
ON THE MALLE CONJECTURE AND THE
SELF-TWISTED COVER

PIERRE DÈBES

Abstract. For a large class of finite groups G, the number of
Galois extensions E/Q of group G and discriminant |dE | ≤ y is
shown to grow at least like a power of y, for some specified positive
exponent. The groups G are the regular Galois groups over Q and
the counted extensions E/Q are obtained by specializing a given
regular Galois extension F/Q(T ). The extensions E/Q can further
be prescribed any unramified local behavior at each suitably large
prime p ≤ log(y)/δ for some δ ≥ 1. This result is a step toward the
Malle conjecture on the number of Galois extensions of given group
and bounded discriminant. The local conditions further make it a
notable constraint on regular Galois groups over Q. The method
uses a new version of Hilbert’s irreducibility theorem that counts
the specialized extensions and not just the specialization points. A
main tool for it is the self-twisted cover that we introduce.

1. Main results

Given a finite group G and a real number y > 0, there are only
finitely many Galois extensions E/Q (inside a fixed algebraic closure
Q of Q) of group G and discriminant |dE| ≤ y (Hermite’s theorem).
Estimating their number N(G, y) is a classical topic (§1.1). Here we
consider the extensions E/Q obtained from a given Q-regular1 Galois
extension F/Q(T ) of group G by specializing the indeterminate T . We
obtain estimates for the number of those which satisfy the above group
and ramification conditions (theorem 1.1). Our lower bound (obviously
also a lower bound for N(G, y)) already has the conjectural growth
for N(G, y): a power of y (§1.2). Furthermore the extensions E/Q
we produce satisfy some additional local conditions at a finite – but
growing with y – set of primes. This provides noteworthy constraints
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(though unknown yet not to be non-vacuous) on the initial groups G,
the regular Galois groups over Q, related to analytic issues around
the Tchebotarev theorem (§1.4). Our specialization method involves a
new version of Hilbert’s irreducibility theorem that counts not just the
specialization points but the specialized extensions (theorem 1.3). The
self-twisted cover comes in this part, as is explained in §1.3.

1.1. The Malle conjecture is a classical landmark in this context.
It predicts that for some constant a(G) ∈]0, 1], specifically defined by
Malle (recalled in §4.1), and for all ε > 0,

(*) c1(G) ya(G) ≤ N(G, y) ≤ c2(G, ε) y
a(G)+ε for all y > y0(G, ε)

for some positive constants c1(G), c2(G, ε) and y0(G, ε) [Mal02]. A
more precise asymptotic for N(G, y) (as y → ∞) is even offered in
[Mal04], namely N(G, y) ∼ c(G) ya(G) (log(y))b(G), for some other speci-
fied constant b(G) ≥ 0, and an another (unspecified) constant c(G) > 0.

The lower bound in (*) is a strong statement; it implies in partic-
ular that G is the Galois group of at least one extension E/Q, which
is an open question for many groups – the so-called Inverse Galois
Problem. Relying on the Shafarevich theorem solving the IGP for solv-
able groups, Klüners and Malle proved the conjecture (*) for nilpotent
groups [KM04]. Klüners also established the lower bound for dihedral
groups of order 2p with p an odd prime [Klü06]. As to the more pre-
cise asymptotic for N(G, y), it has only been proved for abelian groups
[Wri89], [Mäk85], for S3 [BF10] [BW08] and for generalized quaternion
groups [Klü05b, ch.7, satz 7.6].2

1.2. Statement of the main result. Besides solvable groups, there is
another classical class of finite groups known to be Galois groups over
Q: the regular Galois groups over Q, i.e., those groups G for which
there is a Q-regular Galois extension F/Q(T ) of group G. In addition
to abelian and dihedral groups, this class includes many non solvable
groups, e.g. all symmetric and alternating groups and many simple
groups. We obtain for all these groups a lower bound in yα for N(G, y)
(with α > 0), as predicted by the Malle estimate (*).

2We point out that there is a more general form of the conjecture for not neces-
sarily Galois extensions E/Q for which there are further significant results, notably
in the case the group (of the Galois closure) is Sn (with n = [E : Q]): results of
Davenport-Heilbronn [DH71] and Datskovsky-Wright [DW88] (n = 3), Bhargava
[Bha05], [Bha10] (n = 4, 5), Ellenberg-Venkatesh [EV06] (upper bounds). There is
also a counter-example to this more general form of the conjecture [Klü05a]. Finally
there are quite interesting investigations on analogs of the problem over function
fields of finite fields [EV05], [VE10], [EVW].
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In addition to being of group G and discriminant ≤ y, we can pre-
scribe their local behavior at many primes to the Galois extensions
E/Q that we produce. The following notation helps phrase these “lo-
cal conditions”. Given a finite group G, a finite set S of primes and
for each p ∈ S, a non-empty union Fp ⊂ G of conjugacy classes of G,
the collection F = (Fp)p∈S is called a Frobenius data for G on S. The
number of Galois extensions E/Q of group G, of discriminant |dE| ≤ y
and which are unramified with Frobenius Frobp(E/Q) ∈ Fp (p ∈ S) is
denoted by N(G, y,F).

The parameter δ(G) that appears below is the minimal affine branch-
ing index of Q-regular realizations of G over Q, that is, the minimal
degree of the discriminant ∆P (T ) of a polynomial P ∈ Q[T, Y ], monic
in Y , that realizes G regularly over Q 3; see §4.1 for more on δ(G).

Theorem 1.1. Let G be a regular Galois group over Q, non trivial.
There is a constant p0(G) > 0 with the following property. Fix δ > δ(G)
and consider the set Sy of primes in [p0(G), log(y)/δ]. If y is suitably
large (depending on G, δ), for every Frobenius data Fy on Sy, we have

N(G, y,Fy) ≥ yα(G,δ) with α(G, δ) = (1− 1/|G|)/δ.
Furthermore, the desired extensions E/Q can be obtained by specializing
some Q-regular realization F/Q(T ) of G.

If P ∈ Q[T, Y ], monic in Y , realizes G regularly over Q, one can
take δ = 2|G| degT (P ), or, more intrinsically, δ = 3r |G|4 log |G| with r
the branch point number of the extension F/Q(T ) (§4.1). Whence, for
example, this simple lower bound for the Malle conjecture:

N(G, y) ≥ y
1−1/|G|

2|G| degT (P ) (for y ≥ y0(P ))

To our knowledge, theorem 1.1 is a new step toward the Malle con-
jecture. Expectedly our exponent α(G, δ) is smaller than its Malle
counterpart a(G)4: our approach only takes into account those ex-
tensions which are specializations of a Q-regular extension. Still it is
interesting to already get the right growth for N(G, y) from a single
extension F/Q(T ).

A more precise form of theorem 1.1 is stated in §4 (theorem 4.3)
which starts from any given Q-regular realization F/Q(T ) of G and
which shows other features of our result: ramification can also be pre-
scribed at any finitely many suitably large primes under the assumption
that F/Q(T ) has at least one Q-rational branch point; the exponent
α(G, δ) can be replaced by 1/δ under Lang’s conjecture and if the genus

3i.e. F = Q(T )[Y ]/〈P 〉 is a Q-regular Galois extension of Q(T ) of group G.
4A general proof of this is given in lemma 4.1, following a suggestion of G. Malle.
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of F is ≥ 2; the Hilbert irreducibility aspect is expanded; and there is
an upper bound part.

Remark 1.2. Theorem 1.1 (and theorem 4.3) will be extended to arbi-
trary number fields (instead of Q) in a later work. As each finite group
is known to be a regular Galois group over some suitably big number
field, a consequence will be that the same is true for the lower bound
part in the Malle conjecture: given any finite group, there is a number
field k0 such that a lower bound like in (*) (appropriately generalized)
holds over every number field containing k0.

1.3. A “Hilbert-Malle theorem” and the self-twisted cover.
Our approach starts with a Q-regular realization F/Q(T ) of G. In this
situation, Hilbert’s irreducibility theorem classically produces “many”
t0 ∈ Q such that the specialized extensions Ft0/Q are Galois of group
G. Beyond making more precise these “many t0 ∈ Q” and controlling
the corresponding discriminants, our goal requires a further step which
is to show that many of these extensions are distinct.

A key tool of our method is the twisting lemma from [DG12], which
reduces the search of specializations of a given type to that of rational
points on a certain twisted cover. We use it twice, first over Qp as in
[DG12], to construct specializations Ft0/Q with group G and with a
specified local behavior. This stage rests on the Lang-Weil estimate for
the number of rational points on a curve over a finite field. We obtain
many good specialisations t0 ∈ Z and a lower bound for their number.

