]. Our explicitness precisely
follows from the use of the GRT which replaces the ineffective use of the Bertini–Noether
theorem.
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and 
the number β of bad primes of P in “most cases”,

the bad primes of P and the prime factors

of some non-zero integral value ∆P (τ) in all cases (5).

Our bounds are larger than those of [Wal05] which are more appropriate
for an algorithmic use. The interest of ours lies in the parameters they
depend on. First, the dependence on n, ρ is better than that on n, m: indeed,
ρ ≤ deg(∆P ) ≤ (2n − 1)m. Furthermore, in the generic case G = Sn, the
parameters n, ρ, β are numerical degrees which do not involve the height of
the coefficients of P . Finally, the bounds we obtain when n, ρ, β are fixed
still concern infinitely many polynomials, while there are only finitely many
P ∈ Z[T, Y ] with n, m, H(P ) bounded: for example for Pa = Y n − aY − T
(a ∈ Z), for which G = Sn, we have ρ = n − 1 and the bad primes are the
prime divisors of n(n− 1)a.

In §4, in the context of a family of polynomials—P ∈ A[T, Y ] with
A = R[X1, . . . , Xs] and R the ring of integers of some number field k—our
goal is to investigate to what extent the bounds given by §3 for each individ-
ual polynomial P (x1, . . . , xs, T, Y ) ∈ R[T, Y ] depend on (x1, . . . , xs) ∈ Rs.
An ideal conclusion would be to have a constant global bound. Using non-
standard analysis, Yasumoto could reach this goal for s = 1 [Yas87]; he
mentioned that the case s > 1 seemed very difficult. In the general situ-
ation s ≥ 1, our approach leads to a “family of bounds”. In the generic
case G = Sn, these bounds involve polynomials in (x1, . . . , xs) with coeffi-
cients in R. Some of these polynomials can be made constant, for example
deg(P (x1, . . . , xs, T, Y )) ≤ deg(T,Y )(P ), but there remains one that is not,
which is the bad prime divisor. Our result shows some progress for s > 1
but the ideal goal remains to be attained.

2. Bad prime divisor. Let A be an integrally closed domain with
fraction field k.

2.1. Reduced polynomial. The reduced form ∆red of a non-zero poly-
nomial ∆ ∈ A[T ] is defined as follows. Denote the leading coefficient of ∆
by ∆0 and its distinct roots by t1, . . . , tρ ∈ k. Then

∆red = ∆ρ
0

∏
1≤i≤ρ

(T − ti)

and ∆red is defined to be 1 if ∆ ∈ A (i.e. ρ = 0).

(5) There is an intermediate situation: if the genus of the splitting field of P is at
least 2, the bound depends only on n, ρ and the bad primes of P (Corollary 3.7).
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Consider the factorization ∆=∆0
∏`
j=1Q

αj
j of ∆ in k[T ] with Q1, . . . , Q`

the distinct irreducible and monic factors in k[T ]. We will use several times
the following condition on ∆:

(∗) The polynomials Q1, . . . , Q` are separable, i.e. have no multiple roots
in k.

This holds in particular if k is of characteristic 0 or greater than deg(∆).

Lemma 2.1. Assume that the polynomial ∆ satisfies (∗). Then

∆red = ∆ρ
0

∏
1≤j≤`

Qj = ∆ρ−1
0

∆

gcd(∆,∆′)

where the gcd is calculated in the ring k[T ] and made monic by multiplying
by a suitable non-zero constant. Furthermore, ∆red is a polynomial with
coefficients in A.

Proof. The two polynomials in the first equality have only simple roots
(by (∗)) and have the same sets of roots. The equality follows since they also
have the same leading term. The second equality rests on the fact that if
∆ = ∆0

∏ρ
j=1(T−tj)βj with β1, . . . , βρ ≥ 1, then, up to some non-zero factor

in k, gcd(∆,∆′) =
∏ρ
j=1(T − tj)βj−1. Finally, ∆0t1, . . . ,∆0tρ are integral

over A. Hence so are the coefficients of ∆red =
∏

1≤i≤ρ(∆0T − ∆0ti). As
they are also in k, and A is integrally closed, they are in A.

Remark 2.2. The second formula, which makes it possible to calculate
∆red thanks to the Euclidean algorithm, is useful in practice.

2.2. Reduced discriminant and bad prime divisor. Let P ∈A[T, Y ]
be a polynomial such that degY (P ) = n ≥ 1 and assumed to be monic and
separable in Y .

Remark 2.3. A standard transformation makes it possible to reduce to
the situation where P is monic in Y . Namely replace

P (T, Y ) = P0Y
n + P1Y

n−1 + · · ·+ Pn

with P0, P1, . . . , Pn ∈ A[T ] by

Q(T, Y ) = Pn−10 P (T, Y/P0) = Y n + P1Y
n−1 + · · ·+ Pn−10 Pn.

It is convenient, for the theory and in practice, to start with this transfor-
mation when studying the reduction and reducibility properties of a poly-
nomial P . The factor P0 is retrieved and so is implicitly kept track of in the
discriminant of the polynomial Q(T, Y ).

Denote the discriminant of P relative to Y by

∆P = discY (P ).
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It is a non-zero polynomial in A[T ] of degree ≤ (2n− 1) degT (P ). Consider
the reduced discriminant

∆red
P = (∆P,0)

ρ
ρ∏
i=1

(T − ti) ∈ A[T ]

where ∆P,0 is the leading coefficient of ∆P and t1, . . . , tρ are the distinct
roots of ∆P in k. Assume further that ∆P satisfies condition (∗). Then
∆red
P ∈ A[T ] and its discriminant

disc(∆red
P ) = (∆P,0)

2ρ(ρ−1)
∏

1≤i 6=j≤ρ
(tj − ti)

is an element of A, non-zero since by construction ∆red
P has no multiple root

in k (6). Define then an element BP by

BP = ∆P,0 · disc(∆red
P ).

We have BP ∈ A and BP 6= 0.

Definition 2.4. The maximal ideals p ⊂ A that contain BP are called
the bad primes of P ∈ A[T, Y ], and BP is called the bad prime divisor.
Maximal ideals p ⊂ A that are not bad are said to be good.

Remark 2.5. (a) If A0 ⊂ A is an integrally closed subring and P is in
A0[T, Y ], the bad prime divisors relative to A0 and to A coincide.

