Density Results for Hilbert Subsets

PIERRE DEBES

Abstract. A classical tool for studying Hilbert’s irreducibility theorem is
Siegel’s finiteness theorem for S-integral points on algebraic curves. In [De3]
we presented a different approach based on s-integral points rather than S-
integral. Given an integer s > 0, s-integral points of a field K with the
product formula are those points t for which the set of places v € M such
that |t|, > 11is of cardinality < s (instead of contained in S for “S-integral”).
[De3| contains a general diophantine result for s-integral points and some
applications to Hilbert’s theorem. We gave in [Ded] a second application
to a problem raised by Dvornicich and Zannier. This paper presents new
applications which include the possibility that K is of characteristic p > 0.
Th.2.1 and Th.2.2 essentially conclude that, except in trivial cases, Hilbert
subsets of K contain infinitely many powers of a given element b € K
of height h(b) > 0. The only assumption on the polynomials involved is
that they should be separable and tamely ramified above co. Th.3.4 shows
the following general density property of Hilbert subsets of a field K with
the product formula, of characteristic 0, or of characteristic p > 0 and
imperfect : Hilbert subsets of K are dense in K for the strong approximation
topology (i.e., the topology involved in the strong approximation theorem),
provided that 0 is not isolated in K. The spirit of these three results is that
for a field with the product formula, strong arithmetical constraints can be
added to the Hilbert property.

This paper is concerned with Hilbert’s irreducibility theorem. In a gen-

eral way Hilbert subsets of a field K are sets of the form
Hp, . . p, ={t € K|P(t,Y) is irreducible in K[Y|,i=1,...,n},

where P;(T,Y) is an irreducible polynomial in K(T)[Y], i = 1,...,n.
Hilbert’s irreducibility theorem asserts that Hilbert subsets of Q are in-
finite [La2 ;Ch.9]. More generally, a field K with the same property is called
hilbertian. Here the base field K will be assumed to be a field with the prod-
uct formula [La2;Ch.2]. From results of Weissauer and Uchida, such fields
are known to be hilbertian if they are of characteristic 0 or, of characteristic
p > 0 and imperfect [FrJ;Ch.11,14]. Number fields, regular function fields
over a constant field k are typical examples.

Our first result extends results of [De2] where the field K was a number

field. The method in [De2]| used Siegel’s finiteness theorem for S-integral
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points on algebraic curves. The present paper uses instead the general dio-
phantine result of [De3| for s-integral points (Cf. §.1.2). This alternate ap-
proach has two main advantages over Siegel’s theorem : it is valid more
generally over fields with the product formula, possibly of characteristic

p > 0; and it is effective for number fields.

Theorem (Th.2.2) — Let K be a field with the product formula. Let
P(T,Y) € K(T)[Y] be a polynomial absolutely irreducible and separable
over K(T'). Assume further that P(T,Y") is tamely ramified above T'= 0 or
above T = co. Let b be an element of K of height h(b) > 0 such that

(*)b¢ K¢ (i.e, b is not a {th power in K ) for all primes £ and —b ¢ K2.
Then P(b™,Y) is irreducible for infinitely integers m > 0.

Clearly condition (*) cannot be removed in general : take P(T,Y) =
Y¢—Tifbe K*and P(T,Y) = Y* 4+ 4T if —b € K2. On the other hand,
the assumption “P(7,Y’) tamely ramified above 7" = 0 or above 7' = 00”
is a technical assumption coming from the method ; it is unclear whether
it is really necessary (Cf.§2.4). Recall that this condition is automatically
satisfied in characteristic 0.

Th.2.2 does not extend to several polynomials : taken =2, P, = Y2 T,
Py =Y?%-2T; for K = Q, b =2 does satisfy (*) but Hp, p, contains no
power of 2. Nevertheless, if condition (*) is slightly modified, then one can

prove this version of Th.2.2 for several polynomials.

Theorem (Th.2.1) — Let K be a field with the product formula. Let
H = Hp, . p, be a Hilbert subset of K with Py,...,P, irreducible and
separable over K(T) and tamely ramified above T = oco. Then there exists
a finite extension L of K with the following property. Let b be an element
of K of height h(b) > 0 and such that condition (*) above holds but with L
replacing K. Then the Hilbert subset H contains infinitely many powers b™

(m >0) of b.

The extension L/K will be described quite explicitely. In the example
above the extension L is L = Q(v/2). Th.2.2 is not a special case of Th.2.1.
Both follow from Th.1.1 which we call the basic result in the sequel. But
different final arguments eventually lead to Th.2.1 and Th.2.2. We note
in §2.4 that these results do not extend to general hilbertian fields. The
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following problem however remains open : does each Hilbert subset of a
hilbertian field K contain infinitely many powers b™ of some element b €
K ? From Th.2.1, this is true for fields with the product formula. Further
comments and open problems are given in §2.3 and §2.4.

Th.2.1 and Th.2.2 can be used in problems requiring the Hilbert prop-
erty with additional arithmetical constraints : they allow for example to
produce elements of Hilbert subsets with prescribed prime divisors. Fur-
thermore, for this, one can even remove the “tame ramification” assump-
tion that is present in Th.2.1 and Th.2.2. More specifically, our last result,
which is another application of the basic result, shows the following general
density property of Hilbert subsets. Fix a place v, of K, consider the set
V,, =11, Zv, K, endowed with the “strong approximation topology”, i.e.,
the topology involved in the strong approximation theorem for global fields
[CaFr ;Ch.2] (see §3 for precise definitions).

Theorem (Th.3.4) — Let K be a field with the product formula, of char-
acteristic 0 or imperfect of characteristic p > 0. Let v, € Mg be a place
of K. Assume that 0 is not isolated in K for the induced topology of U, .
Then every Hilbert subset of K is dense in K for the same topology.

In other words, given any Hilbert subset Hp, . p,, any positive real
number ¢, any finite subset S C Mg \{v,} such that S U {v,} contains all
the archimedean places of K and any element 3 € K, it is possible to find

an element a € Hp, ... p, such that

(1) { (i) la—pBly <e forallves

(177) Ja—pBl, <1, forall v ¢ S, v+# v,

The assumption “0 is not isolated in K” is clearly necessary in Th.3.4.
When K is a number field or the function field of a curve over an alge-
braically closed field, this assumption is automatically satisfied : indeed it
is a consequence of the Riemann-Roch theorem.

