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Abstract
The finite subgroups of PGL2(C) are shown to be the only finite groupsG with this property:
for some integer r0 (depending on G), all Galois covers X → P

1
C

of group G can be
obtained by pulling back those with at most r0 branch points along non-constant rational
maps P

1
C

→ P
1
C
. For G ⊂ PGL2(C), it is in fact enough to pull back one well-chosen cover

with at most 3 branch points. A consequence of the converse for inverse Galois theory is
that, for G �⊂ PGL2(C), letting the branch point number grow provides truly new Galois
realizations F/C(T ) of G. Another application is that the “Beckmann–Black” property that
“any two Galois covers of P

1
C
with the same group G are always pullbacks of another Galois

cover of group G” only holds if G ⊂ PGL2(C).
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1 Introduction

Suppose f : X → P
1
k is a k-regular cover, i.e., a (branched) cover over a field k with X a

smooth and geometrically irreducible curve over k. By a rational pullback of f , we mean a
k-regular cover fT0 : XT0 → P

1
k obtained by pulling back f along some non-constant rational

map T0 : P
1
k → P

1
k . If f is given by a polynomial equation P(t, y) = 0 (with f corresponding

to the t-coordinate projection) and T0 is viewed as a rational function T0(U ) ∈ k(U ), then
an equation for the pullback fT0 is merely P(T0(u), y) = 0. As recalled in Sect. 2.2, if f is
additionally Galois of groupG, then for “many” T0, the resultingmap fT0 remains a k-regular
Galois cover of group G.

The Regular Inverse Galois Problem over k precisely consists in realizing each finite
group as the Galois group of a k-regular Galois cover of P

1
k . Rational pullback creates such

covers, if one is already known. Finding covers g that are not rational pullbacks of some
Galois covers f of given group G may be a more important issue. Indeed, if none of the f
are defined over k (as a regular cover), the pullbacks fT0 are generally not expected to be
either, in which case the remaining hope to realize G as a regular Galois group over k rests
on those covers g.

1.1 Main results

Assume first k = C. Consider the situation that all Galois covers X → P
1
C
of given group G

can be obtained from a proper subset of them by rational pullback; say then that the subset is
regularly parametric.1 For some finite groups G, a single cover f may suffice. For example,
the degree 2 cover P

1
C

→ P
1
C
sending z to z2 is regularly parametric. Such situations are,

however, exceptional. For “general” finite groups, an opposite conclusion holds:

Theorem 1.1 The finite subgroups of PGL2(C) (i.e., cyclic and dihedral groups, A4, S4, and
A5) are exactly those finite groups which have a regularly parametric cover X → P

1
C
. More

precisely, given a finite group G, the following two statements hold:
(a) if G ⊂ PGL2(C), 2 then G has a regularly parametric cover,
(b) if G �⊂ PGL2(C), then even the set of all Galois covers X → P

1
C
of group G and with at

most r0 branch points is not regularly parametric, for any r0 ≥ 0.

Hence, for G �⊂ PGL2(C), letting the branch point number grow provides an endless
source of “new” Galois covers of P

1
C
of group G, i.e., not mere rational pullbacks of covers

with a bounded branch point number, and so truly new candidates to be defined over Q.
Both statements of Theorem 1.1 are non-trivial. The one showing that finite subgroups

of PGL2(C) have a regularly parametric cover over C (with at most 3 branch points) was
proved in [7, Corollary 2.5], as a consequence of the twisting lemma and Tsen’s theorem.
The statement about “general” finite groups, those not contained in PGL2(C), is a new result
of this paper. In particular, it solves [7, Problem 2.14].

Here is a more precise version. Given an integer r ≥ 0 and an r -tuple C of non-trivial
conjugacy classes of G, denote the stack of regular Galois covers X → P

1 of group G with r
branch points by HG,r , and the stack of those with ramification type (r ,C) by HG,r (C) (see

1 The term “regularly” will be fully justified with the general definition of “k-regular parametricity” for which
the base field k is not necessarily algebraically closed (see Definition 2.1).
2 Above and throughout the paper, the condition “G ⊂ PGL2(C)” (resp., “G �⊂ PGL2(C)”) really means
that G is isomorphic (resp., is not isomorphic) to a subgroup of PGL2(C).
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Sect. 2.1); these are the Hurwitz stacks. From Theorem 1.1, if G �⊂ PGL2(C), the set

HG,≤r0(C) =
⋃

r≤r0

HG,r (C)

is never regularly parametric (r0 ≥ 1). More precisely, we have the following:

Theorem 1.2 Let k be an algebraically closed field of characteristic 0 and let G be a finite
group, not contained in PGL2(C). Fix an integer r0 ≥ 0. For every suitably large integer R,
depending on r0, there is a non-empty Hurwitz stack HG,R(C) such that not all k-covers in
HG,R(C) are rational pullbacks of k-covers in HG,≤r0 .

Finite subgroups of PGL2(C), which are excluded in Theorem 1.2, are the Galois groups
of genus 0 Galois covers. We show further that, if we also exclude the Galois groups of genus
1 Galois covers, then the conclusion of Theorem 1.2 holds for all Hurwitz stacks HG,R(C)

with C of suitably large length R (see Theorem 3.1). In fact, this stronger conclusion can
even be obtained without the extra genus 1 assumption as long as the field k is also assumed
to be uncountable (see Remark 3.7).

A related result (see Theorem 3.8) provides the following more explicit conclusion under
the stronger assumption that the finite group G has at least 5 maximal non-conjugate cyclic
subgroups (finite subgroups of PGL2(C) have at most 3): given any integer r0 ≥ 0, for every
suitably large even integer R, there is a non-empty Hurwitz stack HG,R(C) such that no
k-cover in HG,R(C) is a rational pullback of some k-cover in HG,≤r0 .

If, instead of the stacks HG,r , we consider the smaller stacks HG,r (C), we obtain the
following striking conclusion.

Theorem 1.3 Let k be an algebraically closed field of characteristic 0, let G be a finite group
not contained in PGL2(C), and let (R,C) be a ramification type for G with R ≥ 4. Then
there exists a ramification type (R + 1,D) for G such that HG,R+1(D) �= ∅ and no k-cover
in HG,R+1(D) is a pullback of a k-cover in HG,R(C).

Remark 1.4 (a) The assumption that k is algebraically closed can be weakened in some of
the results above to only assume that k is ample, or even arbitrary (of characteristic 0) in
some situations; see Theorem 3.10. Recall that a field k is ample if every geometrically
irreducible smooth k-curve has either zero or infinitely many k-rational points. Ample fields
include separably closed fields, Henselian fields, fields Q

totR, Q
totp of totally real or p-adic

algebraic numbers. See, e.g., [2,16,26] for more on ample fields.
(b) Theorem 1.3 also holds for R = 3. The proof uses the same tools and techniques as for
the case R ≥ 4, but is longer and more technical; it is given in [6].

1.2 Application

Theorem 1.2 has the following consequence. Given an algebraically closed field k of charac-
teristic 0, denote the set of all Galois covers X → P

1
k of group G by HG(k). Say that a finite

group G has the Beckmann–Black regular lifting property over k if, for any two g1 and g2 in
HG(k), there exist f ∈ HG(k) and two non-constant rational maps T01, T02 : P

1
k → P

1
k such

that gi = fT0i (i = 1, 2).

Corollary 1.5 Let k be an algebraically closed field of characteristic 0. The finite subgroups
of PGL2(C) are exactly those finite groups for which the Beckmann–Black regular lifting
property over k holds.
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The proof combines Theorem 1.2 with [7, Theorem 2.1], and is given in Sect. 2.3.2 where
the latter is recalled.

Our lifting property is a geometric variant of the Beckmann–Black arithmetic lifting
property for which the cover f ∈ HG(k) is requested to be defined over Q and to specialize
to some given Galois extensions E1/Q, . . . , EN /Q of groupG at some points t01, . . . , t0N ∈
P
1(Q) 3. There is no known counter-example to the latter. In comparison, our geometric

variant is obvious for N = 1 (by picking T0(U ) = U so that fT0 = f ), and Corollary 1.5
shows that it fails for N ≥ 2 if G �⊂ PGL2(C).

An intermediate stage towards counter-examples to the Beckmann–Black arithmetic prop-
erty is to find groups G with no Q-parametric covers, i.e. such that no cover f ∈ HG(Q)

specializes to all Galois extensions of Q of group G. First examples were given in [19,20].
Extending them to all finite subgroups G �⊂ PGL2(C) is a next challenge, to which we will
devote a subsequent work. Theorem 1.3 will be a key ingredient, the central idea being to
combine the strong non regular parametricity conclusions of Theorem 1.3 with a strategy
from [7] designed to deduce non Q-parametricity conclusions.

1.3 Methods and organization of the paper

Riemann’s existence theorem (RET) is the fundamental theorem the above results build on.
Furthermore, our proof of Theorem1.2 exploits the geometric structure of theHurwitzmoduli
spacesHG,R(C), namely, it shows that the dimension of the subset of all covers obtained by
pulling back a cover in HG,≤r0 is strictly smaller than that ofHG,R(C), for sufficiently large
R.

The tools used to bound the dimension of the subset of pullbacks include bounding the
degree of defining polynomials for covers using a Riemann–Roch based result of Sadi [27],
Chevalley’s theorem, and combinatorial ramification arguments. For the analogous result over
ample fields k, we show that HG,R(C)(k) is non-empty, using Pop’s 1

2 -Riemann existence
theorem [24], thus Zariski-dense in at least one connected component ofHG,R(C); and hence
this set is not contained in the above smaller dimension subset of pullbacks. Over arbitrary
fields of characteristic 0, we extend the theorem to certain families of groups using the rigidity
method.

On the other hand, the proofs of Theorems 1.3 and 3.8 construct explicit ramification types
whose Hurwitz stacks are non-empty by RET, and contain none of the pullbacks in question,
as shown using combinatorial arguments, the Riemann–Hurwitz formula, and Abhyankar’s
lemma. For an analogous result to Theorem 3.8 over ample fields k, we use 1

2 -RET once
more to ensure that HG,R(C)(k) �= ∅ for the constructed ramification types.