(b) The resultant

res(∆red
P , (∆red

P )′)

is an alternative definition of BP . It is indeed equal to the discriminant
disc(∆red

P ) multiplied by the leading term ∆ρ
P,0 of ∆red

P , and so the set of bad

primes remains the same. Similarly the polynomial res(P, P ′) can be used
instead of ∆P at the beginning of the construction. In practice, it can be
advantageous to use the resultant rather than the discriminant; the former
is indeed easier to compute from its Sylvester definition as a determinant.

In the same vein, one may replace ∆ρ
P,0 by ∆ρ′

P,0 with some ρ′ ≥ ρ (e.g.

ρ′ = deg(∆P )) in the definition of ∆red
P ; this will not affect the set of prime

divisors of BP .

2.3. The central result. Retain the notation introduced in §2 and
assume further that A is a Dedekind domain.

Let G be the Galois group of the splitting field of P over k(T ); G is
called the monodromy group of P , it is a transitive subgroup of Sn with
n = degY (P ). Also denote by k̂P /k the constant extension in the splitting

field F̂ /k(T ) of the polynomial P , i.e. k̂P = F̂ ∩ k.

(6) When ∆P ∈ A, e.g. when degT (P ) = 0, then ∆red
P = 1 and disc(∆red

P ) = 1.
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If p ⊂ A is a non-zero prime ideal, denote the residue field A/p by κp,
the reduction map by sp : A → κp, the localized ring of A by p by Ap, and
the polynomial obtained by reducing the coefficients of P by sp(P ).

Theorem 2.6. Assume k is of characteristic 0 or greater than deg(∆P ).
Let p ⊂ A be a good prime of P such that |G| /∈ p. Then we have these three
conclusions:

(Good Behaviour) We have

∆red
sp(P ) = sp(∆

red
P ) 6= 0, Bsp(P ) = sp(BP ) 6= 0.

(GRT) If P is irreducible in k(T )[Y ], the polynomial sp(P ) is monic,
separable in Y , irreducible in κp[T, Y ] and of monodromy group G.

Assume further that k is a number field and A is its ring of integers.

(Chebotarev) If p is totally split in the extension k̂P /k and of norm
Nk/Q(p) ≥ (ρ + 1)2|G|2, then for every ω ∈ G, there is an element tp ∈ A
such that ∆P (tp) /∈ p and for every t ∈ Ap with t ≡ tp modulo p the Frobenius

at p of the splitting field of P (t, Y ) over k̂P is conjugate to ω in G.

The condition Bsp(P ) = sp(BP ) 6= 0 can be equivalently rephrased as
saying that no distinct roots ti and tj of ∆P coincide modulo p, and none
of the roots ti is ∞ modulo p.

Theorem 2.6 and its Addendum 2.8 below are proved in §5. The GRT
part is essentially the Grothendieck good reduction criterion. The Cheb-
otarev part is deduced from revisiting the results of [DG12] and making
them explicit. The Good Behaviour part is new.

2.4. First two examples. We give two examples illustrating Theo-
rem 2.6.

2.4.1. Specializations P (t, Y ) with no root. The first one is an immediate
consequence of the Chebotarev part. Assume k = Q for simplicity.

Corollary 2.7. If p = pZ is as in (Chebotarev), there is a coset pZ+b
⊂ Z such that for each t ∈ pZ + b, P (t, Y ) has no roots in Q.

Proof. The subgroup G ⊂ Sn being transitive, there classically exists
ω ∈ G with no fixed points. The result follows from the Chebotarev conclu-
sion applied to this ω.

2.4.2. Successive specializations. Let P ∈ k[X1, . . . , Xs][T, Y ] be a poly-
nomial, monic, separable in Y and assumed to be irreducible in the ring
k(X1, . . . , Xs)[T, Y ]. Consider its bad prime divisor BP ∈ k[X1, . . . , Xs].
Theorem 2.6 can be applied to P viewed as being in k(X1, . . . , Xs−1)[Xs]
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[T, Y ]. The bad prime divisor of P relative to k(X1, . . . , Xs−1)[Xs] is the
same as relative to the smaller ring k[X1, . . . , Xs] (Remark 2.5). Hence it is
the polynomial BP in k[X1, . . . , Xs] introduced above.

Assume k is of characteristic 0 for simplicity; the condition |G| /∈ p then
always holds. Let xs ∈ k be such that BP (X1, . . . , Xs−1, xs) 6= 0. From Theo-
rem 2.6, P (X1, . . . , Xs−1, xs, T, Y ) is monic, separable in Y and irreducible in
k(X1, . . . , Xs−1)[T, Y ], and its bad prime divisor is BP (X1, . . . , Xs−1, xs) ∈
k[X1, . . . , Xs−1]. Theorem 2.6 can then be applied to P (X1, . . . , Xs−1, xs,
T, Y ) to specialize Xs−1. An inductive argument finally leads to this con-
clusion:

(∗) If (x1, . . . , xs) ∈ ks satisfies BP (x1, . . . , xs) 6= 0 in k, then the poly-
nomial P (x1, . . . , xs, T, Y ) ∈ k[T, Y ] is irreducible in k[T, Y ].

A variant of this argument will be used in §4.4.

2.5. More on the extension k̂P /k. Let F/k(T ) be the extension gen-
erated by some root of P (as a polynomial in Y ). Recall that the constant
extension in F/k(T ) is the extension F ∩ k/k. If the polynomial P is irre-
ducible in k[T, Y ], we have F ∩ k = k; the extension F/k(T ) is then said to

be regular over k. The extension k̂P /k is the constant extension in the Ga-

lois closure F̂ /k(T ) of F/k(T ). It need not be trivial even though F/k(T )

is regular over k. In general, if Ga = Gal(F̂ /k(T )), the extension k̂P /k is
Galois of group Ga/G.

Addendum 2.8 (on the constant extension).

(a) We have k̂P = k in each of the following situations:

(a-1) P is irreducible in k(T )[Y ] and the extension F/k(T ) is Galois
and regular over k,

(a-2) G = Sn.

(b) (Complement to (GRT)) If P is irreducible in k(T )[Y ], p a good

prime of P and |G| /∈ p, then the residue extension of k̂P /k at
some/any prime above p contains the constant extension in the split-
ting field of sp(P ) over κp(T ).

(c) If k is a number field and F̂ is a function field of genus ≥ 2,

then k̂P /k is one from the finite list of extensions of k of degree
≤ |NorSn(G)|/|G| and unramified at each good prime of P .