The main ingredient for the final stage — showing that many of the
extensions Ft0/Q are distinct — is the following result which we ex-
tracted from our method and which may be interesting for its own sake.
We call it a “Hilbert-Malle theorem”: beyond Hilbert’s irreducibility
theorem, it gives lower bounds not just for the number of good spe-
cialization points t0 but for the corresponding specialized extensions
Ft0/Q, in the spirit of the Malle conjecture.

Theorem 1.3. There exist positive constants E, C, γ depending only
on F/Q(T ) with the following property. Suppose given an integer B ≥ 1
and a subset HB ⊂ [1, B] consisting of integers t0 such that Gal(Ft0/Q)
is the whole group G. We have the following lower bounds for the
number N (HB) of the corresponding specialized field extensions Ft0/Q:

N (HB) ≥ |HB| − E

B1/|G|(logB)γ
unconditionnally

N (HB) ≥ C (|HB| − E)
under Lang’s conjecture and

if the genus of F is ≥ 2
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To prove this result, first we reduce to counting integral points of
a given size on certain twisted covers. This is our second use of the
twisting lemma, over Q this time. For the count of the integral points,
we use a result of Walkowiak [Wal05] based on a method of Heath-
Brown [HB02]. We need to slightly improve Walkowiak’s result to get
the right exponent α(G, δ) in theorem 1.1; see §3.4. More importantly
we have to face the following difficulty: the bounds from [Wal05] in-
volve the height of the defining polynomials, which here depend on the
specializations Ft0/Q; we have to control the dependence in t0. This
is where enters the self-twisted cover, which as we will see, is a family
of covers, depending only on the original extension F/Q(T ) and which
has all the twisted covers among its fibers. As a result, a bound of the
form c1t

c2
0 for the height of the polynomials above will follow with c1

and c2 depending only on F/Q(T ).

1.4. On the local conditions. Regarding the local aspect, theorem
1.1 improves on a previous work, with N. Ghazi, about the Grunwald
problem. From [DG12], if G is a regular Galois group over Q, then
every unramified Grunwald problem for G at some finite set S of primes
p ≥ p0(G) can be solved, i.e. every collection of unramified extensions
Ep/Qp of group Hp ⊂ G (p ∈ S) is induced by some Galois extension
E/Q of group G. Theorem 1.1 does more: it provides, for every given
discriminant size, a big number of such extensions E/Q, a number that
grows as in Malle’s predictions.

Malle had suggested that his estimates should hold with some local
conditions [Mal04, Remark 1.2]. However, unlike his, ours have a set
of primes, Sy, which grows with y. We focus below on this.

1.4.1. Optimality of Sy. The set of primes where the local behavior can
be prescribed as in theorem 1.1 cannot be expected to be much bigger
than the set Sy:
- indeed, that every possible Frobenius data on Sy occurs in at least
one extension E/Q counted by N(G, y) already gives N(G, y) ≥ cu(y),
with c the number of conjugacy classes of G and u(y) the number of
primes in Sy = {p0(G) < p ≤ log(y)/δ}. Now cu(y) compares to the
conjectural upper bounds for N(G, y): log cu(y) ∼ log(y)/ log(log y) and
log(ya(G)+ε) ∼ log y (up to multiplicative constants).

- the restriction that the primes p be suitably large (p > p0(G)) can-
not be removed either as the famous Wang’s counter-example shows
[Wan69]: no Galois extension E/Q of group Z/8Z is unramified at 2
with Frobenius of order 8. Other counter-examples with other primes
than 2 have been recently produced by Neftin [Nef13].
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1.4.2. A further connection with the Tchebotarev density theorem. The
following definition helps explain the connection.

Definition 1.4. Given a real number ` ≥ 0, we say that a finite group
G is of Tchebotarev exponent ≤ `, which we write tch(G) ≤ `, if there
exist real numbers m, δ > 0 such that for every x > m and every
Frobenius data Fx = (Fp)m<p≤x for G, there exists at least one Galois
extension E/Q of group G such that these two conditions hold:
1. for each m < p ≤ x, E/Q is unramified and Frobp(E/Q) ∈ Fp,
2. log |dE| ≤ δx`.

Fix δ > δ(G) and m suitably large (in particular m ≥ p0(G)). The-
orem 1.1 for y = eδx provides many5 extensions E/Q satisfying condi-
tions of definition 1.4 with ` = 1.

Corollary 1.5. If a finite group G is a regular Galois group over Q,
then tch(G) ≤ 1.

On the other hand there is a universal lower bound for tch(G).
Some famous estimates on the Tchebotarev theorem [LMO79] (see also
[LO77], [Ser81]) show that, under the General Riemann Hypothesis, for
every finite group G, we have

(**) tch(G) > (1/2)− ε, for every ε > 0. 6

(More precisely, they show that if a Galois extension E/Q is of group
G and log |dE| ≤ x1/2/ log x, there are at least π(x) − 2x/(|G| log x)
non totally split primes p ≤ x in E/Q (with π(x) is the number of
primes p ≤ x). As π(x)−2x/(|G| log x)→ +∞, the trivial totally split
behavior — Fp = {1} for each m < p ≤ x — does not occur if x� 1).

1.4.3. Prospective comments. Corollary 1.5 raises the question of whe-
ther tch(G) > 1 for some group G, in which case G could not be
a regular Galois group over Q. Such a group may not exist (if the
so-called Regular Inverse Galois Problem is true), while at the other
extreme it cannot be ruled out at the moment that tch(G) = ∞ for
some group G. Many possibilities exist in between for Galois groups
G over Q: that realizations exist that satisfy the local conditions of
definition 1.4 (1) or not, that the corresponding discriminants can be
bounded as in definition 1.4 (2), for some ` ∈ [1/2,∞[ or not. Somehow

5at least eγx with γ = 1− 1/|G| (for x� 1).
6[LMO79] also has an unconditional conclusion, which, using our terminology,

leads to tch(G) ≥ (log log x)/(2 log x) (with definition 1.4 extended to allow ` to be
a function of x).
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the Tchebotarev exponent provides a measure of the gap (possibly
empty) between the classical and regular Inverse Galois Problems.

Gaining information on Tchebotarev exponents however seems diffi-
cult. Even for G = Z/2Z and the case of the totally split behavior, for
which the problem amounts to bounding the least square-free integer
dm(x) that is a quadratic residue modulo each prime m < p ≤ x. Chan-
ging 1/2 to 1 in (**), the remaining possible improvement (as Z/2Z is a
regular Galois group over Q), is plausible as some easy heuristics show
but relates to deep questions in number theory (e.g. [Ser81, §2.5]).

Acknowledgement. I am grateful to J. Klüners and G. Malle for
their interest in the paper and some valuable comments. In particular
the proof of lemma 4.1 (b) follows a suggestion of G. Malle.

The paper is organized as follows. §2 gives the construction of the
self-twisted cover and §3 the proof of theorem 1.3. In §4 we state
theorem 4.3 and deduce theorem 1.1. §5 proves theorem 4.3.

The following terminology is used throughout the paper.
Given a field k of characteristic 0, an extension F/k(T ) is said to

be k-regular if F ∩ k = k. A (regular) k-cover of P1 is a finite and
generically unramified morphism f : X → P1 defined over k with X a
normal and geometrically irreducible variety.

We work without distinction with a k-regular extension F/k(T ) or
with the associated k-cover f : X → P1: f is the normalization of
P1
k in F and F is the function field k(X) of X. We also work with

affine models: by this we mean the irreducible polynomial P (T, Y ) of
some primitive element of F/k(T ). The k-cover f : X → P1 is said to
be Galois if the field extension k(X)/k(T ) is Galois; if in addition f :
X → P1 is given together with an isomorphism G→ Gal(k(X)/k(T )),
it is called a (regular) k-G-Galois cover of group G.

By group and branch point set of a k-cover f , we mean those of the
k-cover f ⊗k k: the group of a k-cover X → P1 is the Galois group of
the Galois closure of the extension k(X)/k(T ). The branch point set
of f ⊗k k is the (finite) set of points t ∈ P1(k) such that the associated
discrete valuations are ramified in the extension k(X)/k(T ).

