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Abstract. In the context of Hilbert’s irreducibility theorem, it is an open question whether there exists a bound for the
least hilbertian specialization in N that is polynomial in the degree d and the logarithmic height log(H) of the polynomial
P (T,Y ) in question. A positive answer would be useful, notably for algorithmic applications. We obtain a polynomial
bound in log(H) and dHi(P) where Hi(P) — the Hilbert index of P — is a pure group-theoretical invariant we define and
which we show to be absolutely bounded for many classes of polynomials. We also discuss further questions related to
effectiveness in Hilbert’s irreducibility theorem.
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1. Introduction

Hilbert’s irreducibility theorem is one of the few general powerful tools in Arithmetic Geometry, like

Siegel’s or Falting’s theorems. Its simplest but most essential form asserts that, given an irreducible

polynomial P (T, Y ) ∈ Q[T, Y ] with degY (P ) ≥ 1, a specialization t of the parameter T can be found in

Z such that the specialized polynomial P (t, Y ) is still irreducible. The gist of it is that in appropriate

situations, rational parameters can be specialized in Q without changing the algebraic structure. Among

many applications, recall its use in the Inverse Galois Problem over Q ([Se1] section 10): if a finite group

G can be realized over Q(T ) then, by specialization, it can be realized over Q as well. See also [Se1]

section 11 where it is explained how Néron [Ne] used it in a similar manner to prove in 1952 that there

are elliptic curves of rank ≥ 9 over Q, by first working over Q(T ).

An important task in Arithmetic Geometry is to provide fully effective versions of fundamental

theorems. For Hilbert’s irreducibility theorem, such effective versions are available, although the first

ones were not established before the 90’ [De3] [ScZa]. The next and latest improvement appeared in

[Wa2]: there is an upper bound for the smallest hilbertian specialization t ∈ N that is polynomial

in degT (P ) and log(H) (the logarithmic height of P ) and exponential in degY (P ). Moreover, a fully

polynomial bound can be given in the Galois case, that is for the class of polynomials P (T, Y ) such

1
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that the field generated over Q(T ) by a root of P in Q(T ) is a Galois extension of Q(T ). However these

bounds are not as good as one can expect.

In this paper we make some further progress towards the main goal which is to find a polynomial

bound in deg(P ) and log(H) in the general case. One motivation comes from a long-standing open

question: finding a deterministic algorithm for the factorization of bivariate polynomials in polynomial

time. A polynomial bound for Hilbert’s theorem would provide such an algorithm (see [Wa1] chapter

5). Building on Walkowiak’s method (which we review in section 2) we obtain a polynomial bound in

log(H), degT (P ) and degY (P )Hi(P ) (theorem 3.3) where Hi(P ) — the Hilbert index of P — is a pure

group-theoretical invariant which we show to be absolutely bounded for many classes of polynomials,

thus achieving the main goal in these cases (theorem 4.1). It is true for example if the Galois group G of

P (T, Y ) over Q(T ) is solvable and its action on the roots is primitive; it is also true if log |G|/ log degY (P )

is bounded (in particular in the Galois case). And although it is not in general, we feel that the Hilbert

index which encompasses the group-theoretical aspect of the problem is a key to the remaining task.

We note however that computing Hi(P ) or even deciding whether the preceding group-theoretical

assumptions hold may be algorithmically difficult and so our results are not at this stage so much of a

practical gain for the motivating question of factoring polynomials.

There are further questions related to the issue of bounds in Hilbert’s theorem. We seize the

opportunity to discuss some in the second part of the paper. For example it is plausible that there

exists a bound depending only on the degree of the polynomial. We show that this follows from Lang’s

conjecture on rational points on varieties and more particularly from its consequence established by

Caporaso, Harris and Mazur about the number of rational points over a number field on a curve of

genus ≥ 2 (proposition 5.2). This bound could even be polynomial in the degree. Using Siegel’s theorem

we obtain a result about good specializations in large consecutive integers (proposition 5.5) which is a

weak form of this. Consideration of polynomials with more variables is worthwhile too. The problem

reduces then to bounding the number of integral points on varieties of high dimension (and not just

curves as in the preceding situation) and so, although we have some partial results to offer, it is more

difficult in general. Other related comments, variants of the problem are collected in the final section.

Several chapters in Serre’s books [Se1] and [Se2] are devoted to Hilbert’s irreducibility theorem. The

following topics (in addition to the already quoted ones) have notably been quite influential, to us in

particular: the basic notion of thin subsets (“ensembles minces”) ([Se1] section 9), the group-theoretical

aspect ([Se1] section 9), very present in this paper, the connection with Noether’s program through

Colliot-Thélène’s conjecture ([Se2] section 3). The question of bounds is also discussed, in [Se1] section

9 through a diophantine viewpoint and in [Se1] section 13 via sieve methods.
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2. General approach

2.1. Main questions. Given a class of polynomials P (T, Y ) ∈ Q[T, Y ] irreducible and such that

degY (P ) ≥ 2, we say that for this class there exists a polynomial bound in the degree and the height

(resp. a bound depending only on the degree, or any other given type of bound) for the least integral

hilbertian specialization if there exists a monomial C(D,h) (resp. a function C(D), or a function C of

the given type) such that for each polynomial P (T, Y ) in the class, there exists an integer t > 0 such

that P (t, Y ) is irreducible in Q[Y ] and t ≤ C(deg(P ), log(H(P )) (resp. t ≤ C(deg(P )), or t ≤ C).

At the moment the best known bound is polynomial in 2deg(P ) and log(H(P )) [Wa2].

2.2. Notation. From now on we fix an irreducible polynomial P (T, Y ) in Q[T, Y ] with degY (P ) ≥ 2

and with coefficients in Z assumed to be relatively prime. We will use the following notation throughout

the paper:

• m = degT (P ), n = degY (P ) and D = deg(P )

• H = max(H(P ), ee) where H(P ) is the height of P , i.e. the maximum of the absolute values of

the coefficients of P . With our convention on the coefficients of P , the height H(P ) coincides with the

Weil height of P .

2.3. Outline of the method. A standard preliminary argument reduces the problem to counting

integral points on plane curves. Our version of the argument, which is a basic point of our approach and

which we call the preliminary reduction, is given in section 3.1. Here is its conclusion. Let N/Q(T ) be

the Galois closure of P (T, Y ) and G be its Galois group. Denote the set of all proper maximal subgroups

M of G by MG and consider the corresponding minimal non-trivial sub-extensions NM/Q(T ) of the

Galois closure N/Q(T ). For each M ∈ MG pick a primitive element of NM/Q(T ) integral over Z[T ]

and consider its irreducible polynomial QM (T, Y ) ∈ Z[T, Y ].

