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Abstract. Moduli spaces of covers constitute an appropriate tool for certain arithmetic
problems involving algebraic curves and rational functions. We first review the construction
and the geometric properties of these spaces. Then we focus on the use of these spaces for
arithmetic purposes, for example the inverse Galois problem, the Hilbert-Siegel problem,
etc. Finally we consider some recents developments as the construction of modular towers.

1991 Mathematics Subject Classification. Primary 11Gxx, 14H10; Secondary 14H30, 12-xx.

1. Introduction

In a 1891 paper [Hu], A. Hurwitz explains how the set of degree d simple covers
(i.e., such that all fibers consist of at least d−1 points) of P1 can be endowed with
a structure of complex manifold. Nowadays Hurwitz spaces refer more generally
to moduli spaces of covers with specified automorphism group and with certain
constraints on the ramification. The general construction and the development of
these spaces are essentially due to M. Fried. W. Fulton and D. Mumford should
also be cited for their works on moduli spaces of curves. This paper reviews the
different stages of the theory with an emphasis on arithmetic applications. The
main references are [Fr2], [DeFr1-4], [FrVö], [Fr6].

Moduli spaces of covers constitute an appropriate tool for certain diophantine
problems involving algebraic curves and rational functions; more generally, for the
arithmetic of covers of the line. For example, the Regular Inverse Galois Problem
(over Q(T )) amounts to finding Q-rational points on these spaces. The general idea
is to look at the constraints a given problem imposes on the intrinsic data of the
covers in question, as the automorphism group and the ramification, and then to
check whether there exist possible solutions on the associated moduli space, first
over C, and then over the ground field. The diophantine nature of the problem
remains; but this approach somewhat classifies the equations by abstracting their
structural properties.

This approach rests on the idea that group theory controls the arithmetic of cov-
ers, through their monodromy description. The Hilbert-Siegel problem illustrates
this idea (§4.1): a concrete arithmetic problem — the irreducibility of polynomials
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of the form f(Y )−t (f ∈ Q[Y ], t /∈ f(Q)) — is solved by means of the classification
of simple groups. More generally, the aim is to develop group-theoretic tools to
investigate arithmetic properties of covers with fixed monodromy.

For applications, a major problem is to find rational points on Hurwitz spaces.
There are results available over Q for “small” values of the parameters or over
“large” fields K. These arithmetic questions require preliminary geometric in-
vestigations (§2): one should first determine the irreducible components of these
spaces, their fields of definition, their geometric structure, for example whether
they are (uni-)rational, etc.

The most striking achievements of the Hurwitz space theory concern the inverse
Galois problem. We review this application in §3. There are others (§4): to the
Hilbert-Siegel problem, the Davenport problem, the Mason-Stothers theorem, to a
criterion for existence of rational points, etc. We give more details on one of them
(the first one) to illustrate the method (§4.1 & §4.2).

New developments might come from modular towers (§5). These objects have
been introduced by M. Fried [Fr6]. A modular tower is a tower of Hurwitz spaces
that are naturally associated with a given Hurwitz space H; each level of the tower
maps onto H via a Frattini cover. The motivating example is the modular curve
tower. This special case has many arithmetic implications (Serre’s open image
theorem, the Mazur-Merel theorem, etc.). One may ask whether such results carry
over to the general case of modular towers.

Most developments discussed in this paper come from diophantine problems
that have been greatly influenced by A. Schinzel. The modular approach to the
Hilbert-Siegel and Davenport problems (§4) was motivated by his work on the
variables separated equations h(x) = g(y). Our paper [DeFr1] on rational points
in families of curves (§4.4) also originates in a result of his with Lewis [LeSc].

2. Moduli spaces of covers

In this section we introduce Hurwitz spaces (§2.1), we briefly describe their con-
struction (§2.2) and their geometric properties (§2.5); most of them come from
the presentation of Hurwitz spaces as covers of the space Ur (§2.3). Some first
examples are given in §2.4.
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2.1. Presentation

The basic objects are the finite branched covers f : X → P1 of the projective
line P1, defined over the algebraic closure K of a field K of characteristic 0. More
concretely a cover consists of an irreducible curve X defined over K and a non-
constant rational function f ∈ K(X). There is a classical notion of isomorphism
(the equivalence of covers). Equivalence classes have the following invariants.

Invariants.
• The monodromy group G of the cover, which is isomorphic to the Galois group
of the Galois closure of the extension K(X)/K(T ) and is anti-isomorphic to the
automorphism group of the Galois closure of the cover f .
• The degree d = deg(f) and the monodromy actionG ↪→ Sd ofG on an unramified
fiber of the cover.
• The branch point set t = {t1, . . . , tr} ⊂ P1(C). We denote by Ur the space
parametrizing this data, i.e., the variety of all sets of r distinct points from P1.
The space Ur can be viewed as the projective space Pr with the discriminant
locus removed: identify each t with the coefficients of the polynomial with roots
t1, . . . , tr. Also denote by Ur the subvariety of (P1)r of all r-tuples with no two
equal coordinates. The variety Ur is the quotient of Ur by the action of Sr.
• The inertia C = {C1, . . . , Cr} 1, i.e., the collection of conjugacy classes of branch
cycles, or, equivalently, of generators of inertia groups, above the branch points.

Theorem 2.1 (Fried [Fr2]). Suppose given a transitive representation G ↪→ Sd
and an integer r ≥ 3.
(a) There exists a coarse moduli space HG for the category Cr,G of covers of P1

defined over C, with r branch points and with monodromy group G ⊂ Sd.
(b) The space HG is a smooth algebraic variety defined over C whose complex points
exactly correspond to the isomorphism classes of objects of the category Cr,G. We
will denote by [f ] the point on HG(C) corresponding to f . Furthermore the space
HG has the following property. If P is an algebraic variety that parametrizes a
family F of covers in Cr,G, then the map P → HG sending each point p ∈ P to
the point [Fp] ∈ HG is an algebraic morphism.
(c) HG has a model defined over Q. This model has the following properties. Let
K be a field of characteristic 0. In every class [f ] ∈ HG(K), there exists a cover f
defined over K. Furthermore, the action of GK = G(K/K) on HG(K) coincides
with the action on the corresponding covers. That is, [f ]τ = [fτ ] for each [f ] ∈
HG(K) and each τ ∈ GK .
(d) For each cover f , the field Q([f ]) is called the field of moduli of f ; under
suitable assumptions [DeDo1], it is the smallest field of definition of f .
(e) The application ψ : HG → Ur mapping each [f ] ∈ HG(C) on the branch point
set t of f is an étale morphism defined over Q.

1
Some classes Ci can be repeated. Rather than a set, C should be regarded as a r-tuple modulo the

action of Sr.
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Variant: There is a similar statement for G-covers of P1 of groupG (instead of cov-
ers). A G-cover is a Galois cover f : X → P1 given together with an isomorphism
G(K(X)/K(T )) ' G. One usually distinguishes the two situations by putting the
superscript ab (for mere covers) or in (for G-covers) on HG. For simplicity, we will
do it only when we find it necessary to the comprehension.

2.2. Construction

2.2.1. 1st approach (Fried [Fr2], Coombes-Harbater [CoHa], Fried-Völklein [FrVo],
Emsalem [Em]). The different stages of the construction are the following ones.