The strong approximation theorem states that for global fields, K is
dense in %, . Conclude then from Th.3.4 that Hilbert subsets of a global
field K are actually dense in U, . That is, using Morita’s terminology
[Mo], the strong approximation theorem is “compatible” with Hilbert’s ir-

reducibility theorem.
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Density of Hilbert subsets for the “weak approximation topology”, i.e.,
the same statement but without condition (ii), is classical. The “strong den-
sity” is more difficult. Except when K = QQ and v, is the archimedean place,
in which case this follows from the fact that Hilbert subsets of Q contains
infinitely many integers. The general case of a number field was known
([Se ;Ch.9.7], [Mo], [De2]), but only as a consequence of Siegel’s theorem.
Due to the possibility of unseparability and wild ramification, the case of
a field K of characteristic p > 0 is still more delicate. In this case Th.3.4
answers a question of B. Kunyavsky.

I wish to thank L. Denis and J-C. Douai for helpful discussions regarding

the positive characteristic case.

NOTATION

Heights. We adhere to the notation of [La2]. Let F' be a field with a proper
set M of absolute values satisfying the product formula with multiplicities
1. For each finite extension K of F', the set of absolute values of K extend-
ing those of Mg is a proper set My, satisfying the product formula with
multiplicities [K, : F,] for v € M. For each integer n > 1, the (absolute

logarithmic) height of points (z,,...,z,) € P"(F) is then defined by

1
(2)  h(xo,. -y ¥n) = 0 Z (K, : F,] Log(max(|zo|v,---s|Tnl|v))
(K : F|
UGMK
where K is any field containing z,,...,2,. One defines the height of an

element = € F to be the height in P1(F) of (1,z). In the sequel, a field with
the product formula is a finite extension K of a field F' with the product
formula with multiplicities 1 and the associated height is the one defined

above.

Unramified fibers. A polynomial P(7,Y) € K(T)[Y] is said to be sepa-
rable over K (T) if it has no multiple roots in K (7). If P(T,Y) € K(T)[Y]
is separable over K (7'), we say that a point ¢, € P!(K) is not a branch
point of P(T,Y), or that P(7,Y) is unramified above T' = t,, if P(T,Y)
is totally split in K((T —t,)) (as a polynomial in Y), i.e., has d = degy P
distinct roots yi,...,yq4 in K((T —t,)). Then the field generated by the
coefficients of y; will be denoted by K (y;(t,)), i =1,...,d. When the poly-

nomial P(t,,Y) has d distinct roots in K, 4.e., when t, is not a root of the
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discriminant A(T') of P(T,Y) relative to Y, then y; is a power series in
T —t, and the field K (y;(t,)) is the field generated by the constant term of
Yi, i =1,...,d. When t, = oo, T'—t, should be replaced by 1/T". For conve-
nience, we note that these definitions can be generalized to include the case
that t, = T is the generic point of P! : only replace in the above K ((T —t,))
by K(t,)((T —t,)). Then the generic point t, = T is not a branch point
of P(T,Y) and each of the Laurent series y solution of P(t,y) = 0 consists
of a single constant term in K (7). If P(T,Y) is absolutely irreducible (i.e.,
irreducible in K (T)[Y]) and ¢ : C — P! is the finite morphism induced by T
on the smooth projective model C of the curve P(t,y) = 0, then the points
of C' in the fiber ¢~ !(t,) correspond to the distinct irreducible factors of
P(T,Y) in K((T —t,))[Y]. Thus, if t, is not a branch point of P(T,Y), then
the fiber ¢ ~1(t,) consists of d = degy P distinct points @1, ..., Q4, which
correspond to the distinct Laurent series 1, ...,yq in K((T —t,)) solution
of P(T,y;) = 0. The field K(y;(t,)) corresponds to the field of definition
K(Q;) of the point Q; on C,i=1,...,d.

¢1 THE BASIC RESULT
1.1 Statement

The three main results of this paper are based on Th.1.1 below. Given a
polynomial P(T,Y) € K(T')[Y], the separable degree of P(T,Y") with respect
to Y is defined in the following way. If K is of characteristic p, let £ > 0 be
the largest integer such that P(T,Y) € K(T') [ka] ; if p = 0, the convention
is that p¥ = 1. Then the separable degree of P is sepdegy P = degy P/p~.
If k£ is a field and v is an indeterminate, we denote the ring of power series
in u with coefficients in k by k[[u]] and its quotient field by k((u)).

THEOREM 1.1 — Let Py, ..., P, be n polynomials, irreducible in K(T)[Y],
totally split in K (((1/T)/¢)) for some integere > 0 and such that degy P; >
2,i=1,...,n. Leta € K* be a nonzero element of K such that P;(aT*,Y)
is irreducible in K(T)[Y], i =1,...,n. Let b be an element of K of height
h(b) > 0. Then there exist infinitely many integers m such that each of the
irreducible factors of P;(ab™c,Y) in K[Y] is of degree > max(2, sepdegy P;),

1=1,...,n.

With no loss we may assume that P, ..., P, are in K [T, Y] with leading



6 PIERRE DEBES

coefficient in Y equal to 1. The rest of §1 is devoted to the proof of Th.1.1.

The proof divides into two cases.

Case 1: Py,..., P, are separable over K(T) and totally split in K ((1/7))

(i.e.,e=1)and a = 1.

More specifically, case 1 of Th.1.1 consists in proving this statement.

THEOREM 1.1 /Case 1 — Let Py,..., P, be n polynomials irreducible in
KIT,Y], separable over K(T), monic in Y, unramified above T' = oo and
such that degy P; > 2,1 = 1,...,n. Let b be an element of K of height
h(b) > 0. Then the Hilbert subset H = Hp,

powers b™ of b.

p, contains infinitely many

geeey

Case 2 : general case.

The main ingredient of the proof of Case 1 is the diophantine result of
[De3] for “s-integral points”. This result is recalled in §1.2. Then the proof
of Case 1, which takes up all of §1.3, consists of five steps. Finally we prove

Case 2 in §1.4, by reducing to Case 1.

1.2 s-integral points [De3]

A classical tool for studying the Hilbert property is Siegel’s finiteness the-
orem for S-integral points on algebraic curves [La2;Ch.8]. We presented in
[De3] a different approach based on s-integral points rather than S-integral
points. Given an integer s > 0, an element ¢ € K is said to be s-integral if
the set of places v € Mg for which |t], > 1 is of cardinality < s. That is,
the condition “of cardinality < s” replaces the condition “contained in S”
in the usual definition of “S-integral point”. Th.1.2 below is one of the main
results of [De3] : it is a general diophantine result for s-integral points.