(1) The preliminary reduction shows how to construct a set MP ⊂ MG such that for all but finitely

many t ∈ Q, if P (t, Y ) is reducible in Q[Y ], then QM (t, Y ) has a root in Q, for some M ∈MP .

Furthermore, based on [Wa2], the primitive elements of NM/Q(T ) can be chosen in such a way that the

polynomials QM (T, Y ) be of manageable size (M ∈ MP ); more specifically [Wa2] section 4.2 provides

the following estimates:

(2)



degY (QM ) = n(M) = [G : M ] ≤ 2n

degT (QM ) ≤ m n(M)2

deg(QM ) ≤ 2m n(M)2

H(QM ) ≤ 23n(M)3(m + 1)n(M)2Hn(M)2
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As to the finitely many exceptional t in (1) they are roots of the discriminant of P viewed as a polynomial

in Y and so their number is ≤ 2nm.

We can then develop two strategies.

2.4. Strategy one. The first one improves upon the one in [Wa2] and will be the main line of

the paper. Consider the positive integers t less than or equal to some positive number B. Denote the

number of those such that P (t, Y ) is reducible in Q[Y ] by S(P,B) and the number of those such that

QM (t, Y ) has a root in Z by NT (QM , B) (M ∈MG). From (1) we have

(3) S(P,B) ≤
∑

M∈MP

NT (QM , B) + 2nm

Each number NT (QM , B) can be evaluated by using Heath-Brown results [H-B] on the density of

rational points on projective curves. Adapting them to affine curves and making them fully effective,

Walkowiak obtained the following estimate ([Wa2] section 2.4): given a polynomial F (T, Y ) ∈ Z[T, Y ]

irreducible over Q, we have

(4) NT (F,B) ≤ C1 B1/2 log5 B

where C1 = 288 deg(F )45 log19(HF ) (with HF = max(H(F ), ee)). One then deduces

(5) S(P,B) ≤ C2 B1/2 log5(B)

for a new constant C2 given by

C2 = 2165m64 log19(H)
∑

M∈MP

[G : M ]147

By choosing B large enough the right-hand side term in (5) can be made < B. Specifically take

B = [(1 + C2)4] (which satisfies in particular log5 B ≤ B1/4) to conclude that there exists an integer t

such that P (t, Y ) is irreducible and

(6) 0 ≤ t ≤ (1 + C2)4

In order to get a good bound C2, the problem comes down to controlling the quantity
∑

M∈MP
[G : M ].

In section 3.2 we introduce a parameter – the Hilbert index – that encodes this problem. Bounding this

Hilbert index becomes a pure group-theoretical question. In section 4.2 we explain how we can reach

our goal in some situations thanks to some results on finite groups.
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2.5. Strategy two. Our second strategy rests on the observation that the contribution of MP

in the estimates can be big but depends only on the degree deg(P ) and not on the height H(P ). The

idea is to look for results of the same type for the diophantine part of the problem concerned with the

solutions of the equations QM (t, y) = 0 (M ∈ MP ). However improving estimate (4) in this direction

is hopeless. On the other hand it looks more reasonable if instead of working with all integers t a priori,

some extra condition is imposed on t and one tries to find some small t (in terms of the degree only)

such that QM (t, Y ) has no root in Q (M ∈MP ) and satisfying this condition.

In section 5.1 for example, we give an argument based on Lang’s conjectures which shows how to

construct two integers a and k > 0 such that P (t, Y ) can be reducible only for finitely many integers t

of the form a + bk (b ∈ Z). Furthermore, a, k and the number of the exceptional integers depend only

on deg(P ), thus showing that a bound depending only on deg(P ) for the least hilbertian specialisation

for P is conjecturally expected.

In section 5.2, we work with suitably large consecutive integers. We show that there is at least

one hilbertian specialization out of 2 deg(P )8 consecutive integers provided they are suitably large; the

lower bound however is not effective as the argument uses Siegel’s theorem.

3. Hilbert index

We first review the preliminary reduction to explain how the set MP from section 2.3 can be best

chosen. The Hilbert index is derived from this reduction.

3.1. The preliminary reduction. In addition to the notation from section 2, let Y1(T ), . . . ,Yn(T )

be the n = degY (P ) roots of P (T, Y ) in the Galois closure N of P (T, Y ) over Q(T ). For all but finitely

many t ∈ Q, there is a specialization morphism vt : Q[T,Y1, . . . ,Yn] → Q extending the specialization

T → t and such that the corresponding values Y1(t), . . . ,Yn(t) are all distinct.

For such t ∈ Q, a divisor D(Y ) of P (t, Y ) in Q[Y ] is determined by the subset J ⊂ {1, . . . , n} of

indices j for which D(Yj(t)) = 0 (modulo a multiplicative constant). Consider then the corresponding

polynomial FJ(Y ) =
∏

j∈J(Y − Yj(T )) ∈ N [Y ] and denote the subfield of N generated over Q(T ) by

its coefficients by Q(T, {YJ}) 1. If D(Y ) is a non trivial divisor of P (t, Y ) (i.e. 0 < deg(D) < n),

then Q(T, {YJ}) is different from Q(T ) (as P (T, Y ) is irreducible in Q(T )[Y ]) but becomes equal to Q

via the specialization vt. And so does every minimal non trivial sub-extension NM of N contained in

Q(T, {YJ}).

1 The notation {YJ} is meant to suggest the unordered set of roots Yj with j∈J whose field of definition is precisely the field generated by the
coefficients of FJ (Y ). We would use the notation Q(T,Yj |j∈J) for the field generated by all individuals Yj with j∈J .
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Conclusion 3.1 — For all but finitely many t ∈ Q, if it can be guaranteed that, for all possible

subsets J ⊂ {1, . . . , n} with 0 < card(J) < n, there is at least one minimal non trivial sub-extension

NM ⊂ N contained in Q(T, {YJ}) such that QM (t, Y ) has no root in Q, then the polynomial P (t, Y )

is irreducible in Q[Y ].

