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1 Introduction

The present paper arose in connection with the applications of techniques from
transcendental number theory in the context of algebraic functions and Hilbert’s
irreducibility theorem.

Letk be a number field anfl € k[X, Y] be an absolutely irreducible polyno-
mial with n := deg, (P) > 1. We may viewY as a rational function on the curve
defined byf . Hilbert’s irreducibility theorem may be restated by saying that for
infinitely many ¢ € k the values 1Y (¢),...,Y""1(¢) are k-linearly indepen-
dent (for any choice of the branch). It is classical that, away from ramification
points of X, each branch may be represented as a power serigf Xi] which
is a G-function. Moreover the vector¥ := (1,Y(X),...,Y""1(X)), whereY
runs through such power series, satisfy a linear differential systemkgX@r It
seems natural to ask whether such a linear independence result holds in general
for vectors ofG-functions satisfying similar conditions, where now the values of
Y should be taken fof lying in the circle of convergence of the relevant power
series with respect to a given absolute valu&kofThe purpose of the present
paper is to provide an affirmative answer.

Special values ofG-functions, which go back to Siegel [Sie], have been
widely investigated. After some results of Bundschuh [Bun] and Schneider
[Sch] in the case of algebraic functions, explicit applications to Hilbert's ir-
reducibility theorem were obtained by Sprindzuk in a series of papers around
1980 (seee.g. [Spr]). Later on, Bombieri and Ebes, working with methods
stemming respectively from Siegel’s and Gelfond’s, obtained certain crucial in-
equalities which led to independence statements for special values of vectors
(Y1(X), ..., Ya(X)) of G-functions satisfying a linear differential system over
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Q(X). The results, however, were weaker than those availabl& fimctions
satisfying similar conditions (see.g. [Ba; Chap. 11, and allowed to prove
linear independence of values at algebraic arguments only in special cases. For
instance, though interesting consequences in the context of algebraic functions
were drawn both by Bombieri [Bol], [Bo2] anddbes [Del], [De2], Hilbert's
irreducibility theorem did not follow in its full generality by a direct application.
The main reason is that the basic inequality of Bombieri agld3 is particularly
effective when the field generated by the coefficients of the releBafoinctions

has “low” degree over the ground field, a condition which is often not true for
power expansions of algebraic functions. In certain cases Bombieri managed
to overcome this difficulty by replacing the original differential system with a
suitable symmetric power of it (see for instance Theorem 5 in [Bol]), but the
assumptions involve algebraic independence conditions that are not satisfied in
the case of algebraic functions: some ratj¢X)/Y1(X) is required to be a tran-
scendental function. In contrast here, we obtain resultinear independence
overK of values at rational points, assumitigear independencever K (X) of

the relevant functions.

Around 1986, [Bbes realized that a certain trick introduced by Weissauer
[Wei] and Fried [Fr] could be successfully combined with the inequality obtained
by him and Bombieri to produce a new complete proof of Hilbert's irreducibility
theorem (seee.g. [De2]). This method was recently developed to obtain new
results on Hilbert's theorem ([De3], [De4], [De5]). Here we follow the same
method, supplementing it with the necessary modifications for an application
to more generals-functions. The above mentioned difficulty related with the
degree of the field of coefficients is completely overcome by this method.

2 Statement of the main result

We first introduce some notation. Lietboe a number fieldp be a positive integer
and A = A(X) be ann x n matrix with entriesa ;(X) € k(X). Consider the
differential operatorZ :=D — A, whereD :=d/dX.

Assume that there is a (column) vector solutdor= (Y1(X), ..., Ya(X))! of
Y =0 such that each compone¥jt(X) is a power series with coefficients in
Q. (This holds for example if 0 is an ordinary point 6f, that is, if O is not
a pole of anya; j(X)). The field generated ovée by the coefficients of these
power series is then necessarily a number field. Here is a brief argument for this
more or less standard fact.