Given a k-regular Galois extension F/k(T ) and t0 ∈ P1(k), the spe-
cialization of F/Q(T ) at t0 is the residue extension of an (arbitrary)
prime above 〈T − t0〉 in the integral closure of Q[T ]〈T−t0〉 in F (as usual
use Q[1/T ]〈1/T 〉 instead if t0 =∞). We denote it by Ft0/k.
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2. The self-twisted cover

In §2.1, we recall the twisting operation on covers and the twist-
ing lemma (§2.1.2). §2.2.1 explains the motivation for introducing the
self-twisted cover while the rest of §2.2 is devoted to its construction.
Covers are viewed here as fundamental group representations. The
correspondence is briefly recalled in §2.1.1.

2.1. Twisting G-Galois covers. For this subsection, we refer to [DG12].

2.1.1. Fundamental groups representations of covers. Given a field k,
denote its absolute Galois group by Gk. If E/k is a Galois extension
of group G, an epimorphism ϕ : Gk → G such that E is the fixed field
of ker(ϕ) in k is a called a Gk-representation of E/k.

Given a finite subset t ⊂ P1(k) invariant under Gk, the k-fundamental
group of P1 \ t is denoted by π1(P1 \ t, t)k; here t denotes the fixed
base point, which corresponds to choosing an embedding of k(T ) in an
algebraically closed field Ω. The k-fundamental group π1(P1 \ t, t)k
is defined as the Galois group of the maximal algebraic extension
Ωt,k/k(T ) (inside Ω) unramified above P1 \ t and the k-fundamental
group π1(P1 \ t, t)k as the group of the Galois extension Ωt,k/k(T ).

Degree d k-covers of P1 (resp. k-G-Galois covers of P1 of group
G) with branch points in t correspond to transitive homomorphisms
π1(P1 \ t, t)k → Sd (resp. to epimorphisms π1(P1 \ t)k, t) → G), with
the extra regularity condition that the restriction of φ to π1(P1\t)k, t)k
remains transitive (resp. remains onto). These corresponding homo-
morphisms are called the fundamental group representations (or π1-
representations for short) of the cover f (resp the G-cover f).

Each k-rational point t0 ∈ P1(k) \ t provides a section st0 : Gk →
π1(P1 \ t, t)k to the exact sequence

1→ π1(P1 \ t, t)k → π1(P1 \ t, t)k → Gk → 1

which is uniquely defined up to conjugation by an element in the fun-
damental group π1(P1 \ t, t)k.

If φ : π1(P1 \ t, t)k → G represents a k-G-Galois cover f : X → P1,
the morphism φ ◦ st0 : Gk → G is the specialization representation of φ
at t0. The fixed field in k of ker(φ◦st0) is the specialization k(X)t0/k(T )
of k(X)/k(T ) at t0.

2.1.2. The twisting lemma. Fix a regular k-G-Galois cover f : X → P1

of group G. We recall how it can be twisted by some Galois extension
E/k of group H ⊂ G. Formally this is done in terms of the associated
π1- and Gk- representations.
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Let φ : π1(P1 \ t, t)k → G be a π1-representation of the regular k-
G-cover f : X → P1 and ϕ : Gk → G be a Gk-representation of the
Galois extension E/k.

Denote the right-regular (resp. left-regular) representation of G by
δ : G→ Sd (resp. by γ : G→ Sd) where d = |G|. Define ϕ∗ : Gk → G

by ϕ∗(g) = ϕ(g)−1. Consider the map φ̃ϕ : π1(P1\t, t)k → Sd defined by
the following formula, where r is the restriction map π1(P1\t, t)k → Gk

and × is the multiplication in the symmetric group Sd:

φ̃ϕ(θ) = γφ(θ)× δϕ∗r(θ) (θ ∈ π1(P1 \ t, t)k).

The map φ̃ϕ is a group homomorphism with the same restriction on
π1(P1 \ t, t)k as φ. It is called the twisted representation of φ by ϕ.
The associated regular k-cover is a k-model of the cover f ⊗k k. It is

denoted by f̃ϕ : X̃ϕ → P1 and called the twisted cover of f by ϕ. The
following statement is the main property of the twisted cover.

Twisting lemma 2.1. Let t0 ∈ P1(k) \ t. Then the specialization
representation φ ◦ st0 : Gk → G is conjugate in G to ϕ : Gk → G if and

only if there exists x0 ∈ X̃ϕ(k) such that f̃ϕ(x0) = t0.

2.2. The self-twisted cover.

2.2.1. The motivation for the self-twisted cover. As explained in §1.3,
we will have to control the height of some polynomials defining some
twisted covers. These twisted covers are obtained by twisting the given
G-Galois cover f : X → P1 by its own specializations k(X)u0/k (u0 ∈
k); we call them the fiber-twisted covers. §2.2 shows that the fiber-
twisted covers are all members of an algebraic family of covers: the
self-twisted cover. The practical use for the end of the paper is the
following result. It is a consequence of lemma 2.4.

Theorem 2.2. Given the regular k-G-cover f : X → P1, there exists

a polynomial P̃ (U, T, Y ) ∈ k[U, T, Y ] irreducible in k(U)(T )[Y ], monic
in Y , and a finite set E ⊂ k such that for every u0 ∈ k \ E,

(a) P̃ (u0, T, Y ) is irreducible in k(T )[Y ],

(b) P̃ (u0, T, Y ) is an affine model of the fiber-twisted cover of f at u0,

(c) the genus of the curve P̃ (u0, t, y) = 0 equals the genus gX of X.

2.2.2. The construction data. Fix a regular k-G-Galois cover f : X →
P1 of group G and let φ : π1(P1 \ t, t)k → G be a π1-representation.
Let U be a new indeterminate (algebraically independent from T and
Y ). Fix an algebraically closed field Ω containing k(T, U), which we will
use as a common base point t for all fundamental groups involved. The
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algebraic closures of k(T, U), k(T ), k(U) and k should be understood
as the ones inside Ω.

2.2.3. A π1-representation of f⊗kk(U). As the compositum Ωt,k ·k(U)
is contained in Ωt,k(U), there is a restriction morphism

resk(U)/k : π1(P1 \ t, t)k(U) → π1(P1 \ t, t)k,

which induces a map between the geometric parts of the fundamental
groups:

resk(U)/k : π1(P1 \ t, t)k(U) → π1(P1 \ t, t)k

We also use the notation resk(U)/k for the map Gk(U) → Gk induced on
the absolute Galois groups.

Lemma 2.3. resk(U)/k : π1(P1 \ t, t)k(U) → π1(P1 \ t, t)k is surjective
and resk(U)/k : π1(P1 \ t, t)k(U) → π1(P1 \ t, t)k is an isomorphism.

Proof. Every σ ∈ π1(P1 \ t, t)k extends to an element of Gk(T ), which

extends naturally to an automorphism of k(T )(U) fixing U (and k(T )),
which in turn extends to an element σ̃ ∈ Gk(T,U). As t is Gk-invariant,
σ̃ permutes the extensions F/k(U)(T ) that are unramified above P1\t.
Conclude that σ̃ factors through π1(P1 \ t, t)k(U) to provide a preimage
of σ via the map resk(U)/k, as desired in the first statement.

To show that resk(U)/k : π1(P1 \ t, t)k(U) → π1(P1 \ t, t)k is surjective,
it suffices to show that the following morphism is:

Gal(Ωt,k · k(U)/k(U)(T ))→ π1(P1 \ t, t)k = Gal(Ωt,k/k(T )).

This morphism is in fact an isomorphism: indeed extending the base
field from k to k(U) (over which T is transcendental) does not change
the group of k-regular Galois extensions.

As k is of characteristic 0, the morphism resk(U)/k : π1(P1\t, t)k(U) →
π1(P1 \ t, t)k is even an isomorphism. More precisely, it follows from

[Ser92, theorem 6.3.3] that Ωt,k(U) = Ωt,k · k(U). �

Set φ⊗k k(U) = φ ◦ resk(U)/k. The epimorphism

φ⊗k k(U) : π1(P1 \ t, t)k(U) → G

is a π1-representation of the regular G-Galois cover f ⊗k k(U).

2.2.4. A Gk(U)-representation. Composing φ ⊗k k(U) with the section
sU : Gk(U) → π1(P1 \ t, t)k(U) associated with the point U ∈ P1(k(U))
provides a Gk(U)-representation

φU : Gk(U) → G
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which is the specialization representation of φ ⊗k k(U) at t = U . It
corresponds to the generic fiber of F/k(T ). Denote it by FU/k(U).

2.2.5. The self-twisted cover. Twist the representation φ ⊗k k(U) by
the epimorphism φU to get the self-twisted representation

˜φ⊗k k(U)
φU

: π1(P1 \ t, t)k(U) → Sd.

