
SPECIALIZATIONS OF GALOIS COVERS OF THE
LINE

PIERRE DÈBES AND NOUR GHAZI

Abstract. The main topic of the paper is the Hilbert-Grunwald
property of Galois covers. It is a property that combines Hilbert’s
irreducibility theorem, the Grunwald problem and inverse Galois
theory. We first present the main results of our preceding paper
which concerned covers over number fields. Then we show how
our method can be used to unify earlier works on specializations
of covers over various fields like number fields, PAC fields or finite
fields. Finally we consider the case of rational function fields κ(x)
and prove a full analog of the main theorem of our preceding paper.

1. Inroduction

The Hilbert-Grunwald property of Galois covers over number fields
was defined and studied in our previous paper [DG10]. It combines
several topics: the Grunwald-Wang problem, Hilbert’s irreducibility
theorem and the Regular Inverse Galois Problem (RIGP). Roughly
speaking our main result there, which is recalled below as theorem 2.1
showed how, under certain conditions, a Galois cover f : X → P1

provides, by specialization, solutions to Grunwald problems. We next
explained how to deduce an obstruction (possibly vacuous) for a finite
group to be a regular Galois group over some number field K, i.e.
the Galois group of some regular Galois extension E/K(T ) (corollary
1.5 of [DG10]). A refined form of this obstruction led us to some
statements that question the validity of the Regular Inverse Galois
Problem (RIGP) (corollaries 1.6 and 4.1 of [DG10]).

The aim of this paper is threefold:

- in §2: we present in more details the contents of [DG10]. This first
part corresponds to the lecture given by the first author at the Alexan-
dru Myller Mathematical Seminar Centennial Conference in Iasi.
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- in §3: we explain the starting lemma of our approach and show how
it can be used to unify earlier works over various fields like PAC fields
and finite fields. For example Fried’s Čebotarev theorem for rational
function fields κ(x) over a finite field κ and Colliot-Thélène’s result
that varieties over a number field with the “weak weak approximation
property” have the Hilbert property can be obtained as special cases
of our approach.

- in §4: we use the method of [DG10] to show the analog of the main
theorem of [DG10] with the number field K replaced by the function
field κ(x) in one variable over a field κ that either is PAC and has
“enough cyclic extensions”, or is finite and large enough (theorem 4.2).

2. The Hilbert-Grunwald property of Galois covers

2.1. The Grunwald problem. Given a Galois cover f : X → P1 over
some field K and a point t0 ∈ P1(K) not a branch point, what we call
the specialization of f at t0 is the residue field, denoted by K(X)t0 , of
some point in X above t0 (see §3.1).

Given a field K, a finite set S of independent non-trivial discrete
valuations of K and a finite group G, the Grunwald problem, is whether
there exist Galois extensions E/K with group G which have prescribed
v-completions Ev/Kv (v ∈ S). More precisely, define the set of Galois
extensions of some field k with Galois group G (resp. with Galois group
contained in G) by ExtG(k) (resp. by Ext≤G(k). Then the question
is: given a collection E = (Ev/Kv)v∈S ∈

∏
v∈S Ext≤G(Kv) — called a

Grunwald problem —, does there exist an extension E/K ∈ ExtG(K)
— called a solution to the Grunwald problem — which induces the local
extensions Ev/Kv by base change from K to Kv (v ∈ S)?

Recall that if K is a number field, every Grunwald problem has a
solution when G is cyclic of odd order (see [NSW08, (9.2.8)]) or when
G is solvable of order prime to the number of roots of 1 in K (Neukirch
[Neu79], [NSW08, (9.5.5)]).