See Sect. 3 for the proof of Theorem 1.2 and its variants. See Sect. 4 for the proof of
Theorem 1.3. Section 2 is a preliminary section providing the basic notation and terminology
together with some general prerequisites.

3 The case N = 1 is particularly significant as it supports Hilbert’s strategy to solve the InverseGalois Problem
by first producing a Q-regular Galois cover f : X → P

1
Q
of given group. It is known to hold for some groups:

abelian, Sn , An , dihedral of order 2n with n > 1 odd, etc.
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2 Notation, terminology, and prerequisites

2.1 Basic terminology (for more details, see [4] and [11])

The base field k is always assumed to be of characteristic 0. We also fix a big algebraically
closed field containing k and the indeterminates that will be used, and in which every field
compositum should be understood.

2.1.1 Covers

Given a field k, a k-variety is a geometrically irreducible and geometrically reduced quasipro-
jective k-scheme. A k-curve is a k-variety of dimension 1.

A field extension F/k(T ) is k-regular if F ∩ k = k. A k-regular cover f : X → P
1
k

is a non-constant finite morphism with X a smooth k-curve; the function field extension
k(X)/k(T ) is then k-regular. If in addition k(X)/k(T ) is Galois, then f : X → P

1
k is called a

k-regular Galois cover. If k is algebraically closed, we sometimes omit the word “k-regular”.
We also use affine equations: we mean the irreducible polynomial P ∈ k[T , Y ] of a

primitive element of k(X)/k(T ), integral over k[T ].We say defining equation if the primitive
element is not necessarily integral over k[T ]; then P ∈ k(T )[Y ].

By group and branch point set of a k-regular cover f : X → P
1
k , we mean those of the

extension k(X)/k(T ) 4: the group of k(X)/k(T ) is the Galois group of its Galois closure
and the branch point set of k(X)/k(T ) is the (finite) set of points t ∈ P

1(k) such that the
associated discrete valuations are ramified in k(X)/k(T ).

The field k being of characteristic 0, we also have the inertia canonical invariant C of the
k-regular cover f : X → P

1
k , defined as follows. If t = {t1, . . . , tr } is the branch point set

of f , then C is an r -tuple (C1, . . . ,Cr ) of conjugacy classes of the group G of k(X)/k(T ):
for i = 1, . . . , r , the class Ci is the conjugacy class of the distinguished5 generators of the
inertia groups IP above ti in the Galois closure of k(X)/k(T ). The pair (r ,C) is called the
ramification type of f . More generally, given a finite group G, we say that a pair (r ,C) is
a ramification type for G over k if it is the ramification type of at least one k-regular Galois
cover f : X → P

1
k of group G.

We also use the notation e = (e1, . . . , er ) for the r -tuple with i th entry the ramification
index ei = |IP| of primes above ti ; ei is also the order of elements of Ci , i = 1, . . . , r .

We say that two k-regular covers f : X → P
1
k and g : Y → P

1
k are P

1
k-isomorphic if

there is an isomorphism χ : X → Y defined over k such that f = g ◦ χ .

2.1.2 Hurwitz stacks and Hurwitz spaces

Given a finite group G, an integer r ≥ 1, an r -tuple C of non-trivial conjugacy classes of G,
and a field k (of characteristic zero), we use the following notation:
- HG(k): set of all k-regular Galois covers f : X → P

1
k of group G,

- HG,r (k) (resp., HG,≤r (k)): subset of HG(k) defined by the extra condition that the branch
point number is r (resp., that the branch point number is ≤ r ),
- HG,r (C)(k): subset of HG,r (k) defined by the extra condition that the inertia canonical
invariant is C.

4 which is the function field extension associated with f ⊗k k : X ⊗k k → P
1
k
.

5 in the sense that they correspond to e2iπ/ei in the canonical isomorphism IP → μei = 〈e2iπ/ei 〉.
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The sets HG,r (k) and HG,r (C)(k) can be viewed as the sets of k-rational points on some
stacks HG,r and HG,r (C), usually called Hurwitz stacks. More formally, HG,r (k) is the
category whose objects are the k-regular Galois covers f : X → P

1
k with r branch points and

given with an isomorphismG → Gal(k(X)/k(T )), and morphisms are the P
1
k-isomorphisms

commuting with the action of G; and similarly for HG,r (C).
We use the phrase sets of k-points on the Hurwitz stacks HG,r and HG,r (C) for the sets

HG,r (k) and HG,r (C)(k), but shall not use the stack structure.
On the other hand, we shall need the structure of variety of the associated moduli spaces,

notably in Sect. 3.1 for the proof of Theorem 1.2. The stacks HG,r and HG,r (C) have indeed
a coarse moduli space, which we denote byHG,r andHG,r (C), respectively. They are com-
monly referred to as Hurwitz spaces; see [14] for more details6. They are finite unions of
r -dimensional varieties and have this property: if k is an algebraically closed field of char-
acteristic 0, the sets HG,r (k) and HG,r (C)(k) are in one-one correspondence with the sets
of isomorphism classes of objects in the categories HG,r (k) and HG,r (C)(k), respectively.
Finally, if k is a not necessarily algebraically closed field (but is still of characteristic 0)
and f ∈ HG,r (k), then its isomorphism class [ f ] still corresponds to a k-rational point of
HG,r (C). If additionally G has trivial center, then the spacesHG,r (C) are in fact fine moduli
spaces, whence conversely any k-rational point onHG,r (C) corresponds to a k-regular Galois
cover.

2.2 Pullback and regular parametricity

Let k be a field of characteristic zero and f : X → P
1
k a k-regular cover. Let T0 ∈

k(U ) \ k; we make no distinction between the rational function T0 and the rational map
T0 : P

1
k → P

1
k
7. The fiber product X × f ,T0 P

1
k provides a cartesian square

X × f ,T0 P
1
k

��

��

P
1
k

T0
��

X
f �� P1

k

When X × f ,T0 P
1
k is geometrically irreducible, denote by fT0 : XT0 → P

1
k the smooth

projective model of the top horizontal map: XT0 is the normalization of P
1
k in the function

field of X × f ,T0 P
1
k . The map fT0 : XT0 → P

1
k is then a k-regular cover, which we call the

pullback of f along T0. More generally, covers fT0 are called rational pullbacks of f . If
f : X → P

1
k is additionally assumed to be Galois of group G, then fT0 : XT0 → P

1
k remains

a k-regular Galois cover of group G.
Given an affine equation P ∈ k[T , Y ] of f , consider the subset HP,k(U ) of k(U ) of

all T0 such that P(T0(U ), Y ) is irreducible in k(U )[Y ]. It is a Hilbert subset of k(U ) [12,
Chapter 12]. If T0 ∈ HP,k(U ) ∩ k(U ), then T0 /∈ k and the fiber product X × f ,T0 P

1
k is

geometrically irreducible; hence the pullback fT0 is a k-regular cover and P(T0(U ), Y ) is
a defining equation of fT0 . The subset HP,k(U ) ∩ k(U ) only depends on f (and not on

the specific equation P(T , Y )). Denote it by H f ,k . The field k(U ) being Hilbertian [12,

6 Due to our definition of the categories HG,r (k) and HG,r (C)(k), it is the so-called inner version of Hurwitz
spaces that we shall be working with.
7 In particular, the degree of T0 ∈ k(U ) (the maximum of numerator degree and denominator degree in
coprime notation) is the same as the degree of the associated map P

1
k → P

1
k .
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Proposition 13.2.1], the Hilbert subset HP,k(U ) is “big” in various senses: by definition of a
Hilbertian field, it is infinite; by Theorems 3.3 and 3.4 from [9], it is dense for the Strong
Approximation Topology. The same is true of the set H f ,k .

Definition 2.1 For H ⊂ HG(k), we define

PB(H) =
{
fT0

∣∣∣∣
f ∈ H

T0 ∈ H f ,k

}
(PB for “PullBack”).

A subset H of HG(k) is k-regularly parametric if PB(H) ⊃ HG(k). We say that a cover
f ∈ HG(k) is k-regularly parametric if the subset { f } of HG(k) is.

The k-regularly parametricity notion relates to the classical notion of genericity (in one
parameter; see, e.g., [17]): clearly, if a cover f ∈ HG(k) is generic, then it is k-regularly
parametric. The paper [5] says more about how the two notions compare.

2.3 Prerequisites

Let k be an algebraically closed field of characteristic 0.

2.3.1 Riemann Existence Theorem

This fundamental tool of the theory of covers of P
1 allows turning questions about covers

into combinatorics and group theory considerations.
Riemann Existence Theorem (RET). Given a finite group G, an integer r ≥ 2, a subset t
of P1(k) of r points, and an r-tupleC = (C1, . . . ,Cr ) of non-trivial conjugacy classes of G,
there is a Galois cover f : X → P

1
k of group G, branch point set t, and inertia canonical

invariant C if and only if there exists (g1, . . . , gr ) ∈ C1 × · · · × Cr such that g1 · · · gr = 1
and 〈g1, . . . , gr 〉 = G. Furthermore, the number of such covers f : X → P

1
k , counted up

to P
1
k-isomorphism classes, equals the number of r-tuples (g1, . . . , gr ) as above, counted

modulo componentwise conjugation by an element of G.
Cf., e.g., [29, Theorem 2.13] for the mere existence statement, or [8] for a detailed

overview.
The RET shows that a pair (r ,C) is a ramification type forG over k if the set, traditionally

called the Nielsen class, of all (g1, . . . , gr ) ∈ C1 × · · · × Cr such that g1 · · · gr = 1 and
〈g1, . . . , gr 〉 = G is non-empty. We shall use the RET to construct Galois covers of given
group G and with some special ramification type.