Define the order at zero of a vector with entries(if{x]] as the minimum
order of its entries. Nonzero vectors with pairwise different orders are linearly
independent over the constants. Therefore the order of a nonzero vector solution
of our system is bounded. That is, there exists a positive intBigsuch that
two vector solutions which agree modut® must in fact be equal. Take now a
vector solutionY with entries inQ[[x]] and letL be the number field generated

1 In fact equally general results would be false in the case-fnctions [Wol].
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by the coefficients of the system and the fikstcoefficients of all the entries of
Y. If o € Gal(Q/L), theno(Y) is a new vector solution congruent % mod
xN. So the two solutions coincide, thus proving tiahas coefficients ir..

Fix a number fieldK containingk and the coefficients o¥1(X), ..., Yn(X).
Assume in addition that1(X), ..., Y,(X) are G-functions (see below for a defi-
nition). For each valuatiom of K, let R, denote the (non-zeraj-adic radius of
convergence off. Then we may regard as a vector functiory, on the open
ball B(O,R,) := {£ € K, | 0 < |¢], < R,} and with values in the completion
K,. We will prove the following

Theorem 1. If Y1(X),...,Yn(X) are linearly independent ove)(X) then, for
every positive number R R, there exist infinitely many € Q N B(0, R) such
that the elements; Y (¢) of K,, i =1,...,n, are linearly independent over K.

The proof will provide a more precise result, stated as Theorem 2 at the end.

Remark 1.More generally, the assumptiory7{(X), ..., Y,(X) linearly indepen-
dent over(Q(X)” can be removed to conclude that there exist infinitely many
rational points¢ € B(0, R) (with 0 < R < R,) such that the rank ovef of the
valuesY (&), ..., Yn(£) (we omit here the reference tg supposed to be fixed)
is at least equal to the rank ovér(X) of Yi(X),..., Ya(X). Namely, we show
below how to deduce the following more general statement from Theorem 1:

(*) There exists an infinite set & @ N B(0, R) with the following property: if J
is any subset of1, ...,n} such that the power serieg(X) (j € J) are linearly
independent ove)(X), then for all but finitely many € S, the values;Y¢),
j € J, are linearly independent over.K

Observe first that we may renumber indices to supposevitixd, . . ., Y (X)
are linearly independent ovér(X), while we have relations

Ym(X) =) am(OYi(X),  m=1

i=1

..., Q)

where ¢; m(X) € Q(X) for all i,m. Next enlarge the number field to as-

sume that it contains the coefficients of all g, (X). Relations (1) imply that
(Y1(X), ..., Y, (X)) satisfies a linear differential system ov€r(X). Applying

Theorem 1 taYy(X),...,Y,(X) yields an infinite seS ¢ @ N B(0, R), disjoint

from the set of poles of the , and such that, fo€ € S, Yi(¢),..., Y, (&) are

linearly independent ovef .

Let nowJ be a subset of1, . ..,n} such that the power seri&(X) (j € J)
are linearly independent ove¥(X). Then the matrixc ;(X) (i =1,...,r,j €J)
has maximal rank. Throwing away a finite subset fr8nwve may assume that
the specialized matrix & € S has still maximal rank, so th¥(§) (j € J) are
linearly independent ovef.
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Remark 2.The more precise conclusion in Remark 1 allows to deduce di-
rectly the general form of Hilbert’s irreducibility theorem involving any num-
ber of absolutely irreducible polynomials,...,fs € K[X,Y]. Namely, let

Z; be an algebraic function solution &f(X,2z) = 0 (in some algebraic clo-
sure of k(X)), i = 1,...,s. Setn := deg,fi, i = 1,...,s. The vector

Y =(1,2,... ,21“1*1, oo, L Zs, ..., 2071 satisfies a differential system over
K (X). After a translation orX if necessary, one may assume that O is an ordi-
nary point. Then, each algebraic functi@ncan be expanded in a power series
Z € QI[X]], which is a G-function,i = 1,...,s. Apply the conclusion in Re-
mark 1, for any choice of. Since 17, ... ,Zi”‘*1 are linearly independent over
Q(X) for everyi = 1,...,s, we obtain that their values at the elemefitsf an
infinite setS € Q (the same for ali), are linearly independent ové. This
means that, for every € S, fi(¢,Y) is irreducible oveK,i =1,...,s.