• Set HG(C) def=
∐

(t, ϕt) where t runs over Ur(C) and ϕt over the set of all
homomorphisms π1(P1−t) → G ⊂ Sd (up to equivalence).
• Equip the set HG(C) with a topology. To do so use the isomorphisms

π1(P1−t)
χ
' π1(P1−D)

where D = {D1, . . . , Dr} is a family of small disks Di centered at ti. Essentially,
two points (t, ϕt) and (t′, ϕt′) are close if t and t′ are close in Ur(C) (i.e., in a small
polydisk D) and ϕt and ϕt′ are equal via the isomorphism χ. For this topology,
the projection ψ : HG(C) → Ur(C) is a topological cover.
• From the Grauert-Remmert theorem [GrRe], the cover ψ, whose base space
Ur(C) is an algebraic variety, extends to a cover ψ : HG(C) → Pr(C) of compact
analytic spaces.
• This cover of compact analytic spaces comes from an algebraic morphism ψ :
HG → Pr defined over C: this follows from the GAGA theorems [Se1].
• The morphism ψ is then shown to be defined over Q. This uses a general descent
result for covers of a space defined over an algebraically closed field [Se2;Ch.6].
• Weil’s descent [We]. Finally ψ is shown to be defined over Q. For each τ ∈ GQ,
consider the application

ετ :
{
Hτ
G(Q) → HG(Q)
[f ]τ → [fτ ]

A first step is to show that the maps ετ are continuous (see below). Then it follows
from ψετ = ψτ that the ετ are analytic isomorphisms. But then, in view of the
uniqueness of the algebraic structure on HG (inducing the analytic structure), the
ετ automatically are algebraic morphisms. Finally one checks the Weil cocycle
condition: εuεuv = εuv (u, v ∈ GQ). Weil’s descent criterion gives then both parts
of conclusion (c) of Th.2.1.

Continuity of ετ . One may work over a cover H̃ of HG (instead of HG itself): the
continuity of ετ follows from that of ε̃τ : H̃τ → H̃. There are several possible
covers H̃ of HG:
- (Fried-Völklein): H̃ = H

G̃
where G̃ is an extension of G with trivial centralizer

in Sd̃ (or with trivial center in the “G-cover” situation). The covers correspond-
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ing to points on H̃ have no (non-trivial) automorphisms. This method requires a
preliminary group-theoretic lemma asserting that every group G has an extension
G̃ satisfying the desired properties.
- (Emsalem): H̃ is the moduli space of covers f ∈ HG given with a point above a
base point to. These pointed covers have no automorphisms.

In both cases, absence of non-trivial automorphisms implies there exists a fam-
ily F̃ of covers above H̃ (see §2.5.3). The continuity of ε̃τ follows. Here is why.

Assume that ([fn]τ )n converges to [f ]τ in H̃τ (when n → +∞). There exists
a family above H̃τ , namely the family F̃τ . The following can be deduced: the
representative of ([fn]τ )n in the family F̃τ converges to the representative of [f ]τ

in the family F̃τ (when n→ +∞). Say that fn (n > 0) et f are the covers of the
family F̃ that represent the points [fn] (n > 0) and [f ]. Then fτn (n > 0) and fτ

are the covers of the family F̃τ that represent ([fn]τ ) (n > 0) and [f ]τ . Conclude:
fτn converges to fτ ; a fortiori, [fτn ] converges to [fτ ] on H̃.

2.2.2. 2nd approach (Bertin [Be]). J. Bertin uses purely algebraic techniques intro-
duced by Mumford and Gieseker in the context of the construction of the moduli
space of curves Mg. He uses them to construct the moduli space Hg,G of smooth
curves of genus g ≥ 2 given with an action of some group G. The space Mg is
obtained from the Hilbert scheme of curves of genus g and of degree m(2g − 2) in
Pn (n = card(G))). Here one is only interested in curves that are left invariant by
the action of G. The space Hg,G is the subvariety of Mg fixed by the action of
G (extended to the Hilbert scheme). This construction has the advantage of be-
ing appropriate in all characteristics. This approach also yields a compactification
Hg,G of Hg,G; it provides an interesting description of points on the boundary of
Hg,G as stable curves of genus g equipped with a stable action of G (see [Be] for
precise definitions). This shed light on the process of coalescing branch points.

There is another difference with the preceding construction. If the objects cor-
responding to points on Hg,G can be viewed as covers X → X/G, the base is
not fixed as it is for covers parametrized by points on HG. This makes the space
HG maybe more appropriate for diophantine considerations since that choice of
the base corresponds to some choice of coordinate and so of an equation for the
top curve. In Bertin’s construction, the base is fixed only up to isomorphism. In
fact the scheme Hg,G is a quotient of the space HG (for g = 0, the quotient by
PGL(2,C) = Aut(P1)). Consequently, interpretation of fields of definition of points
on Hg,G is somewhat different. For example, k-rational points on H0,G correspond,
not to covers of P1 defined over k as k-points on HG do, but to covers of a k-curve
of genus 0 (which might be a conic without k-points).

For questions relating to the construction, the compactification and the re-
duction of moduli spaces of curves or covers, see also the papers [Fu], [DelMu],
[HarMu] and the more recent [Ek], [Mo] and [Wew].

2.3. The cover HG → Ur
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For t ∈ Ur(C), there is a one-one correspondence between the fiber ψ−1(t) and
• the set of equivalence classes of covers with monodromy G ⊂ Sd and fixed branch
point set, or, equivalently,
• the set of surjective homomorphisms π1(P1−t) → G, up to equivalence in Sd,
from the fundamental group π1(P1−t) (which is isomorphic to the free group
F (x1, . . . , xr)/x1 · · ·xr) onto G, or, equivalently,

• the set niabG =
{

(g1, . . . , gr) ∈ Gr |
g1 · · · gr = 1

< g1, . . . , gr >= G

}
/ NorSd

(G)

The fundamental group of Ur(C) is a braid group, namely the Hurwitz braid
group Hr. It has a presentation with generators and relations. More specifically,
the Artin braid group Br is the group on r − 1 generators Q1, . . . , Qr−1 with the
relations {

QiQj = QjQi pour |i− j| > 1
Qi+1QiQi+1 = QiQi+1Qi pour 1 ≤ i ≤ r − 2

With the additional relation

Q1 · · ·Qr−1Qr−1 · · ·Q1 = 1

one obtains the Hurwitz braid group. For a certain (standard) choice of an isomor-
phism π1(P1−t) ' F (x1, . . . , xr)/x1 · · ·xr, the monodromy action associated with
the cover HG → Ur is the action of Hr sur niabG given by the following formula
(which is already in [Hu]; see also [Fr2] and [FrVo]): for g = (g1, . . . , gr) ∈ niabG ,

(g)Qi = (g1, . . . , gi−1, gigi+1g
−1
i , gi, gi+2, . . . , gr), i = 1, . . . , r − 1

Proposition 2.2. Connected (and so irreducible2) components of HG correspond
to orbits of this action of Hr on niabG .

Locally on HG(C), inertia C = {C1, . . . , Cr} is constant (e.g. [DeFr1;Lemma
1.5]); thus inertia is constant on each connected component of HG(C). Given C,
the subset of HG(C) consisting of all points corresponding to covers with inertia C
is denoted by HG(C)(C); it is a disjoint union of connected components of HG(C),
which is connected (and irreducible) if and only if Hr acts transitively on the set

niG(C)ab =

(g1, . . . , gr) ∈ Gr |
g1 · · · gr = 1
< g1, . . . , gr >= G

gi ∈ Ci (up to the order)

 / NorSd
(G) 3

2
because the cover ψ:HG→Ur is étale.

3
Stricto sensu it is not the normalizer NorSd

(G) that acts but the subgroup of elements that globally

fix the set {C1,...,Cr}.
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Without the indication “up to the order”, the formula defines a subset of niG(C)ab

denoted by sniG(C)ab.