2.3.2 Bounds for the branch point number and the genus of pulled-back covers

Theorem 2.2 Let f : X → P
1
k ∈ HG(k) and T0 be in the Hilbert subset H f ,k . Denote the

branch point number of f (resp., fT0 ) by r (resp., rT0 ) and the genus of X (resp., XT0 ) by g
(resp., gT0 ). Then r ≤ rT0 and g ≤ gT0 . Moreover, if g > 1 and T0 is not an isomorphism,
then g < gT0 .

Proof For branch point numbers, see [7, Theorem 2.1]. Regarding genera, we may assume
g �= 0 and T0 is not an isomorphism. The claim then follows from applying the Riemann–
Hurwitz formula to the cover XT0 → X . Namely, we obtain 2gT0 − 2 ≥ N (2g − 2) with
N = deg( f ), whence gT0 ≥ 2(g − 1) + 1 ≥ g if g ≥ 1, with equality only if g = 1. ��
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We can now explain how Corollary 1.5 is deduced from Theorem 1.2.

Proof of Corollary 1.5 assuming Theorem 1.2 First, assume that the group G satisfies the
Beckmann–Black regular lifting property over k. Pick a Galois cover g1 ∈ HG(k) (such
a cover exists from the RET). Let r1 be the branch point number of g1. Then, for any
g2 ∈ HG(k), there exists f ∈ HG(k) and T01, T02 ∈ k(U ) such that gi = fT0i (i = 1, 2).
From Theorem 2.2, it follows from g1 = fT01 that the branch point number of f is ≤ r1.
This shows that HG,≤r1(k) is regularly parametric. From Theorem 1.2, G ⊂ PGL2(C).

Conversely, if G ⊂ PGL2(C), then G has a k-regularly parametric cover f : X → P
1
k

(see [7, Corollary 2.5]); a fortiori the Beckmann–Black regular lifting property holds over
k. ��
Remark 2.3 The proofs above of Theorem 2.2 and Corollary 1.5 cite two results which are
only stated with k = C: Theorem 2.1 and Corollary 2.5 from [7]. These two results however
hold more generally over any algebraically closed field of characteristic 0. Indeed, regarding
[7, Theorem 2.1], the assumption k = C was made for simplicity and can readily be gen-
eralized. As to [7, Corollary 2.5], the main ingredient there is Tsen’s theorem that the field
C(U ) is quasi-algebraically closed, which is also true with C replaced by any algebraically
closed field.

2.3.3 On varieties and their dimension

In the following,we recall somewell-known facts fromalgebraic geometry about the structure
and dimension of images and preimages under algebraic morphisms.

It is elementary that the image of an n-dimensional variety under an algebraic morphism
is always of dimension ≤ n. A bound in the opposite direction is given via the dimension of
a fiber (see, e.g., [23, §1.8, Theorems 2 and 3]):

Theorem 2.4 Let f : X → Y be a dominant morphism between varieties X and Y . For any
point p ∈ f (X), we have dim(Y ) ≤ dim(X) ≤ dim(Y ) + dim( f −1(p)).

We refer to, e.g., [15, p. 239, lemme 1.8.4.1] for the next theorem:

Theorem 2.5 (Chevalley) Let f : X → Y be a morphism between varieties X and Y . Then
the image of any constructible subset of X is constructible.8

In particular, the image of any subvariety X0 of X is a finite union of varieties Yi ⊂ Y ,
each of dimension at most dim(X0).

For short, we shall say that a subset S of a variety X is of dimension ≤ d , if it is contained
in a finite union of subvarieties of dimension ≤ d .

2.3.4 Defining equations for Galois covers and their pullbacks

To prove Theorem 1.2, we shall use affine and defining equations of Galois covers of P
1
k (as

defined in Sect. 2.1.1).

Lemma 2.6 Let G be a finite group and r0 ∈ N. Then every Galois cover in HG,≤r0(k) can
be defined by an affine equation P(T , Y ) = 0, where P ∈ k[T ][Y ] is irreducible, monic in
Y , of bounded T -degree depending only on r0 and G, and of degree |G| in Y .

8 Here, a subset of a topological space is called constructible if it is a finite union of locally closed sets.
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Proof The fact that everyGalois cover of groupG andof boundedgenus g ≤ g0 canbedefined
by an affine equation of bounded T -degree depending only on g0 and |G| follows essentially
from an application of the Riemann–Roch theorem. Concretely, in [27, §2.2] the upper bound
(2g0 + 1)|G| log |G|/ log(2) was obtained, cf. also [10, Lemma 4.1]. It then suffices to note
that the genus g of a Galois cover of P

1
k with r0 branch points is bounded from above only in

terms of r0 andG: theRiemann–Hurwitz formula gives 2g ≤ 2−2|G|+r0(|G|·(1−1/emax)),
with emax the maximal element order in G. ��

Definition 2.7 Let d, e ∈ N. We denote byPd,e the space of polynomials P(T , Y ) ∈ k[T , Y ]
of degree exactly d in T and exactly e in Y , viewed up to multiplicative constants. Similarly,
let P≤d denote the space of polynomials Q(T ) ∈ k[T ] of degree at most d , viewed up to
multiplicative constants. Furthermore, denote by Rd the set of rational functions over k in
one indeterminate U of degree exactly d .

The spaces Pd,e and P≤d are varieties in a natural way, via identifying the polynomi-
als P(T , Y ) = ∑d

i=0
∑e

j=0 αi, j T iY j and Q(T ) = ∑d
i=1 βi T i with the coordinate tuples

(αi, j )i, j and (βi )i , respectively, in the corresponding projective space. Similarly, Rd is a
variety by identifying a rational function T0 = T0(U ) = (

∑d
i=0 βiU i )/(

∑d
j=0 γ jU j ), with

coprime numerator and denominator, with the coordinate tuple (β0 : · · · : βd : γ0 : · · · :
γd) ∈ P

2d+1. Note that the degree and coprimeness assumptions fix the numerator and
denominator up to constant factor, whence the above identification is well-defined.

We can now define pullback maps on the level of the above spaces Pd,e and Rd :

Lemma 2.8 Let d1, d2, and d3 be positive integers. Then the map

P̃B : Pd1,d2 × Rd3 → Pd1·d3,d2 ,

defined by (P(T , Y ), T0(U )) �→ “numerator of P(T0(U ), Y )”, is a morphism of algebraic
varieties.

Proof Let P(T , Y ) = ∑d1
i=0

∑d2
j=0 αi, j T i Y j and T0 = (

∑d3
k=0 βkUk)/(

∑d3
k=0 γkUk). Then

P̃B(P, T0) =
∑

i, j

αi, j (
∑

k

βkU
k)i (

∑

k

γkU
k)d1−i Y j ,

and identification with the spaces of coordinate tuples shows that P̃B is given by a polynomial
map. ��

3 Proofs of Theorem 1.2 and its variants

In Sect. 1.1, we mention two variants of Theorem 1.2: a “genus ≥ 2” version (Theorem 3.1)
and an “explicit” variant (Theorem 3.8). Section 3.1 is devoted to the proof of the former, the
proof of how Theorem 1.2 can be deduced being explained at the end of Sect. 3.1.1 (where
Theorem 3.1 is stated). Sect. 3.2 is devoted to the proof of Theorem 3.8. Throughout this
section, except in Sect. 3.3, the field k is algebraically closed of characteristic 0. Our proofs
make use of the fact that k is algebraically closed but certain parts carry over to more general
fields. We collect such considerations in Sect. 3.3.
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3.1 Proof of Theorem 1.2

3.1.1 Reduction to Theorem 3.1 and Lemma 3.2

The following theorem is our strongest result regarding pullbacks of Galois covers of genus
at least 2. Its proof is also the main part of the proof of Theorem 1.2.

Theorem 3.1 Let G be a finite group, let r0 ∈ N, and let

HG,≤r0,g≥2(k) = HG,≤r0(k) \ {genus ≤ 1 covers}
be the set of all Galois covers f : X → P

1
k of genus at least 2 with Galois group G and at

most r0 branch points. Then there exists R0 ∈ N such that, for every ramification type (R,C)

for G with R ≥ R0, we have

HG,R(C)(k) �⊂ PB(HG,≤r0,g≥2(k)).

In particular, HG,≤r0,g≥2(k) is not k-regularly parametric.

Theorem 3.1 is proved in Sect. 3.1.2-4 below. The following lemma shows non-
parametricity for sets of Galois k-covers of genus 1:

Lemma 3.2 Let HG,g=1(k) be the set of Galois covers f : X → P
1
k of genus 1 with group

G. Then there exists a ramification type (r ,C) for G such that no cover in HG,r (C)(k) is a
pullback from any cover inHG,g=1(k). In particular,HG,g=1(k) is not k-regularly parametric.

Proof Let f : X → P
1 ∈ HG,g=1(k). As a consequence of the Riemann–Hurwitz formula,

the tuple of element orders in the inertia canonical invariant of f is one of (2, 2, 2, 2),
(3, 3, 3), (2, 4, 4), or (2, 3, 6). Furthermore, in each case, G has a normal subgroup N with
cyclic quotient group G/N of order 2, 3, 4 and 6, respectively, and such that the quotient
map X → X/N is an unramified cover of genus-1 curves over k. Assume first |N | = 1.
Then G is cyclic9 and, therefore, there exist Galois covers of P

1
k of group G and genus 0. In

particular, no set of covers of genus ≥ 1 can have those as pullbacks, by Theorem 2.2.
Assume therefore |N | > 1. Let x ∈ N \ {1}, and let (r ,C) be any ramification type for

G involving the conjugacy class of x . Since X → X/N is unramified, its image under any
rational pullback of f must also be unramified. But, of course, for any cover X̃ → P

1 with
inertia canonical invariant C, the subcover X̃ → X̃/N is ramified by definition. Therefore,
no cover of inertia canonical invariant C can be a pullback of f . ��
Remark 3.3 In the case that G is non-cyclic, the above proof shows immediately that, for
(r ,C) any ramification type of genus 1 with group G (r ∈ {3, 4}) and for each s ≥ r + 1,
there exists a ramification type (s,D) for G such that no k-cover in HG,s(D) is a pullback of
some k-cover in HG,r (C). Indeed, for the only critical case s = r + 1, it suffices to replace
(x1, . . . , xn) ∈ C, where x1 /∈ N without loss, by (x0, x

−1
0 x1, . . . , xn) with x0 ∈ N \ {1}.