We call the corresponding cover

˜f ⊗k k(U)
φU

: ˜X ⊗k k(U)
φU
→ P1

k(U)

the self-twisted cover of f .

2.2.6. The fiber-twisted cover at t0. Let t0 ∈ P1(k) \ t. Twist the rep-
resentation φ by the specialization representation φ ◦ st0 : Gk → G to
get the twisted representation

φ̃φ st0 : π1(P1 \ t, t)k → Sd

which corresponds to a cover

f̃φ st0 : X̃φ st0 → P1
k.

We call them respectively the fiber-twisted representation and the fiber-
twisted cover at t0.

2.2.7. Description of the self-twisted cover. Set ΨU = ˜φ⊗k k(U)
φU

.
From §2.1.2, for every Θ ∈ π1(P1 \ t, t)k(U), we have

ΨU(Θ) = γ((φ⊗k k(U))(Θ))× δ(φU(R(Θ))−1)

where R : π1(P1 \ t, t)k(U) → Gk(U) is the natural surjection. The
element Θ uniquely writes Θ = χ sU(σ) with χ ∈ π1(P1 \ t, t)k(U) and
σ ∈ Gk(U). Whence

(φ⊗k k(U))(Θ)) = (φ⊗k k(U))(χ) (φ⊗k k(U))(sU(σ))

and, using that φU = φ⊗k k(U) ◦ sU ,

φU(R(Θ)) = (φ⊗k k(U))(sU(σ)).

Finally we obtain the following formula, where, by conj(g) (g ∈ G), we
denote the permutation of G induced by the conjugation x→ gxg−1:

ΨU(Θ) = γ((φ⊗k k(U))(χ))× conj((φ⊗k k(U))(sU(σ))).

Denote the field extension corresponding to the π1-representation ΨU

by F̃ k(U)
φU
/k(U)(T ). The field F̃ k(U)

φU
is the fixed field in Ωt,k(U) of
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the subgroup ΓU ⊂ π1(P1 \ t, t)k(U) of all elements Θ such that ΨU(Θ)
fixes the neutral element of G 7. We obtain

ΓU = ker(φ⊗k k(U)) · sU(Gk(U))

and F̃ k(U)
φU

is the fixed field in F k(U) of all elements in sU(Gk(U)).

2.2.8. Description of the fiber-twisted covers. Let t0 ∈ P1(k)\t and set

φt0 = φ ◦ st0 and Ψt0 = φ̃φt0 . Every element θ ∈ π1(P1 \ t, t)k uniquely
writes θ = x st0(τ) with x ∈ π1(P1 \ t, t)k and τ ∈ Gk. Proceeding
exactly as above but with U replaced by t0, φ ⊗k k(U) by φ and Θ =
χ sU(σ) by θ = x st0(τ), we obtain that

Ψt0(θ) = γ(φ(x))× conj(φ(st0(τ)))

and if F̃ φt0/k(T ) is the field extension corresponding to the π1-repre-

sentation Ψt0 , F̃
φt0 is the fixed field in F k of all elements in st0(Gk).

2.2.9. Comparison.

Lemma 2.4. There is a finite subset E ⊂ k such that for each t0 ∈ k\E,

the fiber-twisted cover f̃φ st0 : X̃φ st0 → P1
k is k-isomorphic to the specia-

lization of the self-twisted cover ˜f ⊗k k(U)
φU

: ˜X ⊗k k(U)
φU
→ P1

k(U)

at U = t0.

Proof. Set d = |G| and LU = F̃ k(U)
FU

. By construction, the extension
LU/k(U)(T ) is k(U)-regular. From the Bertini-Noether theorem, for
every t0 ∈ k but in a finite subset E , which we enlarge to contain the
branch point set t, the extension LU/k(U)(T ) specializes at U = t0 to
some extension Lt0/k(T ) that is k-regular of degree

[F̃ k(U)
FU

: k(U)(T )] = [Fk(U) : k(U)(T )] = [F : k(T )] = d.

Up to enlarging again E , one may also assume that the genus of this

specialization is the same as the genus of the function field F̃ k(U),
which equals the genus of F (or of X). The rest of the proof shows

that the specialization Lt0/k(T ) is the extension F̃ Ft0/k(T ).

Pick primitive elements Y and ỸU of the two extensions F/k(T )
and LU/k(U)(T ), integral over k[T ] and k[U, T ] respectively. As LU ⊂
F k(U), one can write

ỸU =
d−1∑
i=0

ai(U)Y i

7Taking any other element of G gives the same field up to k(U)(T )-isomorphism.
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with a0(U), . . . , ad−1(U) ∈ k(U). Enlarge the set E to contain the
points t ∈ k for which a0(U), . . . , ad−1(U) do not specialize at U = t.

Fix t0 ∈ k \ E . Consider the specialization Ỹt0 =
∑d−1

i=0 ai(t0)Y i. The

associated extension k(T, Ỹt0)/k(T ) is the specialization Lt0/k(T ) of

LU/k(U)(T ) at U = t0. By construction Ỹt0 ∈ Fk. The last paragraph

of the proof below shows that Ỹt0 is fixed by all elements in st0(Gk).

We will then be able to conclude that k(T, Ỹt0) ⊂ F̃ φt0 and finally that

these two fields are equal since [k(T, Ỹt0) : k(T )] = [F̃ φt0 : k(T )] = d.

As U /∈ t, there exists an embedding

LU → k(U)((T − U))

which maps YU to a formal power series

ỸU =
∞∑
n=0

bn(U)(T − U)n with bn(U) ∈ k(U) (n ≥ 0).

Furthermore, LU is fixed by all elements sU(σ) ∈ sU(Gk(U)), which,
by definition of sU , act via the action of σ ∈ Gk(U) on the coeffi-
cients bn(U); conclude that bn(U) ∈ k(U) (n ≥ 0). Finally from the
Eisenstein theorem8, there exists a polynomial E(U) ∈ k[U ] such that
E(U)n+1 bn(U) ∈ k[U ] for every n ≥ 0. Enlarge again the set E to
contain the roots of E(U). For t0 ∈ k \ E , specializing U to t0 in

the displayed formula above produces Ỹt0 as a formal power series in
k[[T − t0]], which amounts to saying that, up to some k-isomorphism,

Ỹt0 and so F̃ φt0 are fixed by all elements in st0(Gk). �

Let P̃ (U, T, Y ) ∈ k[U, T, Y ] be the irreducible polynomial of ỸU over

k[U, T ]. Theorem 2.2 holds for this polynomial P̃ (U, T, Y ) (up to en-
larging again the finite set E). When k = Q we may and will choose

the element ỸU integral over Z[T, Y ] (and not just Q(T, Y )) so that

P̃ (U, T, Y ) lies in Z[U, T, Y ] and will assume further that the coeffi-

cients of P̃ (U, T, Y ) are relatively prime.

3. Proof of the Hilbert-Malle theorem 1.3

3.1. Basic data. Fix the following for the rest of the paper:
- G is a non trivial finite group,
- F/Q(T ) is a Q-regular Galois extension of group G,

8This classical result is often stated for formal power series
∑
n≥0 bnT

n, algebraic

over Q(T ) and with coefficients bn ∈ Q, but is true in a bigger generality including
the situation where Q and Z are respectively replaced by k(U) and k[U ]. For
example, the proof given in [DR79] easily extends to this situation.
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- f : X → P1 is the corresponding Q-cover,
- t = {t1, . . . , tr} ⊂ P1(Q) is the branch point set of F/Q(T ),
- gX is the genus of the curve X.

3.2. Reduction to counting integral points on curves. As in the-
orem 1.3, suppose given an integer B ≥ 1 and a subset HB ⊂ [1, B]
consisting of integers t0 such that Gal(Ft0/Q) is the whole group G.

We will give a lower bound for the number of non conjugate special-
ization representations φ ◦ st0 : GQ → G with t0 ∈ HB. Given two such
representations, the associated field extensions are equal if and only if
the representations have the same kernel, or, equivalently, if they differ
by some automorphism of G. Dividing the previous bound by |Aut(G)|
will thus yield the desired bound for N (HB).

Consider the polynomial P̃ (U, T, Y ) ∈ Z[U, T, Y ] given in theorem

2.2 and its discriminant ∆P̃ ∈ Z[U, T ] (relative to Y ). As P̃ (U, T, Y ) is
irreducible in Q(U, T )[Y ], ∆P̃ (U, T ) 6= 0. Write it as a polynomial in
T of degree N and denote its leading coefficient by ∆P̃ ,N(U); we have

∆P̃ ,N(U) ∈ Z[U ] and ∆P̃ ,N(U) 6= 0.