In §3 and §4, we use Theorem 2.6 and its Addendum 2.8 to deduce
quite precise versions of HIT for a single polynomial and for a family of
polynomials over number fields.
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3. Hilbert irreducibility theorem. We retain the notation intro-
duced in previous sections and assume further that k is a number field,
A is its ring of integers and P ∈ A[T, Y ] is irreducible in k[T, Y ].

3.1. From Chebotarev to Hilbert. A standard argument easily con-
nects the Chebotarev conclusion from Theorem 2.6 to a Hilbert conclusion.
Namely if C1, . . . , CN are N conjugacy classes of G and p1, . . . , pN are N
non-zero prime ideals of A that are good, of norm Nk/Q(p) ≥ (ρ + 1)2|G|2

and totally split in the extension k̂P /k, then the Chebotarev conclusion
combined with the Chinese remainder theorem provides an element b ∈ A
with the following property:

(∗) For every t ∈ Ap1 ∩ · · · ∩ ApN , in particular for every t ∈ A, if

t ≡ b mod p1 · · · pN , then the Galois group over k̂P of the poly-
nomial P (t, Y ) contains elements of each of the conjugacy classes
C1, . . . , CN .

Furthermore, under the assumption that the respective prime numbers
p1, . . . , pn ∈ Z below p1, . . . , pN are totally split in the extension k̂P /Q
(and not just p1, . . . , pN in k̂P /k), then b can be chosen in Z.

Hence if C1, . . . , CN are initially chosen so that

(∗∗) for any (g1, . . . , gN ) ∈ C1×· · ·×CN , the subgroup 〈g1, . . . , gN 〉 ⊂ G
acts transitively on {1, . . . , n},

then the Galois group of P (t, Y ) acts transitively on {1, . . . , n}; conse-

quently, P (t, Y ) is irreducible in k̂P [Y ] and a fortiori in k[Y ].

Such a choice of C1, . . . , CN is always possible: from a classical lemma
of Jordan [Jor72], (∗∗) holds if C1, . . . , CN are all the non-trivial conjugacy
classes of G; and then even more holds since in this case we have in fact
〈g1, . . . , gN 〉 = G. Therefore if NG is the smallest integer N such that (∗∗)
holds and cc(G) is the number of conjugacy classes of G, then

NG < cc(G) ≤ |G| ≤ n!.

However NG can be smaller than these bounds: for example, if G contains
an n-cycle, then NG = 1.

3.2. Main result. We obtain the following version of Hilbert’s irre-
ducibility theorem.

Theorem 3.1. For the integers N , B, C and the finite extension L/Q
specified below, we have the following. If p1, . . . , pN are N distinct prime
numbers satisfying

(∗) pi -B, pi ≥ C and pi is totally split in L/Q, i = 1, . . . , N ,
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then for any multiple a ∈ Z of p1 · · · pN , there exists b ∈ N such that P (am+
b, Y ) is irreducible in k[Y ] for every integer m.

Addendum 3.2 (on the constants). One can take

(a) N = NG (see §3.1),
(b) B = Nk/Q(BP ) (norm of the bad prime divisor),

(c) C = (ρ+1)2|G|2 (ρ is the number of distinct roots of the discriminant
∆P and G is the monodromy group of P ),

(d) L = k̂P (constant extension in Galois closure).

Remark 3.3 (on the constants). (a) One can also take for B the product
of all distinct primes p ∈ N dividing Nk/Q(BP ).

(b) Recall some estimates which relate our parameters to other classical
ones; here D = deg(P ), r is the branch point number of the extension
F/k(T ) associated with P (T, Y ) and g its genus, i.e. the genus of the curve
P (t, y) = 0:

r ≤ ρ+ 1 ≤ deg(∆P ) + 1 ≤ (2n− 1)m+ 1 (ρ = deg(∆red
P ); §2)

r/2 + 1− n ≤ g ≤ rn/2 + 1− n− r/2 (Riemann–Hurwitz)

g ≤ 1
2(D − 1)(D − 2) [FJ04, Corollary 5.3.5].

Remark 3.4 (on the statement). (a) Denote byHP the Hilbert subset of
all t ∈ k such that P (t, Y ) is irreducible in k[Y ]. The conclusion of Theorem
3.1 can be rephrased as saying that for any multiple a ∈ Z of p1 · · · pN ,
the Hilbert subset HP contains at least one coset modulo a, or equivalently
that, for some b ∈ N, the Hilbert subset associated with the polynomial
P (aT + b, Y ) contains all integers.

(b) The statement readily extends to several polynomials P1, . . . , P` ∈
A[T, Y ]: if Nj , Bj , Cj , Lj are given by Theorem 3.1 for the polynomial
Pj , then taking N = N1 + · · · + N`, B = B1 · · ·B`, C = max(C1, . . . , C`)
and L/Q the compositum of the extensions L1/Q, . . . , L`/Q and using
the Chinese remainder theorem yields the conclusion of Theorem 3.1 with
HP1 ∩ · · · ∩ HP` ∩ Z replacing HP ∩ Z.

(c) Using (b) one can relax the assumption that P (T, Y ) is irreducible in
Q[T, Y ] to only assume that it is irreducible in k[T, Y ]. A classical reduction
[Dèb09, lemme 5.1.3] indeed shows that

HP ⊃ HP1 ∩ · · · ∩ HP`(up to some finite set (7))

with P1, . . . , P` the irreducible factors of P in Q[T, Y ]. This reduction in-
volves a finite extension of the base field k and so requires to apply Theo-
rem 3.1 to that bigger number field.

(7) Of cardinality depending only on deg(P ).
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(d) Combining (b) and (c) shows that Theorem 3.1 extends to the situ-
ation where HP is replaced by a general Hilbert subset of k, i.e. the inter-
section of several subsets HP with P irreducible in k[T, Y ].

(e) Proceeding as in §3.1 but with a bigger set {p1, . . . , pN , q1, . . . , qM}
of primes (satisfying the assumptions of the Chebotarev conclusion of The-
orem 2.6), one obtains an improved conclusion of Theorem 3.1 for which
in addition to P (am+ b, Y ) being irreducible in k[Y ], the Frobenius of the

splitting field of P (am+ b, Y ) over k̂P at each prime qj can be prescribed to
be conjugate to an arbitrarily given element of G, j = 1, . . . ,M . This yields
the type of conclusions that are given in previous papers in a geometric
context; see for example [DL12, Corollary 4.5].