From now on, fix an algebraic closure K of K and an algebraic clo-
sure K(T) of K(T). Let P = {P\(T,Y),..., P(T,Y)} be a family of (not
necessarily distinct) polynomials in K (7T)[Y]. For i = 1,...,n, denote the
branch point set of P;(7,Y’) by Br(F;) and set Br(P) = J,;~,, Br(F;).
For each point ¢t € P!\ Br(P), define the parameters D;(P) and _Dt+ (P) by

the following formulas
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D(P)= min [K(t,yi1(t),...,ym(t)) : K(t)]

(1) (ylv'“aym)
D (P) = max [K(Lys(t),.. o y(t)) : K (1)
where in the “min” and in the “max”, (y1, ...,y ) ranges over all m-tuples

with ith entry a root y; € K((T —t)) of P;(T,Y) and with no two equal
entries. The field K (¢,y1(t),...,ym(t)) should be understood as the com-
positum of the fields K (t), K(y1(t)), ..., K(ym(t)). Recall from the Notation
that the field K (y;(t)) is the field generated by the coefficients of the power
series y; € K((T'—1t)), i =1,...,d. When t = T is the generic point of P!,

b2

we use the subscript “gen” instead of “t”. In this case, “y; € K((1T —t))

should be understood as “y; = y; (1) € K(T')”.

REMARK 1. In the special case where the polynomial P;(t,Y) has deg, P;
simple roots in K, i = 1,...,m, D¢(P) (resp. D; (P)) is the minimal
(resp. maximal) degree over K of a field generated by m distinct elements
y1(t),...,ym(t) € K such that y;(t) is a root of Pi(t,Y), i = 1,...,m.
This holds if ¢ is not a root of the discriminant A;(T) € K(T) of P,(T,Y),

1=1,...,m, and so for all but finitely many t.

THEOREM 1.2 — Assume that the polynomials Py (T,Y ), ..., Pn(T,Y) are
separable over K(T) and unramified above T' = co. Let s > 0 be an integer.
There exists a constant hy = hy(P) depending on P = { Py, ..., P,,} with the
following property. Ift is s-integral in K and if h(t) > hys?, thent ¢ Br(P)

and

(2) $ DI, (P) Dy(P) > Dyen(P)

Before passing to the general proof of Th.1.1/Case 1 we give an argument
that works only in characteristic 0 and explain why the possibility of wild
ramification makes the case of characteristic p > 0 more difficult. A point
a € P! is called a tamely ramified branch point of P if the polynomials
P(T,Y), i = 1,...,n are tamely ramified above T' = a, that is, if K is

of characteristic 0 or of characteristic p > 0 with p dividing none of the
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degrees of the irreducible factors of P;(T,Y) in K((T — a)), i = 1,...,n.

Ramification above T' = a is said to be wild otherwise.

Proof of Th.1.1/Case 1 : characteristic 0. We need to show that the
Hilbert subset H = Hp, ... p, contains infinitely many powers b™ of b. By
assumption, co ¢ Br(P). In addition we may assume that 1 ¢ Br(P) :
otherwise replace the polynomial P;(T,Y") by P;(bVT,Y),i=1,...,n, with
u sufficiently large. Eventually ramification is automatically tame above
T = 0 in characteristic 0. It follows from Cor.2.9 of [De3] that

(3) for any integer s > 0 there exist an integer M > 0 and a constant hs
with this property. For all s-integral points t € K of height h(t) > hos?,
at least one out of the M elements t,...,t" belongs to the Hilbert subset

Hp, .. .p,-

Now take for s the number of places of K such that |b|, > 1. For all
suitably large integers u > 0, b* is an s-integral point of K of height h(b") =
uh(b) > has?. Conclude that for these integers u, at least one out of the M
elements b, ..., b"" belongs to the Hilbert subset H py.....p,- Lhis clearly

implies that Hp, . p, contains infinitely many powers b of b. O

Why this does not work in characteristic p > 0. For simplicity as-
sume there is only one polynomial P(7,Y) involved. The point is that the
polynomial P(T,Y), i = 1,...,n may be wildly ramified above T' = 0, in
which case Cor.2.9 of [De3] cannot be applied. A crucial step of the proof of
Cor.2.9 of [De3] consists in constructing a sequence of integers (m;);>o such
that two distinct polynomials P(7™,Y") can only have 0 as common branch
point. In characteristic 0, this implies that the associated field extensions
are linearly disjoint over ﬁ This is not true in characteristic p > 0.
Another argument will be necessary to show that still one may arrange
for these extensions be “relatively disjoint”. Rather than the ramification,
this argument will use the fact that the field extensions associated to the

polynomials P(7",Y") have many automorphisms (Cf. Lemma 1.5).
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1.3 Proof of Th.1.1/Case 1

Step 1 : Preliminary reductions.

From a standard argument (e.g. [La2;Ch.9,Prop.1.1]), there exist poly-
nomials Q1,...,Qn € K[T,Y], irreducible over K(7T'), with degy Q; > 2,
i=1,..., N and such that the set V, defined by

(4) Vp .p, =1{t € K|Py(t,Y) has no root in K,i=1,...,N}

is contained in the Hilbert subset Hp, . p,, possibly up to a finite set F'.

The proof given in [La2] is quite precise ; in particular, this proof shows that

(5) If the polynomials Py, ..., P, are separable over K (7'), then so are the
polynomials Q1,...,Qn.

(6) For all a € P'(K), if the polynomials Py,..., P, are unramified above

T = a, then so are the polynomials Q1,...,Qn-

[More precisely, the proof given in [La2] shows that the polynomials

@1,...,Qn can be obtained in the following way. For each index i =
1,...,n, denote the roots of P;(T,Y) in K(T) by vi1,...,via, where d; =
degy P;. For each subset A C {1,...,d;}, consider all the symmetric func-
tions S(yi;) in y;; with j € A. When ¢ ranges from 1 to n and A over all
possible subsets of {1,...,d;}, one obtains a big subset of algebraic func-
tions in K (T). Remove from it elements of K (7). Then the polynomials
Q@1,...,QnN can be taken to be the irreducible polynomials over K(T') of
the remaining algebraic functions. From this description, (5) and (6) follow

quite easily. [

Another classical argument shows that if a polynomial P(T,Y) € K[T,Y]
is irreducible and separable over K(T'), but not absolutely irreducible, then
the equation P(t,y) = 0 with (¢,y) € K x K has only finitely many solu-
tions. More precisely, such solutions correspond to singular points on the
affine curve P(t,y) =0 (i.e., Pr(to,Y0) = Py (to,Y0) = 0).

