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ABSTRACT. This paper is about descent theory for algebraic covers. Typical questions concern
fields of definition, models, moduli spaces, families, etc. of covers. Here we construct descent
varieties. Associated to any given cover f, they have the property that whether they have
rational points on a given field & is the obstruction to descending the field of definition of f to
k. Our constructions have a global version above moduli spaces of covers (Hurwitz spaces):
here descent varieties are parameter spaces for Hurwitz families with some versal property.
Descent varieties provide a new diophantine viewpoint on descent theory by reducing the
questions to that of finding points on varieties. There are concrete applications. We answer
a question raised in [DeHa|] about totally p-adic models of covers. We also show that the
subset of a given moduli space of covers of P* where the field of moduli is a field of definition
is Zariski-dense.
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Introduction

The main theme of the paper is the construction of descent varieties for algebraic covers.
Given a cover f: X — B over a field, these are parameter spaces V for families of models
of f satisfying the versal property: that is, each model of f is a fiber of the family, and so
corresponds to points of V. The parameter spaces we construct are algebraic varieties that
are smooth, geometrically irreducible and defined over the field of moduli of the cover f.
Fields of definition of models and of their corresponding representative points correspond
to one another. Thus these varieties provide a new approach to descent theory for fields of
definition of covers: finding a model defined over a given field k is tantamount to finding
k-rational points on these varieties. In particular, this gives a new description of the
classical obstruction to the field of moduli being a field of definition, which was as yet
mostly described in cohomological terms [DeDol].

A first application, which was the original motivation of this work, concerns covers with
field of moduli a number field, say Q for simplicity. It is known that, although Q may not
be a field of definition, the cover must be defined over all ,,, except possibly for finitely
many “bad” primes p, viz. those which divide the order of the group or are such that the
branch points coalesce modulo p [DeHal, [Em]. We answer here (corollary 1.4) a question
raised in [DeHa] (Question 5.3) to show that for the same primes p, the cover can even be
defined over the field Q' of all totally p-adic algebraic numbers (i.e., the maximal Galois

extension of Q contained in Q). This result conjoins our Main Theorem with the following

Local-global principle on varieties — Let V' be a geometrically irreducible smooth Q-
variety. If V(Qp) # 0 for each embedding Q* — Q,, then V(Q'P) # 0.
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This is a special case of a result of Moret-Bailly [Mol], proved in 1989; other proofs
appeared later in papers of Green-Pop-Roquette [GrPoRo] and Pop [Po|.

Our descent varieties V' are also unirational. A natural question is whether these
varieties are rational and also whether the Hasse principle holds for these varieties. We hope
to provide some answers which would yield some information about the Hasse principle
for covers: if a Q-cover is defined over all completions of Q, is it then necessarily defined
over Q7 Only partial results are known [DeDo2|, although this principle is known to hold
in general for G-covers [DeDol] (i.e. Galois covers given with their automorphisms).

Instead of dealing with one single cover, one can work above a whole moduli space
of covers: our Main Theorem has a part B that globalizes our notion of descent varieties
over Hurwitz spaces. More precisely, we construct a Q-variety V, and a Hurwitz family
fy : X — P}, parametrized by V which has this versal property: for every field k of
characteristic zero, every cover of ]P’}C (of the type corresponding to the Hurwitz space in
question) appears as the fiber of the Hurwitz family fy, at some k-point of V. This second
part provides a new set of applications. In particular, corollary 1.6 gives some information
on the subset of closed points A on the Hurwitz space such that the corresponding cover
frn:Xp— P% is defined over its field of moduli: this set is Zariski-dense. No such general
result was known before in this direction. Stronger conclusions can be drawn when the
base field is fixed and assumed to be large (corollaries 1.5 and 1.8).

We offer several types of constructions of our descent varieties, which correspond to
several “cultures”.

We begin with an elementary function field theoretic approach to Main Theorem A. In
§2 we establish some representation results for covers of P! over fields of characteristic 0. A
first one (lemma 2.1) is that every cover has an affine equation P(7,Y") = 0 with bounded
degree (in terms of the degree and the genus of the cover). Combining this with Liouville’s
inequality (lemma 2.2) and a certain non-Galois form of the normal basis theorem (lemma
2.3), we then obtain that all models can be parametrized by the points of an open subset
of an affine space AM (for some integer M) with some compatibility property between the
Galois action over the ground field and the action of GLj;. A precise statement is given in
theorem 2.5. These representation results are the main tools for the first construction of
descent varieties (performed in §3). This first construction, which uses classical results from
the theory of covers, is quite explicit: equations of the descent variety V' can theoretically
be derived from the method.

The second construction, given in §4, involves different ideas. A notion of marking of a
model of the given cover f is introduced, which basically consists in the choice of a basis of

the fiber (regarded as a module over the structural scheaf of the base space) above a fixed
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closed point (). This leads to some representation of the appropriate category of models of
f (over some K-scheme U) by a smooth affine K-scheme, which is a homogeneous space
under GLy g (for some integer N); here K is the base field. The techniques used also are
different from those of §3. Proposition 4.2, which yields Main Theorem A, is phrased in
terms of representability of functors and proved along these lines. Also, proposition 4.2
covers the general case of Main Theorem A: the base space of f is an arbitrary regular
projective variety (and no longer P!) and the base field is of arbitrary characteristic.