3.3. Bounds for the least specialization in HP . Assume k = Q.
Denote by β the number of bad primes of P , i.e. the number of prime factors
of BP . The general idea is to minimize NG and evaluate the minimum integer
M such that the interval [(ρ+ 1)2|G|2,M ] contains β +NG primes that are

totally split in Q̂P /Q. This interval then automatically contains NG primes
satisfying condition (∗) from Theorem 3.1, which then produces a coset
aZ + b ⊂ HP with a the product of NG such primes.

In §3.3.1 and §3.3.2, we focus on the search of the integer a. This leads to
bounds for the least positive integer in HP . In §3.3.3, we make some further
algorithmic comments on the search of b.

3.3.1. Special case Q̂P = Q. In this case the condition that the primes
are totally split in Q̂P /Q disappears and we obtain this statement.

Corollary 3.5. If Q̂P = Q, e.g. in each of the situations (a-1) and
(a-2) from Addendum 2.8, the Hilbert subset HP contains a coset aZ + b
with a and b smaller than some bound depending only on n, ρ and β.

In particular, when G = Sn, we have Q̂P = Q and NG = 1.

Corollary 3.6. Assume k = Q and G = Sn. Then for every good prime
number p ≥ ((ρ + 1)n!)2, there is a coset pZ + b ⊂ Z such that P (t, Y ) is
irreducible in Q[Y ] for every t ∈ pZ + b. Furthermore, p and b can be taken
as follows and can be bounded in terms of n, ρ, β:

• p: the first good prime of P that is ≥ ((ρ+ 1)n!)2;
• b: any integer such that P (b, Y ) modulo p is irreducible in Fp[Y ].

Proof. Here the general strategy applies with NG = 1 and C1 the con-
jugacy class of n-cycles. For p chosen as indicated, the method guarantees
the existence of integers b such that ∆P (b) /∈ pZ and the Frobenius of the
splitting field of P (b, Y ) at p is an n-cycle. Due to the condition ∆P (b) /∈ pZ,
this is equivalent to P (b, Y ) modulo p being irreducible in Fp[Y ], whence the
result.



12 P. Dèbes

3.3.2. General case Q̂P ⊃ Q. In this case, explicit information is needed
on the primes that are totally split in the extension Q̂P /Q. For this, one can
use effective versions of the Chebotarev density theorem [LO77], [LMO79],

[Ser81]. These results involve the order of the Galois group Gal(Q̂P /Q) and
the discriminant |dQ̂P |, and so lead to bounds depending on n, ρ and |dQ̂P |.
The parameter |dQ̂P |may however be hard to control. We offer an alternative
approach leading to the following results.

Corollary 3.7. Assume that k = Q and F̂ is the function field of a
curve of genus ĝ ≥ 2. Then the Hilbert subset HP contains a coset aZ + b
with a and b smaller than some bound depending only on n, ρ and the set
of bad primes of P .

Proof. From Addendum 2.8, Q̂P /Q is one from the finite list of exten-
sions of Q of degree ≤ |NorSn(G)|/|G| and possibly ramified only at the bad
primes of P . Therefore the first NG primes satisfying condition (∗), and so
the integers a and b from Theorem 3.1, can be bounded in terms n, ρ and
the set of bad primes of P .

When 0 ≤ ĝ ≤ 1, one can reduce to the situation ĝ ≥ 2, at the cost of
losing the conclusion that HP contains a whole coset.

Corollary 3.8. Assume k = Q. Let τ ∈ Z be such that ∆P (τ) 6= 0.
Then the Hilbert subset HP contains a positive integer t0 smaller than some
bound depending on n, ρ, the set of bad primes of P and the set of prime
factors of ∆P (τ).

Proof. We adjust a reduction argument given in [DW08, §5.1]. More
specifically, it follows from [Dèb92, Lemma 0.1] and ∆P (τ) 6= 0 that for
every integer h ≥ 1, the polynomial

Ph(T, Y ) = P (T h + τ, Y )

is irreducible in Q[T, Y ]. The Riemann–Hurwitz formula then shows that
the genus gh of the curve with affine equation P (th + τ, y) = 0 satisfies

2gh − 2 ≥ −2n+ h.

Thus for h = 2n+2, we obtain gh ≥ 2, and so is the genus ĝh of the splitting
field of Ph since ĝh ≥ gh. From Corollary 3.7, there exists b ∈ Z less than a
bound depending only on degY (Ph), deg(∆red

Ph
) and the set of bad primes of

Ph such that

Ph(b, Y ) = P (bh + τ, Y )

is irreducible in Q[Y ]. Clearly degY (Ph) = degY (P ) = n, and it is easily
checked that

∆red
Ph

(T ) = ∆red
P (T h + τ).
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From Remark 2.5, disc(∆red
Ph

) has the same set of prime divisors as the

resultant of ∆red
Ph

and of (∆red
Ph

)′. We have

res(∆red
Ph
, (∆red

Ph
)′) = (res(∆red

P , (∆red
P )′))h ·∆red

P (τ).

We conclude that the bad primes of Ph consist of the bad primes of P and
of the prime factors of ∆red

P (τ).

3.3.3. Algorithmic remarks to find b. Assume that NG good primes

p1, . . . , pNG ≥ (ρ + 1)2|G|2, totally split in Q̂P /Q, have been found. From
Theorem 3.1, for a the product of these primes, the Hilbert subset HP con-
tains a coset aZ + b for some integer b ∈ [1, a].

(a) An obvious option to find an element b ∈ HP is to test all polyno-
mials P (t, Y ), t = 1, . . . , a; there are efficient irreducibility algorithms for
polynomials in one indeterminate. At least one of these polynomials P (t, Y )
is irreducible in Q[Y ].

(b) When G = Sn, Corollary 3.6 provides a simple algorithm to find an
element ofHP . This algorithm can be applied in the general context as a first
step: for p chosen as indicated, if P (b, Y ) modulo p is irreducible in Fp[Y ] for
some b ∈ {1, . . . , p}, then a fortiori, P (b, Y ) is irreducible in Q[Y ]; and if no
polynomial P (b, Y ) modulo p is irreducible in Fp[Y ] (b ∈ {1, . . . , p}), then
one should conclude that G 6= Sn and apply the method in a more refined
way.