2.2. The main theorem. Some further notation is needed to state the
main theorem from [DG10]. Fix K, S and G as above. For each place
v of K, denote the valuation ring of Kv by Ov, the valuation ideal by
pv, the residue field by κv and the order and the characteristic of κv by
qv and pv respectively. The constant c(|G|, r) (resp. c(G)) that appears
below only depends on the order of G and the branch point number r
(resp. on the group G); they are defined in [DG10]. Condition (good-
red) is explained right after the statement. A Grunwald problem ϕ is

said to be unramified if Gal(Kv/K
ur
v ) ⊂ ker(ϕv) (v ∈ S).
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Theorem 2.1. Assume that K is a number field, that pv 6 | |G| and
qv ≥ c(|G|, r) (v ∈ S). Let f : X → P1 be a Galois cover of group
G and r branch points, defined over K (as G-cover) and satisfying the
following good reduction condition:

(good-red) for each v ∈ S, the branch divisor t = {t1, . . . , tr} is étale
and there is no vertical ramification in the cover f at v.

Then f has the following Hilbert-Grunwald specialization property:

(HGr-spec) For every unramified Grunwald problem there exist special-
izations of f at points t0 ∈ A1(K) \ t that are K-solution to it. More
precisely the set of all such t0 contains a subset A1(K) ∩

∏
v∈S∪S0

Uv

where each Uv ⊂ A1(Ov) is a coset of Ov modulo pv and S0 is a finite
set of finite places v /∈ S which can be chosen depending only on f .

Furthermore, if pv 6 | 6|G| and qv ≥ c(G) (v ∈ S), there exist a Galois
extension L/K totally split in Kv (v ∈ S) and a G-cover f : X →
P1 of group G, defined over L that satisfies both the good reduction
condition (good-red) and the Hilbert-Grunwald specialization property
(HGr-spec) with K replaced by L.

More explicitly “t = {t1, . . . , tr} étale” in condition (good-red) means
that no two K-points ti, tj ∈ K ∪ {∞} coalesce at v, and coalescing at
v that |ti|v ≤ 1, |tj|v ≤ 1 and |ti − tj|v < 1, or else |ti|v ≥ 1, |tj|v ≥ 1
and |t−1

i − t−1
j |v < 1, where v is any prolongation of v to K. As to

non-vertical ramification, a practical definition is this: for each v ∈ S,
if an affine equation P (t, y) = 0 of X is given with t corresponding to
f and P monic in y with integral coefficients (relative to v), then v
is unramified in f if the discriminant ∆(t) of P with respect to y is
non-zero modulo the valuation ideal of v (see [DG10, §2] for a more in-
trinsic definition). The (good-red) condition is indeed a good reduction
criterion: if t is étale and pv 6 | |G|, f acquires good reduction at v after
some finite scalar extension L/K [Ful69]; under the extra non-vertical
ramification assumption, one can take L = K (e.g. [DG10, §2]).

2.3. Application to the RIGP. The following statement is a conse-
quence of theorem 2.1. Given a Galois extension E/Q, its discriminant
is denoted by dE and, for every real number x ≥ 1, the number of
primes p ≤ x that are not totally split or are ramified in E/Q by
πE

nts(x). The function π(x) denotes the number of primes ≤ x.

Corollary 2.2. Let G be a finite group and assume G is a Galois
group of some regular1 Galois extension F/Q(T ). Then there exist two

1that is: F ∩Q = Q.
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constants m0, δ > 0 with the property that for every x ≥ m0, there are
infinitely many t0 ∈ Q such that the specialization Ft0/Q of F/Q(T ) at
t0 satisfies the following conditions:

(i) Gal(Ft0/Q) ' G,

(ii) all primes p ≤ x but those that are ≤ m0 are totally split in Ft0/Q;

consequently π
Ft0
nts (x) ≤ π(m0),

(iii) log |dFt0
| ≤ δ x.

Condition (i) makes the extension Ft0/Q a solution to the Inverse
Galois Problem over Q for the given group G. Condition (ii) should be
related to the Čebotarev density theorem according to which a majority
of primes are not totally split in a given number field; more precisely,
the density of such primes equals 1 − 1/|G|. As to condition (iii) it is
essentially the best possible as the example of G = Z/2Z already shows.

Indeed in a quadratic number field E = Q(
√

d) with d ∈ Z square free,
condition (ii) amounts to d being a square modulo (almost) all primes
p ≤ d. This leads to log |dE| ∼ log |d| ∼ log(

∏
p≤x p) ∼ x as x →∞.