A more general construction is given in §5. The method used there applies to any K-
gerbe G that is a Deligne-Mumford stack, and in particular to the gerbe MOD of models
of f (§5.2). Proposition 5.1, which also contains Main Theorem A, uses [LaMo| to show
that such a gerbe G is a linear quotient stack (§5.1). And in fact, proposition 4.2 discussed
above, when combined with a criterion from [EdHaKrVi], is actually an alternate proof of
that (see §5.2). The second part of proposition 5.1 shows that these linear quotient stacks
are isomorphic to quotient stacks [V/GLy, k|, where V is a smooth affine K-scheme.

The final section §6 is concerned with Main Theorem B, that is, the global form of
descent varieties above Hurwitz spaces. The first part consists in showing that the stack
COVYY of degree d covers of P! by curves of genus ¢ is a linear quotient stack (theorem
6.1). This uses again the criterion from [EdHaKrVi], conjoined with other previous ideas.
The rest of the proof of Main Theorem B is then similar to the second part of the proof of
Main Theorem A (see theorem 6.3).

1. Main results

In this section, we state the two parts of our Main Theorem and derive the main appli-

cations. The next sections provide proofs of the Main Theorem, along with generalizations.

1.1. Statement of Main Theorem A. We will freely use basics from the theory of
algebraic branched covers; see for example [DeDol]. Recall however that, given a field K
(the base field) and a regular projective geometrically irreducible K-variety B (the base
space), by mere cover of B over K, we mean a finite and generically unramified morphism
f : X — B defined over K with X a normal and geometrically irreducible K-variety. The
term “mere” is meant to distinguish mere covers from G-covers. A G-cover of group G is
a Galois cover given with an isomorphism between its automorphism group and the group
G. We use the phrase “|G-]cover” for “mere cover [resp. G-cover]”.

Fix a base field K and a base space B as above. Denote the separable [resp. algebraic]
closure of K by K*® [resp. K| and the absolute Galois group Gal(K*/K) by Gg. Suppose
given a [G-|cover f : X — Bgs of Bgs = B @k K® (the K®-variety obtained from B



4 p. DEBES, J-C. DOUAI and L. MORET-BAILLY

by extension of scalars). Covers f : X — IE% are typical examples of the situation we
consider. The (monodromy) group of the cover f, which we denote by G, is the Galois
group of the Galois closure of the field extension K°(X)/K®(B); it is anti-isomorphic to
the automorphism group of the Galois closure f: X B xs of f.

For a field k with K C k, a k-model of f is a k-[G-|cover f: X — By such that f @ k
and f ®y, k are isomorphic as [G-]covers of By for every K-embedding K* — k !; if such a
model exists, f is said to be definable over k. Recall that the field of moduli of f (relative
to the extension K®/K) is defined to be the fixed field in K*® of the subgroup of Gg of
all 7 € Gk such that the conjugate [G-|cover f™ : X7 — By is isomorphic to f over K*®
[DeDol] §2.7. The field of moduli is a finite extension of K. With no loss of generality, we
may and will assume that the field of moduli is K itself (e.g. [DeEm| Prop.2.1).

Main Theorem A — There exists an affine variety V with the following properties:
(1) V is geometrically irreducible and is defined over the field of moduli K.
(2) There exists a [G-]cover F : X — V x B, or in other words, a K-family of [G-]covers
of B parametrized by V', such that
(i) For each v € V, the fiber cover F, : X, — By is a K(v)-model of f.
(ii) If k is an extension of K and f: X — By, ak-model of f, there exists v € V(k)
such that f is isomorphic to the fiber cover F, : X, — By (as [G-]covers of By).
(3) V is smooth.
(4) For every extension k of K for which V (k) # 0, V is unirational over k.

Remark 1.1. Statement above is what the stack theoretic approaches give (§§4-5). They
produce V as a homogeneous space under GLy for some integer N (i.e., there is a free
and transitive action of GLy on V'); properties (3), (4) and first part of (1) follow from
this description. The first approach (§§2-3) is more specifically concerned with covers of
P! in characteristic 0; it is more explicit and “elementary” but leads to slightly weaker

conclusions. Namely, assertion (4) should be replaced by this weaker assertion:

(4) V is unirational over K. Furthermore, if k, is an algebraic extension of K, over which

f has a model fo c X, — IP’}%, then the variety V' can be constructed in such a way that

V (ko) is Zariski-dense.

If it is assumed as below that K is the field of moduli of f, then it suffices that f@ sk and f@kﬁ be isomorphic
for some K-embedding K°—Fk for them to be isomorphic for all K-embeddings K°—k” (see also remark 4.1.).
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Also the first approach does not provide directly a smooth variety?. We note however
that the weaker version of Main Theorem A (that is, with conclusions (1), (2) and (4”)) is

sufficient to derive Corollaries 1.2-1.4 below (with B = P! in characteristic 0).

1.2. Applications. Recall that a field £ is said to be existentially closed in a regular
extension  (Q/k separable, Q Nk = k) [resp. k is PAC] if for each smooth geometrically
irreducible K-variety V', we have V(Q) # ) = V(K) # 0 [resp. we have V(K) # ().

Corollary 1.2 — Keep the same notation as above. Assume further that the field of
moduli K is existentially closed in some field of definition k, of the cover f. Then f is
defined over K.