Therefore, the polynomials @)1, ..., Qn above can also be required to be
absolutely irreducible. The conclusion of this first step is that, in order to
prove Th.1.1/Case 1, it is sufficient to prove the weaker statement where

the conclusion is replaced by
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(7) The set V' =V, p contains infinitely many powers b™ of b. That is,
for infinitely many integers m > 0, the polynomial P;(b™,Y") has no root in
K, i=1,...,n.

and where the polynomials Pi,..., P, are assumed to be absolutely irre-
ducible and with degy, Q; > 2,7i=1,..., N.

REMARK 2. The reduction to the case the polynomials are absolutely irre-
ducible uses the separability assumption. Without the separability, one can
still reduce to a slightly weaker property. Namely, Prop.1.3 below shows
that one may assume that the polynomials Q)1,...,Qy have a trivial con-
stant field. This will be used in §3.2. Recall that given a polynomial P(T,Y)
irreducible in K(7)[Y] and an embedding of the associated function field
Rp = K(T)[Y]/(P(T,Y)) in K(T), the constant field Cp of P over K is
defined by Cp = RpNK. If P(T,Y) is absolutely irreducible, then Cp = K.

The converse is true if the polynomial P(T,Y") is separable over K (T)).

PROPOSITION 1.3 — Let P(T,Y) be irreducible in K(T')[Y]. Assume that
the constant field Cp of P over K 1is a proper extension of K. Then there
are only finitely many solutions (t,,y,) € K? to the equation P(t,y) = 0.

Proof. Let o € K and M(Y) be the irreducible polynomial of o over K. If
a € Cp, then the polynomial M(Y') has a root in the function field Rp of
P(T,Y). That is, there exists F(T,Y),Q(T,Y) € K(T)[Y] such that

(8) M(F(T,Y)) = Q(T,Y)P(T,Y)

Now assume that there are infinitely many points (t,,v,) € K2 on the
affine curve P(t,y) = 0. All but finitely many of these points (¢,,y,) can
be substituted for (7,Y") in (8). We obtain M (F'(t,,y,)) = 0 for infinitely
many (t,,Y,) € K x K. In particular, M (Y) has aroot in K. That is, a € K.
This shows that C'p = K, which contradicts the hypotheses. [

Step 2 : For each integer m > 0, the polynomial P;(T™,Y) is absolutely
irreducible and unramified above T =00, i =1,...,n.
For m = 1, this is part of the assumption. The “unramified” part for all

integers m > 0 is then clear. The “absolutely irreducible” part follows for
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example from results of [De2] which we recall in §2.2.4, or also, from the

more general Prop.2.3 of [De3].

Step 3 : Construction of a sequence (m;);>o of integers with certain prop-
erties.

The goal of this step is to show the following.

PROPOSITION 1.4 — There exists a strictly increasing sequence (m;);>o
of integers with this property. Denote the splitting field over K(T) of the
polynomial P;(T™3,Y) by E;j, i = 1,...,n, j > 0. For all j > 0 and

i=1,...,n, if y; j+1 € K(T) is an arbitrary root of P;y(T™i+1,y; j+1) = 0,

we have

(9) K(T,yijo1) ¢ Brr - By By En;

Proof. The sequence (m;);~o is defined inductively. Let m; > 0 be any
integer. Assume that mq,...,m; are J integers such that m; < --- <
my and such that (9) holds for each j = 1,...,J — 1. Denote the field
Ey---Eni---E1y---Eny by E(J). Since co ¢ Br(P), the field E(J) can
be viewed as a subfield of K((1/T)). We need to prove that there exists
an integer mji; such that E(J) contains none of the finite list of all the
roots in K ((1/7)) of the polynomials P;(T™7+)Y), i = 1,...,n. Assume
the contrary holds. Then, there exists i = 1,...,n and y € K((1/T)) such
that P;(T,y) = 0 and such that y(7"") € E(J) for infinitely many integers

m. This contradicts the following lemma. ]

LeMMA 1.5 — Let (nj)j>0 be any strictly increasing sequence of integers

not divisible by the characteristic p of K. Then ifi is any index in {1,... n}

and y is any root in K((1/T)) of P;(T,y) =0, then the subfield
K(T,{y(1T"),j > 0})

of K((1/T)) generated by all the y(T™) with j > 0, is of infinite degree

over K(T).

Proof. Set P; = P for simplicity. Assume that the field extension
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K(T,{y(T™),j > 0})/K(T)

is of finite degree. From Galois theory, there exists a subextension E/K(T)
such that

(10) E = K(T,y(T™))

for infinitely many j > 0. (This uses the separability assumption of Case 1
of Th.1.1).

Let j > 0 and ¢ € K be a n;th root of 1. The automorphism of K ((1/1'))
mapping T to (T induces an automorphism of K (T, y(7T™)), which we de-
note by A. Let ¢ : C — P! be the finite morphism of smooth projective
curves corresponding to the field extension E/K(T). Denote the automor-
phism of P! corresponding to the rational function (7 by . If the integer j
satisfies (10), the automorphism A corresponds to an automorphism C' — C,
still denoted by A, such that ¢ o A = X o ¢. In particular, since A(c0) = oo,
A permutes the elements of the fiber ¢~!(0o). Similarly, A permutes the
elements of the fiber ¢~1(0). Since P(T™,Y) is unramified above T' = oo
and is absolutely irreducible (Step 1), the fiber ¢! (co) consists of at least
degy- P distinct points. Conclusion : if the integer j is such that (10) holds,
then the curve C has at least n; automorphisms (corresponding to the n;
n;th roots of 1 in K), which permute the elements of a fixed subset of C
of cardinality > degy P + 1 > 3 (namely the subset ¢ !(co) U ¢ 1(c0)).
Lemma 1.6 below shows this cannot occur for infinitely many integers n;.
]

LEMMA 1.6 — Let C be an algebraic curve defined over K. Then there

are only finitely many automorphisms of C' sending three given points of C'
in a finite subset of C.

Proof. We need to prove that there are only finitely many automorphisms
of C fixing three given points of C. Let g be the genus of C. For g = 0,
it is a classical property of Aut(P!) = PGL(2). If g > 2, the curve C has
anyway only finitely many automorphisms. This is Hurwitz’s theorem in
characteristic 0 [Hu]; the case of positive characteristic is due to Schmid

[Sch]. As for g = 1, the result is true with “three given points” replaced by
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“one given point”. Indeed select one point O € C(K); (C,0) is an elliptic
curve. Any automorphism ¢ of C is of the form ¢ = 7 o F where 7 is
a translation and F' is an automorphism of the elliptic curve (C,O). The
automorphism ¢ is completely determined by F' and the image ¢(A) of any
given point A of C'. Conclusion follows from the fact that the number of

automorphisms of an elliptic curve is finite [Si;Ch.3]. ]

Step 4 : Final strategy and choice of parameters.
We will establish the following statement (which is the same as (3) except

that “Hp, . p,” is replaced by “Vp  p 7).