Also observe, first, that as Q(T, {YJ}) = Q(T, {YJc}) (with Jc the complement of J in {1, . . . , n}),
condition above only needs to be checked for all J ⊂ {1, . . . , n} with 0 < card(J) ≤ [n/2], and

second, that the containment NM ⊂ Q(T, {YJ}) only needs to be satisfied up to conjugation by some

γ ∈ G (indeed the same polynomial QM (T, Y ) can be attached to two conjugate extensions NM/Q(T )).

Finally note that the Galois group of the extension N/Q(T, {YJ}) is the subgroup

GJ = {g ∈ G | g(J) = J}

of G viewed as a subgroup of Sn via its action on Y1(T ), . . . ,Yn(T ).

Conclusion 3.1 (continued) — The set MP from display (1) of section 2.3 can be taken to be any

subset of MG with the following property:

(7) for all J ⊂ {1, . . . , n} with 0 < card(J) ≤ [n/2], there exists M ∈ MP such that for some γ ∈ G,

the maximal subgroup Mγ contains the subgroup GJ .

The subset MP is then said to cover all possible non trivial factorizations of P (T, Y ).

Remark 3.2. The whole set MG obviously satisfies this property, and actually satisfies more. Namely,

for all but finitely many t ∈ Q, the following conditions are equivalent:

(i) QM (t, Y ) has no root in Q for all M ∈MG,

(ii) P̂ (t, Y ) irreducible in Q[Y ],

where P̂ (T, Y ) denotes the irreducible polynomial of some primitive element over Q(T ) of the Galois

closure N of P (T, Y ); implication (i) ⇒ (ii) follows from the preliminary reduction applied to the

polynomial P̂ (T, Y ) and the converse is clear.

Condition (ii) is strictly stronger than condition “(iii) P (t, Y ) irreducible”, which is what we want:

take for example P (T, Y ) = Y 4−2Y 2−T +1; the Galois closure of P contains the four roots ±
√

1±
√

T

and so also
√

1− T 2; for t = 3/5, P (t, Y ) is irrreducible, but as
√

1− t2 ∈ Q, condition (i) above does

not hold. The converse (iii) ⇒ (ii) however does hold if the function field Q(T,Y1(T )) contains the

compositum of all minimal sub-extensions of N , that is if the subgroup ΓP ⊂ G fixing one given root

Y(T ) of P is contained in the Frattini subgroup Φ(G) of G 2.

2 The subgroup ΓP is defined up to conjugation in G but the condition itself is well-defined as Φ(G) is a normal subgroup of G.
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3.2. The Hilbert index. A better choice can be made for the set MP than the whole set MG

which is too big for the estimates we have in view3. Observe that the condition on MP that it covers all

possible non trivial factorizations of P , i.e. condition (7) above, is a pure group-theoretical condition

on the group G embedded in Sn via its action on the roots of P . Given a transitive subgroup G ⊂ Sn,

we will denote by Σ(G, n) the minimum of the quantities
∑

M∈M[G : M ] (which are those to optimize

for our strategy to work best) where M ranges over the subsets of MG satisfying condition (7). The

Hilbert index of G ⊂ Sn is then defined by

Hi(G, n) =
log(Σ(G, n))

log(n)

We will use the following practical variants. For each subset J ⊂ {1, . . . , n} with 0 < card(J) ≤ [n/2],

consider all maximal subgroups containing the subgroup GJ (defined in section 3.1) of maximal order.

Let J vary and denote the resulting subset of MG by M(G, n)[ and a set of representatives of their

conjugacy classes by M(G, n)]. The flat and sharp variants of the Hilbert index are defined from

Σ(G, n)[ =
∑

M∈M(G,n)[ [G : M ] and Σ(G, n)] =
∑

M∈M(G,n)] [G : M ] by

Hi(G, n)[ =
log(Σ(G, n)[)

log(n)
and Hi(G, n)] =

log(Σ(G, n)])
log(n)

Clearly we have Hi(G, n) ≤ Hi(G, n)] ≤ Hi(G, n)[.

For some specific groups there may be better choices for M than the set M(G, n)] to approach

Hi(G, n). For example it may happen that a maximal subgroup M in M(G, n)] contains several groups

GJ (up to conjugacy) in which case this only group M can be kept to cover all factorizations associated

to these GJ . However handling these possibilities in order to find the best possible choice for M seems

to be an intricate problem in general.

The Hilbert index Hi(P ) of some irreducible polynomial P (T, Y ) ∈ Q[T, Y ] with n = degY (P ) ≥ 2

is defined to be the Hilbert index of its Galois group embedded in Sn via its action on the n = degY (P )

roots of P in Q(T ) (and similarly for its flat and sharp variants Hi(P )[ and Hi(P )]).

3.3. General conclusion. With these definitions, strategy one from section 2.4 leads to the

following result. Recall P (T, Y ) is an irreducible polynomial in Q[T, Y ] with degY (P ) ≥ 2 and with

coefficients in Z assumed to be relatively prime.

3 Even when conditions (ii) and (iii) from remark 3.2 are equivalent and all minimal non-trivial sub-extensions of N do contribute to the reducibility
set of P (T,Y ), these contributions have overlaps and a subset of them suffices to cover all possible non trivial factorizations.
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Theorem 3.3 — Let S(P,B) be the number of positive integers t less than or equal to some number

B ≥ 2 and such that P (t, Y ) is reducible in Q[Y ]. Then we have

S(P,B) ≤ 2165 m64 n148Hi(P ) log19(H) B1/2 log5(B)

Consequently there exists a polynomial bound for the least integral hilbertian specialization for each class

of irreducible polynomials F (T, Y ) ∈ Q[T, Y ] with degY (F ) ≥ 2 and with Hilbert index bounded by an

absolute constant A > 0.

Proof. This readily follows from inequality (5) by choosing MP so that
∑

M∈MP
[G : M ] = Σ(G, n)

and noting that Σ(G, n) = nHi(P ).

The bounds from [Wa2] are recovered as follows. Form a subset M ⊂ MG consisting, for each

J ⊂ {1, . . . , n} with 0 < card(J) ≤ [n/2], of exactly one proper maximal subgroup MJ of G containing

GJ ; in particular [G : MJ ] ≤ [G : GJ ] ≤ 2n. By construction M automatically covers all possible non

trivial factorisations of P . Therefore we have the following rough estimate which yields the desired

polynomial bounds in 2n, log(H) and B for S(P,B):

nHi(P ) = Σ(G, n) ≤ card(M) max
M∈M

[G : M ] ≤ 2n · 2n = 22n

Bounding Hi(P ) by an absolute constant would be the ultimate goal. As the following remark shows,

this is not always possible but in section 4.2 we will give new large classes of polynomials for which it

is and so for which there exists a polynomial bound for the least integral hilbertian specialization.