For example, if the field of moduli K is PAC then it is a field of definition; this was
already known, but as a consequence of the fact that PAC fields are of cohomological di-
mension < 1 [DeDol;Cor.3.3]. Corollary 1.2 is an immediate consequence of Main Theorem
A. From condition (2)(ii), V(k,) is nonempty. As V' is smooth (condition (3)), it follows
from the definition of “existentially closed” that V(K) is nonempty too. Therefore, from
condition (2)(i), there is at least one K-model of f. The weaker version of Main Theorem
A (see remark 1.1 above) is sufficient to prove corollary 1.2 (and similarly the next corol-
laries): from condition (4’), V' can be constructed so that V(k,) is Zariski-dense, which
ensures that there is at least one smooth k,-point. The rest of the argument is unchanged.

The next corollaries generalize the result alluded to in the introduction about totally
p-adic models of covers. Instead of Q, consider a global field K (i.e., either a number field
or a one-variable function field over a finite field). Let ¥ be a nonempty finite set of places
of K; X replaces p. Denote the maximal extension of K in a fixed separable closure K*
which is totally split at each v € ¥, by K* (this replaces Q'P).

Corollary 1.3 — Let f : X — Bgs be a [G-]cover over K. Assume that the field of
moduli of f is contained in K> and that for each v € X, f has a K,-model f, (for each
embedding K* — K,). Then f is defined over K*; more precisely f has a K*-model that

induces each f, by extension of scalars (v € X).

Corollary 1.3 is a straightforward consequence of Main Theorem A and the local-global
principle on varieties, a special case of which is mentioned in the introduction: the assump-

tions yield K,-rational points x, on the descent variety V associated to the [G-|cover f; it

However by removing a Zariski closed subset of V', one can obtain a variety V'CV that is smooth and still affine

(but then condition (2) (ii) may fail: for some fields k, representative k-points of some k-models may be in V\V”).
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follows then from [Mol] that there are K*>-points on V, which correspond to K *-models
of f. Furthermore, these K*-points can be found arbitrarily v-adically close to each point
z, (v € X). As a consequence, the K*-model can indeed be required to induce each f, by
extension of scalars (v € X).

The last corollary conjoins corollary 1.3 above and results of Debes-Harbater [DeHal
and Emsalem [Em|. We assume here that the base space B is a curve. A finite place v of
K is said to be good (relative to the cover f: X — B) if

- the residue characteristic p does not divide the order of the group G of the cover f,

- the base space B has good reduction at v,

- the branch locus of the cover f is smooth at v (that is, the geometric branch points
of the cover do not coalesce in the residue field of v),

It can be shown then that if K is the field of moduli of the [G-]cover f, then K, is a field
of definition of f for all good places v of K the result was proved for G-covers of P! in

[DeHa] and generalized in [Em]. We obtain

Corollary 1.4 — Let f: X — Bgs be a [G-]cover of curves. Assume that the field of
moduli of f is K. Let ¥ be a finite set of good places of K. Then f is defined over K*.

1.3. Revisiting corollary 1.3 via stacks. Corollary 1.3 could also be obtained as a
consequence of the main result of [Mo2], which is in fact a stack-theoretic version of [Mol].

Namely, assuming as we may that the field of moduli K; of f is K 3, define then a
Skolem datum, in the sense of [Mo2], 0.6. This consists in the following data:

e a “ground ring” R in a global field: this will be K itself;

e a finite set X of places of K, disjoint from the set of height one primes of R (this
condition is empty here!): this will be our X.

e for each v € ¥, a Galois extension L, of K,: this will be K, itself. These data define
a subring R" ([Mo2], 0.3) of K® which is just K* here;

e an algebraic stack X of finite type over R: this will be the K-gerbe MOD of models
of f (introduced in [DeDo3] where it is denoted by G(f) and discussed further in §5.2). It
is subject to certain conditions ([Mo2], 0.4) which hold in particular if X — Spec (R) is
surjective and flat with geometrically irreducible fibers, so they are satisfied here;

e for each v € X, a set Q, of objects of X(K,): we take Q, = X(K,). Each Q, is

required to be v-adically open in X(K,) (obvious) and Zariski-dense in X, : since our X is

Otherwise replace K by K47 and ¥ by the set of places of K1 above X: this does not change K> because K1 CK™>.
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a K-gerbe, the latter condition just means Q, # (), which is true by the assumption that
f can be defined over K,.

We then apply Theorem 0.7 of [Mo2] and conclude in particular that MOD(K*) # 0,
which means that f has a K>-model.

The method of proof of [Mo2] consists in reducing to the case when the stack X is in
fact a scheme, by finding a scheme X (to which [Mol] applies) and a map X — X with
good properties. This is precisely what our Main Theorem A does, when X is the gerbe
MODy: the variety V plays the role of X. Indeed, consider the family F in part (2) of
Main Theorem A: by (2)(i) this is an object of MOD (V') (a model of f over V (§4.1)), or,
equivalently, a morphism 7 : V. — MODy. Next, condition (2)(ii) asserts that for every
extension k of K, every point of MODy(k) lifts to V(k), and condition (1) (geometric
irreducibility of V') is one of the assumptions of [Mol].

Our Main Theorem A can thus be regarded as a result about existence of affine pre-
sentations with good properties of the gerbe MOD¢. The stack-theoretic proof of Main
Theorem A (proposition 5.1) goes along these lines. As explained there, conditions (1), (2)
and (3) of Main Theorem A can be obtained by applying corollary (6.1.1) of [LaMo] to the
stack MODy; condition (4) is more involved. The techniques used are quite general and
can in fact be applied to other gerbes. In particular, it is by using them that the global
version of the Main Theorem, for moduli spaces of covers instead of one single cover, can

be obtained. We shall now state this global version and give some applications.