Assuming Theorem 3.1 and Lemma 3.2, we can now derive Theorem 1.2.

Proof of Theorem 1.2 By assumption, there is no Galois cover of P
1 of group G and genus

0. Let (R,C) be a ramification type for G with C = (C1, . . . ,CR). From Theorem 3.1, we
know that not all covers in HG,R(C)(k) are rational pullbacks of some element of HG,≤r0(k)

9 In fact, |G| ∈ {2, 3, 4, 6}, since G is then a group of automorphisms of some elliptic curve, see [28, Chapter
III, Theorem 10.1].
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of genus ≥ 2, if the length R of C is sufficiently large (depending on r0). From Lemma 3.2
and its proof, we know that no k-cover in HG,R(C) is a rational pullback of some k-cover
in HG,≤r0 of genus 1, if C contains certain conjugacy classes. Altogether, if C contains all
classes of G sufficiently often, then certainly not all k-covers in HG,R(C) are reached via
rational pullback of some k-cover in HG,≤r0 . ��

3.1.2 Proof of Theorem 3.1: some dimension estimates

To prepare the proof of Theorem 3.1, we investigate the behaviour of rational pullbacks of
Galois covers.

Recall that we have introduced two different ways of associating algebraic varieties to
certain sets of Galois covers: the Hurwitz spaces and the spaces of defining equations. In
the next lemma, we relate both concepts via a dimension estimate stating, in particular, that,
in order to obtain defining equations for all covers in an r -dimensional Hurwitz space, we
require at least r -dimensional subvarieties in the space of defining equations.

To state the lemma, denote by Psep
d,e the subset of separable (in Y ) polynomials in Pd,e

(the latter set is introduced in Definition 2.7). Note that this is a dense open subset of Pd,e.
Due to Lemma 2.6, when looking for defining equations for covers in some HG,≤r0(k), we
can restrict without loss to a suitable finite union of Psep

d,e (for d smaller than some bound
depending only on G and r0, and in fact always with e = |G|).
Lemma 3.4 Let r , s, d, e ∈ N. Let V ⊂ Psep

d,e be a subvariety of dimension s. Let G be a
finite group and let (r ,C) be a ramification type for G. Then the set of f ∈ HG,r (C)(k)
which have a defining equation in V is of dimension ≤ s 10. In particular, if s < r , there are
infinitely many covers in HG,r (C)(k) which do not have a defining equation in V .

Proof Denote the discriminant of a polynomial Q(Y ) = ∑e
i=0 aiY

i by

�(Q) = a2e−2
e

∏

i< j

(ri − r j )
2,

where the ri ’s are the roots of Q, counted with multiplicities. The discriminant induces
an algebraic morphism � : Psep

d,e → P≤c, P(T , Y ) �→ �(P) (where P is viewed as a
polynomial in Y ) to the space of polynomials in T of degree ≤ c up to constant factors (see
Definition 2.7). Note that indeed the image of a separable polynomial is nonzero. The fact
that the degree of �(P) is bounded only in terms of d and e follows easily from the fact that
the discriminant is a polynomial expression in the coefficients, viewed as transcendentals. In
particular, the dimension of �(V ) ⊆ P≤c is at most dim(V ) = s.

Next, for any r ≤ t ≤ c and any r -subset R of {1, . . . , t}, consider the morphisms
u : (A1)t → P≤c given by (a1, . . . , at ) �→ ∏t

i=1(T − ai ) and v : (A1)t → (A1)r the
projection on the coordinates in R. For each of these finitelymany possiblemaps u, v, themap
u is finite and so v(u−1(W )) is of dimension ≤ s, where W = �(V ). But, since any branch
point (assumed to be finite without loss) of a Galois cover of P

1
k is necessarily a root of the

discriminant of a defining equation, such a cover can only have a defining equation in V if its
branch point set is in v(u−1(W )) for some u, v as above. Now, letUr andUr denote the spaces
of ordered and unordered r -sets in P

1, respectively. There is a well-defined finite morphism
from HG,r (C) to Ur : the branch point reference map. Now, let H′ = HG,r (C) ×Ur Ur be

10 Note here that equivalent covers have the same defining equations by definition, so that the term “defining
equation for an element ofHG,r (C)(k)” is indeed well-defined.
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the “ordered branch point set version” of the Hurwitz spaceHG,r (C). Then the branch point
reference map induces a finite morphism ψ : H′ → Ur (⊂ (P1)r ). Furthermore, there is a
natural finite morphism π : H′ → HG,r (C).

In particular, each set π(ψ−1(v(u−1(W )))), and thus finally also the set of f ∈
HG,r (C)(k) having (only finite branch points and) a defining equation in V , is of dimension
≤ s.

The additional assertion in the case s < r follows immediately, since ψ(H′)∩ (A1)r is of
dimension r and, in fact, equal to the set of all ordered r -sets inA

1, by the Riemann Existence
Theorem. ��

In the proof of Theorem 3.1, we shall show as an intermediate result that a rational function
pulling a prescribed Galois cover f of P

1
k back into a prescribed HG,R(C)(k) can only have

a certain maximal number of branch points outside of the branch point set of f . We then
require the following auxiliary result stating that varieties of rational functions with such
partially prescribed branch point sets cannot be too large.

Lemma 3.5 Let d,m, n, s ∈ N, let W be a subvariety of Psep
m,n, and let Rd be as in Defini-

tion 2.7. Then the set W ′ ⊂ W × Rd of all (P, T0) ∈ W × Rd such that at most s branch
points of T0 are not roots of �(P) is of dimension at most dimW + s + 3.

Proof Denote the discriminant map onPsep
m,n by�1 and the one onRd by�2. Here we define

the discriminant of a rational function T0(U ) = T0,1(U )/T0,2(U ) as the discriminant of the
polynomial T0,1(U )−T ·T0,2(U ) with respect toU . Note that, in the special case of rational
functions, every root of the discriminant is in fact a branch point (see, e.g., [22, Lemma3.1] for
a stronger version of this statement). This means that, with u : (a1, . . . , at ) �→ ∏t

i=1(T −ai )
as before, an element of u−1(�2(T0)) is already the exact branch point set of T0, up to
multiplicities.

Consider now the following chain of maps:

W ′ ⊂ W × Rd
id×�2−−−−−→W × P≤t

id×u←−−−−−W × (A1)t
α←−−−−−W × (A1)t ,

where α is defined by α(P, (a1, . . . , at )) = (P, (�1(P)(a1), . . . , �1(P)(at ))). Clearly, all
maps in this chain are morphisms and, except for the first map id × �2, they are all finite.
Therefore, (id × �2)(W ′) is of the same dimension as α−1

(
(id × (u−1 ◦ �2))(W ′)

)
and,

by definition of W ′, the latter is contained in one of finitely many varieties isomorphic to
W × (A1)s . Indeed, up to repetitions, all except for at most s roots of �2(T0) are mapped to
0 under�1(P), for (P, T0) ∈ W ′. Thus, (id×�2)(W ′) is of dimension at most dim(W )+ s.
Theorem 2.4 then yields that W ′ is of dimension at most dim(W ) + s + dim(�−1

2 (p)) for
any p equal to the discriminant of a rational function T0 as above.

It remains to show that �−1
2 (p) is of dimension ≤ 3. Now, the set of genus zero covers

P
1
k → P

1
k (viewed up to equivalence) of degree d with prescribed branch point set is finite, and

each such cover is given by a degree-d rational function, unique up to PGL2(k)-equivalence.
Since dim(PGL2) = 3, the claim follows, completing the proof. ��

3.1.3 Proof of Theorem 3.1: reduction to Lemma 3.6

Lemma 3.6 Let G be a finite group and f : X → P
1
k a Galois cover with group G and genus

≥ 1. Then, for every j ∈ N, there exists a constant R0 ∈ N, depending only on j and the
branch point number of f , such that, for every class-R-tuple C of G (R ≥ R0) and for every
rational function T0 : P

1
k → P

1
k in H f ,k with more than R − j branch points outside the

branch point set of f , the pullback of f along T0 is not in HG,R(C)(k).
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Proof of Theorem 3.1 assuming Lemma 3.6 Let f : X → P
1 ∈ HG,≤r0,g≥2(k). Let g be the

genus of X . Let F = F(T , Y ) be a separable defining equation for f , of minimal degree in
T . Using the pullback map P̃B as in Lemma 2.8, denote by P̃B( f ) the set of all pullbacks of
F by rational functions of arbitrary degree, i.e., P̃B( f ) = ∪d∈NP̃B({F} ×Rd). Then P̃B( f )
contains defining equations for all rational pullbacks of the cover f .

Let (R,C) be a ramification type for G. By the Riemann–Hurwitz formula, the genus
of a Galois k-cover of group G arising as a degree-d pullback of f is ≥ d(g − 1) + 1. As
g ≥ 2, this shows that there is d0 ∈ N, depending only on C, such that, for all d > d0, a
degree-d pullback of f cannot have inertia canonical invariantC (as the genus is the same for
all covers with invariant C). In other words, to investigate the set of polynomials in P̃B( f )
which are defining equations for covers in HG,R(C)(k), it suffices to restrict to pullback
functions T0 ∈ Rd , d ≤ d0, with some bound d0 ∈ N depending only on C.

Let D ∈ N be such that every f ∈ HG,≤r0(k) has a separable defining equation in some
space Pd1,|G| with d1 ≤ D. Such D exists by Lemma 2.6. Let δ be the dimension of PD,|G|
(to be explicit, δ = (D + 1)(|G| + 1) − 1).