Remark 3.4. For G = Sn embedded in itself, the subgroups GJ with 0 < card(J) < [n/2] are maximal

(they are of the form Sk × Sn−k where card(J) = k) and two such subgroups with different values of

card(J) are non-conjugate. So Σ(G, n) ≥ 2n−1−1 is exponential in this case and Hi(G, n) � n/ log(n).

The desirable estimate Hi(G, n) ≤ A is false in general.

4. Group-theoretical bounds

As before, P (T, Y ) is an irreducible polynomial in Q[T, Y ] with n = degY (P ) ≥ 2 and its Galois

group embedded in Sn via its action on the n = degY (P ) roots of P in Q(T ) is denoted by G ⊂ Sn.
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4.1. Three invariants of finite groups. Let ν(G)[ be the number of proper maximal subgroups

of G, ν(G)] be the number of their conjugacy classes and n+
G be the maximal index of a proper maximal

subgroup of G. We have

Σ(G, n)[ ≤ ν(G)[ n+
G and Σ(G, n)] ≤ ν(G)] n+

G

Thus condition Hi(G, n)[ ≤ A (resp. Hi(G, n)] ≤ A) holds under condition (8-i) below (resp. under

condition (8-ii) below): for some absolute constant a > 0,

(8) (i) max(ν(G)[, n+
G) ≤ na, (ii) max(ν(G)], n+

G) ≤ na

As for M ∈ M(G, n)[ we have [G : M ] ≤ 2n (since M contains some group GJ), the numbers ν(G)[,

ν(G)] and n+
G can be replaced by the analogous numbers where only the proper maximal subgroups of

G of index ≤ 2n are taken into account, which can be advantageous in some circumstances.

The following is known about these invariants. According to a theorem of Pyber (see [LuSe] theorem

11.3.4), ν(G)[ ≤ |G|κ for some absolute constant κ ≥ 1. We have a fortiori ν(G)] ≤ |G|κ. It is

conjectured that ν(G)[ ≤ |G| [Wal] and that ν(G)] is at most the number of conjugacy classes of G

[AsGu1]; and both are proved for solvable groups (in the same respective papers) and asymptotically

for simple groups [LiSh2] [AsGu1].

Using Pyber’s theorem and the inequality n ≥
√

log |G| (which follows from |G| ≤ n!), we obtain

the following upper bounds for the Hilbert index Hi(G, n):

Hi(G, n)[ ≤ (κ + 1)
log |G|
log(n)

≤ (2κ + 2)
log |G|

log log |G|

4.2. Main result. We give below some group-theoretical situations where we have better. Our

list is not exhaustive.

Theorem 4.1 — The Hilbert index Hi(G, n) is absolutely bounded in each of the following situations,

where α and β denote some positive absolute constants:

(a) |G| ≤ nα (e.g. in the Galois case).

(b) G ⊂ Sn is a primitive action and one of the following conditions holds:

1. G is solvable,

2. G does not not involve Ad as a section for some fixed integer d > 0,

3. G is almost simple and G ⊂ Sn is a non-standard primitive action in the sense of [LiSh1].

(c) G ⊂ Sn is a primitive action of maximal degree and ν(G)] ≤ (log |G|)α. The latter condition holds

for example if G = Sd.

(d) G is a p-group of order pr such that ν(G)] ≤ (rp)β.

Consequently in each of these situations there exists a polynomial bound for the least hilbertian special-

ization for the class of irreducible polynomials in Q[T, Y ] with n roots in Q(T ) and with an action of
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the Galois group on the n roots given by a permutation group G ⊂ Sn satisfying the assumptions of the

situation in question.

Proof. From Pyber’s theorem and the inequality n ≥
√

log |G|, condition (8-i) and (8-ii) hold under

the following respective conditions, where α > 0 is an absolute constant:

(9) (i) |G| ≤ nα, (ii) n ≥ (n+
G)1/α and ν(G)] ≤ (log |G|)α

Condition (9-i) holds in situations (a) and (b). It is obvious for (a). For (b) it follows from the

literature on finite groups (see [LiSh1] for a survey of this type of results). Namely for primitive groups,

the following bounds are known. If G is solvable then |G| < 24−1/3n3.244 [Pá] [Wo] whence (b-1).

Under the assumption of (b-2), |G| < nf(d) with f(d) depending only on d [BaCaPá]. Finally under

the assumption of (b-3), |G| < n9 [Li].

A primitive action G ⊂ Sn of maximal degree is equivalent to the action by left translation on left

cosets modulo a maximal subgroup of maximal index. Therefore n = n+
G and condition (9-ii) holds in

situation (c). From corollary 5.3 of [LiMaSh] we have ν(Sd)] = [d/2] + do(1) and so ν(G)] ≤ (log |G|)β

holds in this case.

Finally let G ⊂ Sn be a transitive p-group of order pr. Maximal proper subgroups of G are of index

p in G. Using the assumption on ν(G)] we obtain Σ(G, n)] ≤ p(rp)β . Furthermore pr divides n!. Using

that the p-adic valuation of n! is ≤ n/(p− 1) (e.g. [Am] Lemme 3.5.6), we obtain n ≥ (p− 1)r 4. For

p > 2, this gives n2β+2 ≥ pβ+1r2β+2 ≥ Σ(G, n)]. For p = 2, we get n2β+2 ≥ r2β+2 ≥ Σ(G, n)] if r ≥ 2,

while for r = 1, we obviously have Σ(G, n)] = p. In all cases, the Hilbert index of G is ≤ 2β + 2, which

proves (d).

Remark 4.2. The number of maximal subgroups of a p-group G is determined by the abelianization

Gab. However Gab can be big with many maximal subgroups and with G embedded in Sn with a small

n. Indeed, from [KoNe] there exist transitive 2-groups G ⊂ Sn which cannot be generated by fewer

than n/
√

log n elements and so have at least 2n/
√

log(n) non conjugate maximal subgroups. For these

groups, we have ν(G)] ≥ 2n/
√

log(n) and in particular the assumption of (d) does not hold. A similar

example with ν(G)] ∼ 2n/(2 log2(n)) is given in [AsGu2].

5. Strategy two

We follow here the second strategy explained in section 2.5.