3 Auxiliary propositions

Following mainly [An], [Del] and [DGS], we recall some notation and definitions
concerningG-functions. Given a number field denote byMg (resp.MpP) the
set of places (resp. finite places) Bf For eachv € Mg denote the absolute
value extending the usual one @gnby | - |, denote the completion & atv by

F, and the local degree], : Q,] by df. Then define the local height, to be
h,(x) := log" x|, (where as usual Idg = logmax1,y}). The Weil logarithmic
height is then defined by the following formula: fore F,

CEISND SEANG

vEME

Given a formal power serieg = Y cnX™ € F[[X]], we now define
F
Y 1 suph,(cs).

1 d
Z) :=limsu
0( ) p %F [F Q s<m

m—oo M

Definition 1. The formal power series Z is said to be a G-functioa(i¥) < co
and if Z is a solution of a linear differential equation with coefficients)i¢x).

This condition is equivalent to the following ([An; Chap. 1 Sect. 1.3] or [DGS;
Chap. 8, Proposition 1.1, p.265[¥ has a non-zero radius of convergence for
each embedding of F iff and there exist positive integers,Nsuch that N,Cs,

0 < s < m are algebraic integers and;N< N™ for a suitable N and all m> 0.
Using for instance this characterization it is immediate to prove the following

Lemma 1. Let Z € F[[X]] be a G-function andy, 3 € F, a # 0. Then Z(lﬁ‘gx)
is a G-functior? Furthermore, sums and products of G-functions are G-functions.

2 Of course we mean the composition of the formal power serigad ax Z gmxm
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Following [An; Chap.4 Sect.5] or [DGS; Chap.7 Sect. 2] we now define
the Galochkin conditionfor a linear differential system. LeB = B(X) be an
n x n matrix with entriesh; ;(X) € F(X) and & be the differential operator
<~ =D —B. Consider the sequence of matridgs = B,(X) defined inductively

by

Bo = |
B, = B
Bni1 = BpB+ d Bm
dXx

Plainly eachBp, is ann x n matrix overF (X). Forv € M? set

h(m, v) = maxlog* Bs
s<m

S v,Gauss
(For the definition of Gauss norm see [An; Chap.4 Sect. 1] or [DGS; Chap.1
Sect. 4]) and
(B) := limsup ! > d; h(m, v)
o = , U
m— oo m UEMS [F . Q]
and say thatZ satisfies the Galochkin condition éf(B) < oc.
From [DGS; Chap. 3, (5.2)] the matrix

) X B(t
2@ X) =) m(! )
m=0

is the solution ofZ724 = 0 at the generic poirt that satisfiesZZ(t) = |. Then
the Galochkin condition is immediately seen to be equivalen¥tdeing aG-
operator, as defined in [Del; p.375, eq.(4)]. We will need the following theorem
of Chudnovsky, stated here as Lemma 2.

In Lemma 2 and Lemma 3 belowB, is ann x n matrix with entries inF (X)
and 7 is the differential operatoZ := D — B.
Lemma 2. LetZ :=(Zy,...,Zx)' € F[[X]]" be a (column) vector of G-functions
satisfyingZ Z = 0. Suppose that{. .., Z, are linearly independent ovep(X).
ThenZ =D — B satisfies the Galochkin condition.

X -t"

Lemma 3. Assume the differential operat&r satisfies the Galochkin condition.
Then the following holds.

(a) if Z is a column vector with entries;Z .., Z, € Q[[X]] such that Z = 0,
then 4, ..., Z, are G-functions.