Fix j > δ+3, choose R0 large enough (see the proof of Lemma 3.6 for an explicit bound)
and R ≥ R0, and denote by S f the set of T0 ∈ H f ,k for some f ∈ HG,≤r0,g≥2(k) such that
fT0 has R branch points. As seen above, the degree of such T0 is absolutely bounded from
above (in terms of the genus, and thus the branch point number of f ) and, by Lemma 3.6, all
T0 ∈ S f have at most R − j branch points outside the branch point set of f . A fortiori, they
are in the set S ′

F of rational functions (of bounded degree as before and) with at most R − j
finite branch points outside the set of roots of the discriminant of F(T , Y ), for a defining
equation F(T , Y ) = 0. The latter sets S ′

F can be defined for all F ∈ Psep
d1,d2

(not just for those
defining Galois covers).

Now, consider the setS = ∪d1≤D∪{F}×S ′
F , where the inner union is over all F ∈ Psep

d1,|G|.
From Lemma 3.5 (with W = Psep

d1,|G|), it follows that S is contained in a a finite union of
varieties, of dimension at most dim(PD,|G|) + R − j + 3 = δ + R − j + 3 < R.

Therefore, the image of S under P̃B is of dimension strictly smaller than R as well. On the
other hand, Lemma 3.4 shows that no finite union of varieties of dimension < R can contain
defining equations for all k-covers in HG,R(C).

Hence, HG,≤r0,g≥2(k) is not k-regularly parametric. ��

Remark 3.7 In fact, the restriction to sets of Galois covers of genus ≥ 2 is used only
once in the proof of Theorem 3.1; namely, to ensure that the degree of a rational func-
tion T0, that pulls back a k-cover with ≤ r0 branch points to a k-cover in HG,R(C),
is bounded from above in terms of r0 and R. This then ensures, via the various aux-
iliary lemmas, that PB(HG,≤r0,g≥2(k)) ∩ HG,R(C)(k) is contained in a finite union of
lower-dimensional varieties (as soon as R is sufficiently large), i.e., that its complement
inside HG,R(C)(k) contains a Zariski-dense open subset. If the set HG,≤r0,g≥2(k) in Theo-
rem 3.1 is replaced by HG,≤r0,g≥1(k), this strong conclusion will no longer be guaranteed.
However, since all the auxiliary lemmas remain valid, we obtain in the same way that
PB(HG,≤r0,g≥1(k)) ∩ HG,R(C)(k) is contained in a countable union of lower-dimensional
varieties (each corresponding to rational functions T0 of some fixed degree). This at least
implies HG,R(C)(k) �⊂ PB(HG,≤r0,g≥1(k)) as soon as k is uncountable. Thus the conclusion
of Theorem 3.1 remains valid for HG,≤r0,g≥1(k) in the important special case k = C.
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3.1.4 Proof of Lemma 3.6

Let t1, . . . , ts be the branch points of f , and let e1, . . . , es be the corresponding orders of
inertia groups of f . Set emax = max{e1, . . . , es}. We choose R0 = (s − 2 + j)emax, and
R ≥ R0 arbitrary. We divide the proof into two main steps.
First step: Translation into a combinatorial statement. Let σ1, . . . , σs ∈ Sd be the inertia
group generators of T0 at t1, . . . , ts , and σs+1, . . . , σs+m the non-trivial inertia group gene-
rators at further points. For σ ∈ Sd , denote by o(σ ) the number of orbits of 〈σ 〉, and set
ind(σ ) = d − o(σ ). We claim that, assuming choice of R0 as above, the following holds:
Claim:

s∑

i=1

ind(σi ) ≥ 2d − 2 − R + j,

or equivalently:

s∑

i=1

o(σi ) ≤ d(s − 2) − j + 2 + R.

The assertion then follows from the claim, since T0 defines a genus-zero cover, whence the
Riemann–Hurwitz formula yields

∑s+m
i=1 ind(σi ) = 2d − 2. Together with the claim, this

enforces m ≤ R − j .
Second step: Transformation of cycle structures. To prove the claim, consider the cycle
structures of σi , i = 1, . . . , s.We shallmanipulate the cycle structures of the σi in a controlled
way, to make it easier to estimate the total number of orbits of all σi , i = 1, . . . , s.

By the definition of T0 and Abhyankar’s lemma, the cycle lengths of the σi are multiples
of ei , for i = 1, . . . , s, with a total of exactly R exceptions over all i ∈ {1, . . . , s}. For
each i ∈ {1, . . . , s}, let ni,1,…, ni,r(i) denote the exceptional cycle lengths (i.e., the ones
which are not multiples of ei ), in descending order. Define a permutation τi ∈ Sd in the
following way. First, fill all the non-exceptional cycles of σi into τi . Next, find the smallest
j such that

∑ j
k=1 ni,k ≥ ei and, instead of the cycles of length ni,1, . . . , ni, j , fill one single

cycle of length
∑ j

k=1 ni, j into τi . Repeat this procedure until the sum of the remaining
exceptional cycle lengths in σi is less than ei . Fill one more cycle of length the sum of those
remaining exceptional cycle lengths into τi . By definition, all except possibly one cycle of
τi have length ≥ ei . In particular, the number o(τi ) of orbits of 〈τi 〉 is bounded from above
by �d/ei� < d/ei + 1. Also, since f is of genus ≥ 1, the Riemann–Hurwitz formula yields∑s

i=1
1
ei

≤ s − 2.
Therefore,

s∑

i=1

o(τi ) < d

(
s∑

i=1

1

ei

)
+ s ≤ d(s − 2) + s.

On the other hand, we can effectively bound the difference between
∑s

i=1 o(τi ) and∑s
i=1 o(σi ) via the above construction. Namely, to obtain (τ1, . . . , τs) from (σ1, . . . , σs),

certain sets of exceptional cycles were replaced by one big cycle. There were R exceptional
cycles in total and, since at most emax cycles each were replaced by one cycle, the total
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difference
∑s

i=1

(
o(σi ) − o(τi )

)
is bounded from above by R − R

emax
. Altogether,

s∑

i=1

o(σi ) ≤ R − R

emax
+

s∑

i=1

o(τi ) < R − R

emax
+ d(s − 2) + s

≤ R − (s − 2 + j) + d(s − 2) + s,

with the last inequality following from our choice of R0. This finally yields

s∑

i=1

o(σi ) ≤ d(s − 2) − j + 2 + R,

showing the claim. This completes the proof.

3.2 An explicit variant of Theorem 1.2

The goal of this subsection is to prove the following statement, alluded to in Sect. 1.1 as an
explicit variant of Theorem 1.2.

Theorem 3.8 Let k be an algebraically closed field of characteristic 0 and G a finite group
with at least 5 maximal non-conjugate cyclic subgroups. Fix an integer r0 ≥ 0. For every
suitably large even integer R, there is a non-empty Hurwitz stack HG,R(C) such that no
k-cover in HG,R(C) is a rational pullback of some k-cover in HG,≤r0 .

Remark 3.9 Subgroups of PGL2(C) have at most 3maximal non-conjugate cyclic subgroups.
Other groups have exactly 3: the quaternion groupH8 or,more generally, dicyclic groupsDCn

of order 4n (n ≥ 2) (which include generalized quaternion groups DC2k−1 k ≥ 2), groups
SL2(Fq)with q a prime power, etc. For these groups, the conclusion from Theorem 1.2 holds
but that from Theorem 3.8 is unclear. Replacing 5 by 4 in Theorem 3.8 seems feasible but
hard and technical; for the sake of brevity, we avoid this slight improvement. Groups with 4
maximal non-conjugate cyclic subgroups (for which the conclusion from Theorem 3.8 might
also hold) include Z/4Z × Z/2Z, Z/3Z × Z/3Z, A6.

Proof Fix a finite group G with at least 5 non-conjugate maximal cyclic subgroups. At first,
assume that not all of them are of order 2. Let γ1, . . . , γ5 be generators of 5 non-conjugate
maximal cyclic subgroups of G, and let C1, . . . , C5 be their conjugacy classes. Denote the
order of γi by ei , i = 1, . . . , 5 and, without loss of generality, assume e1 > 2. Consider
then a tuple (C1, . . . , C5, C6, . . . , Cs) of conjugacy classes of G, not necessarily distinct, and
satisfying the following:

all the non-trivial conjugacy classes of G, but the powers C j
i , i = 1, . . . , 4, (A)

j = 1, . . . , ei − 1, appear in the set {C5, . . . , Cs}.
Consider the (2s)-tuple C = (C1, C−1

1 , . . . , Cs, C−1
s ). Note that the integer s can be taken to

be any suitably large integer, e.g., by repeating the conjugacy class C5.
Picking gi ∈ Ci (i = 1, . . . , s), form the tuple g = (g1, g

−1
1 , . . . , gs, g−1

s ). As the ele-
ments of g and their powers contain at least one element from each conjugacy class, a classical
lemma of Jordan (see [18]) implies that g forms a generating set of G. By construction, the
product of entries of g is 1. From the Riemann Existence Theorem, HG,2s(C)(k) �= ∅.

Let h ∈ HG,2s(C)(k). Assume there exist r0 ∈ N, a Galois cover f ∈ HG,≤r0(k), and T0 ∈
H f ,k (as defined in Sect. 2.2) of degree N such that h and the pullback fT0 areP

1
k-isomorphic.
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Denote the branch point number of f by r (so r ≤ r0) and its inertia canonical invariant by
C = (C f ,1, . . . ,C f ,r ). By [7, §3.1], the inertia canonical invariant of fT0 is a tuple C f ,T0

obtained by concatenating tuples of the form C f ,T0, j = (C
ej1
f , j , . . . ,C

ejr j
f , j ), j = 1, . . . , r ,

where r j , e j,� are integers with r j ≥ 0 and e j,� ≥ 1 for all � = 1, . . . , r j , and j = 1, . . . , r .
Note that some of the classes in C f ,T0 might be trivial.