2.4. First examples

2.4.1. A family of degree 5 polynomials [DeFr1]. Take G = S5 (embedded in itself),
r = 4; C2 = C3 is the conjugacy class of 2-cycles, C1 is the class of products of
two disjoint 2-cycles and C4 the class of 5-cycles. A first calculation provides the
list of elements (g1, . . . , g4) from niG(C)ab. Those for which gi ∈ Ci, i = 1, . . . , 4
and g4 = (54321) are the following ones (only g1, g2, g3 are given):

(a) ((23)(45), (12), (14)) (b) ((23)(45), (14), (24))
(c) ((23)(45), (24), (12)) (d) ((25)(34), (12), (35))
(e) ((25)(34), (35), (12)).

Points on the Hurwitz space HG(C) correspond to covers f : X → P1 of genus
g = 0 (2(5+g−1) = 2+1+1+4 = 8). If the branch point with inertia generators
in C4 is required to be ∞, the cover P1 → P1 is a polynomial cover.

It is easily checked that Q2
1 et Q2

2 act on the above list as follows:{
Q2

1 : (a e c)(b d)

Q2
2 : (a c b)(d e)

Thus the action Hr on niG(C)ab is transitive. The space HG(C) is irreducible.

2.4.2. Irreducibility of Mg. Given an integer g ≥ 0, take G = Sd where d ≥ g+ 1,
r = 2g + 2d− 2, Ci = C is the class of 2-cycles, i = 1, . . . , r. Every curve of genus
g can be presented as a simple cover of P1, i.e., with all inertia generators in C.
This provides a surjective map HG(C) → Mg. Some calculations due to Luröth
et Clebsch [Cl] show that the action of Hr on niG(C)ab is transitive. The space
HG(C) is irreducible; so is its image Mg. Historically, the Hurwitz space HG(C)
considered by Hurwitz is the first moduli space of covers that appears in the
literature [Hu]. The above argument showing irreducibility of Mg in characteristic
0 is given in a paper of Severi [Sev]. The positive characteristic case is due to
Fulton [Fu] and Deligne-Mumford [DelMu].

2.4.3. Irreducibility of modular curves (Fried). Modular curves can be presented
as quotients of Hurwitz spaces of Galois covers of P1 with dihedral group as Galois
group and with 4 branch points (see §3.1.4). As above, irreducibility of these Hur-
witz spaces and hence of modular curves follows from transitivity of the associated
action of H4.
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2.5. Geometric preliminaries

The use of Hurwitz spaces for arithmetic purposes depends on the knowledge of
rational points on these spaces. In order to find K-rational points, a first step is to
find irreducible components defined over K. The following criteria are available.

2.5.1. Irreducibility criteria.

• General criterion. The space HG(C) is irreducible if and only if Hr acts tran-
sitively on niG(C)ab. Furthermore, HG is defined over Q. Therefore GQ permutes
the spaces HG(C). More specifically, we have, for each τ ∈ GQ,

HG(C)τ = HG(Cχ(τ))

where χ : GQ → Z/nZ (n = card(G)) is the cyclotomic character. The field of
definition of HG(C) is a cyclotomic field, which can be explicitly determined, and
which is equal to Q under some additional fairly simple assumptions, e.g. , if the
classes C1, . . . , Cr are rational (i.e., invariant under raising them to any power
relatively prime to the orders of their elements).

Observations: this criterion leads to complicated calculations, which can be per-
formed in practice only for small values of r.

• The Conway-Parker criterion [FrVo;appendix]. Assume the group G has trivial
center and that the Schur multiplier group is generated by commutators. If ev-
ery class C 6= {1} of G is repeated suitably often in C, Hr acts transitively on
niG(C)ab. Consequently, HG(C) is irreducible and defined over Q.

Observations: this criterion can be used only for big values of r; furthermore, there
is no known effective bound for r.

• Harbater-Mumford inertia (Fried) [Fr6]. An element g ∈ niG(C) is said to be a
HM representative if it is of the form g = (g1, g−1

1 , . . . , gs, g
−1
s ). Fried showed that,

under some technical hypotheses (including Z(G) = {1}), the HM representatives
g ∈ niG(C) are in the same orbit of Hr and that the corresponding irreducible
component is defined over Q.

2.5.2. (Uni-)rationality criteria. Recall a K-variety V is said to be rational if its
function field K(V ) is a pure transcendental extension of K, or, equivalently, if V
is birational over K to an open subset of a projective space Pr; V is said to be
unirational if K(V ) is contained in a pure transcendental extension of K. Some ra-
tionality criteria for the space H′G(C) are available: the ’ indicates that the branch
points have been adjoined; more precisely, H′G(C) is a connected component of the
fiber product of HG(C) with Ur (defined in §2.1) above Ur. The function field of
H′G(C) is the function field of HG(C) with the indeterminates t1, . . . , tr adjoined.

• Rigidity (Belyi, Fried, Matzat, Shih, Thompson; see [Se2]). The cardinality of
the set sniG(C)ab [resp. sniG(C)in] can be explicitly computed, by hand or with a
computer for small r; there also exists a formula involving characters of G. Rigidity
is a set of hypotheses that guarantee that this cardinality is 1. In that case the



Arithmetic and Moduli Spaces 9

cover ψ′ : H′G(C)ab → Ur [resp. ψ′ : H′G(C)in → Ur] is an isomorphism; the field
of definition of a cover [resp. a G-cover] with inertia C is that of its branch points.

• Another rationality criterion [FrBi],[Fr4], [Fr5]. Assume H′ = H′G(C) is irre-
ducible. The cover H′ → Ur can be viewed as a family H′t2,...,tr of covers of P1

parametrized by the variables t2, . . . , tr. Ramification of these covers is known: the
branch points are t2, . . . , tr and the associated branch cycles are given by explicit
formulas in an appropriate braid group. The Riemann-Hurwitz formula then yields
the genus of the curve H′t2,...,tr . In some situations, inspection of ramification in-
dices provides a rational point above some branch point. When that is the case
and when the genus is 0, the variety H′ is a rational variety.

• Unirationality criteria (Fried [DeFr4]). Fried established a unirationality criterion
for the space H′ = H′G(C). He also conjectures that, under certain assumptions
on G and for suitably large r, the space H′G(C) is unirational.

2.5.3. Existence of Hurwitz families. Hurwitz spaces have been defined as coarse
moduli spaces. A natural question arises: is there a family above a given Hurwitz
space H, i.e., a cover T → H × P1 such that, for each [f ] ∈ H, the fiber cover
T[f ] → [f ] × P1 above {[f ]} is a cover equivalent to f? And when there exists a
family, is it a universal family?

In his paper [Fr2], Fried shows the answer to both questions is positive when
the covers parametrized by H have no non-trivial automorphism, or, equivalently,
if CenSd

(G) = {1}; H is then a fine moduli space. The main point is that Hurwitz
families exist at least locally; absence of automorphisms then makes it possible to
patch and glue these local families to provide a family above the whole space H.
This result, which he originally proved in the case of mere covers extends to the case
of G-covers ([CoHa], [FrVo]); in that case absence of automorphisms corresponds
to the condition Z(G) = {1}. Hurwitz spaces are also fine moduli spaces in the
situation of pointed covers ([CoHa], [Em]); again the point is that pointed covers
have no automorphism.

The case the objects do have non-trivial automorphisms is subtler. There is an
obstruction to existence of a family above H, which is of cohomological nature.
In the situation of G-covers, the obstruction can be measured by a characteristic
class in H2(π1(H), Z(G)). The situation of mere covers leads to a non-abelian
cohomological problem: the obstruction “lies” in the group H2(π1(H),CenSd

(G)).
Proceeding as in [DeDo1], it is possible to reduce it in H2(π1(H), Z(G)). From a
theoretic viewpoint, the most appropriate tool is the notion of gerbe, introduced
by Grothendieck and Giraud (see [DeDoEm]).