1.4. Descent varieties and Hurwitz spaces. Here we fix an integer d > 0, a finite
subgroup G' C Sy, and an integer r > 3. We consider covers f : X — P! over fields k of
characteristic 0 with the following geometric invariants:

e the monodromy group (i.e., the Galois group of the Galois closure of f ®y k) is (iso-
morphic to) G and the monodromy action on an unramified fiber is then, up to equivalence,
given by the embedding G C Sy (d = deg(f)),

e the number of branch points is 7.

To these invariants are classically associated moduli spaces of covers — Hurwitz spaces.
Depending on whether the covers are regarded as mere covers or G-covers, and, whether
the branch points are labeled or not, the moduli space is denoted by Hgb, n H/C"j‘b, Hgn
(see [DeDoEm], [Wew| and [De| for more references).

Each of these spaces is a coarse moduli scheme for the corresponding moduli stack,
denoted by HaGb, H%, H'gb, H'Ci;n respectively. For instance, for any Q-scheme T', an object of
the category H?;b (T) is a T-morphism f : X — PL., which is finite and locally free and such
that for every geometric point € : Spec (k) — T, the induced map f¢ : X¢ — P} is a cover of
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the corresponding type. These objects are called “Hurwitz families with parameter space
T” in [DeDoEm], except that here no condition on 7 is required. Associated to each such
object, there is the classifying moduli map s : T — HaGb (called “structural morphism”
in [DeDoEm]): for each £ : Spec (k) — T, v¢(€) is the representative point on H2P of the
isomorphism class of the induced cover f¢ : X¢ — IP’% (see [DeDoEm;§3.1.5]).

In the statement below, the situation is any of the four situations above. We denote by
H (resp. H) the corresponding stack (resp. moduli space). The moduli space H is known

to be smooth and quasi-projective over Q, and equidimensional of dimension 7.

Main Theorem B — There is a smooth quasi-projective Q-scheme V and a Hurwitz
family f: X — IP’%, overV (i.e., an object of H(V)) with the following properties:

(1) The classifying moduli map v¢ : V — H is smooth, with geometrically irreducible fibers.
(2) For every field k of characteristic zero, every cover of P, (of the type corresponding to
H) appears as the fiber of the Hurwitz family f at some k-point of V.

(3) (local description of V over ‘H). There exists an integer n > 0, a right action of GL, g
on V with finite stabilizers such that there is an étale surjective morphism p: U — H such
that U xy V is U-isomorphic to T'\GL,, iy (with the natural projection on U and the natural
right action of GL,, 7 ), where T' is a subgroup of GL,, 1.

A more precise version is given in §6 (theorem 6.3).

1.5. Application to fields of definition of covers. A long-standing question in
descent theory for covers has been whether a [G-]cover is “often” defined over its field of
moduli. To make the question precise, for any field & of characteristic 0, define the subset
H(k)m°°b C H(k) to be the set of points h € H(k) such that the corresponding cover
fn:Xp — IP’% can be defined over k (i.e., for which there is no ob(struction) to the field
of moduli being a field of definition). From Main Theorem B, we deduce the following
description of H(k)reP.

Corollary 1.5 — With notation as in Main Theorem B, the set H(k)"°P is the image
of V(k) into H(k). Consequently, if k is large, then for every connected component Z of
Hr = H Xspec (@) SPec (k), the set H(k)"°P N Z is either empty or Zariski-dense in Z.

Recall a field k is large if for every smooth geometrically connected k-variety X, then

X (k) is either empty or Zariski-dense in X 4. In the last 10 years, many significant

It suffices to check this property when X is a curve.
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conjectures from geometric inverse Galois theory have been shown to hold when the base
field is large. Essentially the reason is that one could reduce these conjectures to finding
rational points on varieties. Corollary 1.5 is a new illustration of that. We have an exact
description of the subset H(k)™°°P, which yields precise information if the base field is
large; however, in general and in particular over Q, giving a precise description of H(k)"° ob

remains a difficult problem (as other problems from geometric inverse Galois theory).

Proof. The first part readily follows from Main Theorem B.

For the second part, suppose H(k)*°°P N Z(k) # 0. Then Z is geometrically connected
(it is smooth and connected and has a rational point), hence so is the inverse image Vz of
Z in V. Moreover the assumption means that Vz(k) is nonempty, hence dense in Vz. The

conclusion follows since the projection Vz — Z is open and surjective. [

We can play a slightly different game and, instead of considering k-valued points of ‘H
for fixed k, look at all closed points of H. Precisely, let us define H*°°" C H to be the
set of closed points A € H such that the corresponding cover fj : X}, — ]P% can be defined
over the residue field x(h) of h. Equivalently, h € H"*°" if and only if it is in H(k(h))2°°P
when viewed as a k(h)-valued point of H in the canonical way.

Clearly, as before, h € H"°°P if and only if h is the image of a closed point of V with

the same residue field. From this we deduce:
Corollary 1.6 — H"°" is Zariski-dense in H.