(b) WithZ as in (a), denote, for each € Mg, thev-adic radius of convergence
of Z by R,(Z). Then the operator satisfies Bombieri's condition

1
Flant
> df log R@Z) <%

vEME

(c) All the singularities of the differential operatdy,” are regular and have only
rational exponents.
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Comments on proof#\ proof of Lemma 2 can be found in [An; Chap. 6 Sect. 4]

or in [DGS; Chap.8, Theorem 1.5 p.268]. Lemma 3 (a) is easy if 0 is an or-
dinary point (e.g. [Del; Sect.1.1 Remarque 3]); the general case is proved in
[An; Chap.5 Sect.6.6]. Lemma 3 (b) is the “Galochkin Bombieri” part of

the Bombieri-Ande theorem ([An; Chap.4 Sect.5.2] or [DGS; Chap.7 Theo-
rem 2.1]) (the second part of the Bombieri-Agdheorem is the converse, that

is, Bombieri’s condition implies Galochkin’s condition). Lemma 3 (c) follows
from works of Katz and Honda ([An; Chap. 4 Sect.5.3] or [DGS; Chap.3 and
p. 228]). O

For the convenience of the reader we now briefly recall some well-known
facts about monodromy of linear differential systems (sag [DGS; p.101]).
Consider the differential system

d

dXZ =BZ
whereB is now a matrix of meromorphic functions in a neighborhdodf z,
such thatz, is the only (possibly) singular point & in|. Forz € 1’ := 1\ {z}
we have a matrix solutior?Z of the above system such that its column vectors
are analytic functions at, linearly independent ovef. Starting with a given
pointz =z € |, we can analytically continue such a matrix along a closed loop
~ at z, entirely contained in’ and wrapping once, counterclockwise, around
After analytic continuation along the whotlewe obtain another matrix solution
of the same system, denot&q?/), whereT is the so-called monodromy map.
NecessarilyT(74) will be of the form 24C for some constant non-singular
matrix C (which depends or?Z in general). Now, lettingA be a constant matrix
such that exp(2iA) = C and setting

o~ (Alog(X — 29))°
Z s!

_ S3\A
X - 2) 2 B

W

exp@log(X — z)) :=
(X — )"

it can be checked that/ has trivial monodromy around,, i.e., remains un-
changed after analytic continuation along(essentially the reason is that the
monodromy of X — z)* is exp(2riA) = C, i.e, the same as#). Hence the
entries of W are analytic inl’. Now it is known (or may be taken as definition)
that the system has a regular singularity@precisely ifW has at worst a pole
as a singularity aty.

Assume that is the case and fix a determination ofXog(z), e.g.in the
domainl” := 1"\ {z +t | t € R*}. Then, considering for instance a Jordan
form of A, it easily follows from (1) that each entry of the matri is a linear
combination of functions of the form

(log(X — 20)) - (X — 20)*w(X)
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wherea € N, o € C and wherew is analytic inl. It follows that, if ¢ is any
rational function inX and in the entries of/Z, then ¢ is a quotient of linear
combinations of the same type. This proves that rgave have a bound

[6(X)] < [X — 20| ™

for some integeN. Suppose now that has trivial monodromy, namely suppose
that it remains unchanged after analytic continuation along any toap I/,
wrapping aroundy, as above. Then is single valued and analytic if whence,
e.g. by Riemann’s removable singularities theoreeng( [For; p.5]) applied to
(X — )N p(X), the above inequality implies that it has at worst a poleyat

Fix now an ordinary poinP, of & and let%¢ be a solution matrix aP,
as above. LePy,...,Ps be the singular points o on the Riemann sphere
S and fix non-intersecting pathk,, ..., s from P, nearP;y, ..., Ps. Next, for
eachi = 1,...,s, define a loopy; based atP,, constructed by traveling first
along )\ from P, nearP;, then wrapping once along a “small” loop arouRd
then finally go anngAfl, back toP,. Classically the loopsy, .. .,7s generate
the fundamental group @&\ {Ps,...,Ps}. We may then define the monodromy
aroundP; of any rational functionp in X and in the entries 0%/ by analytic
continuation alongyi, i = 1,...,s. From the above we can deduce at once the
following

Lemma 4. LetZ := D —B be a differential operator with only regular singular-
ities. Let?2¢ be a solution matrix at some ordinary point and {ebe a rational
function in X and in the entries 0f4. Suppose thap has trivial monodromy
around any singular point ofZ. Theng is a rational function.