3. The inverse Galois problem

We review the applications of the Hurwitz space theory to the inverse Galois prob-
lem. We are actually interested in the regular form of the inverse Galois problem.
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Problem. Given a field K, is each finite group G the Galois group of some ex-
tension E/K(T ), regular over K 4? or, equivalently, the automorphism group of
a cover f : X → P1, defined over K as G-cover?

The original problem is stated over Q instead of K(T ). This form follows from
the regular form over Q(T ) thanks to Hilbert’s irreducibility theorem. Given a
finite group G, realizing G over Q(T ) regularly amounts to finding Q-rational
points on a Hurwitz space Hin

G (of G-covers). In the remainder of this section,
we distinguish two kinds of results depending on whether one works with a fixed
group (§3.1) or with a fixed field (§3.2). We refer to [De1] and [DeDes] for more
details and a more complete bibliography.

3.1. The problem with G fixed over Q or over Qab

Remark 3.1. Working over Qab is easier for two reasons:
- in general a K-rational point on a Hurwitz space actually corresponds to a cover
with field of moduli equal to K (but not necessarily defined over K). But over
Qab, the field of moduli is a field of definition (because Qab is of cohomological
dimension ≤ 1).
- that Hurwitz spaces HG(C) are defined over Q requires some rationality proper-
ties of the classes Ci (§2.5.1). These additional hypotheses are not necessary over
Qab: Hurwitz spaces HG(C) are always defined over Qab.

3.1.1. The rigid case (Thompson, et al.). This is the simplest case (voir §2.5.2):
H′G(C)in is isomorphic to Ur over Q (via ψ′). The rigidity assumptions, which im-
ply that the covers in question are determined by their branch points, are rather
strong. Some groups however do satisfy them, for example, the symmetric group
Sd, the Monster group [Th], etc. Strictly speaking, Hurwitz spaces are not nec-
essary in the rigid context, but this case certainly initiated and promoted the
modular method.

3.1.2. Other rationality situations (Matzat). Using the second rationality crite-
rion above (§2.5.2), Matzat managed to realize (regularly) over Q(T ) quite a few
simple groups, in particular sporadic groups (only M23 has not yet been realized).
The method has been developed by the Heidelberg school (Matzat, Malle, et al.);
there are now many variants of the original criterion, many other groups have been
realized (see [MaMa]). This approach is a big success of the Hurwitz space theory.
However it is most likely not sufficient to handle the whole problem. This method
considers groups one at a time and requires fairly complicated calculations. Fur-
thermore the genus of H′t2,...,tr (see §2.5.2), which has to be 0 in the method, is
not bounded in general [DeFr3;§4].

4
c’est-à-dire, G=G(E/K(T ))=G(EK/K(T ))
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3.1.3. An idea of Völklein-Strambach [StrVo]. The preceding method consists in
finding a rational component HG(C) that is defined over Q; one uses the presen-
tation of HG(C) as a cover of Ur. Völklein and Strambach fix a closed subvariety
P of Ur and investigate whether a rational variety defined over Q can be found
above P. The variety P they fix is the variety of sets of r points that are sym-
metric with respect to the origin. The fundamental group of this variety can be
explicitly described: they call it the symplectic braid group. The preceding method
can be performed in the same manner; they obtain similar rationality criteria. For
example they could realize regularly over Q(T ) some groups Spn(4s).

3.1.4. Dihedral groups and modular curves [Fr3] [DeFr3]. Deciding whether a Hur-
witz space has rational points is a difficult problem. In the following example
[DeFr3], it is indeed equivalent to finding rational points on modular curves.

Take G = Dp = Z/p×s Z/2, r = 4 and all the classes Ci, i = 1, . . . , 4 equal to
the class C of involutions of G. It is shown that there exists a surjective morphism
defined over Q

χ : H = Hin
G(C) → X1(p)−{cusps}

Consequently, from Mazur’s theorem, if p > 7, then H(Q) = ∅ and so the
dihedral group Dp cannot be regularly realized over Q(T ) with these constraints
on ramification. In fact, some additional observations show the dihedral group
cannot be realized with less than 6 branch points (while 3 suffice for the Monster
group). We conjecture that for fixed ro, only finitely many dihedral groups can
be realized over Q(T ) with less than ro branch points. This would follow from
conjectures of Mazur-Kamieny [MaKa] on the finiteness of primes that are order
of rational points on an abelian variety over Q of given dimension.

Indications on the construction of χ. Suppose given a cover f : E → P1 defined
and Galois over Q, of group Dp, with 4 branch points and with inertia C. The
Riemann-Hurwitz formula yields the genus g of E: 2g − 2 = 2p(−2) + 4p, that is
g = 1. One may assume E has a Q-rational point (otherwise replace E by Pico(E))
and so is an elliptic curve over Q. Elements of order p of Dp are automorphisms of
E of order p defined over Q. Thus they are translations by some p-torsion point p
defined over Q. The data (E,p) classically corresponds to a point on the modular
curve X1(p) different from the cusps.

Conversely, let (E,p) be an elliptic curve given with a p-torsion point, both
defined over Q. The cover E → E/ < p > is cyclic of order p. The curve Eo =
E/ < p > is an elliptic curve over Q. Composing the above cover with the cover
Eo → Eo/ < −1 >= P1 (where −1 is the canonical involution of E), gives a cover
E → P1 defined and Galois over Q, of group Dp, with 4 branch points and with
inertia C.
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3.2. The problem with fixed K and for all G

Instead of trying to realize (regularly) a given group over the smallest possible
field, one can fix a field K and try to realize as many groups as possible over K.

3.2.1. Reduction of the problem [FrVo]. Fried and Völklein proved that to each
finite group G can be attached an infinite collection of Hurwitz spaces Hin

G(C),
irreducible and defined over Q and such that finding one K-rational on one of
these spaces suffices to conclude G is a Galois group over K(T ) (regularly).

The main point is that these spaces Hin
G(C) are irreducible. Fried and Völklein

use the Conway-Parker criterion (§2.5.1). More precisely, they first replace G by
an extension G̃ of G satisfying the hypotheses of the Conway-Parker criterion
(Z(G) = {1}, etc.); this requires a preliminary group-theoretic lemma (showing
such an extension always exists). Then they consider a tuple C̃ where each non-
trivial conjugacy class of G̃ is repeated as many times as required by the Conway-
Parker criterion. The space Hin

G̃
(C̃) is then irreducible, defined over Q and every

K-rational point provides a regular realization over K of G̃ and so also of G.
Observations. Conway and Parker do not give an effective bound for the number
of times every conjugacy class should be repeated. There is now an alternative to
using the Conway-Parker criterion, which is effective. It is the Harbater-Mumford
inertia irreducibility criterion (see §2.5.1).

3.2.2. The results. This approach led to the proof of the Regular Inverse Galois
Problem over the following fields K:
• K Pseudo Algebraically Closed of characteristic 0 (Fried-Völklein [FrVo]). Ultra-
products of finite fields are typical PAC fields. The Fried-Völklein result has this
consequence: each group G can be regularly realized over Fp(T ), for all but finitely
many p.
• K = Qtr = {totally real algebraic numbers} (Dèbes-Fried [DeFr3]),
• K = Qtp = {totally p-adic algebraic numbers} (Dèbes [De2])

These two results use a theorem of Pop [Po;appendix] that asserts that a smooth
variety defined over Q has totally p-adic points provided it has p-adic points (in-
cluding p = ∞). Real points on Hurwitz spaces can explicitly determined because
the action of complex conjugation on covers of P1 is perfectly known ([Hu], [KrNe],
[DeFr2]). In order to construct Hurwitz spaces with p-adic points (i.e., covers de-
fined over Qp), one uses patching and glueing techniques for formal (or rigid)
analytic spaces due to Harbater [Ha].
• B. Deschamps [Des] refined the preceding construction and showed that the
Hurwitz space Hin

G(C) containing p-adic points could be taken independent of p.
More precisely he showed that to each finite group G can be attached an infinite
collection of Hurwitz spaces Hin

G(C), irreducible, defined over Q and with p-adic
points for all primes p, including p = ∞.
• The above results have been generalized by Pop [Po]. The regular inverse Galois
problem over K(T )) is known to be true for every ample field K. A field K is said
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to be ample if every smooth curve defined over K has infinitely many K-rational
points provided there is at least one. PAC fields, complete valued fields, the fields
Qtp, etc. are ample.