(c) In Corollary 3.6, the assumption that G contains an n-cycle made it
simple to determine the integer b; it can be generalized to assume that

(∗∗) the group G contains N elements ω1, . . . , ωN with the property that
any N elements g1, . . . , gN ∈ Sn conjugate to ω1, . . . , ωN in Sn
(respectively) generate a transitive subgroup of Sn.

Assumption (∗∗) holds if G contains an n-cycle and in other situations.
For example, the group G being transitive, it contains an element σ with no
fixed points. Hence if G also contains an (n − 1)-cycle (or more generally
the product of an m-cycle and an (n−m)-cycle (0 ≤ m ≤ n) with supports
non-stable under σ), then condition (∗∗) holds. However (∗∗) does not always
hold: for example it does not if G ⊂ Sn is the regular representation and G
is a non-cyclic p-group.

Under assumption (∗∗), pick N good primes p1, . . . , pN ≥ (ρ + 1)2|G|2,
totally split in Q̂P /Q, and b1, . . . , bN ∈ Z such that ∆P (bi) /∈ piZ and the
factorization type of P (bi, Y ) modulo pi is in the conjugacy class Ci of ωi,
i = 1, . . . , N . The Frobenius gi ∈ G of the splitting field of P (bi, Y ) at pi
then lies in Ci, i = 1, . . . , N . From (∗∗), g1, . . . , gN generate a transitive
subgroup of Sn. We conclude that if b is an integer such that b ≡ bi mod pi,
i = 1, . . . , N , then aZ + b ⊂ HP .
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4. Families of polynomials. As in §3, k is a number field. Denote its
ring of integers by R and consider the polynomial ring A = R[X1, . . . , Xs]
in s new indeterminates X1, . . . , Xs over R. Set X = X1, . . . , Xs to simplify
the notation; so A = R[X].

Fix a polynomial F(X,T, Y ) ∈ R[X,T, Y ], irreducible in k(X)[T, Y ] and
monic in Y . Set degY (F) = n and degT (F) = m, assume n ≥ 1 and let G
be the monodromy group of F , i.e. the Galois group of F(X,T, Y ) over
k(X)(T ).

4.1. Qualitative statement of the main result. As for Theorem 3.1,
we start with a qualitative statement and specify the parameters involved
in a second stage.

Theorem 4.1. We produce below:

• a non-zero polynomial BF ∈ R[X],
• two integers N and C,
• a finite Galois extension L of k(X),

with the following property. For every x ∈ Rs such that BF (x) 6= 0,

(a) the polynomial F(x, T, Y ) is irreducible in k[T, Y ],
(b) if p1, . . . , pN are distinct prime numbers satisfying

(∗) pi -Nk/Q(BF (x)), pi ≥ C and pi is totally split in the residue
field Lx of L at X = x, i = 1, . . . , N ,

and a is any multiple of p1 · · · pN , then there exists b ∈ Z such that
F(x, t, Y ) is irreducible in k[Y ] for every t in the coset aZ + b.

For every x ∈ ks, set

Px(T, Y ) = F(x, T, Y ).

From the Bertini–Noether theorem, for every x ∈ Rs but in a proper Zariski
closed subset EF ⊂ As(k), the polynomial F(x, T, Y ) is irreducible in k[T, Y ].
If x ∈ Rs \ EF , Theorem 3.1 can be applied to the polynomial Px(T, Y ) ∈
R[T, Y ].

Consider the integers Nx, Bx, Cx and the finite extension Lx/Q that
are given by Theorem 3.1. Our goal is to investigate to what extent they
depend on x. Recall that Nx, Bx, Cx and Lx can be bounded in terms of
degY (Px) and further parameters involving the discriminant relative to Y
and the bad prime divisor of Px. Note right away that the first one can be
bounded independently of x: indeed, degY (Px) = degY (F) = n.

4.2. The Zariski closed subset EF and the polynomial BF . The-
orem 2.6 explicitly provides a proper Zariski closed subset EF . Denote by
BF the bad prime divisor of F(X,T, Y ). It is a non-zero element of R[X].
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Furthermore one can bound deg(BF ). Namely, it follows from{
degT (∆F ) ≤ (2n− 1)m,

degX(∆F ) ≤ (2n− 1) degX(F)

that {
degT (∆red

F ) ≤ (2n− 1)m,

degX(∆red
F ) ≤ (2n− 1)2m degX(F).

The first inequality is obvious as degT (∆red
F ) ≤ degT (∆F ). The second one

follows from the inequality degX(∆red
F ) ≤ degT (∆F ) degX(∆F ) (which is

left as an exercise using Gauss’ lemma and ∆red
F ∈ R[X][T ]). The definition

BF = ∆F ,0 · discT (∆red
F ) then leads to

deg(BF ) ≤ (2n− 1)2m degX(F) +
(
2(2n− 1)m− 1

)
(2n− 1)2mdegX(F)

≤ 16n3m2 degX(F).

Denote the zero set of BF in k
s

by Z(BF ). Applying Theorem 2.6 to
F(X,T, Y ) ∈ A[T, Y ] with A = k[X] and p = 〈X − x〉 ⊂ A with x ∈ k

s

yields:

(∗) If x /∈ Z(BF ), then F(x, T, Y ) = Px(T, Y ) is irreducible in k[T, Y ],
of monodromy group G, and we have

∆red
Px = ∆red

F (x), BF (x) = BPx 6= 0.

In particular, one can take EF = Z(BF ).

Fix x ∈ Rs \ Z(BF ). We study below each of Nx, Bx, Cx, Lx.

4.3. The integer Nx. From Addendum 3.2, one can take

Nx = NG .

In particular, Nx can be bounded independently of x.

4.4. The integer Bx. From Addendum 3.2, one can take

Bx = Nk/Q(BPx)

where BPx is the bad prime divisor of Px considered in R[T, Y ]. From Re-
mark 2.5, it is the same if Px is considered in k[T, Y ]. Use then (∗) above to
conclude that the integer Bx can be taken to be

Bx = Nk/Q(BF (x)),

which is the norm of the value at x of the polynomial BF ∈ R[X] which
depends only on the original polynomial F(X,T, Y ).
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4.5. The integer Cx. By construction, we have ∆red
F ∈ R[X,T ] and

∆red
Px
∈ R[T ], and from (∗) above, ∆red

Px
= ∆red

F (x). Denote by ρ the degree
of these polynomials in T . From Addendum 3.2, one can take

Cx = (ρ+ 1)2|G|2.