Proof. By the above argumentsis then analytic in the whole Riemann sphere,
made exception for finitely many points, where it has at most a pole as a singu-
larity. We recall a classical argument to prove the rationalitpofet zy, ...,z

be the finite singular points @f and consider the functioé := ¢ ]‘[{zl(z —z)N,
whereN is a sufficiently large integer such tha&tis bounded around each.

By Riemann’s removable singularities theoretis entire and, having at most

a pole atoo, must be a polynomial. O

Lemmas. Let Z = (Z1,...,Z,)! € F[[X]]" be a (column) vector of G-
functions satisfyingZZ = 0. Suppose that«...,Z, are linearly independent
over Q(X). For each loopy in the groupI” generated byy, .. .,~s, denote by
Z0) = (ZM .. ()t the vector obtained frord := (Zy,...,Z,)' by analytic

continuation alongy. Then the linear space spanned overtby all the vectors
Z™ has dimension n.

Proof. Plainly we havezZ(™ =0 for all y € I', so the dimension of the space
in question is at mogh. To complete the proof we show below that there exist
n vectors of the formz(™ with v € I that are linearly independent ovér

The entrie<Z,, ..., Z, of Z span a linear space ovél(X) which is in fact a
differential moduleM in an obvious way. Namely, since the entriés. .., Z,
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of Z are linearly independent ovép(X), whence overC(X) (since they have
algebraic coefficients)M is isomorphic to the differential module ovér(X)
with basisey,...,&, and derivation given by (ey,...,e))! := B(ey,..., ).
From the theorem of the cyclic vector [DGS; Chap. 3, Theorem 4.2], there ex-
ists thenm € M such thatm, Dm, ..., D"~'m are linearly independent over
C(X). Write m = Zi”:lRi(X)Zi, whereRy, ..., R, are rational functions. We
may assume thafy, . ..,~s do not contain any pole of any such function, so we
may analytically continuem along any~y € I' to obtain functions neaP, of
type Z{‘leq(X)Zi("’). Consider the space spanned ofeby all such functions
and selech of them, saymy, ..., my (with my = m), which constitute a basis.
We may writem, = Y R (X)Z?’, where the vectorg® := (z0’,... z9)y,
j =1...,h, are linearly independent elements of the space generated”dwgr
theZ™, v € I' 3. It suffices to prove that = n. For this consider the differential
operator defined by
W(Y,mg,...,m)

W(rn]_7 RN rm)
whereW is the Wronskian an& is a differential indeterminate. We may write

W(Y) =

W(Y) =D"Y +¢:D"LY +.. + ¢y,

where theg; s are rational functions in the s and their derivatives. In particular
the ¢;s are rational functions of and of the entries of some solution matrix of
Y76 =0 atP,.

Let v € I'. We observe that analytic continuation alofigof my, ..., m,
produces, by assumption, functioms, ”. . , i, which generate the same linear
space overC. Namely we can writemy”™ = >, ¢ ;m for an invertible matrix
(Gij) € GLy(C). Using the very definition of the Wronskian as a determinant,
we see that replacingy, . .., m, respectively withim, ..., M, in the definition
of W(Y) merely multiplies the coefficients of the numerator (as a polynomial
in Y) by det; ;) and the same holds for the denominator. This shows that the
coefficientses, . . . , ¢ are left fixed by analytic continuation along amye I, so
they have trivial monodromy. Since our operator satisfies the Galochkin condition
(Lemma 2), it has only regular singularities (Lemma 3). We may thus apply
Lemma 4 and obtain thats, ..., ¢, are rational functions. Sincé/(m) = 0 we
obtain thatm, Dm, ..., D"m are linearly dependent ovéx(X), soh > n whence
in facth = n. O

Let now & =D — A;, % := D — A, be operators ovefF (X) as above, of
respective orders; andn,. Denote respectively by’; and X, their singular set.
Fori =1,2, letY® = (v", ..., YD)t € F[[X]]™ be a column vector solution
of ZY® =0 and assume that the entriéf)., . . ., Y{) are G-functions linearly
independent ovef)(X). Form the column vectaZ with entries (in some order)
the n;n, power seriesyMY,®, a=1,....n, b =1,...,n. We have then the
following

3 Sincem is a cyclic vector, the® actually constitute a basis of the space in question.
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Lemma 6. The vectoZ has G-functions entries and satisfies a differential system
over F(X) of order n.n, and with singular set contained ib; U X». If in addition
X1 and X, are disjoint, then the entries & are also linearly independent over

Q(X).