Denote by p j (resp., q j ) the number of e j,�’s, � = 1, . . . , r j , that are equal to 1 (resp.,
> 1), for j = 1, . . . , r . For j = 1, denote further by u1 (resp., v1) the number of e1,�’s,
� = 1, . . . , r1, that are equal to 2 (resp., > 2). Recall further from [7, §3.1] that, since
e j1, . . . , e jr j are the ramification indices of T0 over some point, we have

∑r j
�=1 e j,� = N ,

for j = 1, . . . , r . Hence, p j + 2q j ≤ N , and p1 + 2u1 + 3v1 ≤ N , or equivalently:

q j ≤ N − p j

2
≤ N

2
for j = 2, . . . , r and v1 ≤ N − p1 − 2u1

3
≤ N

3
. (1)

By the Riemann–Hurwitz formula for T0, we also have

2N − 2 ≥
r1∑

�=1

(e1,� − 1) +
r∑

j=2

r j∑

�=1

(e j,� − 1) = N − p1 − u1 − v1 +
r∑

j=2

(N − p j − q j ).

(2)

As fT0 andh areP
1
k-isomorphic,wehaveC f ,T0 = C, up to order.Without loss of generality,

we may assume C1 ∈ C f ,T0,1. For each i = 1, . . . , 4, if ji ∈ {1, . . . , r} is such that Ci ∈
C f ,T0, ji

11, then, as 〈γi 〉 is a maximal cyclic subgroup of G, we have Ci = Cwi
f , ji

for some
integer wi relatively prime to ei . This, together with the assumption that C1, . . . , C4 are not
powers of each other, implies that the correspondence i �→ ji is injective. Thus, (2) and (1)
give

2N − 2 ≥ N − p1 − u1 − v1 +
4∑

i=2

(N − p ji − q ji ) ≥ 13

6
N − (p1 + u1) −

4∑

i=2

p ji ,

and hence

N ≤ 6

(
p1 + u1 +

4∑

i=2

p ji

)
. (3)

Since each Ci , i = 1, . . . , 4, appears at most twice in C f ,T0 by (A), it follows that p ji ≤ 2
for i = 1, . . . , 4. Furthermore, since the powers of C1 appear at most twice and e1 > 2, we
also have p1 + u1 ≤ 2. Thus, (3) gives N ≤ 48. However, by a priori choosing s to be large,
the degree N of T0 is forced to be at least 49, contradiction.

It remains to consider the case where all the fixed 5 non-conjugate maximal cyclic sub-
groups are of order 2. We can reduce to the previous case by changing one of them to another
maximal cyclic subgroup of order > 2, unless all elements of G are of order 2. But, in this
case, G is an elementary abelian 2-group of rank at least 3, and the number of maximal
conjugacy classes of cyclic groups is at least 7. Repeating the above argument with seven
classes C1, . . . , C7, replacing the previous C1, . . . , C5, (2) and (1) take the form

2N − 2 ≥
r∑

j=1

(N − p j − q j ) and q ji ≤ N − p ji

2
≤ N

2
for i = 1, . . . , 6.

11 There may be a priori two different ji ∈ {1, . . . , r} such that Ci ∈ C f ,T0, ji .
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Thus, their combination gives

2N − 2 ≥
6∑

i=1

(N − p ji − q ji ) ≥ 3N −
6∑

i=1

p ji ,

and so N ≤ ∑6
i=1 p ji . Once again, choosing s and hence N sufficiently large, we obtain a

contradiction. ��

3.3 Extension tomore general fields

We have assumed so far that the field k is algebraically closed because we use the Riemann
Existence Theorem. However, as we explain below, this assumption can be relaxed in some
situations.

Theorem 3.10 Let G be a finite group and let k be a field of characteristic 0.

(a) Theorem 1.1(b) with P
1
C
replaced by P

1
k holds in each of these situations:

(a-1) k is ample12,
(a-2) G is abelian of even order,
(a-3) G is the direct product A × H of an abelian group A of even order and of a non-

solvable group H occuring as a regular Galois group over k 13,
(a-4) G = S5.

(b) Theorem 3.8 holds if either k is ample or G is abelian.

Remark 3.11 The proof below actually gives a little more than what is stated. Under the
assumptions of Theorem 3.10(a), not only can we conclude that HG(k) �⊂ PB(HG,≤r0(k))
for any integer r0 ≥ 0 (as is stated), but what we really obtain is that

HG(k) ⊗k k �⊂ PB(HG,≤r0(k)).

That is: for any r0 ≥ 0, one can always find a k-cover inHG that cannot be obtained, even after
base change to k, by pulling back some k-cover inHG,≤r0 (and even along some non-constant
rational map T0 ∈ k(U ) (and not just in k(U )). Similarly, if k is ample or G is abelian as in
Theorem 3.10(b), what the proof shows is that for any r0 ≥ 0 and any suitably large s, there
is a Hurwitz stack HG,2s(C) such that HG,2s(C)(k) �= ∅ and

PB(HG,≤r0(k)) ∩ (HG,2s(C)(k) ⊗k k) = ∅,

and not just PB(HG,≤r0(k)) ∩ HG,2s(C)(k) = ∅.

3.3.1 Proof of Theorem 3.10(b)

In the proof of Theorem 3.8 (see Sect. 3.2), the assumption k = k was only used to guar-
antee that there is at least one k-cover in the Hurwitz stack HG,2s(C). When k is no longer
algebraically closed, we first slightly modify the tuple C to make it k-rational, i.e., such that

12 Definition of “ample field” is recalled in Remark 1.4(a).
13 In fact, the assumption on H to be non-solvable can be removed with a bit of extra effort. Moreover, if H
is not a regular Galois group over k, then G is not either. Hence, Theorem 1.1(b) trivially fails.

123



P. Dèbes et al.

the action of Gal(k/k) on C (taking the power of the classes by the cyclotomic character)
preserves C, up to the order. This can be done by replacing, for each index i = 1, . . . , 4,

each pair (Ci , C−1
i ) by the tuple (Ci , C−1

i , , . . . , Cei−1
i , C−(ei−1)

i ).

The modified tuple is indeed k-rational and the proof of Theorem 3.8 still holds after slight
adjustments: the inequalities p ji ≤ 2 (resp., p1 + u1 ≤ 2) become p ji ≤ 2(ei − 1) (resp.,
p1 + u1 ≤ 2(e1 − 1)), i = 1, . . . , 4, changing only the constants in the final estimates.

With the tuple C now k-rational, it is still true that the Hurwitz stack HG,2s(C) contains a
k-cover, so that Theorem 3.8 holds, in the following situations:
- G abelian and k arbitrary (as a consequence of the classical rigidity theory; see, e.g., [21,
Chapter I, §4] and [29, §3.2]),
- k ample and G arbitrary. Namely, recall that, over the complete discretely valued field
k((T )), the so-called 1/2-Riemann Existence Theorem of Pop (see [24]) ensures that
HG,2s(C)(k((T ))) is non-empty. This implies HG,2s(C)(k) �= ∅ for an ample field k, as
then k is existentially closed in k((T )) (see [25, Proposition 1.1] and [3, §4.2]).

3.3.2 Proof of Theorem 3.10(a)

In the following, we will denote equivalence classes [ f ] in HG,r (C) of a cover f (of group
G and ramification type (r ,C)) simply by f as well when there is no risk of confusion.

We shall deduce Theorem 3.10(a) from Theorem 3.13 below. Start with an arbitrary
characteristic 0 field k and consider the following condition, for a finite group G:

Condition 3.12 (a) There exist a constant m ≥ 0, infinitely many integers R and, for each
R, a ramification type (R,C) for G with the following property: the set of all equivalence
classes [ f ] ∈ HG,R(C) such that f is a k-regular Galois cover cannot be covered by finitely
many varieties of dimension < R − m (in HG,R(C)(k)).
(b) Each C in (a) contains every conjugacy class of G at least once.

We then have the following analog of Theorem 3.1 and Lemma 3.2:

Theorem 3.13 Assume G fulfills Condition 3.12(a) (resp., Condition 3.12(a) and (b)) over a
field k of characteristic 0. Let r0 ∈ N, and let H = HG,≤r0,g≥2(k) (resp., H = HG,≤r0,g≥1(k))
be the set of k-regular Galois covers with group G, branch point number ≤ r0, and genus
≥ 2 (resp., genus ≥ 1). Then there are infinitely ramification types (R,C) for G such that
HG,R(C)(k) �⊂ PB(H). In particular, H is not k-regularly parametric.

Proof Observe that the crucial Lemma 3.6 in the proof of Theorem 3.1 (see Sect. 3.1.3)
guarantees this: there exists R0 ∈ N such that, for every ramification type (R,C) for G
(R ≥ R0), the set of (defining equations of) Galois covers in HG,R(C)(k) which arise as
rational pullbacks of some cover with ≤ r0 branch points is contained in a union of finitely
many varieties of dimension at most R− (m+1). Then, with R sufficiently large and (R,C)

as in Condition 3.12, it follows as in Lemma 3.4 that these varieties are not sufficient to yield
defining equations for every cover in HG,R(C)(k) which is defined over k. Furthermore, the
additional Condition 3.12(b) is sufficient for the proof of Lemma3.2 over k, ifG is non-cyclic.
For cyclic G = Z/nZ, Lemma 3.2 holds as soon as the genus-0 extension k( n

√
T )/k(T ) is

k-regular, i.e., as soon as e2iπ/n ∈ k. On the other hand, Galois groups of genus-1 cyclic
covers are only Z/nZ for n ∈ {2, 3, 4, 6}, and it is easy to verify that, for e2iπ/n /∈ k, these
genus-1 covers cannot be defined over k either, as a special case of the Branch Cycle Lemma
(see [13] and [29, Lemma 2.8]). ��
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Proof of Theorem 3.10(a-1) Let k be an ample field of characteristic zero. Equivalently to the
definition of “ample”, every k-variety with a simple k-rational point has a Zariski-dense set
of k-rational points (see [16, Lemma 5.3.1]). On the other hand, the 1/2-Riemann Existence
Theorem yields plenty of class r -tuples C of G with HG,r (C)(k) �= ∅. For example, all C
corresponding to an arbitrarily long repetition of the tuple (x1, x