In particular Cx can be bounded independently of x.

4.6. The extension Lx/Q. From Addendum 3.2, one can take

Lx = k̂Px ,

the constant extension in the splitting field of Px over k(T ).

Consider the constant extension k̂F/k(X) in the splitting field of F over

k(X,T ). From Addendum 2.8, the field extension k̂Px/k is contained in the

residue extension, say (k̂F )x/k, of k̂F/k(X) at some/any prime above the
prime X = x of A = R[X]. The conclusion of Theorem 2.6 holds a fortiori

with Lx = (k̂F )x. Thus in Theorem 4.1 one can take

L = k̂F .

Furthermore, L = k(X) and so Lx = k, under each of the two assumptions
(a-1) and (a-2) from Addendum 2.8. We rewrite them in the family context:

(a-1) F is irreducible in k(X)(T )[Y ] and the splitting field of F over
k(X,T ) is regular over k(X),

(a-2) G = Sn.

In these cases, the condition from Theorem 4.1 that pi be totally split in the
extension Lx/Q reduces to pi being totally split in k/Q, i = 1, . . . , N .

5. Proof of Theorem 2.6 and Addendum 2.8. We return to the
general hypotheses of §2.3: A is a Dedekind domain with fraction field k, P in
A[T, Y ] is a polynomial, monic and separable in Y , and n = degY (P ) ≥ 1.
We freely use the notation introduced in §2.

Assume k is of characteristic 0 or greater than deg(∆P ). Let p ⊂ A be a
good prime of P (i.e. BP = ∆P,0 · disc(∆red

P ) /∈ p) and such that |G| /∈ p.

5.1. Good Behaviour part. Consider the irreducible factorization

(∗∗) ∆P = δ
∏̀
h=1

Qαhh

of ∆P ∈ A[T ] in the unique factorization domain Ap[T ]; δ ∈ Ap \ {0},
Q1, . . . ,Q` are the distinct irreducible factors in Ap[T ] \ Ap and α1, . . . , α`
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are positive integers. As ∆P,0 is invertible in Ap, so are δ and the leading
coefficients of Q1, . . . ,Q`. Hence one can take δ = ∆P,0 and assume that
Q1, . . . ,Q` are monic. We deduce that

∆red
P = (∆P,0)

ρ
∏̀
h=1

Qh

where ρ is the number of distinct roots of ∆P in k. Mod out (∗∗) by p, and
note that sp(∆P ) = ∆sp(P ) and that sp(∆P,0) is the leading term ∆sp(P ),0 of
∆sp(P ) to conclude that ∆sp(P ) 6= 0 and

∆sp(P ) = ∆sp(P ),0

∏̀
h=1

sp(Qh)αh .

For h = 1, . . . , `, each polynomial sp(Qh) has only simple roots in κp, and
for distinct h, h′ ∈ {1, . . . , `}, we have sp(Qh) 6= sp(Qh′): indeed, otherwise
disc(sp(∆

red
P )) = sp(disc(∆red

P )) would be 0, contradicting disc(∆red
P ) /∈ p. It

follows that sp(P ) satisfies condition (∗) from Lemma 2.1 and

∆red
sp(P ) = (∆sp(P ),0)

ρ
∏̀
h=1

sp(Qh) = sp(∆
red
P ).

We conclude that disc(∆red
sp(P )) = sp(disc(∆red

P )) and Bsp(P ) = sp(BP ).

5.2. The Grothendieck good reduction theorem. We recall below
the good reduction criterion for covers, due to Grothendieck, in the context
where we will be using it: finite extensions of k(T ). For consistency we stick
to the field extension terminology but indicate in footnotes the original
geometric formulation.

Assume from now on that P is irreducible in k(T )[Y ]. Denote by F/k(T )
the function field extension associated with the polynomial P ∈ k(T )[Y ] (8).
It is regular over k. Let t1, . . . , tr ∈ P1(k) be the branch points of F/k(T )
(more exactly of Fk/k(T )). Recall that t1, . . . , tr are elements of the set
{t1, . . . , tρ,∞} with t1, . . . , tρ the distinct roots of ∆P (but not all elements
of this set are branch points in general).

Given a prime ideal p ⊂ A, denote the completion of A (resp. of k) at p

by Ãp (resp. by k̃p), the algebraic closure of k̃p by Cp and fix an embedding
k ⊂ Cp.

Fix a prime ideal p ⊂ A and let B be the integral closure of Ãp[T ] in the

field F k̃p.

(8) Geometrically, F/k(T ) corresponds to a branched cover f : C → P1
k.
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Grothendieck good reduction theorem. Assume that:

(a) |G| /∈ p,
(b) there is no vertical ramification at p in the extension F/k(T ), i.e.

B is unramified over the prime pÃp (9),
(c) no two different branch points of F/k(T ) coincide modulo p.

Then the extension F/k(T ) has good reduction at p, that is, pB is a prime
ideal of B and the fraction field ε of B/pB is a separable extension of κp(T )
and satisfies

[ε : κp(T )] = [κpε : κp(T )] = [F : k(T )] = degY (P ) (10).

This is a special case of the general result of Grothendieck on reduc-
tion of covers. We refer to [Gro71] and [GM71]. In our proof, we apply
Grothendieck’s theorem to both the extension F/k(T ) and its Galois clo-
sure. To this end, the following lemma is useful.

Lemma 5.1. Under the assumption |G|BP /∈ p, both the extension F/k(T )

and its Galois closure F̂ /k(T ) satisfy conditions (a)–(c) of the Grothendieck
good reduction theorem.