In fact if (iii) is sharpened to (iii+) below, the conclusion of corollary
no longer holds. Indeed the following effective version of the Čebotarev
theorem is proved in [LO77] (see also [Ser81, §2.2]): for every Galois
extension E/Q of group G

(∗∗) πE
nts(x) ≥ π(x)− 2

|G|
x

log x
if log x ≥ β |G| log2 |dE|

for some absolute constant β. So for any group G there can be no
number field E satisfying conditions (i), (ii) and

(iii+) β |G| log2 |dE| ≤ log x.

The question arises then of whether it is true for all groups G that
there exists a number field E satisfying conditions (i), (ii) and (iii) from
corollary 2.2. If for some group G the answer is “No”, then the Regular
Inverse Galois Problem has a negative answer (for this group).

It would be interesting to study to what extent the analytic estimate
(**) can be improved for a given group G. The difference between (iii)
and (iii+) is essentially a “log”. We note that a “log” can be gained in
a related problem: concerning the least prime ideal in the Čebotarev
density theorem (instead of the number of primes), Linnick’s theorem
precisely shows this difference between the general estimate and that
of the specific situation of Dirichlet’s theorem (see [LMO79]).

Example 2.3. Here is an example of a situation that would lead to a
counter-example to the RIGP. Let G be a p-group (possibly p = 2).
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Any given Galois extension of group G has p-cyclic sub-extensions.
Suppose the structure of G forces the following to happen: for any Ga-
lois extension E/Q of group G, a p-cyclic sub-extension K/Q can be
found such that βp log2 |dK | ≤ log(log |dE|/δ) (with β and δ as above).
Then for E = Ft0 as in corollary 2.2, the extension K/Q satisfies condi-
tion (iii+) and so πK

nts(x) ≥ π(x)− (2x)/(p log x) by Lagarias-Odlyzko.
Now the primes that are not totally split or ramified in the extension
K/Q are necessarily also so in the extension E/Q. But this contra-
dicts condition (ii) from corollary 2.2 as π(x)− (2x)/(p log x) tends to
∞ (even when p = 2).

Corollary 2.2 has the following more general version (also proved
in [DG10]), which shows that the assumption that a group G is a
regular Galois group over Q has even stronger implications on Galois
extensions of Q: conclusions from corollary 2.2 extend to any kind of
residual behaviour.

Corollary 2.4. Let G be a finite group and assume G is a Galois
group of some regular Galois extension F/Q(T ). Then there exist two
constants m0, δ > 0 with the property that for every real number x ≥ 1
and for any choice of a conjugacy class Cp ⊂ G for each prime p
with m0 < p ≤ x, there are infinitely many t0 ∈ Q such that the
specialization Ft0/Q of F/Q(T ) at t0 satisfies the following conditions:

(i) Gal(Ft0/Q) ' G,

(ii) for each prime p with m0 < p ≤ x, the extension Ft0/Q is unrami-
fied at p and the associated Frobenius is in the conjugacy class Cp,

(iii) log |dFt0(x)
| ≤ δ x.

Furthermore the constants m0 and δ depend only on the extension
F/Q(T ) and can be explicitly computed. In particular this leads to
interesting effective versions of Hilbert’s irreducibility theorem.

3. Unifying previous works

3.1. Basic notation. For details, see [DD97, §2] and [Dèb99b, §2].
For a field k, we denote by k an algebraic closure, its separable closure

in k by ksep and its absolute Galois group by Gk. If k′ is an overfield
of k, we use the notation ⊗kk

′ for the base change from k to k′.
Given a regular projective geometrically irreducible k-variety B, a

k-mere cover of B is a finite and generically unramified morphism
f : X → B defined over k with X a normal and geometrically irre-
ducible k-variety. Mere covers f : X → B over k correspond to finite
separable field extensions k(X)/k(B) that are regular over k through
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the function field functor. The term “mere” is meant to distinguish
mere covers from G-covers. By k-G-cover of B of group G, we mean
a Galois cover f : X → B over k given together with an isomorphism
G → Gal(k(X)/k(B)). G-covers of B of group G over k correspond to
regular Galois extensions k(X)/k(B) given with an isomorphism of the
Galois group Gal(k(X)/k(B)) with G. By group and branch divisor of
a k-cover f , we mean those of the ksep-cover f ⊗k ksep 2.