−1
1 , . . . , xn, x−1

n ), where xi
runs through all non-identity elements of G, are fine. For Z(G) = {1}, this then implies the
existence of a k-rational point onHG,r (C) (cf. Sect. 2.1.2) and as k is ample that at least one
connected component ofHG,r (C) has a Zariski-dense set of k-rational points. Since these k-
rational points are equivalence classes of covers f defined over k and all components are of the
same dimension, Condition 3.12 holds, even withm = 0, and, therefore, Theorem 3.13 holds
over k. Finally, the case of arbitrary G can be reduced to the above assumption Z(G) = {1}
by elementary means, using that every finite group is a quotient of a group with trivial center.
Concretely, for a group G of order n, choose any non-abelian simple group S and consider
the wreath product 
 := S �G = Sn �G. Then 
 clearly has trivial center. Furthermore, the
conjugates of a given complement G ≤ 
 of Sn generate all of 
. Therefore, if (r ,C) is a
ramification type ofG withHG,r (C)(k) �= ∅, then for a suitablemultiple R of r , there exists a
ramification type (R, C̃)of
 projecting onto a repetition ofC, and such thatH
,R(C̃)(k) �= ∅.
As above, the equivalence classes of k-regular covers of group 
 and ramification type (any
arbitrarily long repetition of) C̃ are Zariski-dense in at least one connected component, thus
fulfilling Condition 3.12. But by the choice of C̃, for any such cover, the subcover with group
G is a k-regular cover with the same branch point set, thus yielding Condition 3.12 also for
G. ��
Proof of Theorem 3.10(a-2) As a first example, let G be an elementary abelian 2-group. Since
G is abelian, every tuple (C1, . . . ,CR) of conjugacy classes in G with non-empty Nielsen
class is a rigid tuple (in the sense of, e.g., [21, Chapter I, §4]).

Furthermore, since all non-identity elements of G are of order 2, every conjugacy class
is trivially rational (i.e., unchanged if taken to a power relatively prime to the order of its
elements). It then follows from the rigidity method that, for every choice (t1, . . . , tR) of
R distinct points in P

1(k), there exists a Galois cover of P
1, defined over k, with inertia

canonical invariant (C1, . . . ,CR) and branch points (t1, . . . , tR). In particular, the set of all
these covers cannot be obtained by a set of defining equations of dimension < R. Hence, G
fulfills Condition 3.12 over k. The assertion of Theorem 3.13 therefore holds for G over an
arbitrary field of characteristic zero.

Now, let G be an arbitrary abelian group of even order. As before, all class tuples with
non-empty Nielsen class are rigid. Let (C1, . . . ,CR) be a class tuple of G containing each
element of order ≥ 3 exactly once, and each element of order 2 an arbitrary even number of
times. This then yields a product-1 tuple generatingG and, if the branch points for each set of
generators of a cyclic subgroupZ/dZ are chosen appropriately to form a full set of conjugates
(under the action of Gal(Q(e2iπ/d)/Q)) in k(e2iπ/d), then the associated ramification type
is a rational ramification type, implying that there is again a k-regular Galois cover with
inertia canonical invariant (C1, . . . ,CR) and with the prescribed branch point set. Note that
the branch points for elements of order 2 are still allowed to be chosen freely in k. Since
there are less than |G| other branch points, it follows as above that the set of Galois covers
with these ramification data cannot be obtained by a set of defining equations of dimension
≤ R − |G|. Therefore again, Condition 3.12 is fulfilled. ��
Proof of Theorem 3.10(a-3) Let G = A × H , where A is an abelian group of even order and
H is any non-solvable group which occurs as a regular Galois group over k. We use the non-
solvability assumption only to obtain that there are no Galois covers of genus≤ 1 with group
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G. Take a tuple (C1, . . . ,CR) of classes of A ≤ G as in the proof of Theorem 3.10(a-2),
and prolong it by a fixed tuple (CR+1, . . . ,CS) of classes which occurs as some ramification
type for H over k. With the appropriate choice of branch point set for the H -cover, we
obtain a k-regular Galois cover with group A× H where, once again, the branch points with
involution inertia in A can be chosen freely (outside of the fixed branch points of the H -
cover). Increasing R as in the proof of Theorem 3.10(a-2) (whilst fixing (CR+1, . . . ,CS)), we
again obtain that Condition 3.12(a) is fulfilled, and so Theorem 3.13 holds over k for Galois
covers of genus ≥ 2. As there is no Galois cover of group G and genus ≤ 1, Theorem 1.1(b)
holds for G over all fields of characteristic 0. ��

Proof of Theorem 3.10(a-4) Let Mg,d be the moduli space of simply branched covers (i.e.,
all non-trivial inertia groups are generated by transpositions) of degree d and genus g. It is
known (see [1]) that Mg,5 is unirational for all g ≥ 6 and, in fact, this holds even over the
smallest field of definition Q (and, hence, over all fields of characteristic zero).

Note that Mg,5 parameterizes Galois covers in HS5,8+2g(C) with C = (C1, . . . ,C8+2g),
where each Ci is the class of transpositions. This space is of dimension 8 + 2g, and unira-
tionality (over k) implies that its function field is of finite index in some k(T1, . . . , T8+2g)

with independent transcendentals Ti . But, of course, every k-rational value of (T1, . . . , T8+2g)

then leads to a k-rational point on Mg,5 (and, thus, a cover defined over k), and the set of
such k-rational points on a unirational variety is always Zariski-dense.

This implies that Condition 3.12(a) is fulfilled and, as there is no Galois cover of group
S5 and genus ≤ 1, Theorem 1.1(b) holds for S5 over all fields of characteristic 0. ��

4 Proof of Theorem 1.3

Throughout this section, fix an algebraically closed field k of characteristic 0 and a Galois
cover f : X → P

1
k with group G and ramification type (R,C) for R ≥ 4. Assume G �⊂

PGL2(C). Let t = {t1, . . . , tR} be the branch point set of f . Let e f (t0) denote the ramification
index of t0 ∈ P

1(k) under f , and set ei = e f (ti ) for i = 1, . . . , R. Given T0 ∈ k(U ) \ k and
t0 ∈ P

1(k), let e(q|t0) denote the ramification index under T0 of q ∈ T−1
0 (t0). The proof is

based on the following estimate on the branch point number of a pullback, which strengthens
the bounds in [7, Theorem 3.1(b-2)]. Recall that for T0 ∈ H f ,k , the fiber product X × f ,T0 P

1
k

is irreducible, cf. Sect. 2.2.

Lemma 4.1 Let T0 ∈ H f ,k be of degree n. Let ai be the number of preimages q ∈ T−1
0 (ti )with

ei | e(q|ti ) for i = 1, . . . , R, andUT0, f the set of points q ∈ P
1(k) such that e(q|t0) �= e f (t0)

for t0 = T0(q). Then the branch point number RT0 of the pullback fT0 is at least

RT0 ≥ (R − 4)n + 4 +
R∑

i=1

(ei − 2)ai +
∑

q∈UT0, f

(
e(q|t0) − 1

)
.

Moreover, equality holds if and only if T0 is unramified away from t and its ramification
indices over ti are either ei or not divisible by ei , for i = 1, . . . , R.

Proof Let bi denote the number of preimages q in T−1
0 (ti ) such that e(q|ti ) is not divisible by

ei , for i = 1, . . . , R. Note that, since X × f ,T0 P
1
k is irreducible, Abhyankar’s lemma implies

RT0 = b1 + · · · + bR . (4)
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By the Riemann–Hurwitz formula for T0, we have

2n − 2 =
∑

t0∈P1

∑

q∈T−1
0 (t0)

(e(q|t0) − 1) ≥
∑

q∈UT0, f

(
e(q|t0) − 1

) +
R∑

i=1

(ei − 1)ai , (5)

with equality if and only if e(q|ti ) is either ei or non-divisible by ei , for all points q ∈
T−1
0 (ti ), i = 1, . . . , R. The same Riemann–Hurwitz formula also implies

2n − 2 ≥
R∑

i=1

(n − ai − bi ) = Rn −
R∑

i=1

(ai + bi ),

with equality if and only if T0 is unramified away from t. Combined with (5), this gives

2n − 2 ≥ Rn −
R∑

i=1

(ai + bi )

≥ Rn +
R∑

i=1

(ei − 2)ai +
∑

q∈UT0, f

(
e(q|t0) − 1

) − (2n − 2) −
R∑

i=1

bi .

Combined with (4), this gives

RT0 =
R∑

i=1

bi ≥ (R − 4)n + 4 +
R∑

i=1

(ei − 2)ai +
∑

q∈UT0, f

(
e(q|t0) − 1

)
,

with equality if and only if T0 is unramified away from t and every ramification index e(q|ti ),
for q ∈ T−1

0 (ti ), i = 1, . . . , R, which is divisible by ei is equal to ei . ��

Let E denote the multiset {e1, . . . , eR}. Throughout the proof below, we assume T0 is in
the Hilbert subset H f ,k , and hence that the fiber product X × f ,T0 P

1
k is irreducible.

Proof of Theorem 1.3 when E �= {2, 2, 2, 3}, {2, 2, 2, 4}
The case where f is of genus 1 follows from Remark 3.3, so henceforth we shall assume
that the genus of X is at least 2. Let (g1, . . . , gR) be a tuple in the Nielsen class of C,
corresponding to f . As any permutation of the tuple C = (C1, . . . ,CR) has a non-empty
Nielsen class, without loss of generality, we may assume that gi is a branch cycle over ti
and the orders e1, . . . , eR of g1, . . . , gR are ordered in decreasing order. This tuple can be
modified to a tuple (Py) y, y−1g1, . . . , gR for any y �= g1. Such a tuple generates G and has
product 1, giving a non-empty Nielsen class corresponding to a ramification type which we
denote by (R + 1,Dy). We will show that, for a suitable choice of y ∈ G, no pullback fT0 ,
along T0 ∈ k(U ) \ k of degree n > 1, is in HG,R+1(Dy)(k). Since a cover in HG,R+1(Dy)(k)
is a pullback of f only if y is a power of some element in C1, . . . ,CR , by varying y, we may
assume that every conjugacy class in G is a power of one of C1, . . . ,CR .