Proof. This follows from the preceding discussion and the following result of Poonen

[Poo|. (Note that all components of H have positive dimension.) [

Theorem 1.7 — Let X and Y be schemes of finite type over a field, with Y irreducible
of positive dimension, and let f: X — 'Y be a smooth and surjective morphism. Then the
set of closed points x € X such that [k(z) : k(f(z))] =1 is dense in X. [

Let us finally return to covers of P! over “totally Y-adic” fields:

Corollary 1.8 — Let K be a number field. Fix a nonempty finite set X of places of K
and denote by K> the maximal extension of K in a fixed separable closure KS which is
totally split at each v € X. Further, let Ho be a connected component of Hx = H Xgpec (Q)
Spec (K), geometrically connected over K. Assume that for each v € 3, there exists a
K,-[G-]cover f, : X, — IP’}{U corresponding to a point h, € Ho(K,). Then there exists a
K*-[G-]cover f : X — Pi5 corresponding to a point of Ho(K>).
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A first idea to prove this result would be to apply the local-global principle [Mol] on
the variety Hy. But one then only obtains this weaker conclusion: “there exists a [G-]cover
]7: X — Pl? with field of moduli K*”. This strategy works though but one needs to use
the stack-theoretic form of the local-global principle [Mo2] (2nd proof below). Corollary
1.8 can be alternatively obtained as a consequence of Main Theorem B (1st proof below)
(just as corollary 1.3 was proved both as a corollary of Main Theorem A (in §1.2) and as
a corollary of [Mo2] (in §1.3).

1st proof. Consider the variety V of Main Theorem B, and denote by ) the inverse
image of Hy in Vi . The assumption on Hy implies that V) is smooth and geometrically
irreducible over K. For each v € X, the [G-|cover f, yields a point in Vy(K,) by Main
Theorem B (2). It follows from the local-global principle on varieties [Mol] that there are

K>-points on Vy, whence K>-covers of P! with moduli points in H(K?*), as desired. O

2nd proof. Let Hg be the inverse image of Hg in Hg. It is smooth and geometrically
irreducible over K, and has K,-points for each v € ¥ by assumption. So Hg has K>-points
by the stack-theoretic version of the local-global principle proved in [Mo2]. [

Remark 1.9. In the same vein, the following statement can be proved. Let k£ be a
large field, and let Z be a subscheme of Hj; assume that there exists a k((z))-[G-]cover
f: X — ]P’,lc((w)) corresponding to a point of Z(k((z))). Then there exists a k-|G-]cover
fo: Xog — P} corresponding to a point of Z(k).

2. Representation results for models of covers of P!

As in §1 fix a finite cover f : X — Bpgs with field of moduli K. In this section and in
the next one we assume in addition that B = Pk and K is of characteristic 0; we denote
the parameter of P! by 7. We also suppose given, as in condition (4’) from Remark 1.1, a
field of definition k, of f with K C k, C K along with a k,-model f:, : )?0 — P}%. Denote
the genus of X+ by g and the degree of the cover f by d.

The various models fof f over subfields k C K correspond to function field extensions
E/k(T), regular over k and inducing K(X)/K(T) by extension of scalars. If a K (T')-basis
of K(X) is fixed, one obtains a parametrization of all such models fby points from an open
subset of the affine space A? over K (T'): namely take for representing points the d-tuples of
components in the fixed basis of primitive elements of all field extensions E/k(T") as above.
Moreover, in this description, if K is the field of moduli, then action of automorphisms

7 € Gk on the isomorphism class of f can be represented by elements of GL4(K(T)).
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In this section, we prove similar representation results but with K (7') replaced by
K. We will show models of f can be parametrized by points from an open subset of an
affine space over K (of some dimension M). Next we prove that this parametrization
can be performed in such a way it is as above “compatible” with action of Gg: action
of automorphisms 7 € Gg on the isomorphism class of f can be represented by elements
of GLj(K). A precise statement is given in theorem 2.5, which recapitulates lemmas
2.1-2.3. These representation results (over K ) will be used in §3 to provide a construction

of a descent variety V' as in Main Theorem A.

2.1. Normalizing the models.

2.1.1. Models with equation of bounded degree. The following result is proved in [Sa].

Lemma 2.1 — Let k be an extension of K and f: X — P} be a k-model of f. Then
there exists a primitive element Y of the extension k(X)/k(T) such that

(1) the irreducible monic polynomial P(T,Y) of Y over k(T) lies in k[T,Y] and satisfies
deg,(P(T,Y)) < 2(2g + 1)dlog(d).

2.1.2. Primitive elements with bounded degree. Here we suppose given a K (T)-basis
€ = [e1,...,€4) of the extension K(X)/K(T). For later use, we note that & can be chosen
to be a ko(T)-basis of the extension k,(X,)/ko(T) (attached to the fixed ko-model f,). Let
A(T) € K[T] be the discriminant of the basis ¢ and let A(T) be a polynomial in K[T]
such that A(T) divides A(T) in K[T)]: for example take the “norm” of A(T). Denote also
the set of all K (T)-isomorphisms K (X) — K(T) by .

Suppose given an extension k of K and a k-model fv: X — P} of f. Both exten-
sions k(X)/k(T) and K (X)/K(T) are of degree d and induce the extension k(X)/k(T)
by extension of scalars. It follows that the d-tuple € = [e1,...,&q] is a k(T)-basis of the

extension k(X)/k(T) and that the set of all k(T')-isomorphisms k(X) — k(T') [resp. the set
of all k(T")-isomorphisms k(X) — k(T')] canonically identifies to ¥. In particular, traces of
extensions K (X)/K(T), k(X)/k(T) and k(X)/k(T) naturally correspond to one another
by restriction. For simplicity, we denote this trace function by Tr. Denote then the dual
basis of [1,...,&4] by [e],...,e5]: that is, Tr(ele;) = di5, 1 < 4,5 < d.