4. Further arithmetic applications

This section gives four applications. We will develop the first one, which is con-
cerned with the so-called Hilbert-Siegel problem (§4.1 and §4.2). Other applica-
tions to the Davenport problem and to the Mason-Stothers theorem (§4.3) will be
mentioned. The section ends with a monodromy criterion for existence of rational
points on covers (§4.4).

4.1. The Hilbert-Siegel problem [Fr5]

Fried named so the following problem (referring to an observation of Siegel [Si]).
The problem is to determine all polynomials h(Y ) ∈ Q[Y ] such that h(Y ) − t
is reducible in Q[Y ] for infinitely many t ∈ Z−h(Q). The polynomial h will be
assumed to be indecomposable (in the opposite case h(Y ) = h1(h2(Y )) and h(Y )−t
is reducible for all t = h1(z), z ∈ Q).

Theorem 4.1 (Fried). The only indecomposable polynomials h(Y ) ∈ Q[Y ] for
which h(Y )− t is reducible in Q[Y ] for infinitely t ∈ Z−h(Q) are of degree 5.

Sketch of proof. Consider a non-trivial factorization h(Y ) − T = Q(Y )R(Y ) in
Q(T ). Let F ⊂ Q(T ) be the field generated by the coefficients of Q and R. The
field F is a proper extension of Q(T ) which corresponds to a cover f : C → P1.
Those t ∈ Q for which h(Y ) − t is reducible in Q[Y ] correspond (except possibly
finitely many of them) to Q-rational specializations of fields F associated with all
possible non-trivial factorizations h(Y ) − T in Q(T ) 5, or, equivalently, to values
f(m) assumed by f at some Q-rational point m on the corresponding curves C.

Suppose h(Y ) − t is reducible in Q[Y ] for infinitely many t ∈ Z−h(Q). From
Siegel’s theorem on finiteness of integral points on algebraic curves, there is at least
one of the curves C (apart from the curve h(y) = t) that is Q-birational to P1 and
such that the function g has either a Q-rational pole or two real quadratic poles. In
other words, there exist non-constant rational functions g1(Z), . . . , gs(Z) ∈ Q(Z)
with s ≥ 1 such that:
• h(Y )− gi(Z) reducible in Q(Z)[Y ], i = 1, . . . , s,
• The denominator of each gi(Z) is of the form (Z−a)` with a ∈ Q or (z2+pZ+q)µ

with p2 − 4q > 0,

5
Note that F must be a regular extension of Q to have such specializations
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• gi(Z) cannot be obtained from h(Z) by any substitution (z ↔ (az+b)/(cz+d)),
i = 1, . . . , s.

• For all but finitely many t ∈ Z−h(Q), h(Y )− t is reducible in Q[Y ] if and only
if there exists i ∈ {1, . . . , s} such that t = gi(z) with z ∈ P1(Q).

Fix an index i and set gi = g. The first condition means that the fibered product
of the two covers of P1 induced by h(Y ) and g(Y ) is reducible. The next step of
Fried’s proof is to show that the Galois closures over Q(T ) of the polynomials
h(Y )−T and g(Y )−T are necessarily equal [Fr1]. Let G denote the Galois group
of this extension. The two covers correspond to two transitive representations
Th : G → Sn and Tg : G → Sm. The two covers are of genus 0; this provides,
via the Riemann-Hurwitz formula, a first condition on Th and Tg. The four points
above translate as follows. Let Tg(1) [resp. Th(1)] be the stabilizer of 1 in the
representation Tg [resp. Th].

• The restriction of Tg to Th(1) is not transitive,

• There exists σ ∈ G such that Th(σ) is a n-cycle and Tg(σ) is, either a m-cycle,
or the product of two µ-cycles,

• Th(1) contains no conjugate of Tg(1).

Finally, the hypothesis “h(Y ) indecomposable” is classically equivalent to

• The representation Th : G→ Sn is primitive.

The rest of the proof is group-theoretic. Using the classification of simple
groups, one can show that such representations only exist for n = 5, m = 10
and G = S5 or G = A5.

Remark 4.2. This approach was recently developed by P. Mueller [Mu]. Let
f(T, Y ) ∈ Q[T, Y ] be absolutely irreducible. Assume that, for infinitely many
t ∈ Z, f(t, Y ) is reducible but has no linear factor. Does it follow that degY (f) = 5?
Mueller showed the answer is “Yes” if the Galois group of f(T, Y ) over Q(T ) is
the symmetric group or if degY (f) is prime.

4.2. An exceptional case with deg(h) = 5 ([DeFr1], [DeFr4])

Fried’s proof leads to a precise description of the exceptional cases of degree 5. We
will study the following one. The covers h and g have group S5 and r = 4 branch
points. The branch cycles have the following shape (in S5):

• for h: (2)(2) ; (2) ; (2) ; (5)

Denote by C the set of corresponding conjugacy classes of S5. The situation
is that of §2.4.1. The representation Th : S5 → S5 is the standard action of S5 on
{1, . . . , 5}. The representation Tg : S5 → S10 is given by the action of S5 on the 10
pairs {i, j} of distinct elements from {1, . . . , 5}. (This exceptional case corresponds
to the situation where one starts with a decomposition h(Y )− T = Q(Y )R(Y ) in
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Q(T ) with a degree 2 factor). One obtains the following branch cycle shape (in
S10):

• for g: (2)(2)(2)(2) ; (2)(2)(2) ; (2)(2)(2) ; (5)(5)

We are concerned with the following question: does there exist a polynomial
h(Y ) ∈ Q[Y ] such that hypotheses of this case hold and which is indeed excep-
tional, i.e., for which h(Y )−t is reducible in Q[Y ] for infinitely many t ∈ Z−h(Q)?
Consider the Hurwitz space H = HS5(C) 6. From §2.4.1 H is irreducible. Further-
more as CenS5(S5) = {1} and CenS10(S5) = {1}, H is a fine moduli space (§2.5.3):
there exists above H a universal Hurwitz family F5 [resp. F10] of covers of degree
5 [resp. of degree 10] with the above invariants. The question rephrases as follows:

Question 4.3. Does there exist a point [h] ∈ H(Q) such that

(*) the corresponding cover h : P1 → P1 in the family F5 is a polynomial cover
and the corresponding cover γ[h] : Y[h] → P1 in the family F10 has the following
properties: γ[h](Y[h](Q)) ∩ Z is infinite and γ[h](Y[h](Q)) ∩ h(Q) ∩ Z is finite?

The cover γ[h] can be described more concretely: in terms of function fields,
the cover h : P1 → P1 corresponds to the extension Q(y1)/Q(T ), where y1 is one
of the 5 roots in Q(T ) of h(Y )−T . The cover γ[h] : Y[h] → P1 then corresponds to
the extension Q(y1 + y2, y1y2)/Q(T ).

Theorem 4.4 (Dèbes-Fried [DeFr4]). The set of points [h] ∈ H(Q) such that
(*) holds is Zariski-dense. Consequently, there exists indecomposable polynomials
h(Y ) ∈ Q[Y ] such that h(Y ) − t is reducible in Q[Y ] for infinitely many t ∈
Z−h(Q).

Sketch of proof. The main steps of the proof are the following.