As in Lemma 4.1, let ai (resp., bi ) be the number of preimages q in T−1
0 (ti ) such that the

ramification index e(q|ti ) is divisible by ei (resp., is not divisible by ei ) for i = 1, . . . , R.
For R ≥ 6, as n ≥ 2, the lower bound on RT0 from Lemma 4.1 is ≥ R + 2, as desired14.

14 We note that, for R ≥ 6, this claim also follows for any choice of y from [7, Theorem 3.1(b-2)], since the
latter implies that every pullback of a k-cover in HG,R(C) has at least R + 2 branch points, and hence is not
in HG,R+1(Dy)(k).
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The case R = 5:We may assume RT0 = 6. By Lemma 4.1, we have

n ≤ 2 −
R∑

i=1

(ei − 2)ai −
∑

q∈UT0, f

(
e(q|t0) − 1

)
.

As n > 1, this forces n = 2, e(q|t0) = 1 for all q ∈ UT0, f , and
∑R

i=1(ei − 2)ai = 0.
Thus, every ramification index of T0 over ti is either ei or 1, and T0 is unramified away
from t. Since T0 is of degree 2, it ramifies over exactly two branch points with ramification
index 2. Hence, without loss of generality, we may assume e4 = e5 = 2, so that the inertia
canonical invariant of fT0 is CT0 = (C1,C1,C2,C2,C3,C3). If e1 > 2, by picking y to
be an involution, no cover in HG,R+1(Dy)(k) is a pullback of f , as Dy has more conjugacy
classes of involutions than CT0 does. Similarly, if e1 = 2 and G contains an element y of
order > 2, then every cover in HG,R+1(Dy)(k) is not a pullback of f , as its Nielsen class
has a conjugacy class of non-involutions. If e1 = 2 and all elements of G are of order 2,
then G is an elementary abelian 2-group generated by three conjugacy classes C1,C2,C3.
As G �⊂ PGL2(C), this forces G ∼= (Z/2Z)3. In the latter case, we may choose y to be an
involution whose conjugacy class is different from C1,C2,C3,C4,C5, so that no cover in
HG,R+1(Dy)(k) is a pullback of f .

The case R = 4: Assume RT0 = 5. By Lemma 4.1, we have

R∑

i=1

(ei − 2)ai +
∑

q∈UT0, f

(
e(q|t0) − 1

) ≤ 1. (6)

Let t2 (resp., t>2) denote the set of ti with ei = 2 (resp., ei > 2). Since every point
q ∈ T−1

0 (ti ), ti ∈ t2, with ramification index e(q|t0) > 2 contributes at least 2 to (6), we
deduce that e(q|ti ) = 1 or 2 for all q ∈ T−1

0 (ti ), ti ∈ t2. On the other hand, for ti ∈ t>2,
(6) gives ai = 0 with the possible exception of a single tι for which atι = 1 and eι = 3.
Moreover, if such ι exists, then the contribution of the sum over UT0, f in (6) is 0. Hence,

e(q|ti ) = 1 for all points q ∈ T−1
0 (ti ), ti ∈ t>2, with the possible

exception of a single qι ∈ T−1
0 (tι) where eι = e(qι|tι) = 3.

(7)

Otherwise, ai = 0 for all ti ∈ t>2, in which case (6) shows that

e(q|ti ) = 1 for all points q ∈ T−1
0 (ti ), ti ∈ t>2, with the possible

exception of a single qη ∈ T−1
0 (tη) where e(qη|tη) = 2 �= eη.

(8)

If G is of odd order, (7) and (8) force T0 to have at most one ramification point, which,
by the Riemann–Hurwitz formula, forces a contradiction to n > 1. Henceforth, assume G is
of even order.

Let a = |t>2|. Since the genus of X is more than 1 and R = 4, the Riemann–Hurwitz
formula for f implies a ≥ 1. Assume first a > 1. In this case, we let y ∈ G be an involution.
The number of elements of order > 2 in (Py) is a or a−1. In case there exists ι as above, (7)
forces every point ti ∈ t>2 \ {tι} to have at least three unramified preimages and hence forces
fT0 to have at least 3(a − 1) branch points with ramification index > 2. As 3(a − 1) > a for
a > 1, the pullback fT0 does not not have ramification type (R+1,Dy). The same argument
applies if (8) holds and n ≥ 3. If n = 2 and (8) holds, then fT0 has at least 2(a − 1) + 1
branch points with ramification index > 2. Similarly, 2(a − 1) + 1 > a, and hence fT0 does
not have ramification (R + 1,Dy).
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Henceforth, assume a = 1, that is, E = {e, 2, 2, 2}. Note that e > 4 by assumption.
Condition (7) does not hold since e > 3, and hence (8) does. The latter implies that the
inertia canonical conjugacy classes of fT0 over points in T−1

0 (t1) are either C1 or C2
1 , hence

of order e or e/2. Thus, if we pick y to be of order different from e and e/2, then the only
element of (Py) that can appear in such conjugacy class is yx1. Thus, (8) implies:

T−1
0 (t1) consists of a single point qη with ramification e(qη|t1) = 2 such that

the inertia canonical invariant of fT0 over qη is the conjugacy class of yx1.
(9)

The latter then has to be of order ẽ = e/2 or e.
At first, consider the casewhere the conjugacy classesC2,C3,C4 do not coincide.Without

loss of generality, we may then assume that C2 is different from C3 and C4. Picking y = x3,
(9) implies that n = 2, and (R+1,Dy) is a ramification type consisting of conjugacy classes
of orders 2, ẽ, 2, 2, 2, with ẽ = e or e/2. In particular, ẽ > 2 and C2 appears at most once in
Dy . Since n = 2 and fT0 is assumed to have 5 branch points, T0 has to ramify over exactly
one of the places t2, t3, t4, say tk . If k = 2, then C2 does not appear in the ramification type
of fT0 , contradicting its appearance in Dy . If k = 3 or 4, then t2 is unramified under T0
and hence C2 appears at least twice in the ramification type of fT0 , but only once in Dy ,
contradiction.

Now, consider the case C2 = C3 = C4. Note that, since G is non-cyclic, C2 is not a
power of C1. Assume next that e is even. We may then pick y to be an involution which is
a power of x1. As y is not of order e or e/2, we get y /∈ C1 ∪ C2

1 ∪ C2, contradicting that
those are the only conjugacy classes that may appear in the ramification type of fT0 . Next,
assume e is odd, and pick a prime p dividing e. If p = e, then G is solvable by Burnside’s
theorem. Letting N be a minimal normal subgroup of G, it follows that N contains exactly
one of C1 and C2. The product 1 relation then gives a contradiction in G/N . Thus, we may
assume p is a proper divisor of e. In this case, if we pick y to be a power of x1 of order p,
then (9) implies that the only conjugacy classes appearing in the ramification type of fT0 are
C1,C2

1 orC2, neither of which contains y, contradiction. This concludes the proof in the case
E �= {2, 2, 2, 3}, {2, 2, 2, 4}. ��
Remark 4.2 In the following, we shall use Magma for computations with small order groups.
More specifically, we use the command ExtensionsOfElementaryAbelianGroup to run over
extensions of a given group by an elementary abelian group.

Finally, we show that, if E is {3, 2, 2, 2} or {4, 2, 2, 2}, then either G ⊆ PGL2(C) or
there is no group G whose maximal conjugacy classes are the classes of a product 1 tuple
x1, . . . , x4 with orders in E . Since, in both cases, |G| is divisible by at most two primes,
G is solvable by Burnside’s theorem. Let N be a minimal normal subgroup of G, so that
N ∼= (Z/2Z)u or (Z/3Z)u , for u ≥ 1.
Case {3,2,2,2}: If N ∼= (Z/3Z)u , the images of x2, x3, x4 in G/N remain of order 2 and
hence G/N ∼= (Z/2Z)2. Since, moreover, G/N acts transitively on the Z/3Z subgroups of
N , it follows that u = 1 or 2. A check using Magma (see Remark 4.2) shows that all such
group extensions G contain an element of order 6.

In the case N ∼= (Z/2Z)u , the subgroup N contains exactly one of the conjugacy classes
C2,C3,C4 since, otherwise, we get a contradiction to the product 1 relation in G/N . Since
G/N is generated by three elements of orders 3, 2 and 2 with product 1, it is isomorphic to
S3. As G/N acts transitively on the Z/2Z copies in N , we have u = 1 or 2. Once again, a
Magma check shows that all such group extensions G contain an element of order 4 or 6,
contradicting that Ci , i = 1, . . . , 4 are the only maximal ones.
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Case {4,2,2,2}: In this case, G is a 2-group, and N ∼= (Z/2Z)u . The conjugacy classes of
involutions in G are C2

1 ,C2,C3, and C4. If N does not contain C2
1 , then the product one

relation in G/N implies that N contains exactly one of the conjugacy classes C2,C3,C4. In
this case, G/N is dihedral of order 8, acting transitively on the Z/2Z copies in N . Hence,
u = 1 or 2. AMagma check (see Remark 4.2) shows that such aG either contains an element
of order 8, or has more than four conjugacy classes of involutions, or has more than two
conjugacy classes of elements of order 4 (in which case there is more than one conjugacy
class of cyclic subgroups of order 4).

If N contains C2
1 , then all elements of G/N are involutions, and hence G/N is an ele-

mentary abelian 2-group. Since we may assume N is a proper subgroup of G, the product
1 relation in G/N implies that N contains one or two of the conjugacy classes C2,C3,C4.
In the former case, G/N is a 2-group acting transitively on involutions in N , forcing u = 1.
In this case, a Magma check shows that, for such group extensions, either the number of
conjugacy classes of involutions is more than 4 or the number of conjugacy classes of order
4 elements is more than 2. If N contains two of C2,C3,C4, then G/N ∼= Z/2Z. Thus, by
minimality of N , we get that u ≤ 2 and hence thatG is isomorphic to a subgroup of PGL2(C).
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