Proof. Assume |G|BP /∈ p. Consider the extension F/k(T ). Grothen-
dieck’s assumption (a) obviously holds. Assumption (b) is guaranteed by
sp(∆P ) 6= 0 in κp[T ] (which follows from sp(∆P,0) 6= 0). Assumptions (a)

and (c) then automatically hold for F̂ /k(T ), which has the same monodromy
group and the same branch points as F/k(T ). It remains to show assumption

(b) for F̂ /k(T ).
Let Y1,Y2 be two distinct roots of P in k(T ). The discriminant ∆P is in

A[T ] and is the discriminant of 1,Y1, . . . ,Yn−11 . LetB1 be the integral closure
of A[T ] in k(T,Y1), and P2 ∈ k(T,Y1)[Y ] be the irreducible polynomial of Y2
over k(T,Y1). The discriminant ∆P2 of P2 is in B1 and is the discriminant of
1,Y2, . . . ,Yn2−1

2 for n2 = [k(T,Y1,Y2) : k(T,Y1)]. The polynomial P2 divides
P in B1[Y ]. Consequently, ∆P2 divides ∆P in B1, and its norm N1(∆P2)
relative to the extension k(T,Y1)/k(T ) divides ∆n

P in A[T ]. Consider the
set {Yu1Yv2 | 0 ≤ u < n, 0 ≤ v < n2}. It is a k(T )-basis of k(T,Y1,Y2)
and its discriminant ∆2, in A[T ], is a product of some power of ∆P and
some power of N1(∆P2). Therefore, since the leading term of ∆P is not in p,
neither is the leading term of ∆2. Repeat the argument on the extensions
obtained by adjoining successively every root of P in k(T ), and so eventually

on the Galois extension F̂ /k(T ). We finally obtain this conclusion:

(9) Geometrically, the normalization f̃ : C̃ → P1
Ãp

of P1
Ãp

in F is unramified over p.

(10) Geometrically, if f̃0 : C̃0 → P1
κp

is the special fiber of f̃ , then f̃0 is generically

étale, C̃0 is geometrically irreducible and [κp(C̃0) : κp(T )] = [F : k(T )].
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(∗) There exists a k(T )-basis of the extension F̂ /k(T ) consisting of prod-
ucts of powers of the roots Y1, . . . ,Yn of P in k(T ) such that the

discriminant, a polynomial ∆̂ in A[T ], has leading term not in the
ideal p.

This guarantees that there is no vertical ramification at p in the extension
F̂ /k(T ).

5.3. Proof of the GRT part of Theorem 2.6. That sp(P ) is monic
in Y is obvious and the separability follows from ∆sp(P ) 6= 0. For the rest of
the proof, denote:

• by Y1, . . . ,Yn the roots of P in k(T ), and assume that Y1 ∈ F ,

• by Ã
k̂P k̃p
p the integral closure of Ãp in k̂P k̃p,

• by B̂ the integral closure of Ã
k̂P k̃p
p [T ] in F̂ k̃p,

• by (k̂P )p/κp the residue extension of k̂P /k at some/any prime above p.

The reduction morphism

Ã
k̂P k̃p
p [T ]→ (k̂P )p(T )

that extends the reduction map Ã
k̂P k̃p
p → (k̂P )p and sends T to itself can be

extended to a morphism

sp : B̂ → κp(T ) (e.g. [Dèb09, lemme 1.7.2]).

From Grothendieck’s theorem, pB is a prime ideal of B and the fraction
field ε of B/pB is a separable extension of κp(T ). As P is monic, Y1 ∈ B
and one can further assume that sp(Y1) is the image of Y1 in

B/pB ⊂ Frac(B/pB) ⊂ κp(T )

(sp(Y1) can be chosen to be any root of sp(P ): see e.g. [Dèb09, §1.7.3]).

Hence sp(Y1) ∈ ε. The ring Ãp[T ] being integrally closed, we also have

∆PB ⊂ Ãp[T ] + Ãp[T ]Y1 + · · ·+ Ãp[T ]Yn−11 ,

which, together with sp(∆P ) 6= 0 in κp[T ], leads to

ε = Frac(κp[T, sp(Y1)]).
As sp(Y1) is a root of sp(P ) and from Grothendieck’s theorem,

[κpε : κp(T )] = degY (P ) = degY (sp(P )),

we conclude that the polynomial sp(P ) is irreducible in κp[T, Y ].

In a similar manner, using conclusion (∗) from the proof of Lemma 5.1,
we obtain

Frac(sp(B̂)) = Frac
(
(k̂P )p[T, sp(Y1), . . . , sp(Yn)]

)
.
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From Grothendieck’s theorem applied to the extension F̂ /k̂P (T ) (which is

regular over k̂P ), pB̂ is a prime ideal of B̂, the fraction field ε̂ of B̂/pB̂ is a

separable extension of (k̂P )p(T ), and

[ε̂ : (k̂P )p(T )] = [κpε̂ : κp(T )] = [F̂ k : k(T )].

The extension F̂ /k̂P (T ) being Galois, the residue field extension above p

does not depend on the prime ideal above p. Hence Frac(sp(B̂)) = ε̂.

Consequently, ε̂ is the splitting field of the polynomial sp(P ) over (k̂P )p.
The Galois group Gal(κpε̂/κp(T )) is by definition the monodromy group of
sp(P ). It is a priori a subgroup of G, but is in fact all of G, since its order is

[κpε̂ : κp(T )] = [F̂ k : k(T )] = |G|.

5.4. Proof of Addendum 2.8. (a) Item (a-1) follows from the defini-
tions, and (a-2) from the fact that if G = Sn, then necessarily Ga is Sn too.

(b) From the equality

[ε̂ : (k̂P )p(T )] = [κpε̂ : κp(T )]

shown above, the extension ε̂/(k̂P )p(T ) is regular over (k̂P )p. This implies

that (k̂P )p contains the constant extension in ε̂/κp(T ) (i.e. in the splitting
field of sp(P ) over κp(T )).

(c) Assume k is a number field. If p is a good prime of P , then the ex-

tension F̂ /k(T ) has good reduction at p. By a result of Deligne–Mumford

[DM69, Theorem 1.3], the k-automorphisms of the extension F̂ k/k(T ) are

already defined over the unramified closure k̃urp of k̃p. Hence the extension

F̂ k̃urp /k̃
ur
p (T ) is Galois, which implies that k̂P ⊂ k̃urp . This shows that the

ramified primes in k̂P /k are among the bad primes. Therefore k̂P /k is one
from the finite list of extensions of k of degree ≤ |NorSn(G)|/|G| and unram-
ified at each good prime of P .

5.5. Proof of the Chebotarev part of Theorem 2.6. Assume p is
good, not containing |G|, of norm Nk/Q(p) ≥ (ρ + 1)2|G|2 and totally split

in the extension k̂P /k. Let ω ∈ G and let Eω/k̃p be the unique unramified
extension of Galois group 〈ω〉 ⊂ G.