4 The example below in remark 4.2 shows one cannot expect much better in general.
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5.1. Removing the dependence in the height. We keep the notation from section 2. Our

motivation is to investigate whether a bound depending only in the degree can be found for the least

integral hilbertian specialization. A partial answer to this question was given by Yasumoto: according

to [Ya] this is true if one restricts to the class of all irreducible polynomials P (x, T, Y ) obtained by

specializing X in Q in a polynomial P (X, T, Y ) ∈ Q[X, T, Y ]. The proof uses non-standard methods.

The general case seems difficult though plausible. As we will now see it is a consequence of Lang’s

conjecture on rational points on varieties.

Lang conjectured that if V is a variety of general type defined over a number field K then the set

V (K) of K-rational points is not Zariski-dense in V . Caporaso, Harris and Mazur [CHarM] showed

Lang’s conjecture implies the following statement (see also [Pa]):

Conjecture 5.1 (CHarM) — For every number field K and every integer g > 1 there exists a finite

integer B(g,K) such that card(C(K)) < B(g,K) for every curve of genus g defined over K.

Proposition 5.2 — Assume the CHarM conjecture holds. Then there exists a bound depending only

on the degree for the least integral hilbertian specialization for polynomials in two variables and with

coefficients in Q.

Proof. The first author discussed the following argument with U. Zannier. The strategy is to assure

via some change of variable that the curves Qi(t, y) = 0 associated to the polynomial P (T, Y ) in the

preliminary reduction are of genus ≥ 2 and so have only finitely many rational points. Then, using the

conjecture, one can bound in terms of deg(P ) the total number of rational points on these curves, and

so the number of t ∈ Q such that P (t, Y ) is reducible in Q[Y ].

Let then {Q1(T, Y ), . . . , QN (T, Y )} ⊂ Q[T, Y ] be a set of irreducible polynomials as given by the

preliminary reduction: for each t ∈ Q but in a finite set F , if Q1(t, Y ), . . . , QN (t, Y ) have no root

in Q, then P (t, Y ) is irreducible. From previous sections, the number N can be bounded by 2n, the

degrees of the polynomials Q1, . . . , QN by d = m22n+1 and the cardinality of the finite set F by 2nm.

Furthermore, up to enlarging the finite set F , one may assume that Q1, . . . , QN in Q[T, Y ] are absolutely

irreducible: indeed for a polynomial Qi that is irreducible in Q[T, Y ] but not absolutely irreducible, if

for some t ∈ Q we have Qi(t, y) = 0 for some y ∈ Q, then (∂Qi/∂Y )(t, y) = 0, and so the number of

such t is less than or equal to the degree of the discriminant of Qi vith respect to Y .

For i = 1, . . . , N , denote a smooth projective model of the affine curve Qi(t, y) = 0 by Ci. Branch

points t ∈ Q of the T -projection map Ci → P1 induced by (t, y) → t are among roots of the discriminant

∆i(T ) of Qi with respect to T . Thus if δ =
∑

1≤i≤N deg(∆i(T )), then there exists a ∈ {0, 1, . . . , δ}
that is not a branch point of any of these T -projections. Fix such an a. Each polynomial Qi(a + T, Y )

is absolutely irreducible and has a root in Q((T )), i = 1, . . . , N . From [De2], for every integer k ≥ 1,

Qi(a + T k, Y ) is absolutely irreducible, i = 1, . . . , N .
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For each index i ∈ {1, . . . , N} and each integer k ≥ 1, denote the smooth projective model of the

affine curve Qi(a + tk, y) = 0 by Ci,k and its genus by gi,k. For every t ∈ Q, t 6= 0, t is a branch point

of the T -projection map Ci,1 → P1 if and only if every kth root of t is a branch point of the function

T -projection map Ci,k → P1, i = 1, . . . , N ; furthermore the ramification indices are the same. So each

branch point t 6= ∞ 5 of T : Ci,1 → P1 gives rise to k branch points P of T : Ci,k → P1 with the same

ramification indices eP . From the Riemann-Hurwitz formula, we have

2gi,k − 2 = −2 degY Qi +
∑

t∈P1(Q)

∑
P/t

(eP − 1)

≥ −2 degY Qi + k

Set d = max1≤i≤N (degY Qi) and k = 2 + 2d. For i = 1, . . . , N , we obtain gi,k ≥ 2 and it follows

from 2gi,k − 2 ≤ 2kδd that for g∞ = kδd + 1, we have gi,k ≤ g∞. Denote the maximum of the bounds

B(g, Q) given by the CHarM conjecture for 2 ≤ g ≤ g∞ by N (g∞). Then if S ⊂ Q is any subset such

that |S| > NN (g∞)+card(F ), there exists t ∈ S such that Qi(a+tk, Y ) has no root in Q, i = 1, . . . , N ,

and so P (a + tk, Y ) is irreducible in Q[Y ].

Remark 5.3. Suppose given a polynomial Q(T, Y ) ∈ Q[T, Y ], which as the polynomials Q1(T +

a, Y ), . . . , QN (T + a, Y ) from the proof above, is absolutely irreducible and has a root in Q((T )). For

each k ≥ 1, denote a smooth projective model of the affine curve Q(tk, y) = 0 by Ck. Assume further

that the genus of C1 is at least 2 (or replace Q(T, Y ) by Q(T k0 , Y ) for some suitably large integer k0

to reduce to this case as explained in the proof above). For integers k, h ≥ 1, the correspondences

(t, y) → (th, y) induce maps ϕhk,k : Chk → Ck, making the infinite collection (Ck)k≥1 a projective

system of curves. It follows from Faltings’ theorem (resp. Siegel’s theorem) that

(10) for k suitably large, say k ≥ kF (resp. k ≥ kS), there are no rational points M ∈ Ck(Q) (resp. no

rational points M ∈ Ck(Q) with T (M) ∈ Z) unless T (M) ∈ {0, 1,∞}.

An alternative to using the CHarM conjecture to get a bound depending only in the degree in Hilbert’s

theorem would be to prove an effective version of this profinite version of Faltings’ theorem (resp.

Siegel’s theorem) with kF (resp. kS) depending only of deg(Q).

5.2. Good specializations in large consecutive integers. Going even further than proposition

5.2, one can ask whether the bound for the least hilbertian specialization could be polynomial in deg(P ).

More specifically: do there exist absolute constants µ and ν such that for any polynomial P (T, Y ) ∈
Q[T, Y ] irreducible and with degY (P ) ≥ 1, it is always possible to find a hilbertian specialization among

any µdeg(P )ν consecutive integers? We do not have any counter-example and in fact we do not have

any essentially better example than the following one of some irreducible polynomial P (T, Y ) ∈ Q[T, Y ]

5
0 need not be excluded since by construction it is not a branch point.
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with many small “bad” specialisations; producing such polynomials seems difficult just as it is difficult

to produce curves with many rational points.