Drop from the setHB the finitely many integers u0 for which ∆̃P̃ ,N(u0)
is 0 or which are in the exceptional set E from theorem 2.2. Denote
the resulting set by H′B and the number of dropped elements by E. We
may as well assume that |HB| > E and so that H′B 6= ∅.

Fix u0 ∈ H′B and consider the fiber-twisted cover of f at u0

f̃φ su0 : X̃φ su0 → P1
Q

Let t0 ∈ H′B. From the twisting lemma 2.1, the two representations
φ ◦ su0 and φ ◦ st0 are conjugate in G if and only if there exists x0 ∈
X̃φ su0 (Q) such that f̃φ su0 (x0) = t0.

We have ∆P̃ (u0, t0) 6= 0 except for at mostN integers t0. For the non-

exceptional t0, the polynomial P̃ (u0, t0, Y ) has only distinct roots y ∈ Q
and, from theorem 2.2, the corresponding points (t0, y) on the affine

curve P̃ (u0, t, y) = 0 exactly correspond to the points x on the smooth

projective curve X̃φ su0 above t0. Furthermore, in this correspondence,
the Q-rational points x correspond to the couples (t0, y) with y ∈ Q.
Conclude that up to some term ≤ N , the number of t0 for which φ◦ su0
and φ ◦ st0 are conjugate in G is equal to the number of Q-rational

points (t0, y) on the affine curve P̃ (u0, t, y) = 0.
Note further that such a Q-rational point (t0, y) has necessarily in-

tegral coordinates as t0 ∈ Z and P̃ (u0, T, Y ) ∈ Z[T, Y ] and is monic in
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Y . Therefore we are reduced to estimating the integers t0 ∈ [1, B] such

that there is an integral point (t0, y) ∈ Z2 on the curve P̃ (u0, t, y) = 0.

3.3. Diophantine estimates. The constants ci, i > 0 that will enter
in the proof depend only on the extension F/Q(T ). The height of a
polynomial Q with coefficients in Q is the maximum of the absolute
values of its coefficients and is denoted by H(Q).

The curve P̃ (u0, t, y) = 0 is of the same genus, say gX , as the original
curve X (theorem 2.2) and we have

deg(P̃ (u0, T, Y )) ≤ deg(P̃ (U, T, Y )) = c1
degY (P̃ (u0, T, Y )) = degY (P̃ (U, T, Y )) = |G|
H(P̃ (u0, T, Y )) ≤ c2u

c3
0 ≤ c2B

c3

For real numbers g,D,H,B ≥ 0 and dY ≥ 2, consider all polynomials
Q ∈ Z[T, Y ], wilth relatively prime coefficients, monic in Y , irreducible
in Q(T )[Y ], such that degY (Q) = dY , of total degree ≤ D, of height
≤ H and such that the affine curve Q(t, y) = 0 is of genus ≤ g. For each
such polynomial, the number of integers t ∈ [1, B] such that there exists
y ∈ Z such that Q(t, y) = 0 is a finite set. Denote by Z(g,D, dY , H,B)
the maximal cardinality of all these finite sets.

Using the diophantine parameter Z(g,D, dY , H,B), conclude that
the number of t0 ∈ H′B such that the two representations φ ◦ su0 and
φ ◦ st0 are conjugate in G is less than or equal to

Z(gX , c1, |G|, c2Bc3 , B).

and that the number N (HB) satisfies

N (HB) ≥ |HB| − E

|Aut(G)| [Z(gX , c1, |G|, c2Bc3 , B) +N ]

Assume that the genus gX of X is ≥ 2 and that Lang’s conjecture
holds. This conjecture is that if V is a variety of general type de-
fined over a number field K then the set V (K) of K-rational points is
not Zariski-dense in V [Lan86]. We will use it through the following
consequence proved by Caporaso, Harris and Mazur [CHM97]: they
showed that Lang’s conjecture implies that for every number field K
and every integer g ≥ 2, there exists a finite integer B(g,K) such that
card(C(K)) ≤ B(g,K) for every curve C of genus g defined over K.

Under this conjecture we obtain, if gX ≥ 2,

Z(gX , c1, |G|, c2Bc3 , B) +N ≤ c4.
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In the general case gX ≥ 0 we use an unconditional result of Walkowiak
[Wal05, §2.4]. From this result (theorem 3.1 in §3.4 below), we deduce

Z(gX , c1, |G|, c2Bc3 , B) +N ≤ c5B
1/|G|(logB)c6 .

Conclude that unconditionally:

N (HB) ≥ |HB| − E

B1/|G|(logB)c7

and, under Lang’s conjecture, for C = 1/(c4 |Aut(G)|):
N (HB) ≥ C (|HB| − E)

3.4. Walkowiak’s result. Let Q ∈ Z[T, Y ] be a polynomial, irre-
ducible in Z[T, Y ]. Set D = deg(Q) and H+ = max(H(Q), ee). The
result we use in the proof above is the following.

Theorem 3.1 (Walkowiak). Assume degY Q ≥ 2. There exist positive
absolute constants a1, . . . , a4 such that for every real number B ≥ 1,
the number of integers t0 ∈ [1, B] such that Q(t0, Y ) has a root in Z is
less than

a1D
a2(logH+)a3B1/ degY (Q)(logB)a4 .

This result is proved in [Wal05] but with B1/2 instead of B1/ degY (Q).
We explain here how to modify Walkowiak’s arguments to obtain the
better exponent 1/ degY (Q). The only change to make is in the final
stage of the proof in [Wal05, §2.2-2.3].

Proof. Walkowiak’s central result is the following bound for the number
N(Q,B) of (t, y) ∈ Z2 such that max(|t|, |y|) ≤ B and Q(t, y) = 0:

N(Q,B) ≤ 236D5 log3(1250d11B5D−1) log2(B)B1/D.

To prove theorem 3.1, his basic idea is to use Liouville’s inequality to
get upper bounds |y| ≤ B′ for roots y ∈ Z of polynomials Q(t0, Y )
with t0 ∈ [1, B]; the bound above for N(Q,B) with B taken to be
B′ provides then a bound for the desired set. The main terms that
appear in the resulting bound come from (B′)1/D. They may be too
big however in some cases and Walkowiak uses a trick to obtain his
final bound in B1/2. In order to obtain B1/n instead, Walkowiak’s trick
should be modified as follows.

Set L1 = log(H+), L2 = log(log(H+)), m = degT Q and n = degY Q;
one may assume m > 0. Let t0 ∈ [1, B] such that Q(t0, Y ) has a root
y ∈ Z. Liouville’s inequality gives

|y| ≤ 2(m+ 1)H+Bm = B′.

The main terms in (B′)1/D are (H+)1/D and (Bm)1/D.
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Case 1: mnL1/L2 ≤ D. On the one hand, we have 1/D ≤ L2/L1 and
so (H+)1/D ≤ (H+)L2/L1 = log(H+). On the other hand m/D ≤ 1/n
and so Bm/D ≤ B1/n. The upper bound for N(Q,B′) is indeed as
announced in the statement of theorem 3.1.

Case 2: mnL1/L2 > D. Set E = [mnL1/L2] + 1 and consider the
polynomial G ∈ Z[T, Y ] defined by G(T, Y ) = Q(T, TE + Y ). For
y′ = y − tE0 we have G(t0, y

′) = 0 and

|y′| ≤ 2(m+ 1)H+Bm +BE ≤ 2(m+ 1)H+BE = B′′.

Use then the upper bound for N(Q,B) with Q and B respectively taken
to be G and B′′. As degY G = degY Q = n and nE ≤ degG ≤ nE+m,
the main terms are in this case

(H+)1/ deg(G) ≤ (H+)1/nE ≤ (H+)L2/L1 = log(H+)

and BE/degG ≤ B1/n.

Again the upper bound for N(G,B′′) is as announced. �

4. The specialization version of theorem 1.1

In this section we state theorem 4.3 (in §4.2) which is a more precise
version of theorem 1.1 and which emphasizes the specialization aspect.
In §4.3, we show how to deduce theorem 1.1 from theorem 4.3, which
itself will be proved in §5. The initial subsection §4.1 elaborates on the
parameter δ(G) which was introduced in our opening section §1.