Any element z € k(X) can be written in a unique way as a k(T)-linear combination
of £1,...,eq; furthermore if K C k, this linear combination has coefficients in k(T). If in

addition z is integral over k[T, then the decomposition can be written in the form

(1) NG (21(T)er + -+ 2a(T)eq)
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with z;(T) € k[T] in general and z;(T) € k[T]if K Ck,i=1,...,d.
Denote the 1/T-adic valuation on k((1/7)) and its unique extension to an algebraic
closure of k((1/T)) by vs. For polynomials p(T) € k(T), we have v, (p) = — deg(p).

The following result is a function field form of Liouville’s inequality.

Lemma 2.2 — Given z € k(X) integral over k[T| and written as in (1) above, denote

the irreducible monic polynomial of z over k(T) by
PT,)Y)=Y% 4 a4 (T)Y%" 4o 4 ay(T)Y 4 ao(T)

where d,, is the degree of z over k(T) and a;,(T) € k[T, i=0,1,...,d, — 1. Then we have
(a) voo(2) 2 —degr (P (1Y)
(b) deg(z;) < degp(P(T,Y)) + deg(A) — = mi

Proof. Set v =v(2) and a = min {v(a;)} = —deg(P.(T,Y)).
0<i<d,

Inequality (a) is obvious is v > 0. So assume v < 0. Then deduce from

2¥ = —ag_ (T)2% 1 — o —ay(T)z — ao(T)

that d,v > a + (d, — 1)v, thus v > «, which is the desired inequality (a).

Fori=1,...,d, the polynomial z;(T) is given by

Thus we obtain

Voo (2i(T)) 2 min, {veo((€7)727)} + voo (A(T))

> min Voo ((EN)+ min_ {vs(27)} + vao (A(T

> | i (o)) iy () + o (AD)
oceEXx

Apply then inequality (a) to each of the z,s (which, as z, satisfies P,(T,27) = 0) to get

inequality (b). O
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2.2. Bases compatible with Galois action. Instead of the K-[G-]cover f and its
k,-model fo, we will work here with models f’ and ]7; over finite extensions of K. We
explain this reduction.

In any case, there exists a finite extension k! of K contained in k, over which fo is
defined. Denote the corresponding k,-model by f:’) X ! — IP’}%. Then we claim that there
exists a finite Galois extension F//K with k. C F such that the F-model f’ = fé ® F of
f is stable, that is, the field of moduli of f’ relative to the extension F'/K is K (this new
field of moduli is a priori bigger than K). Indeed, consider the Galois closure &/, of k/
over K. As K is the field of moduli of the K-[G-]cover f, for each 7 € Gal(k./K), there
exists a K-isomorphism y, between f) @ K and (f, ® K). Then take for F the Galois
closure over K of the field generated by kA’O and the coefficients of the isomorphisms y,
(for all T € Gal(kA’o/K)). For this field F', the model fz ® F is indeed stable; denote it by

f: X’ — PL. In terms of function fields, we have:

(2) for each 7 € Gal(F/K), there exists a F(T)-isomorphism x, : F(X’)" — F(X’). Or,
equivalently x,7 is a K(7T')-automorphism of F(X’) inducing 7 on F.

The action of 7 on F(X') depends on the choice of an extension of 7 to F/(X’) but condition
(2) itself does not. Condition (2) can also be rephrased to say that the following sequence

is exact (more exactly, it is equivalent to the 3rd map being surjective):
1 — Aut(F(X")/F(T)) — Aut(F(X")/K(T)) — Gal(F/K) — 1

Suppose given a K (T')-basis e = [eq, . .., ep] of the function field extension F'(X")/K(T)
(with D = d[F : K]). For each 7 € Gal(F/K), let A, € GLp(K(T)) be the D x D-matrix
such that t[eXx 7] = A,'[e]. Here [e] and [eX""] respectively denote the tuples [eq,. .., eq]
and [ef"",...,e}y" "] and *[—] is the transposition operation.

In the following result, statement (*) says there exist bases e for which action of 7 €
Gal(F/K) can be described by “constant” matrices A, i.e., lying in GLp(K) (instead of
GLp(K(T))). The second point of statement (**) explains how to deduce a basis ") of the
sub-extension k. (X')/K(T). The construction of the bases e and eV of the extensions
F/k and F,/k respectively can be viewed as a non-Galois version of the normal basis

theorem. The more technical first point from (**) will be only used in §3.4.

Lemma 2.3 — Assume as above that K is the field of moduli of the cover f' relative
to the extension F/K. Then there exists a basis e of the extension F(X')/K(T) with
e1,...,ep integral over K[T] such that the following assertions hold:

(*) For each T € Gal(F/K), there exists a F(T)-isomorphism x, : F(X')T — F(X') such

that the associated matriz A, (defined above) is a permutation matriz.
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(**) Let D, = [k/(X') : K(T)]. Then there exists a partition of {1,...,D} in D, subsets
I, ..., Ip, of cardinality 6 = [F : k.| with the following property. There exists an invertible
d x d-matriz B = [bey]e,m (depending on the choice of a basis a = [am]1<m<s of F/k.)
with coefficients in F, with only “1” on first column and with these properties:

e The elements e} = Z bemee lie in k(’)()}(’)), i=1,....,D,, m=1,...,0
Lel;
e ci,...,ep. form a K(T)-basis of the extension k(X))/K(T).