We use the representation viewpoint to work with covers and field
extensions: representations of fundamental groups for Galois covers
and of absolute Galois groups for Galois extensions.

Galois field extensions E/K of group G correspond to epimorphisms3

ϕ : GK → G. The Grunwald problem translates as follows. Given a
collection ϕ = (ϕv : GKv → G)v∈S ∈

∏
v∈S Hom(GKv , G) of homomor-

phisms ϕv : GKv → G (v ∈ S) — the Grunwald problem —, does there
exist an epimorphism ϕ : GK → G — a solution to the Grunwald prob-
lem — which, composed with the restriction maps GKv → GK , yields
the local maps ϕv?

Given a reduced positive divisor D ⊂ B, denote the k-fundamental
group of B \ D by π1(B \ D, t)k where t ∈ B(k) \ D is a base point.
Mere covers of B of degree d (resp. G-covers of B of group G) with
branch divisor contained in D correspond to homomorphisms π1(B \
D, t)k → Sd such that the restriction to π1(B \ D, t)ksep is transitive
(resp. to epimorphisms π1(B \D, t)k → G such that the restriction to
π1(B \D, t)ksep is onto).

Each k-rational point t0 ∈ B(k) \ D provides a section st0 : Gk →
π1(B \D, t)k of the exact sequence

1 → π1(B \D, t)ksep → π1(B \D, t)k → Gk → 1

well-defined up to conjugation by elements in π1(B \ D, t)ksep . Given
a mere cover representation φ : π1(B \ D, t)k → Sd, the morphism
φst0 : Gk → Sd is the arithmetic action of Gk on the fiber above t0. If
φ : π1(B \D, t)k → G represents a G-cover f : X → B, the morphism
φst0 : Gk → G is the specialization representation of f at t0. The
fixed field in ksep of ker(φst0) is the residue field of the Galois closure
of k(X)/k(B) (which is k(X)/k(B) itself for G-covers) at some point

2The group of a ksep-cover X → B is the Galois group of the Galois closure
of the extension ksep(X)/ksep(B). The branch divisor is the formal sum of all
hypersurfaces of B such that the associated discrete valuations are ramified in the
extension ksep(X)/ksep(B).

3All profinite group homomorphisms are tacitly assumed to be continuous.
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above t0. We denote it by k(X)t0 and call the extension k(X)t0/k the
specialization of f at t0.

3.2. Twisting G-covers. The main starting tool used in [DG10] is
the “twisting operation”.

Let k be a field and f : X → B be a k-G-cover. Let φ : π1(B \
D, t)k → G be the epimorphism corresponding to the G-cover f and
let ϕ : Gk → G be an homomorphism (not necessarily onto).

Denote the right-regular (resp. left-regular) representation of G by
δ : G → Sd (resp. by γ : G → Sd) where d = |G|. Define ϕ∗ : Gk → G

by ϕ∗(g) = ϕ(g)−1. Consider the map φ̃ϕ : π1(B \D, t)k → Sd defined
by the following formula, where r is the restriction map π1(B\D, t)k →
Gk and × is the multiplication in the symmetric group Sd:

φ̃ϕ(X) = γφ(X)× δϕ∗r(X) (X ∈ π1(B \D, t)k)

It is easily checked that φ̃ϕ is a group homomorphism with the same
restriction on π1(B \D, t)ksep as φ. The associated mere cover is a K-

model of the mere cover f ⊗k ksep. We denote it by f̃ϕ : X̃ϕ → B and
call it the twisted cover of f by ϕ. The following statement contains
the main property of the twisted cover.