• F10 is a family of genus 0 covers. Furthermore, the set of points on H(C) for
which the corresponding cover in the family F10 has the three following properties
is Zariski-dense:

- the cover is defined over R,
- ∞ is the branch cycle with inertia in C4,
- both points in the fiber above ∞ are real.

This first point is a necessary condition for the conclusion of Th.4.4 to be true. For
testing the conditions above, which are over the reals, pure group-theoretic criteria
involving the set niG(C)ab are available. We refer to [DeFr4] for more details.

• H is unirational: Let M = (A1)2 × (A1−{0})2. For all x = (β, s, t, α) ∈ M, the
polynomial

6
A priori, since S5 is embedded, in itself on one hand, and in S10 on the other hand, the two situations

should be distinguished. But it can be checked that the cardinality of niG(C)ab is the same in both

situations; therefore the corresponding Hurwitz spaces are isomorphic.
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hx(y) = α(
y5

5
− s

y4

4
+ 2ty3 − 5st

y2

2
+ 5t2y) + β

induces a cover of the family F5 (up to equivalence). Conversely, each point [h] ∈ H
that corresponds to a polynomial cover represents the equivalence class of a cover
induced by some polynomial as above. Whence a map M→→H.
• H is defined over Q because the conjugacy classes in C are rational (§2.5.1).
• Calculation of the cover γ[hx] (denoted more simply by γx). The degree 2 divisor
consisting of the two points above ∞ (corresponding to the two 5-cycles from the
4th branch cycle) is rational over Q(x). A basis of the associated linear system
provides an embedding of Y[hx] = Yx into P2. The image of this embedding is the
conic Cx:

U2 + V 2 − 3UV − 5s
U

4
+ 5s

V

2
− 5t = 0

The map γx of the cover is obtained by writing out T in terms of U and V

T =
α

2

[(
U5

5
− U4V + U3V 2

)
− s

4
(U4 − 4U3V + 2U2V 2)+

t(−3U3 + 4U2V ) +
5
2
stU2 +

25
2
st2

]
+ β.

• Let O ⊂ M(Q) be the set of points of the form (β, c + d, cd, α) with c, d ∈ Q.
The set O is Zariski-dense and for each x = (β, c+ d, cd, α) ∈ O, the conic Cx has
a Q-rational point, namely the point (2c, c−5d

2 ) (Cf. [DeFr1;Lemma 3.18]).
• Use Euler’s parametrization to identify the conic Cx to P1 (for x ∈ O). More
specifically we obtain

U(w) =
8cw2 + (−14c+ 10d)w + 3c− 25d

4(w2 − 3w + 1)
,

V (w) =
12cw2 + (−11c+ 5d)w + 2(c− 5d)

4(w2 − 3w + 1)
where w =

V − c−5d
2

U − 2c

Substituting U and V back in the above formula for T yields a rational fraction
gx(w) of degree 10 and with denominator a power of a trinomial.
• It remains to study the values of this rational fraction; more specifically, we need
to check that

- gx(Q) ∩ Z is infinite for all x in a Zariski-dense subset of O: this is done
thanks to the explicit form of gx.

- gx(Q)∩ hx(Q)∩Z is finite: this amounts to showing that the fiber product
P1 ×P1 Yx of the covers hx and γx has only finitely Q-rational points lying above
integers z ∈ Z. This follows from Siegel’s theorem if all irreducible components
of this fiber product are of genus > 0. A calculation using the Riemann-Hurwitz
formula combined with Abhyankar’s lemma [DeFr4] shows there are only two com-
ponents: one is of genus 1 and the other of genus 2.
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Remark 4.5 (Siegel families). Section §4.2 can be regarded as a special case of a
general problem, which is a converse to Siegel’s theorem. Given an algebraic curve
C, a rational function f : C → P1, both defined over Q and a fractional ideal A of
Q, Siegel’s theorem gives a necessary condition for C(Q) ∩ f−1(A) to be infinite:
C is of genus 0 and f has either a unique rational pole or two conjugate quadratic
real points. We consider the following converse. Let P be the parameter space of
a smooth family Φ : P × P1 → P × P1, defined over Q, of rational functions (of
degree n). Assume that for all p in a Zariski-dense subset of P(Q), the function
Φp has two conjugate quadratic real points. The family Φ is then called a Siegel
family. The question is whether Siegel’s condition — Φp(Q) ∩ A infinite — holds
for all p in a Zariski-dense subset of P(Q). We showed above that the family of
degree 10 rational functions parametrized by the pull-back of O along the map
(β, c, d, α) → (β, c+ d, cd, α) satisfies this converse to Siegel’s theorem.

4.3. Davenport, Mason, et al.

4.3.1. The Davenport problem. The Hilbert-Siegel problem is a special case of the
general problem of classifying pairs of covers of P1 such that the fiber product is
reducible. The approach was to consider the Galois closure of these covers and
to interpret the problem in terms of bi-representations of the associated Galois
group. The specific constraints given by Siegel’s theorem were strong enough to
conclude. The same approach can be used to tackle the following problem, stated
by Davenport, which is to classify the polynomials h(y), g(y) ∈ Z[Y ] that assume
the same values modulo p, for all but finitely many p. The following result was
proved by Fried [Fr5]; significant contributions are due to Schinzel (in the context
of his work on the variables separated equations h(x) = g(y) [DaLeSc], [Sc]) and
to Feit (for the group-theoretic part [Fe1-3]).

Theorem 4.6. Let K be a number field and OK be its ring of integers. Let
h(Y ), g(Y ) ∈ OK [Y ] such that h is indecomposable and “linearly independent”
from g (i.e., h(y) 6= g(ay + b), a, b ∈ C). Assume that, for all but finitely many
primes p of OK , the value sets h(OK/p) and g(OK/p) of h and g over OK/p
coincide. Then we have{

deg(h) = deg(g) = n ∈ {7, 11, 13, 15, 21, 31}
[Q(ζn) ∩K : Q] > 1

In particular, if K = Q, no polynomials h(Y ), g(Y ) satisfy such hypotheses.

Each of the degrees n above is actually exceptional over Q(ζn): there are pairs
h(Y ), g(Y ) ∈ OQ(ζn)[Y ] satisfying the hypotheses of the theorem and such that
deg(h) = n; exceptional pairs (h, g) have recently been classified by P. Cassou-
Noguès and J-M. Couveignes [CaCou]. On the other hand, for K = Q, no example
is known even with h decomposable.
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4.3.2. On the Mason-Stothers theorem [Za1]. Hurwitz spaces also appear in a
work of U. Zannier. He is interested in the cases of equality in the Mason-Stothers
theorem 7 (polynomial analog of the abc conjecture — if a, b, c ∈ C[Y ] are three
relatively prime polynomials such that a−b = c, then the number of distinct roots
in C of abc is bigger than the maximum of the degrees of a, b and c —). Zannier
associates to such a triple (a, b, c) the cover f : P1 → P1 induced by the rational
function a/b. Equality in the Mason-Stothers theorem translates in terms of ram-
ification of the cover: the branch points are 0, 1 and ∞ and there are additional
conditions on the ramification indices. He can in fact restates the whole problem
only in terms of existence of subgroups de Sn generated by elements σ1, . . . , σr−1

satisfying certain conditions. Then he gives a combinatoric construction of such
subgroups.

Hurwitz spaces explicitly appear when it comes to rationality questions. It is
Riemann’s existence theorem that makes it possible to associate to the constructed
subgroups of Sn a cover f : X → P1 (of genus 0), and so a rational function a/b.
But polynomials a and b have a priori coefficients in C. Existence of polynomials
with coefficients in Q is equivalent to showing the cover f can be defined over
Q, and so to finding Q-rational points on Hurwitz spaces. Zannier explains that
this is possible under certain additional assumptions that guarantee the cover f
is unique: that is the “rigid” case. He suggests that more generally results on the
arithmetic of Hurwitz spaces could be used. The value of finding polynomials with
coefficients in Q is that one can expect to deduce, by specialization, examples close
to cases of equality in the numerical abc conjecture.