(11) For any integer s > 0 there exist an integer M > 0 and a constant hs
with this property. For all s-integral points t € K of height h(t) > hys?, at

least one out of the M elements t,...,t* belongs to the set Ve, ..p,

As explained in §1.2, it then suffices to take t = b* with u any suitably large
integer to obtain that Vp,  p contains infinitely many powers b™ of b, i.e.,
conclusion (7).

From now on fix an integer s > 0. Select an integer J such that

(12) 27 > s(degy P1)!---(degy P,)!

Then take for M the Jth term of the sequence (m;);~o constructed in Step
3. Finally define the constant hy to be the largest one of the constants hq
of Th.1.2 associated with the families P; = {P;, (1,Y),..., P;,,(T™,Y)}
where i = (i1,...,1y) ranges over all families of indices i; € {1,...,n}
indexed by {1,..., M}.

Let t be an s-integral point of K of height h(t) > hos®. Assume that
conclusion (11) does not hold, i.e., that, for each m = 1,..., M, at least
one out of the polynomials P;(t"™,Y) (i = 1,...,n) has a root in K. In

particular

(13) for each j = 1,..., J there exists an index i; € {1,...,n} such that the
polynomial P;, (™7,Y") has a root y;(t) € K.

We show now how this leads to a contradiction.
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Step 5 : Applying [De3|.

Consider the family of polynomials P; = {P,, (T™,Y),..., P;,(T™,Y)}
where i = (i1,...,4y) is the J-tuple given by (13). By hypothesis, polynomi-
als in P; are separable over K(7T'). From Step 2, they are unramified above

T = oco. Applying Th.1.2 to the family P; gives

(14) 1= [K(y(t),...,ys(t)) : K] > ;5278))3

Now it follows from Prop.2.2 of [De3] that

(15) D3, (Ps) < (degy P1)!- - (degy Py)!

Substitute (15) back in (14) to obtain

(16) Dgen(Pi) < S(dng Pl)' e (dng Pn)'

Now it follows from Prop.1.4 that Dgen(P;) > 27, which, together with
(16), contradicts (12). This achieves the proof of Th.1.1/Casel. O

1.4 Proof of Th.1.1 : general case

We will reduce to the first case. For i = 1,...,n, let k; > 0 be the largest
integer such that P;(1,Y) € K(T)[Y?"] and P,(T,Y) € K[T,Y] be the
polynomial defined by

PZ(T, kal) = PZ(G,TC, Y)

The polynomial PZ(T ,Y) is irreducible in K[T,Y]. Furthermore, it is sepa-
rable over K(T'). Finally from the assumption on e, it is unramified above
T = oo. From the first case, there exist infinitely many powers b of b such
that pi(bm, Y) is irreducible in K[Y], i = 1,...,n. This implies that for
those m, P;(ab™¢,Y) has all of its roots of degree over K larger than or
equal to degy B = sepdegy P, i =1,...,n.

We are left with the case that for some index ¢, sepdegy P; = 1. Then
K is necessarily of characteristic p > 0. The proof will be complete if

we show that for all but finitely many m, P;(ab™° Y) has no root in
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K. The polynomial P;(T,Y) is of the form P;(T,Y) = yr' — A(T) with
A(T) € K[T]. The polynomial P;(aT*®,Y) = yr' - A(aT®) is totally split
in K((1/T)), so A(aT¢) € K((1/T))» N K(T) = K(TP). But by hypothesis
Py(aT*,Y) = Y?* — A(aT®) is irreducible in K[T,Y] so A(aT¢) ¢ K(T)P.
Therefore A(aT*®) is of the form B(T?) with B € K[T]|\ KP[T]. Conclude
from Lemma 2.8 (a) of [De3] that there are only finitely many integers m > 0
such that B((b™)P) = A(ab™¢) € KP. O

Th.1.1 is the main ingredient of the proofs of the three main results
of this paper. The rest of this paper essentially consists in reducing to a
situation where the assumption of Th.1.1 holds, i.e., where there exists a
nonzero element a € K* and an integer e > 0 such that the polynomials
P(T,Y) involved have the property that P(aT®,Y") is irreducible in K (7)[Y]
and unramified above T" = oo. This is a function field part. For Th.2.1, the
main argument is Prop.3 of [Del]. For Th.2.2 and Th.3.4, we use previous
results of [De2] on the irreducibility of polynomials of the form P(7T™,Y).

§2 SPECIALIZING TO POWERS

2.1 Proof of Theorem 2.1
We start with Th.2.1 which is a little easier to establish.

2.1.1. Restatement of Th.2.1.
THEOREM 2.1 — Let K be a field with the product formula. Let Hp, ... p,
be a Hilbert subset of K with Py, ..., P, irreducible in K(T)[Y] and totally
split in K(((1/T)Y/¢)) for some integer ¢ > 0. Then there exists a finite
extension L of K with the following property. Let b be an element of K of
height h(b) > 0 and such that

(1) b ¢ Lt for all prime divisors £ of e and b ¢ —4L* if 4 divides e.

Then the Hilbert subset Hp, . p, contains infinitely many powers b™ of b.

Th.2.1 is more precise than the one stated in the introduction. Assump-
tion on b was essentially that (1) holds for all integers e > 0. Also the polyno-
mials are here only assumed to be totally split in K (((1/7)'/)). This holds
if the polynomials are, as in the introduction, separable and tamely rami-
fied above T' = oo. But the converse is not true (take P(T,Y)=YP —T €
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F,(T)[Y]). Recall that these conditions automatically hold in characteris-
tic 0. Finally the proof below gives a description of the extension L/K of
Th.2.1.

2.1.2. Proof of Th.2.1. It is sufficient to prove the weaker conclusion
where H = Hp, . p, is replaced by V  p (with the extra assumption
that degy P; >2,i=1,...,n). Fori=1,...,n, let

P(T°Y) =11 ---1L,,

be a factorization of P;(1°,Y) in irreducible polynomials in K (1')[Y]. Define

the extension L/K as follows

(2) L is the extension of K generated by the coefficients in K of all the

polynomials I;;, ¢ = 1,...,n, 7 =1,...,7;.