The result follows from [DG12, Proposition 2.2] applied to the Galois

extension F̂ k̃p/k̃p(T ) (viewed there as a G-cover) and the Galois extension

Eω/k̃p. The base ring A there should be taken to be the ring Ã
k̂P k̃p
p intro-

duced in §5.3. The situation in [DG12] is that of a cover of a more general
base space, of arbitrary dimension. We review the proof below, which be-
comes simpler for a cover of P1.
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As p is totally split in k̂P /k, the fraction field of Ã
k̂P k̃p
p is k̃p and its

residue field is κp. Denote by p the characteristic of κp, and by q its order,
which is also Nk/Q(p).

An important tool of our approach is a certain “twisted” form, say
F̃Eωp /k̃p(T ), of F̂ k̃p/k̃p(T ). This twisted extension is precisely defined in

[DG12]. It is a k̃p-regular extension that is isomorphic to F̂ k̃p/k̃p(T ) over

the algebraic closure of k̃p (but not over k̃p itself, and so F̃Eωp /k̃p(T ) need

not be Galois). If f̃Eωp : X̃Eω
p → P1

k̃p
is the corresponding cover, then the

main property of this twisted object is the following:

(∗) For every t0 ∈ P1(k̃p) that is not a branch point of F/k(T ), the

specialized extension (F̂ k̃p)t0/k̃p is Eω/k̃p if and only if there is a

k̃p-rational point x on X̃Eω
p such that f̃Eωp (x) = t0.

This is the so-called twisting lemma [DG12, Lemma 2.1]. When the two
equivalent conditions of (∗) are satisfied, the Frobenius at p of the special-

ized extension F̂t0/k̂P is conjugate to ω in G. Thus the twisting lemma has

reduced our problem to finding k̃p-rational points on X̃Eω
p .

The method consists then in finding κp-rational points on the κp-curve

obtained by reducing X̃Eω
p modulo p and lifting them up to k̃p-rational

points on X̃Eω
p thanks to Hensel’s lemma. Proposition 2.2 in [DG12] shows

in a general context that this strategy indeed works under three hypotheses,
which we explain below in our more specific context.

The first one is p - |G|; it is one of our assumptions.
The second one, which is labelled (good-red) in [DG12], is the conjunc-

tion of assumptions (b) and (c) of Grothendieck’s theorem (§5.2); hence it is
guaranteed by “p good” (Lemma 5.1). The point of these two assumptions
is that they guarantee that there is good reduction at p for the extension
F̂ k̃p/k̃p(T ), but also, as the extension Eω/k̃p is unramified, for the twisted

extension F̃Eωp /k̃p(T ).
There is a third hypothesis labelled (κ-big-enough) in [DG12, Prop. 2.2].

As is shown by [DG12, Lemma 2.4], it is guaranteed by the condition that q is
suitably large. More specifically, assume (as we do here) that q ≥ (ρ+1)2|G|2.
As justified below, this guarantees that any given κp-curve of genus ≤ ĝ (the

genus of the function field F̂ (11)) has more than (ρ+1)|G| κp-rational points.
The justification rests on the standard Lang–Weil estimates and the

following inequalities. Assume as we may that |G| > 1 and set % = ρ+ 1 (to
simplify notation). Then

ĝ ≤ %|G|/2− 1 (Riemann–Hurwitz, Remark 3.3).

(11) Which is also equal to the genus of F̃Eω
p .
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In particular ĝ ≤ %|G|, and so under the condition q ≥ %2|G|2 we have

q + 1− 2ĝ
√
q ≥ %2|G|2 + 1− 2ĝ%|G|
≥ %2|G|2 + 1− 2(%|G|/2− 1)%|G|
≥ 2%|G|+ 1 > (%+ 1)|G|.

Consequently, the cover of P1
κp obtained by (good) reduction from the

cover f̃Eωp : X̃Eω
p → P1

k̃p
has at least one κp-rational point on the covering

curve that does not lie above any of the ρ classes modulo p of the roots of
∆P or above ∞.

This, together with Hensel’s lemma (which makes it possible to lift this

κp-rational point to a k̃p-rational point on X̃Eω
p ) and the twisting lemma

(recalled in (∗) above), leads to the conclusion that there is at least one coset
tp + p ∈ A/p, with tp ∈ A with the following property: if t ∈ Ap satisfies
t ≡ tp mod p, then ∆P (t) 6= 0 and the Frobenius at p of the specialization

(F̂ )t/k̂P of F̂ /k̂P (T ) at T = t is conjugate to ω in G. Recall finally that, as

P is monic in Y and ∆P (t) 6= 0, the specialization (F̂ )t/k̂P is the splitting

field of P (t, Y ) over k̂P (12).
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[DL13] P. Dèbes and F. Legrand, Specialization results in Galois theory, Trans. Amer.
Math. Soc. 365 (2013), 5259–5275.

(12) We refer for example to [DL13, §2.1.4] for this standard point. Basically, F̂t/k̂ is

the compositum of the Galois closures of the extensions Ej/k̂P composing the specializa-

tion étale algebra of F/k̂P (T ) at t, and as ∆P (t) 6= 0, the extensions Ej/k̂P correspond

to the irreducible factors of P (t, Y ) in k̂P [Y ].

http://dx.doi.org/10.1016/0022-314X(92)90018-K
http://dx.doi.org/10.1007/BF02567509
http://math.univ-lille1.fr/~pde/rev_www.pdf
http://math.univ-lille1.fr/~pde/rev_www.pdf
http://dx.doi.org/10.5802/aif.2714
http://dx.doi.org/10.1090/S0002-9947-2013-05800-X


Reduction and specialization of polynomials 23
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Abstract (will appear on the journal’s web site only)

We show explicit forms of the Bertini–Noether reduction theorem and
of the Hilbert irreducibility theorem. Our approach recasts in a polynomial
context the geometric Grothendieck good reduction criterion and the con-
gruence approach to HIT for covers of the line. A notion of “bad primes”
of a polynomial P ∈ Q[T, Y ] irreducible over Q is introduced, which plays
a central and unifying role. For such a polynomial P , we deduce a new
bound for the least integer t0 ≥ 0 such that P (t0, Y ) is irreducible in
Q[Y ]: in the generic case for which the Galois group of P over Q(T ) is
Sn (n = degY (P )), this bound only depends on the degree of P and the
number of bad primes. Similar issues are addressed for algebraic families of
polynomials P (x1, . . . , xs, T, Y ).
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