4.1. The minimal affine branching index δ(G). Given a Q-regular
extension F/Q[T ], consider an affine model P (T, Y ) ∈ Q[T, Y ], monic
in Y . Denote the discriminant of P relative to Y by ∆P ∈ Q[T ] and
its degree by δP . The minimal degree δP obtained in this manner is
called the minimal affine branching index of F/Q(T ) and denoted by
δF/Q(T ). For any affine model P (T, Y ) of F/Q(T ), monic in Y , we have

δF/Q(T ) ≤ δP < 2|G| degT (P ).

If G is a regular Galois group over Q, the parameter δ(G) involved
in theorem 1.1 is the minimum of all δF/Q[T ] with F/Q[T ] running over
all Q-regular realizations of G. As to Malle’s exponent, it is defined as
a(G) = (|G|(1− 1/`))−1 where ` is the smallest prime divisor of |G|.
Lemma 4.1. Let G be a non trivial regular Galois group over Q.

(a) If F/Q(T ) is a Q-regular realization of G with r branch points and
gF is the genus of F , then

δ(G) < 3(2gF + 1)|G|3 log |G| ≤ 3r |G|4 log |G|.

(b) Furthermore we have δ(G) ≥ 1/a(G).
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Proof of lemma 4.1. (a) The first inequality follows from a result of
Sadi [Sad99, §2.2] which provides an affine model P (T, Y ) of F/Q(T ),
monic in Y , such that

degT (P ) ≤ (2gF + 1)|G|2 log |G|/ log 2.

The second inequality follows from the Riemann-Hurwitz formula.

(b) Let F/Q(T ) be a Q-regular realization of G, dF ∈ Q[T ] be the
absolute discriminant of F/Q(T ) (the discriminant of a Q[T ]-basis of
the integral closure of Q[T ] in F ) and P (T, Y ) be an affine model of
F/Q(T ). Inequality (b) follows from the following ones:

δP ≥ deg(dF ) ≥ |G|(1− 1/`) = a(G).

The first inequality deg(dF ) ≤ δP is standard. Classically the poly-
nomial dF is a generator of the ideal NF/Q(T )(DF/Q(T )) where DF/Q(T ) is
the different and NF/Q(T ) is the norm relative to the extension F/Q(T )
[Ser62, III, §3]. From [Ser62, III, §6], in the prime ideal decomposition
DF/Q(T ) =

∏
P PuP , we have uP ≥ eP − 1 for each prime P , where

eP = ep is the corresponding ramification index, which only depends
on the prime p below P . The following inequalities, where fP denotes
the residue degree of P , finish the proof:

deg(dF ) ≥
∑

p

∑
P|p fP(eP − 1) =

∑
p |G| − |G|/ep ≥ |G|(1− 1/`)

�

Remark 4.2. Our parameter δ(G) can also be compared to the mini-
mum, say ρ(G), of all branch point numbers r of Q-regular realizations
F/Q(T ) of G: for such an extension F/Q(T ) we have deg(dF ) ≥ r − 1
which gives δ(G) ≥ ρ(G)− 1. But the inequality a(G) ≥ 1/(ρ(G)− 1)
does not hold in general. For example the symmetric group Sn can
be regularly realized over Q with 3 branch points so ρ(Sn) = 3 while
a(Sn) = 2/n! The analog of theorem 1.1 with r− 1 replacing δF/Q(T ) is
false if the upper bound part of Malle’s conjecture is true.

4.2. The specialization result. Theorem 4.3 is our most precise and
most general but also most technical statement. It gives explicit es-
timates as provided by our approach. The asymptotic estimates of
theorem 1.1 can then easily be deduced from them, as explained in
§4.3. In §4.4, we give a weaker but more practical form of theorem 4.3.

In addition to §3.1, we will use the following notation and data.

4.2.1. Further notation.
- for a Frobenius data F on a set of primes S (see §1.2), the product of
all ratios |Fp|/|G| with p ∈ S – the density of F – is denoted by χ(F),

- for a finite set S of primes, set Π(S) =
∏

p∈S p,



ON THE MALLE CONJECTURE AND THE SELF-TWISTED COVER 19

- we also use the classical functions π(x) and Π(x) to denote respectively
the number of primes ≤ x and the product of all primes ≤ x. We have
the classical asymptotics at ∞: π(x) ∼ x/ log(x) and log Π(x) ∼ x,

- given a k-regular Galois extension F/k(T ), we say a prime p is good
for F/Q(T ) if p 6 | |G|, the branch divisor t = {t1, . . . , tr} is étale at
p and there is no vertical ramification at p; and it is bad otherwise.
We refer to [DG12] for the precise definitions. We only use here the
standard fact that there are only finitely many bad primes.

4.2.2. Further data. Fix the following:
- a prime p0 as follows. Let p−1 be the biggest prime p such p is bad for
F/Q(T ) or p < r2|G|2. Then choose p0 such that the interval ]p−1, p0]
contains at least as many primes as there are non-trivial conjugacy
classes of G.

- δF/Q(T ) or δF for short is the minimal affine branching index of F/Q(T ),

- P (T, Y ) is an affine model of F/Q(T ), monic in Y , such that δP = δF
(with δP the degree of the discriminant ∆P ); we further assume as we
may that the coefficients of P are in Z and are relatively prime.

- if a branch point is Q-rational, it will be possible to also prescribe
ramification at finitely many primes in the specializations Ft0/Q. To
this end we fix a finite set S of primes subject to these conditions:
(a) if no branch point of f is in Z then S = ∅.
(b) if at least one of the branch points of f , say t1, is in Z, then S is a
finite set of good primes p, not dividing t1 and not in ]p−1, p0].
(If at least one branch point is Q-rational, one can reduce to the as-
sumption in (b) via a simple change of the variable T ).

- Sx is the set of primes p such that p0 < p ≤ x and p /∈ S; we assume
x > max(p0,max(S)).

4.2.3. Statement. Let Fx be a Frobenius data on Sx and NF (x, S,Fx)
be the number of specializations Ft0/Q at points t0 ∈ Z that satisfy
(i) Gal(Ft0/Q) = G,
(ii) for each p ∈ Sx, Ft0/Q is unramified and Frobp(Ft0/Q) ∈ Fp,
(iii) for each p ∈ S, Ft0/Q is ramified at p.

Theorem 4.3. (a) There exist constants C1, C2, C3, C4 only depending
on P (T, Y ) such that for every x > max(p0,max(S)), we have

NF (x, S,Fx) ≥ C1
χ(Fx)
Π(S)2

Π(x)1−1/|G|

(log Π(x))C2 C
π(x)
3

− C4

so log(NF (x, S,Fx)) is bigger than a function λ(x) ∼ (1−1/|G|)x.
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(b) Furthermore the specializations Ft0/Q counted by the lower bound
can be taken to be specializations at integers t0 ∈ [1,Π(S) Π(x)].

(c) Under Lang’s conjecture on rational points on a variety of general
type and if g ≥ 2, we have this better inequality

NF (x, S,Fx) ≥ C5
χ(Fx)
Π(S)2

Π(x)

C
π(x)
6

− C7

for constants C5, C6, C7 only depending on P , so then

log(NF (x, S,Fx)) is bigger than a function λ(x) ∼ x.

(d) We have the following upper bound for the number NF (x,Fx) of
integers t0 ∈ [1,Π(Sx)] such that condition (ii) above holds:

NF (x,Fx) ≤ χ(Fx)
Π(Sx)

β
(2− λ)|Sx|

where λ = (r|G| − 1)/r2|G|2 ∈]0, 1/4] and β depends only on F/Q(T ).

4.3. Proof of theorem 1.1 assuming theorem 4.3. Pick a Q-
regular realization F/Q(T ) of G and an affine model P (T, Y ), monic
in Y , such that δP = δF = δ(G). Set p0(G) = p0. Fix δ > δ(G) and set
δ− = (δ + δ(G))/2. Let y > 0 and x = log(y)/δ−.

As δ− < δ we have Sy = {p0(G) < p ≤ log(y)/δ} ⊂ Sx. Complete
the given Frobenius data Fy on Sy in an arbitrary way to make it a
Frobenius data Fx on Sx. Apply theorem 4.3 to Fx and S = ∅.