4.4. A criterion for existence of rational points [DeFr1]

Our final application is a criterion that uses the very modular structure of Hurwitz
spaces — precisely the monodromy of the cover HG(C) → Ur — to detect rational
points on covers parametrized by points of HG(C).

Let f : X → P1 be a cover defined over a field K. Via the choice of an
isomorphism π1(P1−t) ' F (x1, . . . , xr)/x1 · · ·xr, f can be viewed (up to isomor-
phism) as the data consisting of the branch point set t = {t1, . . . , tr} and a r-tuple
g = (g1, . . . , gr) ∈ niG(C), where G is the group of the cover f and C its inertia.
For i = 1, . . . , r, write gi as a product of disjoint cycles in Sd: gi = βi1 · · ·βi`i .
Classically, for i = 1, . . . , r, points in the fiber f−1(ti) correspond to cycles βij of
the decomposition of gi, the length of each cycle corresponding to the ramification
index. Also it is known (e.g. [Fr2;p.62]) that the action of GK on the branch points
has the following property. For τ ∈ GK and i = 1, . . . , r, if tτi = tj , then there
exists γ ∈ Sd and an integer a relatively prime to the order of elements from Ci
such that Cj = γCai γ

−1. It follows that, for each i ∈ {1, . . . , r}, the divisor
∑
j(tj),

7
Zannier [Za2] points out that this result, which is usually credited to Mason, actually appeared in an

older paper of Stothers [St].
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where j runs over the set I of indices such that Cj = γCai γ
−1 for some γ and a as

above, is a K-rational divisor of P1.
Fix an index i ∈ {1, . . . , r} and the length λ of some cycle gik. Denote the set

of cycles of length λ appearing in the decomposition of some gjk (j ∈ I) by g(i, λ)
and the set of points of X corresponding to cycles in g(i, λ) by Pf (i, λ). Consider
the subgroup

Hg = {Q ∈ H(r)|∃γ ∈ Sd, Q(g) = (γg1γ−1, . . . , γgrγ
−1)}

Assume the group G of the cover has trivial centralizer CenSd
(G) in Sd. Then the

element γ attached to each element Q ∈ Hg is unique. Action of Q composed with
conjugation by γ−1 fixes the r-tuple g and so permutes the cycles in g(i, λ); thus
we get an action of Hg on g(i, λ).

In addition to CenSd
(G) = {1}, assume thatH(r) acts transitively on sniG(C)ab.

Then the action of Hg on g(i, λ) does not depend (up to equivalence) on the
r-tuple g ∈ sniG(C) (see [DeFr1;Remark 3.13]). Set H = HG(C). The transi-
tivity condition above gives that the Hurwitz space H is irreducible. From the
hypothesis CenSd

(G) = {1}, the covers parametrized by H have no automor-
phisms; consequently, there exists a universal Hurwitz family F above H. Denote
by fgen : Xgen → P1 the generic cover of the family F and let F = Q(H) be the
function field of H, which is a field of definition of fgen.

Theorem 4.7 (Dèbes-Fried) [DeFr1;Th.3.14]. Orbits of Hg on g(i, λ) exactly
correspond to orbits of GF on Pfgen(g, λ).

This is a statement on the generic cover of F . A nice property of Hurwitz
families is that this kind of statement, once established on the generic cover, au-
tomatically carries over to all covers of the family. Here is a practical application
of Th.4.7. Assume the group Hg has a unique 8 orbit of given length `. It follows
from Th.4.7 that for each cover f : X → P1 of the Hurwitz family F , there exists
a divisor of X of length ` that is rational over the field of definition of f .

When X is of genus 0 or 1, Th.4.7 provides a practical criterion for existence
of rational points on X: combine the preceding statement with the following fact
[DeFr1; Cor3.15 et Cor.3.17]. In order to find a rational point on a genus 0 curve, it
suffices to find an odd degree rational divisor; on a genus 1 curve, it suffices to find
rational divisors with relatively prime degrees. More generally, this leads to the
notion of rational points produced by ramification [DeFr1;§3.2]: these are rational
points that, as divisors, are in the group generated by the rational divisors with
support in the set of ramified points on X and the divisors of rational functions.
Natural questions arise [DeFr1;§3 & §4]: for example, for g = 0 or g = 1, to what
extent generic existence of rational points on X is equivalent to generic existence of
rational points produced by ramification (in which case Th.4.7 would be a decisive

8
Let k the minimal field of definition of H. Uniqueness assures here that the orbit in question will be,

not only an orbit the Galois group GQ(H) but also of the Galois group Gk(H).
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criterion as to existence of rational points on the generic cover of the family)?
Concerning rational points produced by ramification, one can also ask whether
their generic existence is equivalent to their existence on every curve X of the
family? Thanks to Hilbert’s irreducibility theorem, it is actually shown that this
second question has a positive answer for g = 0 or g = 1 [DeFr1;Th.3.11]. This
second question naturally relates to the similar one for which arbitrary rational
points are considered (and not only those produced by ramification). From a paper
of Lewis and Schinzel [LeSc] (which motivated [DeFr1]), the result still holds for
families of curves of genus 0; one suspects however that the result is false for g ≥ 1.

5. Modular towers

Modular towers constitute a recent development of the Hurwitz space theory. This
section presents their construction (§5.1). The motivating example is the tower of
modular curves (§5.2). This example naturally leads to arithmetic questions on
general modular towers (§5.3). Modular towers are due to Fried; this section is a
brief exposition of his paper [Fr6].

5.1. Construction

Suppose given a finite group G ⊂ Sd, a prime divisor p of |G|, an integer r > 0
and a collection C = {C1, . . . , Cr} of conjugacy classes of G whose elements are
of order relatively prime to p.

Denote the universal p-Frattini cover of G by pG̃. Recall (see [FrJa] for more
details) that a surjective group homomorphism (a group cover) ψ : H → G is
said to be a Frattini cover if for each subgroup H ′ of H, ψ(H ′) = G ⇒ H ′ = H,
or, equivalently, if its kernel is contained in every maximal subgroup of G. For
example, the homomorphism Z/(pα1

1 · · · pαr
r )Z → Z/(p1 · · · pr)Z is a Frattini cover

(α1, . . . , αr > 0). The fiber product of two Frattini covers is a Frattini cover.
There is a universal object for Frattini covers of a given group G. It is denoted
by G̃ and can be shown to be a projective profinite cover of G. For example, for
G = Z/(p1 · · · pr)Z, we have G̃ = Zp1 × · · · × Zpr

. There also exists a universal
object for Frattini covers ψ : H → G of G with kernel ker(ψ) a p-group. This object
is called the universal p-Frattini cover of G and is denoted by pG̃. For example,
for G = Z/(p1 · · · pr)Z, we have p1G̃ = Zp1 × Z/p2Z · · · × Z/prZ.

One then defines, from the kernel ker of the homomorphism pG̃→ G, a sequence
of characteristic quotients of pG̃:

ker0 = ker, ker1 = kerp0[ker0, ker0], . . . , kern = kerpn−1[kern−1, kern−1], . . .
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and denote by n
p G̃ the quotient pG̃/kern (n ≥ 0). For example, for G = Z/pZ, we

have kern = pn+1Zp and n
p G̃ = Z/pn+1Z.

Lemma 5.1. If C is a conjugacy class of elements of np G̃ of order ρ prime to p,
then there exists a unique conjugacy class n+1

p G̃ that lifts C and whose elements
are of order ρ.