The extension L/K is finite. Let b be an element of K of height h(b) > 0
and such that condition (1) holds. From Capelli’s lemma [Lal ;p.221], the
polynomial Y¢ — b is irreducible in L[Y]. Tt follows then from Prop.3 of
[Del] that the polynomial P;(b7°,Y) is irreducible in K(7T)[Y] (in [Del],
the result is stated for K = Q but the proof is valid for any field).

Conclude from Th.3.1 that for infinitely many integers m, the polynomial
P;(b™*1Y) has all of its irreducible factors of degree > 2, i = 1,...,n.
L

2.2 Proof of Theorem 2.2
2.2.3. Restatement and generalisation of Th.2.2 and Th.2.3.

The following result is a little more precise than the one stated in the in-

troduction.

THEOREM 2.2 — Let K be a field with the product formula. Let P(T,Y) €
KIT,Y] be a polynomial absolutely irreducible and separable over K(T).
Assume further that for some integer e > 0, P(T,Y) is totally split either in
K((T"Y®)) orin K(((1/T)Y¢)). Let b be an element of K of height h(b) > 0
such that

(3) b ¢ K* for all prime divisors ¢ of e and —b ¢ K? if 4 divides e.

Then P(b™,Y) is irreducible for infinitely integers m > 0.
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Th.2.2 is not a special case of Th.2.1, but rather of Th.2.3 below. This
new result is similar to Th.2.1 : several polynomials are involved, the con-
dition on b is of the same kind as in Th.2.1, but for another extension C/K
instead of L/K . In certain situations this extension is easier to control than
the extension L/K. For example, the extension L/K can be non trivial even
though the polynomials Py, ..., P, are absolutely irreducible : take n = 2,
P =Y?-T, P, =Y? - 2T, then L = K(v/2). In the same example, the
extension C'/K of Th.2.3 is trivial. On the other hand, there is in Th.2.3 an
extra assumption on the number of polynomials P, ..., P,. Miraculeously
this assumption is always empty in the special case of a single absolutely

irreducible polynomial. This special case of Th.2.3 is Th.2.2.

THEOREM 2.3 — Let K be a field with the product formula. Let
P (T,Y),...,P,(T,Y) be n irreducible polynomials in K(T)[Y], separable
over K(T) and totally split in K((T/°1)),..., K((T"°")) respectively for
some integers ey, ...,e, > 0. Let Dp, be the set of divisors { of e; such that
¢ is a prime or { =4 and let yp, € K(T') be a root of P;(T,Y),i=1,...,n.
Set Dp = Jy<;<,, Dp,. Assume that

(4)  for each ¢ € Dp, the number of indices i € {1,...,n} such that
teDp, is <l ifl#4 andis <2 if { =4.

Let C be a field containing all the constant fields of the function fields
K(T,yp,), i =1,...,n. Let b be an element of K of height h(b) > 0 such
that

(5) b ¢ C* for all prime divisors ¢ of e and —b ¢ K? if 4 divides e.

Then the Hilbert subset Hp, . p, contains infinitely many powers b™ of b.

2.2.4. Preliminary results. The following result is used in the proof

and in several other places of this section.

PROPOSITION 2.4 — Let P(T,Y) be a polynomial irreducible in K(T')[Y]
and totally split in K(((1/T)Y/®)) for some integer e > 0. Let yp € K(T)
be a root of P(T,Y). Let m > 0 be an integer. The following statements are

equivalent.

(i) The polynomial P(T™,Y") is reducible in K(T)[Y].
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(ii) T € K(T,yp)® for some common prime divisor { of e and m, or 4
divides e and m and T € —4AK(T,yp)*.

In particular, if P(T,Y) is unramified above T = oo (i.e., e = 1), then
P(T™,Y) is irreducible in K(T)[Y] for all integers m.

Proof. See [De2;82]. (In [De2], the base field is of characteristic 0 but the
only role of this assumption is to guarantee that polynomials P(T,Y) €
K(T)[Y] are totally split in K(((1/7)'/¢)) for some integer e > 0. Thus
[De2 ;§2] is valid for any field provided that such a condition is added to the
hypotheses.) [

The basic lemma for Th.2.2 and Th.2.3 is this.

LEMMA 2.5 — Let P(1,Y) € K(T)[Y] be a polynomial, irreducible in
K(T)[Y] and totally split in K(((1/T)'/®)) for some integer e > 0. Let
yp € K(T) be a root of P(T,Y). Let Dp be the set of divisors { of e such
that ¢ is a prime or £ = 4. Let C C K be a field containing the constant
field Cp of the function field K(T,yp), i.e., Cp = K(T,yp) N K. Let b be
an element of K such that (5) holds. Then there exists a family of integers
(we)wepp) with the following property. For all ¢ € Dp, if u is an integer

such that

(6) { uZug [mod (] if € # 4
uZug [modl] anduZuy [mod?2] ifl =4

Then P(b"T*,Y) is irreducible in K(T)[Y].

Proof. For each ¢ € Dp \ {4}, define the integer u, in the following way :
if P(b*T*,Y) is irreducible in K (T)[Y] for all integers u > 0, set uy = 0
in the opposite case, pick an arbitrary u such that P(b%7*,Y) is reducible
in K(T)[Y] and set uy = u. For £ = 4, take for uy an arbitrary integer such
that b="4T lies in —4K (T, yp)* and set uy = 0 if there are none of them.

Let £ € Dp and u be an integer satisfying (6). Assume that P(b*T*,Y)
is reducible in K(T)[Y].

1st case : ¢ # 4. From Prop.2.4, both b= and b~ *“T lie in K(T,yp)".

Consequently, b*~* is the ¢th power of some element in K (7', yp), which is
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automatically in C. Conclude from (5) that w = uy [mod /], a contradic-

tion.

2nd case : ¢ = 4. From the first case, since u # us  [mod 2], P(b*T?, X) is
irreducible in K (T)[Y]. So b=%T ¢ K(T,yp)?. It follows then from Prop.2.4
that if P(b*T%,Y) is reducible in K(T)[Y], then both b~%T and b~“T lie
in —4K (T, yp)*. Conclude like in the first case that b*~“¢ is the 4th power
of some element in C. Then it follows from “b ¢ C?” that u =wuy [mod 2]

and b? € C*. Therefore b or —b is a square in C, a contradiction. O

2.2.5. Proof of Th.2.2. (and Th.2.3). One may assume that P(7,Y)
is totally split in K (((1/7)¢)) : otherwise change T to 1/T and b to 1/b
(note that condition (3) holds equivalently for b and 1/b. The polynomial
P(T,Y) is also assumed to be absolutely irreducible. Hence, one can take
C = K in Lemma 2.5. Let b be an element of K of height h(b) > 0 and such
that (3) holds. We wish to show that the polynomial P(b™,Y") is irreducible
in K[Y] for infinitely many m.