Twisting lemma 3.1. Let t0 ∈ B(k) \ D. The specialization of the
G-cover f at t0 is conjugate in G to ϕ : Gk → G if and only if there

exists x0 ∈ X̃ϕ(k) such that f̃ϕ(x0) = t0.

Proof. For self-containedness, recall the key point of (⇐), which will
be the only part used in the paper (see [DG10] for a full proof). Ex-

istence of x0 ∈ X̃ϕ(k) such that f̃ϕ(x0) = t0 is equivalent to existence

of some common fixed point ω ∈ G for all permutations φ̃ϕ(st0(τ))

(τ ∈ Gk). The definition of φ̃ϕ then yields the equivalent condition
φ(st0(τ)) ω ϕ(τ)−1 = ω, or φ(st0(τ)) = ω ϕ(τ)−1ω−1 (τ ∈ Gk). �

3.3. The Ekedahl-Colliot-Thélène result. We explain how the twist-
ing lemma 3.1 provides a simple proof of the following result, due in-
dependently to Colliot-Thélène [Ser92, §3] and Ekedahl [Eke90].

Recall the definition of the two properties involved in the statement.
Given a number field K, a K-variety B is said to satisfy the weak weak
approximation property (WWA) if for some finite set Σ of places of K,
B(K) is dense is

∏
v∈S B(Kv) for all finite sets S that are disjoint from

Σ. The K-variety B is said to satisfy the Hilbert specialization property
if B(K) is not thin, in the sense of [Ser92]. This is equivalent to showing
that every G-cover f : X → B defined over K has specializations
K(X)t0/K with the same Galois group as f at all points t0 in a subset
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of B(K), Zariski dense in B. (The main point in this equivalence is
to restrict to geometric G-covers, i.e. those corresponding to function
field extensions that are regular over K; this follows from a classical
use of the Čebotarev theorem).

Corollary 3.2 (Colliot-Thélène, Ekedahl). Let K be a number field.
Then every K-variety B with the WWA property satisfies the Hilbert
specialization property.

Proof. We first reduce to the situation that B is smooth projective and
geometrically integral (as assumed in §3.1) : for this we use the fact
that both the WWA property and the Hilbert property are birational
properties [Ser92, §3.5].

Let then φ : π1(B \D, t)K → G be an epimorphism onto some finite
group G, with D a reduced positive K-divisor. We should show that

(*) the map φ st0 : GK → G is surjective for all points t0 in a Zariski
dense subset of B(K) \D,

where st0 is the section corresponding to t0 (see §3.1). For each place v
of K, denote the restriction maps π1(B \D, t)Kv → π1(B \D, t)K and
GKv → GK by rv. Thanks to the WWA property, it suffices to show
that for each g ∈ G, there exist infinitely many places v /∈ Σ such that
for all t0 in a non-empty v-adic open subset of B(Kv) \ D, we have
g ∈ (φ rv st0)(GKv).

For g ∈ G fixed, construct an epimorphism ϕg : GK → 〈g〉 (in other
words a Galois extension Eg/K with group 〈g〉). From the Čebotarev
theorem, the induced local maps ϕg rv : GKv → 〈g〉 remain surjective
for infinitely many places v of K. Furthermore, thanks to the Lang-
Weil estimates, for all but finitely many of these places v, the twisted

cover f̃ϕg : X̃ϕg → B (which is defined over the global field K) has good

reduction at v and X̃ϕg(Kv) 6= ∅. The twisting lemma 3.1 concludes
the argument. �

Remark 3.3. (a) This provides in particular a proof of Hilbert’s irre-
ducibility theorem.

(b) As the proof shows, finding places, possibly big, with given de-
composition groups is sufficient for the Hilbert property. Unlikewise
dealing with the Grunwald aspect, for which some places are fixed and
the local extensions to realize do not have a global origin, requires the
more precise method from [DG10] (which we explain and re-use in §4
below). Using it instead of the sole twisting lemma, better versions of
corollary 3.2 can be given.
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3.4. PAC fields. The next result, first proved in [Dèb99a] (for G-
covers of P1), readily follows from the twisting lemma 3.1 and the
definition of a PAC field (pseudo algebraically closed): a field is PAC
if V (K) 6= ∅ for each geometrically irreducible variety V defined over
K.