Example 5.4. Given an integer d ≥ 1, pick a polynomial p(Y ) ∈ Z[Y ] and an integer a such that both

polynomials p(y) and p(y)− ad! are reducible in Q[Y ]. Set then P (T, Y ) = p(y)− at(t− 1)...(t− d+1).

The polynomial P (t, Y ) is reducible for t = 0, 1, . . . , d.

Next we note that while the preceding question seems quite hard, it can be answered positively

if “among any µdeg(P )ν consecutive integers” is replaced by “among any suitably large µdeg(P )ν

consecutive integers”.

Proposition 5.5 — Let P (T, Y ) ∈ Q[T, Y ] irreducible with degY (P ) ≥ 1. Then for all suitably large

integers m, at least one of the polynomials P (m + k, Y ), k = 1, . . . , 2 deg(P )8 is irreducible in Q[Y ].

The proof however uses Siegel’s theorem and does not provide an effective lower bound for the good

integers m. Similar effective results are proved in [De3;corollary 2.5] but under the assumption that

P (T, Y ) is absolutely irreducible and unramified above ∞.

Proof. Let {Q1(T, Y ), . . . , QN (T, Y )} ⊂ Q[T, Y ] be a set of irreducible and monic (in Y ) polynomials

as given by the preliminary reduction (section 3.1); as recalled in the proof of proposition 5.2 one

may further assume they are absolutely irreducible. Fix an integer D which will be chosen later. Let

∆(T ) ∈ Q[T ] be the discriminant of P (T, Y ) with respect to Y and a > 0 be an integer not in the finite

set {|t− t′|/i |∆(t) = ∆(t′) = 0 and i = 1, . . . , D − 1}. As deg(∆) ≤ 2 deg(P )2, such an integer a can

be found with a ≤ 2D deg(P )4. We will show the following holds for D = degY (P )2, which is more

precise than the announced result:

(11) for all suitably large integers m, for at least one integer i = 0, . . . , D − 1, none of the polynomials

Qj(m + ia, Y ) has a root in Q, j = 1, . . . , N ; consequently P (m + ia, Y ) is irreducible in Q[Y ].

If (11) does not hold, there exists a D-tuple j = (j0, . . . , jD−1) such that for infinitely many integers

m, each of the polynomials Qji
(m + ia, Y ) has a root in Q, i = 0, . . . , D − 1. Fix an algebraic closure

of Q(T ) and fix inside it, for i = 0, . . . , D− 1, some representative Ei of the function field isomorphism

class of the affine curve Qji
(t+ ia, y) = 0 over Q. Let Ej be the compositum of all these functions fields

and denote by Cj a smooth projective model of the field Ej; it is defined over some number field K.

From above, if (11) does not hold, then (for some choice of the representatives Ei ⊂ Q(T )) there are

infinitely many points M ∈ Cj(K) such that T (M) ∈ Z. We show below that the function T on Cj has

at least 3 distinct poles, which contradicts Siegel’s theorem.

For each i = 0, . . . , D − 1, Ei is contained in the Galois closure Ni over Q(T ) of the polynomial

P (T + ia, Y ) (from the construction of the polynomials Q1, . . . , QN ). From the choice of a, it follows
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that the branch point sets of any two extensions Ei/Q(T ) and Ei′/Q(T ) (i 6= i′) can have no finite

common point. Therefore the extensions Ei/Q(T ) are pairwise linearly disjoint and [Ej : Q(T )] ≥ 2D.

Observe next, again as a consequence of Ei ⊂ Ni, that the compositum of all the fields of definition of

the poles of the function T on (a smooth projective model of) the curve Qji
(t + ia, y) = 0 is contained

in the compositum Ei,∞ of all the fields of definition of the poles of the function T on the curve

P (t + ia, y) = 0. Now all the fields Ei,∞ (i = 0, . . . , D − 1) are actually the same field, say E∞ (as

the isomorphism t → t + ia fixes ∞) and so we have [E∞ : Q] ≤ degY (P )! . The result follows as for

D = degY (P )2, we have 2D > 2 degY (P )!

The proof extends to the more general situation where n polynomials P1(T, Y ), . . . , Pn(T, Y ) are

given instead of the single polynomial P (T, Y ) and the ground field is a number field (instead of Q).

6. Further perspectives

6.1. Extension to several variables. We consider here polynomials P (T1, . . . , Tr, Y ) with r

parameters and one variable and are interested in “small” specialisations (t1, . . . , tr) preserving irre-

ducibility. There are classical reductions to the preceding case of one parameter but they are not

economic in terms of constants. We discuss here a direct approach based on the strategy used in [Wa2]

and on results of Heath-Brown [H-B] in the higher dimensional situation.

6.1.1. General approach. The preliminary reduction (section 3.1) readily extends to the several

variable situation to provide the following estimate

S(P,B) ≤
∑

M∈MP

NT (QM , B)

where MP is some suitable subset of MG and for each B ≥ 2, S(P,B) is the number of r-tuples

t = (t1, . . . , tr) of positive integers ≤ B such that P (t, Y ) is reducible in Q[Y ] and DiscY (P )(t) 6= 0

(with DiscY (P ) the discriminant of P with respect to Y ) and NT (QM , B) is the number of those

such that QM (t, Y ) has a root yt in Z (with the polynomials QM defined similarly as in section 2.3).

Bounding the root yt using Liouville’s inequality reduces then the problem to estimate the number of

integral points with coordinates ≤ (1 + m)rH(QM )Bm (with m = degT1,...,Tr
(P )) on the hypersurfaces

QM (t1, . . . , tr, y) = 0.

Denote in general the number of integral points on the hypersurface F (x1, . . . , xs) = 0 with coor-

dinates ≤ B by N(F,B). It is much more difficult to efficiently control the quantities N(F,B) for

high dimensional hypersurfaces than it is for curves (as in [Wa2]). For curves the estimate we had for

N(F,B) was in B1/d (with d = deg(F )). For surfaces for example, the problem is that, because surfaces

may contain lines, one may have N(F,B) � B: take for example F (x1, x2, x3) = xd
1 − xd

2 + xd
3 − 1 for

which we have F (a, a, 1) = 0 for all a ∈ [0, B] ∩ Z. When this happens, the derived upper bound for
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S(P,B) may be of order Bm, and so there is no hope to obtain S(P,B) < B2 unless m = 1, which is a

strong condition.