Apply the Chinese remainder theorem to find an integer u such that
u#uy [mod (] for all £ € Dp. Conclude from Lemma 2.5 that P(b%T*,Y)
is irreducible in K(T)[Y] for all £ € Dp. It follows then from Prop.2.4
that P(b“T*°)Y) is irreducible in K(T)[Y]. Apply Th.1.1 to complete the
proof of Th.2.2 (note that sepdegy, P = degy- P because of the separability
assumption).

The same argument works for several polynomials Py, ..., P, provided
that one can find an integer u satisfying (6) for all the polynomials simul-

taneaously. It is the role of assumption (4) in Th.2.3. O

2.3 Cyclhilbertian Hilbert subsets

From Capelli’s lemma, condition (3) of Th.2.2 (or condition (1) of Th.2.1)
is essentially equivalent to the irreducibility of the polynomial Y°¢—bin K[Y].
So Th.2.2 says this in particular : the knowledge of elements in the Hilbert
subset associated with the polynomial Y °—1" automatically provides explicit
elements in the Hilbert subset Hp. More generally, call cyclhilbertian a
Hilbert subset Hp, ... p, if the polynomials Pi,..., P, are of the form Y —
a1 where e > 0 is an integer and a € K*. It is tempting to ask whether
a field K such that all cyclhilbertian subsets are infinite is hilbertian 7 The
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answer is “No”. The subfield K = Q! of Q of all totally real algebraic
numbers is a counterexample. Indeed, Q" is not hilbertian : the Hilbert
subset Hp with P =Y? — (T? 4+ 1) is empty. Now we have.

PROPOSITION 2.6 — Ife > 0 is an integer and a € K*, then Y° — a,/q
is irreducible in Q'[Y] for all but finitely many prime numbers q > 0. In

particular, cyclhilbertian subsets of Q" are infinite.

Proof. Let D, be the set of divisors ¢ of e such that

) e (is a prime and 3 b € Q such that o 'Vb € (Qtr)ga or
e {=4and 3be Qsuch that a Vb e —4 (@”)4

For each ¢ € D, pick an integer b = b, satisfying (7). Then let ¢ > 0 be a
prime number such that |bs|, =1 for all £ € D..

Let £ be a prime divisor of e. We claim that

(8) ayq ¢ (Q7)°

This is clear if ¢ ¢ D,. So assume ¢ € D,. Then showing (8) is equiva-
lent to showing /qby ¢ (@”)e. From Capelli’s lemma, Y2¢ — ¢b, is irre-
ducible in Q[Y]. Consequently, the conjugates of (v/gby)'/* over Q are all
the ((v/qbe)'/¢ where ¢ runs over the set pg, of all 2/th roots of 1. Since

poe ¢ R, conclude that /gb, ¢ (Q').
Similarly, one shows that if 4 divides e then

9) ay/q ¢ —4(Q")"

Again use Capelli’s lemma to conclude from (8) and (9) that Y° — a,/q is
irreducible in Q'"[Y]. O

REMARK 1. Prop.2.6 shows that Th.2.2 is not true for elements b € K of
height h(b) = 0. Indeed let P(T,Y) € Q'"[T, Y] be an absolutely irreducible
polynomial. If X is an indeterminate, the polynomial P(7,Y), regarded
in Q" (X, T)[Y], is still absolutely irreducible. The field Q" (X) is a field
with the product formula. From Prop.2.6, one can pick an element b € Q"
such that Y(desy P)' _ p is irreducible in Q! [Y]. Then Y(desy P)' _ p ig
still irreducible in Q" (X)[Y] and h(b) = 0 where h is the height attached
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to Q' (X). If Th.2.2 were true with h(b) = 0, then P(b™,Y) would be
irreducible in Q' (X)[Y] and a fortiori in Q'"[Y], for infinitely many integers
m > 0. This contradicts the fact that, as we noted above, Hilbert subsets

Hp of Q" may be empty.

2.4 Further remarks and problems
Th.2.1 has this hypothesis :

(10) The polynomials Py, ..., P, are totally split in K(((1/7)'/)) for some
integer e > 0.

What happens if this hypothesis is removed 7 That is, essentially, if there
is wild ramification above oo for some of the polynomials Py, ..., P,. Of
course this can occur only in characteristic p > 0.

More precisely, let K be a field with the product formula. For simplicity,
take n = 1 and Py(T,Y) = P(T,Y) absolutely irreducible and separable
over K(T') (as in Th.2.2). But do not assume anymore that (10) holds. Let
b € K of height h(b) > 0 and such that

(11) b ¢ K* for all prime numbers ¢ and —b ¢ K2.

The questions are :

PROBLEM 2.7 — Under the conditions above is it true that P(b™,Y) is
irreducible in K[Y] for infinitely many integers m > 0 ¢ Can condition (11)

be removed if ramification is wild above oo ¢

We have other questions. By using Siegel’s theorem the two following
statements can be proved in the case that K is a number field [De2 ;Cor.1.6
and Cor.1.7].

(12) If P(T,Y) is irreducible in K(7T)[Y] and is unramified above T =
00, then for each b € K* of height h(b) > 0, the polynomial P(b™,Y) is
irreducible in K[Y] for all but finitely many integers m > 0.

(13) Let H be a Hilbert subset of K and b be an element of K of height
h(b) > 0. Then there exists a € K \ {0} such that P(ab™,Y) is irreducible
in K[Y] for all but finitely many integers m > 0.
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Th.2.2 gives (12) for a field with the product formula but with “for all
but finitely many integers m > 0” replaced by “for infinitely many integers
m > 0”. The following example shows one cannot expect (12) to extend to

fields with the product formula in general.

ExampLE 1. Take K = [F,(X) with X an indeterminate and P(1,Y) =
YP —Y — 1. Then if b = 1/(u? — u) with u € K, then we have, for all
integers k > 0

C= @) - )

1/6°" = (uP — )P

Therefore P(b™,Y) has a root in K for all integers of the form m = p*
(k> 0).

On the other hand, concerning (13) the question is still open.
PROBLEM 2.8 — Does (13) hold if K is a field with the product formula ?

Finally the following example, due to Geyer [FrJ;Ex.14.19], shows that

Th.2.2 does not extend to general hilbertian fields, even in characteristic 0.