Corollary 3.4. Every G-cover f : X → B of group G over some PAC
field K has the property that every Galois extension E/K of group
H ⊂ G is the specialization of f at all points t0 from a Zariski dense
subset of B(K) \D (depending on E/K).

A variant of this result for not necessarily Galois extensions can also
be given; see [BS09, proposition 1.2].

3.5. Finite fields. The next result readily follows from the twisting
lemma 3.1 and the Lang-Weil estimates.

Corollary 3.5. Let f : X → B be a G-cover of group G and branch
divisor D over some finite field Fq. Then there is a constant c depending
on G, B and D such that if q ≥ c, then every Galois extension of Fq

of group a cyclic subgroup 〈g〉 ⊂ G is the specialization of f at some
point t0 ∈ B(Fq) \D.

Assume B = P1 for simplicity. The constant c then only depends on
|G| and r and one can even count the number NC of t0 ∈ P1(Fq) \ D
such that the specialization of f at t0 has a Galois group generated by
some element g in a given conjugacy class C ⊂ G 4. From the twisting
lemma 3.1, the specializations Fq(X)t0/Fq with group 〈g〉 correspond to
rational points over Fq on the twisted model of X. Using the Lang-Weil
estimates, we obtain

NC =
|C|
|G|

q + O(
√

q)

where the constants involved in O(...) depend on |G| and r. Higher
dimensional versions have more complicated constants. This Čebotarev
theorem for function fields over finite fields first appeared in [Fri74] (in
the case B = P1) and a more general form was given in [Eke90].

4. Rational function fields

In this section, the field K will eventually be taken to be a field
K = κ(x) of rational functions with coefficients in a field κ. We first

4These Galois groups are well-defined up to conjugation in G. That is why we
fix the conjugacy class of g and not g itself.
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recall a general result from [DG10] valid in a context containing both
number fields and rational function fields.

The field K is assumed to be the quotient field of some Dedekind
domain R and S is a finite set of places of K corresponding to some
prime ideals in R. For every place v, the completion of K is denoted
by Kv, the valuation ring by Rv, the valuation ideal by pv, the residue
field Rv/pv by κv, the order of κv by qv and its characteristic by pv.

Here is the strategy used in [DG10].
Given a Grunwald problem (ϕv : GKv → G)v∈S to solve, the general

idea of our method is to first use the twisting lemma 3.1 locally, that is,
to apply it for each place v ∈ S to the G-cover f ⊗K Kv : X ⊗K Kv →
P1

Kv
and the homomorphism ϕv : GKv → G, and then to globalize

the construction thanks to the approximation property of P1. The
twisting lemma 3.1 reduces the first stage to finding unramified Kv-

rational points on the twisted curve ˜X ⊗K Kv

ϕv

. This is done by first

showing that under suitable assumptions, the twisted cover ˜f ⊗K Kv

ϕv

has good reduction (using Grothendieck’s good reduction criterion),
then by finding rational points over the residue field of Kv on the

reduction of ˜X ⊗K Kv (using the Lang-Weil estimates) and finally by

lifting these points to unamified Kv-rational points on ˜X ⊗K Kv (using
Hensel’s lemma). The outcome is the following statement.

Let K, S be as above and G be a finite group.

Theorem 4.1. Let f : X → P1 be a G-cover of group G and r branch
points, defined over K and satisfying the (good-red) condition from
theorem 2.1. Assume further that for each v ∈ S, p 6 | |G| and that the
field κv is either PAC or finite of order qv ≥ c(|G|, r). Then we have
the following Hilbert-Grunwald specialization property:

(HGr-spec) For every unramified Grunwald problem (ϕv : GKv → G)v∈S,
there exist specializations K(X)t0/K of f at points t0 ∈ A1(K)\ t with
the property that the Galois group Gal(K(X)t0/K) contains a conjugate
in G of each of the subgroups ϕv(GKv) ⊂ G (v ∈ S). More precisely the
set of all such t0 contains a subset A1(K)∩

∏
v∈S Uv with Uv ⊂ A1(Ov)

a coset of Ov modulo pv (v ∈ S).