Proof. Let N/K(T) be the Galois closure of F(X')/K(T) and T be its Galois group.
From the normal basis theorem, there exists w € N such that the elements v(w) (v € T')
form a K(T)-basis of N; furthermore w can be taken to be integral over K[T7].

Set H = Gal(N/F (X)) and H, = Gal(N/k.(X")). Let v1,...,7p, be representatives
of the right cosets H,vy of I' modulo H,. Let hq, ..., hs be representatives of the right cosets
Hh of H, modulo H (with 6 = D/D,,). The elements h;vy; (i =1,...,D,,j=1,...,0) are
then representatives of the right cosets of I' modulo H. The extension F(X')/k. (X)) is
Galois and its Galois group is isomorphic to Gal(F/k.); in fact Gal(F(X')/k} (X)) consists

of the § restrictions of hq,...,hs to F(X’). This diagram summarizes the situation:

T
_—
5

For i =1...,D, and j = 1,...,0, let e;; be the trace of (h;v;)(w) relative to the
extension N/F(X'):
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eij = ) (hhyy) (W)
heH
It is straightforwardly checked that these D elements e;; € F'(X') are linearly independent
over K(T'), thus forming a K(T')-basis of F/(X’). Furthermore, they are integral over K |[T].
Let 6 be a K(T')-automorphism of F(X'), for example § = x,7 where 7 € Gg and
Xr @ F(X')" — F(X’) is an F(T)-isomorphism. The automorphism 6 is the restriction
of an automorphism 0 € T that normalizes H. The following calculation shows that 6

permutes the e;;s. Namely, fori=1...,D, and j =1,...,4, we have:

O(eij) = Z (Ohh;v;)(w)

heH
= > (G110 @)
heH
= Z (hOhv)(w) = ewj where HOh;~y; = Hhjiyir
heH
This proves assertion (*).
Fori =1,...,D, and a € F, a # 0, let 55(1) be the trace of av;(w) relative to the
extension N/k/(X!). We have

)
e = 3N ho(an(w) =Y S (hhy)(avi(w))

ho€H, j=1hecH
s 1)
= Z Z hj(a)(hhjvi)(w) = Z h;(a Z hhjvi)(w Z hj(a)es;
j=1heH j=1 heH j=1

By construction, these elements lie in &/ ()2 ’). Furthermore it is straightforwardly checked
that for @ = 1, the D, elements 5( ). (1) € k! (X!) are linearly independent over K (T),
thus forming a K (T')-basis e(!) of kg(Xé)

Suppose given a basis a = [aq,...,as] of F/k/ with a; = 1. It is also a basis of the
extension F(X')/k/(X'). Fori=1,...,D, and m =1,...,6, set

(am) Zh am,)€ij

Set bem, = he(am), £ =1,...,6, m = 1,...,5. Then assertion (**) follows directly from
above, except the statement that the ¢ x J-matrix matrix B = [by]e.m (With coefficients

in F) is an invertible matrix. This follows from Dedekind’s lemma: indeed, otherwise the
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rows of the matrix, and so the automorphisms hq,..., hs, would be linearly dependent.

This completes the proof of lemma 2.3. O

Remark 2.4. In our situation, Weil’s descent theory [We] reformulates to show that the
field of moduli K is a field of definition if and only if there exists a basis e for which all
matrices A, equal the identity matrix (7 € Gal(F/K))5. Thus whether the permutation
matrices A, can be taken to be the identity matrix in lemma 2.3 (*) is the obstruction
to K being a field of definition. If the cover f has no automorphisms, the 1-cochain
(Ar)recalr/x) induces a 1-cocycle in H'(Gal(F/K), GLp(F)). One recovers the classical

fact that in that case K is a field of definition as a consequence of Hilbert’s theorem 90.

2.3. Conclusion of §2. Theorem 2.5 combines preceding results to provide the repre-
sentation result alluded to in the beginning of the section: the points of the K-variety Un
below parametrize the models of f, with some compatibility of action of Ggx. In §3, we
will use theorem 2.5 to construct a descent variety V' as in Main Theorem A; the variety
Uy is not yet one itself because the fields of definition of models and their corresponding
representing points do not a priori correspond to one another.

Fix a K(T')-basis e of F(X’) satisfying the conclusions from lemma 2.3 above. The ele-
ments e!, i =1,..., D,, given in condition (**), form a basis of the extension k! (X")/K (T).
There exists a subset J C {1,..., D,} with cardinality d such that the elements ¢} (i € J)
form a basis of the extension k/(X’)/k.(T). Relabel the elements of this basis so as to
denote it by € = [e1,...,¢e4]. Fori=1...,d, &; is of the form ; = },_; e;. In particular,
€1,...,eq are integral over K[T]. Since the extension k/(X/)/k/ is regular, € is also a basis
of the extension K(X)/K(T).

Given an integer N > 0 and an overfield k of K, let Uy (k) be the set of all D(N + 1)-
tuples y = [Uij]ij = W0, - s YINs - - > YDos - - -, Ypn] € APN T (E) such that the element

is a primitive element of the extension k(X)/k(T). Next set

Namely, from [We], K is a field of definition of the cover if and only if for each T€Gal(F/K), there exists a F(T')-
isomorphism x,:F(X’)"—F(X') such that the correspondence T—x,7 yields a continuous section s to the map
Aut(F(X')/K(T))—Gal(F/K); and the associated K-model ?%H]P’}( of f’ is then obtained in the following
way: its function field K(;(:) is the fixed field in F(X’) of the image group s(Gal(F/K)); by construction, every
element of K()A(:) is fixed by all x,7, T€Gal(F/K) (see also [Sa]).
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N =N(d,g.€) = 2(2g + 1)dlog(d) + deg(A) — = min  {v((€5)7)}
1<j<d
oceXx
Theorem 2.5 — The following statements hold true.