Proof. The first assertions follow from Lemma 1 and from a trivial inspection,
after differentiatingYél)Yéz) (actually, the new system, which is the tensor product
of the original ones, corresponds to the matix® A;). To complete the proof,
suppose given a relation of linear dependence

> Ran(X)YYP =0 @
a,b

where theR,, are rational functions with coefficients i. Construct loops
~,-...,7% as before around the singular points of the operdtgr such that
no singularity of anyR,, or of & lies on any such loop or in its interior
(made exception possibly for poles of sofgy coinciding with a singularity
of &7). We may then analytically continue each entryZoélong any such path.
Both the rational functions and the ternﬁ§2) will remain unchanged, while the
vectorY® will be transformed into another vector solution of the first differential
system. Plainly the relation (2) still holds after replacing the teif8 with
the corresponding entries of the new solution. Since, from Lemma 5, analytic
continuation producen; linearly independent solutions of the first system, we
obtain some relations

> Rap(X)Y.a¥? =0
a,b

where nowY ,, := (Y1, .., Yun)', = 1,...,m, are column vector solutions of
the first system which are linearly independent o¥eThe determinant det(, »)
does not vanish in a neighborhood®f. Hence we have

Y Ran(X)Yi? =0
b

foreacha = 1,...,n;. However the power seriéﬁfz) are assumed to be linearly
independent ovef)(X). ThereforeR, , = 0 for all a, b. O

Remark 3. (aBince the fundamental group(S\ {P, ..., Ps}) is generated by
any s — 1 loops out ofyy,...,~s, the monodromy is in fact determined by all
loops but one. This implies that the lemma continues to holiifand X, are
assumed to intersect in at most one point. Lemma 6 generalizes the fact that
algebraic functions fields in one variable with disjoint sets of ramification points
of X are linearly disjoint ovefC(X).

(b) Y. André and D. Bertrand mentioned to us that Lemma 5 and Lemma 6 could
also be proved by invoking the theory of Picard-Vessiot extensions and using the
action of the differential Galois group instead of the monodromy action.
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By induction we obtain at once the following

Corollary 1. Forj = 1,...,r, let &4 := D — A, be an operator over X)

as above, of orderjnand with singular set;. Assume that the sefs,, ..., X,

are pairwise disjoint. Letr0) := (Yl(”, e ,Yn(j”)‘ be a column vector solution of
YW =0, the entries of which are G-functions in[X]], linearly independent
overQ(X),j =1,...,r. Form the column vectoZ with entries (in some order)
the n---n; power series YWY, & =1,...,n,...,a =1,...,n. Then

the vectorZ has G-functions entries (over F) and satisfies a differential system
of order n, - - - n, over F(X) and with singular set contained i®v; U ... U X\.
Furthermore the entries & are linearly independent ovep(X).

4 Proof of Theorem 1

Consider, given an homography (linear fractional transformatigk) = 1féx,

the vectorY™ := Y (7(X)). It satisfies the system defined by the operator
o

PTED = ) e AT(X)

If X is the set of singular points a¥, then the set of singular points ¢/~
is contained in £~1(X)) U {1/8}. For every positive integer, pick 2 alge-
braic numbersys, ..., ar, 81, ..., 5 € K* such that, setting; (X) = lf"ﬁ)j(x, the
systems defined by = Z7,j = 1,...,r have singular set&’, ..., %, that
are pairwise disjoint. The entries of the vectdf$ := Y o 7, are G-functions

overK (Lemma 1) and are linearly independent ogiX),j = 1,...r. As in
the corollary to Lemma 6, form the vectdr with entries (in some order) the
n" G-functions YV Y, a; = 1,...,n, ..., & =1,...,n. From the above

corollary such entries (which have coefficientsKr) are linearly independent
over Q(X). The vectorZ satisfies a differential system defined &y := D — B,
whereB is a square matrix ovef (X) of ordern". Such system satisfies the Ga-
lochkin condition, by the theorem of Chudnovski (the present Lemma 2). Also,
by Lemma 3, if we denote bR’ the v-adic radius of convergence @f we have