This strategy however, conjoined with an effective version of theorem 9 of [H-B] (which can be

obtained in the same way as theorem 3 of [H-B] is treated in [Wa2]) does lead to some explicit bound

for a hilbertian specialization for polynomials P (T1, T2, Y ) with degT1,T2
(P ) = 1.

6.1.2. Towards some improvements. Heath-Brown’s paper also provides sharper estimates in

the case of surfaces for the number of integral points not lying on a line contained in the surface in

question. We can then improve the estimates of NT (QM , B) under the assumption that the surfaces

QM (t1, t2, y) = 0 contain only finitely many lines, that is are non ruled surfaces.

Namely consider in general a polynomial F (T1, T2, Y ) ∈ Z[T1, T2, Y ] irreducible, monic in Y and

defining a non ruled surface. Using Liouville’s inequality, for every point (t1, t2) ∈ Z2 such that

max(|t1|, |t2|) ≤ B, the integral roots y of F (t1, t2, Y ) = 0 can be bounded by (1 + m)2H(F )Bm. Then

the evaluation of NT (F,B) can be done in two steps: first count the number, which we denote by

N1(F, (1 + m)2H(F )Bm), of points (t1, t2, y) ∈ Z3 with coordinates ≤ (1 + m)2H(F )Bm, such that

F (t1, t2, y) = 0 but are not lying on a line in the surface; second, count the points (t1, t2) ∈ Z2 with

max(|t1|, |t2|) ≤ B such that there is a point (t1, t2, y) ∈ Z3 lying on a line in the surface F (t1, t2, y) = 0.

For the second count, note that the involved roots y can be bounded by cB where c is a constant

depending only on F (and more precisely on the finitely many lines in the surface). Thus we obtain:

NT (F,B) ≤ N(F, cB) + N1(F, (1 + m)2HBm)

and we can improve our previous estimate for NT (F,B) by using the following result of Heath-Brown6

(theorem 7 and theorem 9 of [H-B]):

For any absolutely irreducible polynomial F ∈ Q[X1, X2, X3] of degree d, if N1(F,B) is the number of

integral points on the hypersurface F (x1, x2, x3) = 0 not lying on any line contained in F , we have

N1(F,B) �ε B1/2+3/2
√

d+ε. Counting also points lying on lines, we have N(F,B) �ε B1+ε if d ≥ 2.

We obtain NT (F,B) �ε B1+ε + Bm/2+3m/2
√

d+ε and can further give the conjectural bound

NT (F,B) �ε B1+ε + Bm/2+ε under the conjecture of Heath-Brown that N1(F,B) �ε B1/2+ε. One

can also hope to extend this type of results to polynomials defining a surface not containing a curve of

degree less than a fixed number.

6 As before, Heath-Brown’s results are for rational points on a projective variety and should be first adapted to our affine situation.
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6.2. Miscellaneous comments.

6.2.1. Improving on strategy one. The key estimates for theorem 3.3 are inequalities (4) and (5)

from §2.4; and what really counts for the final result are the constants C1 and C2. Indeed even if the

term B1/2 log5(B) could be disregarded in (4) (which is conceivable in the positive genus case but would

be a strong effective form of Siegel’s theorem), the bound for the least hilbertian specialization would

still remain polynomial in C2. Improving on C2 would then mean for example replacing the power

degT (F )64 by some term with slower growth. This seems difficult: such polynomial term is needed in

C2 due to the mere constraint of working with integers not among the roots of the discriminant ∆(T )

of F in Y . Then there is also in C2 the group-theoretical term
∑

M∈MP
[G : M ] which we know can

be exponential in degY (P ) in some cases (see remark 3.4). Improving on theorem 3.3 seems to require

a better analysis, both diophantine and group-theoretical, of the arithmetic of the (minimal) function

fields contained in the Galois closure of the polynomial P .

6.2.2. The Eichler-Fried method. This is another classical method in the context of Hilbert’s irre-

ducibility theorem ([Ei], [Fr] or [Wa1] chapitre 3). Here is a sketch of it. Let {Q1(T, Y ), . . . , QN (T, Y )} ⊂
Q[T, Y ] be a set of irreducible and monic (in Y ) polynomials as given by the preliminary reduction (sec-

tion 3.1). Again one may reduce to the case they are absolutely irreducible. From Ostrowski’s theorem,

for all but finitely many primes p the reduction of Qi modulo p, denoted by Qi, is still absolutely

irreducible, i = 1, . . . , N . One can then show that for infinitely many of these primes p, there exists

an integer ti such that the equation Qi(ti, Y ) = 0 [mod p] has no root in Z, i = 1, . . . , N . This uses

Weil’s inequalities for rational points on curves over finite fields and the classical fact that infinitely

many primes split in any given finite Galois extension L/Q (a consequence of Tchebotarev’s density

theorem). For each i = 1, . . . , N , fix such a prime pi in such a way that p1, . . . , pN are distinct. Thanks

to the chinese remainder theorem one can then construct an arithmetic progression (t0 +kp1 . . . pN )k of

specializations t such that no equation Qi(t, Y ) = 0 (i = 1, . . . , N) has a solution in Z, and so P (t, Y )

is irreducible in Q[Y ].

This method is algorithmically simple but does not provide good bounds. The main obstacle is

that known effective bounds for Ostrowski’s theorem are rather big: according to [Za], it is for primes

p > e12m2n2
(4n2m)8n2mH2(2n−1)2m that an absolutely irreducible polynomial F (T, Y ) ∈ Z[T, Y ] with

degrees m, n with respect to T and Y and with height H remains absolutely irreducible modulo p.

Furthermore bounding the primes p1, . . . , pN cannot seem to be done efficiently.

The following example shows further one cannot hope removing the dependence in the height by

this method.