ExampLE 2. Take K = k((X1,X2)) the field of formal power series in
two variables over an arbitrary field k (of characteristic p # 2). This is
an hilbertian field [FrJ ;Cor.14.18]. Take P(T,Y) = Y? — (1 4+ X;T). Then
P(b,Y) is reducible in K[Y] for all b € k[[X;, X3]].

But the following weaker problem remains open.

PROBLEM 2.9 — Prove or disprove the following statement :

(14) Let K be a hilbertian field and H be a Hilbert subset of K. Then there

exists b € K such that H contains infinitely many powers ™ of b.

¢3 THE STRONG APPROXIMATION PROPERTY
The goal of this paragraph is to prove Th.3.4 below (also stated in the

introduction). The main tool is Th.1.1. The role of Lemma 3.1 is to reduce to
the case “Py,..., P, totally split in K (((1/T)'/¢)) for some integer e > 0”.

It remains then to show the existence of an element a like in Th.1.1. This
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is the purpose of Lemma 3.2. Putting together these three results yields
Th.3.3. Th.3.4 follows then readily from Th.3.3.

3.1 Preliminaries

LEMMA 3.1 — Let P(T,Y) be a polynomial irreducible in K(T')[Y]. Then
for all but finitely many t, € K, the polynomial P(t,+ %,Y) is totally split
in F(((I/T)l/pdegyp)) (with the convention that if K is of characteristic
p=0, then pdeer ¥ =1).

Proof. This is standard in characteristic 0. Assume K is of characteristic
p > 0. Let k > 0 be the largest integer such that P(T,Y) € K(T) [ka] and
P(T, Y) € K[T,Y] be the polynomial defined by P(T, ka) = P(T,Y). The
polynomial P(T, Y') is irreducible and separable over K (T'). Therefore the
discriminant A(T) € K (T) of P(T,Y) is a nonzero polynomial. Let t, € K
such that A(t,) # 0. Then the polynomial P(t, + +.Y) is totally split in
K((1/T)). Conclude that P(t, + %,Y) is totally split in K (((1/T)"/?")).
]

LEMMA 3.2 — Assume that the field K is imperfect of characteristic
p >0 (i.e., K? is properly contained in K ). Then the group K> /(K*)P is

infinite.

Proof. The following argument is inspired by the proof of Lemma 11.15
of [FrJ]. Assume on the contrary that K> /(K*)P consists of the classes of
finitely many elements 71, ..., v, of K*. Pick an element 3 in K \ K?. Then
v T +7;06 ¢ KP[T],j=1,...,p. Then, from Lemma 2.8 of [De3], for each
Jj=1,...,p, there is at most one element ¢ € K such that ~;t? 4 ;3 € KP.
Conclude that, excluding finitely many ¢t € K, v,;(t*?+03) ¢ KP,j=1,...,p.

A contradiction. O

3.2 Applying Th.1.1

Th.3.4 will be an easy consequence of the following more precise result.

THEOREM 3.3 Let K be a field with the product formula, of char-
acteristic 0 or imperfect of characteristic p > 0. Let H = Hp, .. p, be a

Hilbert subset of K with Py, ..., P, irreducible in K(T)[Y]. Then for all but
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finitely many t, € K, there exists a € K> with the following property. If b
is an element of K of height h(b) > 0, then the Hilbert subset H contains
infinitely many elements of K of the form t, + ab™ (m > 0).

Proof. It is sufficient to prove the weaker conclusion where H = Hp,, . p,
is replaced by V' = V5 p (with the extra assumption that degy P; > 2,
i =1,...,n). Also, from Prop.1.3, one may assume that the polynomials
Py, ..., P, have a trivial constant field. Fix an integer D such that D >
degy P;, i =1,...,n. Using Lemma 3.1, pick t, € K such that P;(t,+ %, Y)
is totally split in K (((1/T)Y/?")),i=1,...,n.

Set e = p”. We show next that

(1) There exists @ € K such that P;(t, + 75,Y) is irreducible in K (7T')[Y],

1=1,...,n.

In characteristic 0, e = 1; take a = 1. Assume K is of characteristic p > 0.
In fact, from Prop.2.4, given a € K*, if for some index i, P;(t, + a/T°,Y)
is reducible in K(7T")[Y], then a7 should lie in the pth power of the function
field over K of P;(t,+1/T,Y). Use the assumption on the constant fields of
Py, ..., P, to conclude that two elements a,a’ € K™ with the same property
are necessarily in the same coset of K* modulo (K*)?P. Thus (1) follows
from Lemma 3.2. The end of the proof is a straightforward application of
Th.1.1. O

3.3 Proof of Th.3.4

We are now ready to prove the last result stated in the introduction (Th.3.4
below). Recall some notation. For v, € M, define U, to be the restricted
topological product of the K, with respect to the local rings O,,, where v
ranges over all places v € Mg, v # v,. That is, U, = Hv#vo K, as a set
and a basis of neighborhoods of 0 is given by the sets U(e, S) defined as
follows : € is any positive real number, S is any finite subset of Mg \{v,}
such that S U{v,} contains all the archimedean places of K and U (e, S) is
the subset of U, consisting of all elements (3,)yy, such that

(2) Bulo <€, for allv e S
|Bv|v <1, for all v ¢ S,v 7& Vo

The field K is embedded in U, by the diagonal embedding. Th.3.4 is
the following density property of Hilbert subsets.
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THEOREM 3.4 — Let K be a field with the product formula, of charac-
teristic 0 or imperfect of characteristic p > 0. Let v, € M. Assume that
0 s not wsolated in K for the induced topology of U, . Then every Hilbert
subset of K is dense in K for the same topology.

Proof. Let H = Hp, . p, be a Hilbert subset of K. For all t € K, H —
t is still a Hilbert subset, namely the Hilbert subset associated with the
polynomials Py (T + t,Y),..., Po(T + t,Y). Thus we only need to prove
that 0 is in the topological closure of any Hilbert subset H = Hp, . p,.
Let Ul(e, S) be a basic neighborhood of 0 with 0 < & <1 and S # (). From
the assumption “0 is not isolated in K", the subset U(e/2,5) N K of K is
infinite. Pick t, in U(g/2, S)NK and a € K* such that conclusion of Th.3.3
holds. Now let S, be the subset of My consisting of the places in S and
the places v for which |a|, > 1. Pick b in U(1,S,). Then from Th.3.3, for
infinitely many integers m > 0, we have t,+ab™ € U(e, S)NHp, ... p,. O
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