Proof. Let φ : n+1
p G̃ → n

p G̃ be the natural surjection. Let g ∈ C and H = φ−1(<
g >). We have an exact sequence 1 → kern/kern+1 → H →< g >→ 1. From
the Schur-Zassenhaus lemma, since g is of order prime to p, the sequence splits;
furthermore, the section < g >→ H is unique, up to conjugation.

Thanks to this lemma, one can define, for each integer n ≥ 0, a r-tuple Cn =
(Cn1 , . . . , C

n
r ) of conjugacy classes of np G̃ such that Cn+1

i is a lifting of Cni of the
same order, i = 1, . . . , r (by order we mean here the order of elements in the class).
This definition naturally provides, for each n ≥ 0, a map

nin+1
p G̃(Cn+1) → nin

p G̃
(Cn)

In the mere cover case, we also need to define, in a compatible way, a repre-
sentation Tn of np G̃ in a symmetric group (n ≥ 0). Denote the stabilizer of 1 in the
representation G ⊂ Sd by G(1) and select the prime p not dividing the order of
G(1). Using the Schur-Zassenhaus lemma as above, we obtain that there exists a
copy of G(1) in the preimage of G(1) by the morphism n

p G̃→ G, which is unique
up to conjugation (n ≥ 0). Define Tn to be the left multiplication on the left cosets
in n

p G̃ modulo this copy of G(1) (n ≥ 0).
For each n ≥ 0, we can now associate a Hurwitz space

Hn = Hn
p G̃

(Cn)

For each n ≥ 0, there is a natural morphism ψn : Hn+1 → Hn. The collection of
spaces Hn and morphisms ψn (n ≥ 0) is called the modular tower associated with
the triple (G ⊂ Sd, p,C).

5.2. The dihedral group case

As in §3.1.4, take G = Dp = Z/p ×s Z/2, r = 4 and all classes C1, . . . , C4 equal
to the class C of involutions of G. We have pD̃p = Zp ×s Z2 := Dp∞ and for each
n ≥ 0, np D̃p = Dpn . From §3.1.4 there exists a surjective morphism defined over Q:

χn : Hn = Hin
Dpn (Cn) → X1(pn)−{cusps}

Furthermore, for each n > 0, we have a commutative diagram
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Hn
χn−−−−−→ X1(pn)

ψn−1

y ×p

y
Hn−1

χn−1−−−−−→ X1(pn−1)

where the right vertical map ×p is the multiplication by p. In other words, there
exists a morphism from the modular tower associated with the triple (G ⊂ Sd, p,C)
to the modular curve tower (X1(pn))n>0.

5.3. Arithmetic questions on modular towers

As before, we are interested in fields of definition of irreducible components and
possible existence of rational points on these components. The modular curve
example will serve us as a guide to investigate these questions.

5.3.1. Irreducible components. Let T be an irreducible component of H1 (corre-
sponding to an orbit O of Hr on niG(C)ab (or niG(C)in in the G-cover case as in
§5.2)). Our first concern is whether a component has a lift at level n of the tower.

Proposition 5.2 [Fr6]. For g ∈ O, define the subset νn(g) ⊂ n
p G̃ by

νn(g) =

{
g̃1 · · · g̃r

∣∣∣∣∣ g̃i ∈ n
p C̃i, i = 1, . . . , r (up to the order)

and g̃ lifts g

}
(a) The set νn(g) depends only on O and so provides an invariant νn(O).

(b) There exists an irreducible component of Hn above T if and only if 1 ∈ νn(O).

(c) If 1 ∈ νn(O), then each element g ∈ O can be lifted in nin
p G̃

(Cn). Consequently
the irreducible components of Hn map onto those of H1.

Proof. (b) Implication (⇒) is trivial. Conversely, assume 1 ∈ νn(O). Thus there
exists a r-tuple g̃ such that g̃1 · · · g̃r = 1 and g̃i ∈ n

p C̃i, i = 1, . . . , r (up to the
order). To conclude that g̃ ∈ nin

p G̃
(Cn) and so that the component T has a lift in

Hn, it remains to show that g̃1, . . . , g̃r generate the group n
p G̃. This follows from

the Frattini property of the cover np G̃→ G.
Let go,g ∈ O; g = (go)Q for some Q ∈ Hr. Clearly if g̃on is a lift of go, then

g̃n = (gon)Q is a lift of g and g̃1 · · · g̃r = g̃o1 · · · g̃or . (a) and (c) easily follow.
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Remark 5.3. The proof of (b) shows a common use of the Frattini property.
Frattini covers have this other property: they cannot be split (unless they are
isomorphims). Somehow being split and being Frattini are opposite to one another.
Also recall this useful fact: the universal Frattini cover is a projective cover [FrJa].

A component T of H1 is said to be obstructed at nth level if there is no irre-
ducible component Tn of Hn that maps onto T . An iff condition is that 1 /∈ νn(O).
This does not happen on the modular curve tower since each level of the tower is
irreducible. In general, components of a modular tower above a given component
of H1 form a tree with finite or infinite chains.

Define then ν(O) to be the projective limit of the νn(O) (n ≥ 1). The next
result basically says that ν(O) is an arithmetic invariant that can be used to
distinguish two irreducible components of H1, and so to possibly find irreducible
components defined over Q.

Theorem 5.4 [Fr6;Th.3.16]. Assume G is of trivial center. Let H1 =
⋃t
i=1H1i

be the decomposition of H1 in irreducible components. Assume H1 is defined over
Q (e.g. C1, . . . , Cr are rational). Then GQ permutes the components H1i. More
precisely, for each τ ∈ GQ, we have

(ν(Hτ
1i))

χ(τ) = ν(H1i), i = 1, . . . , t

where χ : GQ → (Zp)× is the cyclotomic character modulo (pn)n≥1. 9

In particular, if ν(H1i)t = ν(H1i) for all t ∈ (Zp)× and ν(H1i) 6= ν(H1j) for
j 6= i, thenH1i is defined over Q. Indeed, it follows from the first condition that, for
each τ ∈ GQ, H1i and Hτ

1i have the same invariant ν. From the second condition,
H1i = Hτ

1i, for each τ ∈ GQ.

5.3.2. Projective system of rational points. Consider a projective system of rational
points (pn)n>0 on the modular curve tower. Each point pn corresponds to a pn-
torsion point on an elliptic curve E (the same curve for all n). Assume E is defined
over a field K. The group GK acts on the p-torsion points of E: this is the action
of GK on the Tate Zp-module Vp associated with E. Denote the map that sends
(E,p) ∈ X1(p) to the canonical invariant of the elliptic curve E by j : X1(p) → P1.
The above action is an action on the set of projective systems of points (pn)n>0

that lie above the invariant j(E) of E.
There is a similar action of GK in the general situation of modular towers:

(*) The group GK acts on the set of projective systems of points (pn)n>0 that lie
above a fixed t ∈ Ur(K).

In the case of modular curves, a celebrated theorem of Serre yields that, if K
is a number field,

9
For each n≥1, the element νn(O)∈n

p G̃ lies in kero/kern which by construction is a p-group, say of

order pN . Consequently powers νn(O)t with t∈Z/pN Z are well-defined.
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(**) given a projective systems of points (pn)n>0 above j ∈ P1(K) and a finite
extension F/K, pn /∈ Hn(F ), for all but finitely many n.

Indeed, there are only finitely many F -rational p-torsion points on a given
elliptic curve over K. One may think that such a statement (with t ∈ Ur(K)
replacing j ∈ P1(K) and possibly with some additional assumptions) carries over
to the general situation of modular towers. In particular, it seems natural to fix a
projective system (Tn)n>0 of irreducible components defined over K such that for
each n > 0, pn ∈ Tn(K).

References

[Be] J. Bertin, Compactification des schémas de Hurwitz, C. R. Acad. Sci. Paris,
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