Example 6.1. For each N > 0 let p(N) be the product of all primes less than N and PN (T, Y ) = Y 2−
T 2 − p(N). Then the least prime such that the polynomial PN (T, Y ) (which is absolutely irreducible)

is absolutely irreducible modulo p is ≥ N .
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6.2.3. A special assumption. In addition to the usual hypotheses on P (T, Y ), assume that P (0, Y )

has a simple root in Q. Then from [De1] corollaire 2, there exists a constant h0 depending only P

such that for any t ∈ Q of the form t = 1/m or t = pm with m ∈ Z, m > 0 and p a prime number, if

| log(t)| > h0 then P (t, Y ) is irreducible in Q[Y ]. The constant h0 has precisely been computed in [De3]:

it can be taken to be 5000D12H2. The good specializations t provided by this result are big compared

to the bounds of this paper: their height, i.e. m or pm, is at least in exp(5000D12H2). The advantage

of this result though is that one does not have to test irreducibility of P (t, Y ): it is guaranteed that

these t are good specializations. In terms of algorithmic speed, this result is better than those of this

paper for finding good hilbertian specializations. It however has a strong arithmetic assumption.

As explained in [De3] there is a trick to get rid of this assumption. There is however a price to

pay: instead of a specific good specialization as above, the conclusion is that there exists one among

several explicitly given rational numbers. The number of these possible candidates is rather limited but

because it is > 1, one has to test the irreducibility of the corresponding specialized polynomials (using

classical irreducibility tests for polynomials in one variable). And this cannot be done in polynomial

time because the specializations are too big.

6.3. A possible variant of the problem. It is an exercise to show that, given P (T, Y ) ∈ Q[T, Y ],

if for some b(Y ) ∈ Q[Y ] such that deg(b) > degY (P ), the polynomial P (b(Y ), Y ) is irreducible in Q[Y ],

then P is irreducible in Q[T, Y ] (use the uniqueness of the b(Y )-adic decomposition of P (b(Y ), Y )).

The converse is also true:

Proposition 6.2 — Given a polynomial P (T, Y ) ∈ Q[T, Y ] irreducible, there exist infinitely many

polynomials b(Y ) ∈ Q[Y ] with deg(b) > degY (P ) such that P (b(Y ), Y ) is irreducible in Q[Y ].

The difference with Hilbert’s irreducibility theorem is that T is specialized in Q[Y ] instead of Q.

For applications this new variant can be as useful.

Proposition 6.2 actually follows from Hilbert’s irreducibility theorem, applied to the polynomial

P(T, T1, . . . , Td, Y ) = P (T + T1Y + · · ·+ TdY
d, Y )

where d > degY (P ) is some integer and T1, . . . , Td are variables. One only needs to check that

(12) the polynomial P is irreducible in Q(T, T1, . . . , Td)[Y ].

The proof of (12) is given below. The statement can then be made more precise: given an integer

d > degY (P ), the set of polynomials b(Y ) of degree ≤ d satisfying the desired conclusion, viewed as a

subset of Qd+1, is a hilbertian set and in particular is Zariski-dense.

However as we know available bounds in the several variable case of Hilbert’s irreducibility theorem

are big. As far as effectiveness is concerned it would be interesting to find an alternate approach of

proposition 6.2 (which could let d vary and thereby offer more room where to specialize).
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Proof of (12). We will more generally prove (12) with Q replaced by any infinite field K.

Suppose P(T, T1, . . . , Td, Y ) = Q(T, T1, . . . , Td, Y )R(T, T1, . . . , Td, Y ) for some polynomials Q,R ∈
K[T, T1, . . . , Td, Y ]\K[T, T1, . . . , Td]. Specializing (T1, . . . , Td) to any fixed d-tuple t = (t1, . . . , td) ∈ Kd

yields

P (T + t1Y + · · ·+ tdY
d, Y ) = Q(T, t1, . . . , td, Y )R(T, t1, . . . , td, Y )

Set ϕt(Y ) = t1Y + · · · + tdY
d. Changing (T, Y ) for (T − ϕt(Y ), Y ) in the previous identity yields

P (T, Y ) = Q(T −ϕt(Y ), t1, . . . , td, Y )R(T −ϕt(Y ), t1, . . . , td, Y ). As P (T, Y ) is irreducible in K[T, Y ],

one of the two polynomials on the right-hand side is in K. But changing (T, Y ) to (T + ϕt(Y ), Y )

then gives that Q(T, t1, . . . , td, Y ) or R(T, t1, . . . , td, Y ) is in K. As this holds for every d-tuple

t = (t1, . . . , td) ∈ Kd, we obtain a contradiction with the assumption that neither Q nor R is in

K[T, T1, . . . , Td]. Note further that degY (P) ≥ 1 (as P(T, 0, . . . , 0, Y ) = P (T, Y )) to conclude that P
is irreducible in K(T, T1, . . . , Td)[Y ].

Remark 6.3. The argument actually shows P is irreducible in K(T1, . . . , Td)[T, Y ] and it is in

fact also irreducible in K[T1, . . . , Td, T, Y ]. To obtain this extra conclusion, we are left with show-

ing that P does not factor as P = Q(T1, . . . , Td)R(T, T1, . . . , Td, Y ) with Q ∈ K[T1, . . . , Td] \ K

and R ∈ K[T, T1, . . . , Td, Y ]. Assume the contrary holds. Plugging in T = T2 = . . . = Td = 0

yields P (T1Y, Y ) = Q(T1, 0, . . . , 0)R(0, T1, 0, . . . , 0, Y ). Set U = T1Y to rewrite it as P (U, Y ) =

Q(U/Y, 0, . . . , 0)R(0, U/Y, 0, . . . , 0, Y ). Irreducibility of P in K[U, Y ] then gives degT1
(Q) = 0. More

generally substitute 0 for T and for all parameters T1, . . . , Td but the i-th one Ti to get that degTi
(Q) =

0, i = 1, . . . , d.

Acknowledgments. We wish to thank R. Guralnick and M. Liebeck for their help in the group-
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[Wa2] Y. Walkowiak, “Théorème d’irréductibilité de Hilbert effectif”, Acta Arithmetica, 116, no 4,
(2005), 343–362.

[Wal] G. E. Wall, “Some applications of the Eulerian functions of a finite group”, J. Austral. Math.
Soc., 2, 1961/1962, 35–59.

[Wo] T. R. Wolf, “Solvable and nilpotent subgroups of GL(n, qm)”, Canad. J. Maths, 34, no 4,
(1982), 1097–1111.

[Ya] M. Yasumoto, “Algebraic extensions of non-standard models and Hilbert’s irreducibility theo-
rem”, Journal of Symbolic Logic, 53 (1988), no 4, 470–480.

[Za] U. Zannier, “On the reduction modulo p of an absolutely irreducible polynomial f(x, y), Archiv.
Math., 68, (1997), 129–138. .

Pierre.Debes@univ-lille1.fr yann.walkowiak@math.univ-lille1.fr
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