Let t0 ∈ [1,Π(x)] corresponding to one of the specializations Ft0/Q
counted in theorem 4.3. From condition (i), the polynomial P (t0, Y )
is irreducible in Q[Y ]. As it is monic and with integral coefficients, its
discriminant, which is ∆P (t0), is a multiple of the absolute discriminant
dFt0

of the extension Ft0/Q. This leads to

|dFt0
| ≤ ρ(x) = (1 + δP )H(∆P ) Π(x)δP

As log ρ(x) ∼ (δP/δ
−) log y, if y is suitably large, ρ(x) ≤ y. It follows

that N(G, y,Fy) ≥ NF (x, ∅,Fx) and so N(G, y,Fy) can be bounded
from below by the right-hand side term of the inequality from theorem
4.3 (a) with x = log(y)/δ−. The logarithm of this term is asymptotic
to (1− 1/|G|) log(y)/δ−. Conclude that for suitably large y, this term
is bigger than y(1−1/|G|)/δ.

Remark 4.4 (ramified version of theorem 1.1). In the situation S 6= ∅,
for which it is possible to prescribe ramification at some primes, the
assumption that at least one branch point is Q-rational cannot be re-
moved, as explained in Legrand’s paper [Legar]. Many groups have a
Q-regular realization F/Q(T ) satisfying this assumption, although be-
ing of even order is a necessary condition [Legar, §3.2]: abelian groups
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of even order, symmetric groups Sn (n ≥ 2), alternating groups An
(n ≥ 4), many simple groups (including the Monster), etc.

For these groups, theorem 4.3 leads, via the preceding argument, to

N(G,S, y,Fy) ≥ y(1−1/|G|)/δ,

a generalized theorem 1.1 where N(G,S, y,Fy) replaces N(G, y,Fy) to
be the number of extensions E/Q which, in addition to the conditions
prescribed in theorem 1.1, are required to ramify at every prime from
a finite set S of suitably big primes (and where the set Sy is of course
replaced by Sy \ S).

4.4. A practical form of theorem 4.3. Next statement is a simpli-
fied form of theorem 4.3. Furthermore the bounding condition is about
the specialization point t0 rather than the discriminant of Ft0/Q.

Corollary 4.5. Given a Q-regular Galois extension F/Q(T ) of group
G, there exist some constants p0 and C > 1 such that if B is suitably
large, the number of extensions Ft0/Q with t0 ∈ [1, B] ∩ Z that are

(i) of group G, and

(ii) unramifed and totally split at each prime p with p0 ≤ p ≤ (logB)/3,

is at least
B1−1/|G|

C logB/ log logB
.

Furthermore the condition “totally split” can be replaced by any other
local behavior.

Proof. Corollary 4.5 follows from theorem 4.3 (a)&(b), applied with
S = ∅ and x a real number such that Π(x) is the biggest value of Π
which is ≤ B. Then we have Π(2x) > B. Using that log Π(x) ∼ x,
it follows that for suitably large B, we have logB ≤ 3x and so the
set of primes of corollary 4.5 where some local condition is imposed is
contained in that of theorem 4.3. The estimate easily follows. �

4.5. On the upper bound part from theorem 4.3.

4.5.1. A remark. The upper bound concerns extensions E/Q that are
specializations of a given Q-regular extension F/Q(T ) (at integers t0)
and so does not directly lead to upper bounds for N(G, y,Fy) which
counts extensions E/Q with no geometric origin a priori. A natu-
ral hypothesis to make in this context is that G has a generic exten-
sion F/Q(T ) (or more generally a parametric extension, as defined in
[Legar]): indeed then all Galois extensions E/Q of group G are spe-
cializations of F/Q(T ) (at points t0 ∈ Q). But only the four groups
{1}, Z/2Z, Z/3Z, S3 have a generic extension F/Q(T ) [JLY02, p.194].
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4.5.2. A further application. For every x > p0, let Ntot.split(x) be the
set of all integers t0 ≥ 1 such that the specialization Ft0/Q is totally
split at each prime p0 < p ≤ x.

Corollary 4.6. For every x > p0, Ntot.split(x) is a union of (many)
cosets modulo Π(Sx) but its density decreases to 0 as x→ +∞.

Proof. The number Ntot.split(x) counts integers t0 ≥ 1 which satisfy
condition (ii) from theorem 4.3 with Fp taken to be the trivial conju-
gacy class for each p ∈ Sx. We anticipate on §5 to say that Ntot.split(x)
is a union of cosets modulo Π(Sx) (see proposition 5.3 (c)) and focus
on the density part of the statement. Every integer t0 ∈ Ntot.split(x)
writes t0 = u+kΠ(Sx) with u one of the elements in [1,Π(Sx)] counted
by NF (x,Fx) and k ∈ Z. Let N ≥ 1 be any integer. If 1 ≤ t0 ≤ N ,
then k ≤ N/Π(Sx). It follows then from theorem 4.3 (d) that

|Ntot.split(x) ∩ [1, N ]| ≤ N

Π(Sx)
×NF (x,Fx) ≤

N

β
×
(

2− λ
|G|

)|Sx|

which divided by N tends to 0 as x→ +∞. �

Similar density conclusions can be obtained for other local behaviors
for which the sets Fp are not too big compared to G.

5. Proof of theorem 4.3

We retain the notation and data introduced in §3.1 and in §4.2.
Fix x > max(p0,max(S)) and a Frobenius data Fx on Sx.
Fix also a subset S0 of primes p ∈]p−1, p0], with as many elements

as there are non trivial conjugacy classes in G. Associate then in a
one-one way a non-trivial conjugacy class Fp to each prime p ∈ S0. Set
S0x = S0 ∪ Sx and denote the Frobenius data (Fp)p∈S0x by F0x.

5.1. First part: many good specializations t0 ∈ Z. The goal of
the first part is proposition 5.3 which shows that there are “many”
t0 ∈ Z such that conditions (i)-(iii) of theorem 4.3 are satisfied. The
second part will then use the Hilbert-Malle theorem 1.3 to show that
there are “many” distinct corresponding extensions Ft0/Q.

We use the method of [DG12] for this first part. We re-explain it in
the special context of this paper and make the necessary adjustments
for this proof. We refer to [DG12] for more details on the main argu-
ments and for references. Working over number fields and even over Q,
we can give improved quantitative conclusions (compared to the exis-
tence statements of [DG12]). As in [DG12], there is first a local stage
followed by a globalization argument.
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5.1.1. Local stage. Below, given t0 ∈ Qp we say that t0 /∈ t modulo p
if t0 does not meet any of the branch points of F/Q(T ) modulo p 9.

Proposition 5.1. Given our regular Q-G-Galois cover f : X → P1,
a prime p and a subset Fp ⊂ G consisting of a non-empty union of
conjugacy classes of G, consider the set

T (Fp) =

{
t0 ∈ Z

∣∣∣∣ t0 /∈ t modulo p
Frobp(Ft0/Q) ∈ Fp

}
.

If p is a good prime for f , the set T (Fp) is a union of cosets modulo
p. Furthermore, the number ν(Fp) of these cosets satisfies

ν(Fp) ≥
|Fp|
|G|
× (p+ 1− 2g

√
p− |G|(r + 1))

and ν(Fp) ≤
|Fp|
|G|
× (p+ 1 + 2g

√
p).

Proof. We follow the method from [DG12]. Similar estimates though
not in this explicit form can also be found in [Eke90].

We may and will assume that the subset Fp consists of a single
conjugacy class.

Set fp = f ⊗Q Qp and denote the corresponding π1-representation
by φp : π1(P1 \ t, t)Qp → G. Pick an element gp ∈ Fp and consider
the unique unramified epimorphism ϕp : GQp → 〈gp〉 that sends the
Frobenius of Qp to gp.

The condition “t0 /∈ t modulo p” implies that p is unramified in the
specialization Ft0/Q. Then t0 ∈ T (Fp) if and only if the specialization
representation φ ◦ st0 : GQ → G of F/Q(T ) at t0 is conjugate in G to
ϕp : GQp → 〈gp〉. From the twisting lemma 2.1, this is equivalent to the
existence of a Qp-rational point above t0 in the covering space of the

twisted cover f̃p
ϕp

: X̃p

ϕp → P1. As p is a good prime, this last cover

has good reduction; denote the special fiber by f̃p : X̃p → P1
Fp

. The last
existence condition is then equivalent to the existence of some point

x ∈ X̃p(Fp) above the coset t0 ∈ P1(Fp) of t0 modulo p: the direct part
is clear while the converse follows from Hensel’s lemma.