1
d¥log" | < oc.

vEMk

We are in position to apply t@ the “Théoreme principdl of [Del; p.378].
We apply that theorem (withk = K) to the entriesz; of Z, thus replacingn
with n". Also, we select one absolute valueof K and consider the values of
the power serieg; with respect to the-adic convergence. In our situation the
statement of that theorem reads:

Let{ € K* be such thaté], < min(1, R}), p > Oan integer, A := (\ij)apxn'
matrix over K of rankp. Assume that
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nr
ZAi,ij,v(€)=0, i=12...,p. @)

j=1
Then we have this inequality

K r_
oy gl hE = —C - Cavee) @

where G, C, do not depend o4.

Assume now that, for=1,...,r, the vaIueszﬁ(g), e ,Yn({%(g) are linearly
dependent oveK . Thus they span a linear space of dimension — 1 overK.
Clearly if this holds for allj = 1,....r, then the value¥ (€) - -- Y, (€), for
1<ay,...,a <n,span alinear space of dimensiér< (n — 1)". These values
are precisely the valueg ,(¢),j = 1,...,n", in some order. Thus we can take
n" —p <(n—1) in (4), whence

 oglel+ (") @ = 0 - v ©)
[K : Q] RIS n = 1 2
Choose now real numbersR, such that O< ¢ < 1, 0< R < R} and consider
the set

Ker = {§ € K | log¢l, < —ch(§) and[¢], < R} (6)

Plainly Kcr N @ is infinite, for all c,R as above. Combining (5) and (6) we
obtain that for all§ € K¢ g,

(n;l)r S [;(?5@] 0 <¢hl(s)> ")

Therefore, ifr,c have been chosen such tt(d‘t;l)r < ¢/[K : @], (7) implies
that the set ok which verify our assumptions has bounded height, whence is
a finite set. Conclude that for &l € K r outside this finite set, there exists at
least one index =1,...,r such that the value‘ﬁff](g), ceey Yn({%(g) are linearly
independent ovekK . /

Observe finally that, thougR} will be generally smaller thair, (i.e., the
radius of convergence of the original vecté), we may insure, by a suitable
choice of the numbers;, §;, thatR, = R}: in fact

. R, 1 .
R > min{R,, ) d=1,...r}
o 5o
so it suffices to takeqo; |, < 1 and|§|, <1/R,,j =1,...,r. 0

The proof of Theorem 1 is complete. Taking also into account Remark 1, we
may recapitulate and state more precisely what we have actually proved.
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Theorem 2. Let k be a number field, n be a positive integer and A(X) be an
n x n matrix with entries in KX). LetZ be the differential operatoZ := D —A.
LetY = (Y1(X), ..., Ya(X))! be a vector solution of/Y = 0 such that each entry
Yi (X) is a G-function with coefficients in a number fieldJKk.

Fix a valuationv of K and a real number R- 0 smaller than the (non-zero)
v-adic radius of convergence df. Let r and ¢ be positive real numbers such that
0O<c<land("!) <c.

Then there exist r homographiegX), . . ., 7+ (X) with the following property.
There exists a real number H such that{ iils any element of K satisfying

log[¢], < —ch(§)
Il <R
h() >H

then there exists at least one index {l, ..., r for which the rank over K of the
values Y ,(75(£)), - . ., Yno(75(§)) is greater or equal to the rank ovep(X) of
Y1(X), ..., Ya(X).

We have this further conclusion. Denote the singular set of the opetétor
D — A by Y. Thenr(X),...,(X) can be taken to be any r homographies of
the form aX /(1 — bjX) with &, b; non-zero elements of K such that|, < 1,
|, < 1/R and such that the set§; := 7 {(X) U {1/bj}, | = 1,...,r, are
pairwise disjoint.

We finally note that all constants involved in the above estimates are effective.
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