Proof. The detailed proof is given in this general context in [DG10, §3],
except that only the case that all residue fields κv are finite of order
qv ≥ c(|G|, r) is considered. But the other case here, for which some of
the residue fields κv could be PAC, is easy to handle. Indeed what is
needed for the proof is to be able to guarantee that rational points can
be found on some variety defined over κv (v ∈ S) (more specifically,
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it is the condition (κ-big-enough) from proposition 2.2 of [DG10] that
needs to be satisfied). When the field κv is PAC, this is automatic. �

We now consider the special case K = κ(x) where x is an indeter-
minate and κ is a field that is PAC, or finite and big enough. Denote
the characteristic of κ by p.

Fix a finite set of points of P1(κ) and denote by S the set of cor-
responding valuations of K; denote the point corresponding to v by
xv. For each v ∈ S, fix an homomorphism ϕv : Gκ → G, that is, a
Galois extension εv/κ with group contained in G. The corresponding
extension εv((x− xv))/κ((x− xv)) is unramified.

Theorem 4.2. Let f : X → P1 be a κ(x)-G-cover of group G and with
r branch points. Assume that p 6 | |G| and that the (good-red) condition
from theorem 2.1 holds. Assume the following on the field κ: either

(i) κ is PAC and every finite cyclic group is a quotient of Gκ, or

(ii) κ is finite of order q ≥ C(|G|, r).
Then the cover f has the Hilbert-Grunwald specialization property:

(HGr-spec) There exist specializations κ(x)(X)t0(x)/κ(x) of f at points
t0(x) ∈ A1(κ(x))\t with Galois group G and whose residue extension at
x = xv is κ-isomorphic to the prescribed extension εv/κ (v ∈ S). Fur-
thermore the set of such t0(x) contains a subset A1(κ(x))∩

∏
v∈S∪S0

Uv

where each Uv ⊂ A1(κ[[x − xv]]) is a coset of κ[[x − xv]] modulo the
ideal 〈x− xv〉 and S0 is a finite set of finite places v /∈ S which can be
chosen depending only on f .

Furthermore, if pv 6 | 6|G| and qv ≥ c(G) (v ∈ S), then there exist a
Galois extension L/κ(x) totally split in κ((x − xv)) (v ∈ S) and a G-
cover f : X → P1 of group G, defined over L that satisfies both the good
reduction condition (good-red) and the Hilbert-Grunwald specialization
property (HGr-spec) with κ(x) replaced by L.

Proof. Theorem 4.1 can be used in the special situation considered here
and so its conclusion holds true. What remains to explain in order to
get the first part of theorem 4.2 is how to guarantee that the Galois
groups Gal(K(X)t0/K) equal the whole group G. As explained in
[DG10, §3.4], this can be done at the cost of throwing in more places in
S. The argument which is given in [DG10] in the case K is a number
field can be used in the more general situation of corollary 4.2. There
is however an arithmetic condition satisfied by number fields that our
field K should be here assumed to satisfy:



12 PIERRE DÈBES AND NOUR GHAZI

- for each cyclic subgroup H ⊂ G, there exist infinitely many places v
of K with κv PAC or finite of order ≥ C(|G|, r), and such that H is
the Galois group of some extension of Kv.
As the residue field of the places we consider here is κ, this condition
is guaranteed by the assumption on κ.

As to the final part of the statement of theorem 4.2, the proof is
the same as that of theorem 1.3 of [DG10]. There are only two minor
changes. In the third step of the proof, it is the definition of PAC fields
that should be used to find rational points on the κv-variety involved
in the case κv is PAC (instead of the Lang-Weil estimates). It should
also be recalled that as for finite fields, over a PAC field, the field of
moduli of a G-cover is a field of definition [DD97, corollary 3.3]. �
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