From the Lang-Weil bound, the number of Fp-rational points on X̃p
is ≥ p + 1 − 2g

√
p. Removing the points that lie above a branch

point or the point at infinity leads to the announced first estimate, a
final observation for this calculation being that for t0 /∈ t modulo p,

9Recall that for two points t, t′ ∈ Qp ∪ {∞}, meeting modulo p means that
|t|p ≤ 1, |t′|p ≤ 1 and |t− t′|p < 1, or else |t|p ≥ 1, |t′|p ≥ 1 and |t−1 − (t′)−1|p < 1,

where p is some arbitrary prolongation of the p-adic absolute value v to Qp.
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the number of Fp-rational points x ∈ X̃p(Fp) above t0 is |CenG(gp)| =
|G|/|Fp|: this number is the same as the number of ω ∈ G such that φ◦
st0 = ωϕpω

−1 (as in the proof of the twisting lemma in [DG12]). Using
the upper bound part of Lang-Weil leads to the second estimate. �

If in addition p ≥ r2|G|2 (in particular if p ∈ S0x), then the right-
hand side term in the inequality of proposition 5.1 is > 0 (use that
g < r|G|/2− 1 if |G| > 1, which follows from Riemann-Hurwitz).

Proposition 5.2. Assume that the branch point t1 of the Q-G-Galois
cover f : X → P1 is in Z. Given a prime p, consider the set

T (ra/p) = {t0 ∈ Z | Ft0/Q is ramified at p} .
If p is a good prime for f , the set T (ra/p) contains the coset of t1+p ∈ Z
modulo p2.

Proof. Let t0 ∈ Z such that t0 ≡ t1 + p modulo p2. Then t0 − t1 is
of p-adic valuation 1. As p is good, it follows that Ft0/Q is ramified
at p. This last conclusion is part of the “Grothendieck-Beckmann the-
orem” for which we refer to [Gro71] and [Bec91, proposition 4.2]; see
also [Legar] where this result is discussed together with further devel-
opments in the spirit of proposition 5.2. �

5.1.2. Globalization. Set{
β = Π(S0)
B(x) = β Π(S)2Π(Sx)

and consider the intersection⋂
p∈S0x

T (Fp) ∩
⋂
p∈S

T (ra/p).

From proposition 5.1, proposition 5.2 and the Chinese remainder the-
orem, this set contains

N (S,F0x) =
∏
p∈S0x

ν(Fp)

cosets modulo B(x). Denote the set of their representatives in [1, B(x)]
by T (S,F0x); the cardinality of this set is N (S,F0x).

Proposition 5.3. (a) For every integer t0 ∈ T (S,F0x), the extension
Ft0/Q satisfies the three conditions (i)-(iii) from theorem 4.3, with (ii)
even replaced by the following sharper version (ii+) of (ii), that is

(i) Gal(Ft0/Q) = G,

(ii+) Ft0/Q is unramified and Frobp(Ft0/Q) ∈ Fp for every p ∈ S0x

(and not just for every p ∈ Sx),
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(iii) Ft0/Q is ramified at p for every p ∈ S,

(b) We have N (S,F0x) ≥ χ(Fx)
B(x)

βΠ(S)2

(
1

2r|G|

)|Sx|

(c) The set of integers t0 ∈ Z such that for each p ∈ Sx, Ft0/Q is
unramified and Frobp(Ft0/Q) ∈ Fp consists of cosets modulo Π(Sx) and
the set T (∅,Fx) of their representatives in [1,Π(Sx)] is of cardinality

N (∅,Fx) =
∏
p∈Sx

ν(Fp) ≤ χ(Fx)
Π(Sx)

β
(2− λ)|Sx|

where λ = (r|G| − 1)/r2|G|2.

Conclusion (c) proves conclusion (d) of theorem 4.3.

Proof. (a) Fix t0 ∈ T (S,F0x) (or more generally congruent modulo
B(x) to some element in T (S,F0x)).

Conditions (ii+), (iii) hold by definition of the sets T (Fp) and T (ra/p).
A classical argument then shows that (i) follows from (ii+): indeed

because of the Frobenius condition at the primes p ∈ S0, the subgroup
Gal(Ft0/Q) ⊂ G meets every conjugacy class of G; from a lemma of
Jordan [Jor72], it is all of G.

(b) Using proposition 5.1, we obtain

N (S,F0x) ≥
∏
y∈Sx

|Fp|
|G|
× (p+ 1− 2g

√
p− |G|(r + 1))

≥ χ(Fx)×
∏
p∈Sx

p×
∏
p∈Sx

(
1 +

1

p
− 2g
√
p
− (r + 1)|G|

p

)
Using again that g < r|G|/2 − 1 (if |G| > 1) and that p ≥ r2|G|2 for
each p ∈ Sx, we have

1 +
1

p
− 2g
√
p
− |G|(r + 1)

p
> 1− r|G| − 2

r|G|
− (r + 1)|G|

r2|G|2

=
2

r|G|
− (r + 1)|G|

r2|G|2

=
(r − 1)|G|
r2|G|2

≥ 1

2r|G|
which yields the announced first estimate.

(c) Here we use the conclusion from proposition 5.1 that for each p ∈ Sx,
the set T (Fp) consists exactly of ν(Fp) cosets modulo p. Combined
with the Chinese remainder, this gives that the set T (∅,Fx) consists of
exactly N (∅,Fx) =

∏
p∈Sx

ν(Fp) elements. Proceed then similarly as



26 PIERRE DÈBES

in (b) but using the upper bound part of proposition 5.1 to obtain the
desired estimate. �

Remark 5.4. Consider the situation with S = ∅ and allowing no local
condition at some primes p ∈ Sx — no restriction on Frobp(Ft0/Q) and
no unramified condition —. We have ν(Fp) = p for such primes and
obtain this generalized lower bound: if S ′x ⊂ Sx is the subset of primes
where there is a local condition, then

N (∅,F0x) ≥ χ(Fx)
B(x)

β

(
1

2r|G|

)|S′x|
.

In particular, the number of integers t0 ∈ [1, B(x)] where Gal(Ft0/Q) =
G (and no further local condition at any prime) is ≥ B(x)/β.

5.2. Second part: many good specializations Ft0/Q. To conclude
the proof of theorem 4.3, we apply the Hilbert-Malle theorem 1.3 with
B = B(x) and HB = T (S,F0x). We obtain
N (T (S,F0x)) ≥

N (S,F0x)− E

B(x)1/|G|(logB(x))γ
unconditionnally

N (T (S,F0x)) ≥ C (N (S,F0x)− E)
under Lang’s conjecture and

if the genus of F is ≥ 2

where E, C and γ are the constants involved in theorem 1.3. Note that
NF (x, S,Fx) ≥ N (T (S,F0x)) and use proposition 5.3 (b) to conclude
that unconditionally:

NF (x, S,Fx) ≥ c8
χ(Fx)
Π(S)2

B(x)1−1/|G|

(logB(x))c10 c
|Sx|
9

− c11

and, under Lang’s conjecture:

NF (x, S,Fx) ≥ c12
χ(Fx)
Π(S)2

B(x)

c
|Sx|
9

− c11.

where the constants c8, . . . , c12, and c13 below, only depend on P . Note
finally that c13Π(x) ≤ B(x) ≤ Π(S)Π(x), that |Sx| ≤ π(x) and that
0 < c9 = 1/(2r|G|) < 1 to obtain the estimates of theorem 4.3 (a)
and (c). Theorem 4.3 (b) follows from the containments T (S,F0x) ⊂
[1, B(x)] ⊂ [1,Π(S)Π(x)].
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Math., pages 151–168. Birkhäuser Boston, Boston, MA, 2005.

[EV06] Jordan S. Ellenberg and Akshay Venkatesh. The number of extensions
of a number field with fixed degree and bounded discriminant. Ann. of
Math. (2), 163(2):723–741, 2006.

[EVW] Jordan S. Ellenberg, Akshay Venkatesh, and C. Westerland. Homologi-
cal stability for Hurwitz spaces and the Cohen-Lenstra conjecture over
function fields (I & II). arXiv:0912.0325 & arXiv:1212.0923.

[Gro71] Alexandre Grothendieck. Revêtements étales et groupe fondamental, vol-
ume 224 of LNM. Springer, 1971.

[HB02] D. R. Heath-Brown. The density of rational points on curves and surfaces.
Ann. of Math., 155:553–595, 2002.

[JLY02] Christian U. Jensen, Arne Ledet, and Noriko Yui. Generic polynomials.
Constructive Aspects of the Inverse Galois Problem. Cambridge Univer-
sity Press, 2002.

[Jor72] Camille Jordan. Recherches sur les substitutions. J. Liouville, 17:351–
367, 1872.
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