(a) Un (k) consists of the k-points of a nonempty open subset Uy of affine space AP+,
(b) If N > N, for every field k D K and every k-model f: X — P} of f, there exists
y € Un (k) such that the element Yy is a primitive element of the extension k(X)/k(T).

(c) Assume K is the field of moduli of f relative to the extension K/K. Then for each

y € Un(K) and each T € Gk, there exists 2, € Un(K) such that the elements Y3 and V,,
are K (T)-conjugate.

Proof. (a) follows from standard constructive forms of the primitive element theorem.
(b) Let k be an extension of K and f : X — PL be a k-model of f : X — P~.
From lemma 2.1, there exists a primitive element ) of the extension k(X)/k(T) such
that the irreducible monic polynomial P(T,Y) of ) over k(T) lies in k[T, Y] and satifies
degp(P(T,Y)) < 2(2g9 + 1)dlog(d). From lemma 2.2, } can be (uniquely) written in the
form Y = ﬁ Zle z;(T)e; with z;(T) € k[T) and deg(z;) < N, i=1,...,d. In view of
the form of the ¢;s, ) can also be written ) = ﬁ Zi1 yi(T)e; where y;(T) € k[T] and
deg(y;) < N,i=1,...,D. That is, Y = )y for some y € Un(k).

(c) Let y € Un(K) and 7 € Gg. Consider the conjugate of ), under 7:

Let 7 € Gal(F/K) be the restriction of 7 to F. By the choice of the basis e (lemma

2.3), there exists a F(T)-isomorphism x,/ : F(X')” — F(X’) such that ‘[eX""| = A,![e]

where A, € GLp(K) is a permutation matrix. Let x, : K(X) — K(X) be the K(T)-

isomorphism induced by x,+ (by extension of scalars). The element x.()7) € K(X), which

is K (T)-conjugate to Yy, can be written

D [N _
ZzijTj €;

=1 \j=0

with z;; € K, 1 <i< D, 0<j<N. Then z, = [z;];; € Un(K) and x,(Vy) = Vs,

L

XT(y;) = ﬁ :

(3
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3. First construction of descent varieties for covers

In this section we use §2 to give a first proof of Main Theorem A. As in §2, the base
space is B = P} and K is of characteristic 0. The given cover is a cover f : X — ]P’l?.
We will only prove the weak version of Main Theorem A with conditions (1), (2) and (4”)
(from Remark 1.1). So we suppose also given a field of definition k, with K C k, C K
along with a k,-model ﬁ, X, — IP’}CO. The general case of Main Theorem A will be proved

in §84-5 (with different approaches). We retain the notation introduced in §2.

3.1. Construction of the variety V. Fix a K(T')-basis e of F/(X) satisfying conclu-
sions from lemma 2.3 and let & = [e1, ..., e4] be then the basis of ko(X,)/ko(T') constructed
in §2.3. Let N > 0 be an integer. We refer the reader to the definition (in §2.3) of the
open subset Uy C APNHD which is the starting point of the construction.

Let Y = [Y;;];,; be D(N+1) indeterminates (indexed as above in lexicographical order),

algebraically independent over K(T'); Y is a generic point of Uy. Also set

/ N ( N
vi(T) =Yy T Y(T) =Y ¥yT
j=0 j=0
{ so that: resp. so that:
1 & 1 &
= ——= i(1)e; = AN/ Yi(T)e;
Vy AT)Zly( )e Yy AT)Zl (Te
\ 1= \ 1=

For every expression Y = ﬁ W(T)er + -+ Yp(T)ep) with Y1 (1), ..., YVa(T') poly-
nomials in 1" with coefficients (J;;)(; j)es in an overfield of K, denote, for each geometric
automorphism o € X, the conjugate ﬁ (Vi(T)e] +---+ Yp(T)e%) of Y under o by V7.
Expand the product H (Y — Y7) to get a polynomial Py(T,Y) satisfying

oEX

Py(T,Y)GF[ Yij

A(T)
Py(T,Y) is monic in Y and degy (Py(T,Y)) =d

Py(T,Y°)=0 foraloe€X

(1,7) € S} [T,Y]

Given any point y € Uy (i.e., a K(y)-point on Uy ), the polynomial Py (1Y) lies in the

ring K [%‘ (i,7) € S} [T, Y] and is irreducible in K (y)(T)[Y]: indeed this polynomial is

the irreducible polynomial of )y, which is a primitive element of the extension K (y)(X),

over K(y)(T). Let A(T)” be the biggest power of A(T") appearing in the denomina-
tor of coefficients of the “generic” polynomial Py, (1,Y) (equivalently v is the degree of

Py, (T,Y) regarded as a polynomial in the indeterminates Y;;). Set then



Descent varieties for algebraic covers 19

Py, (T.Y) = A(T)" Py, (T\Y)  (y € Un)

The polynomial Py (T,Y), which we will sometimes call the normalized irreducible poly-
nomial of ), (over K(y)), lies in the ring K[y][7,Y] and is irreducible in K(y)[T,Y].
Set C' = degp(Py,, (T,Y)). Then for all y € Uy, we have degT(Pyy (T,Y)) < C and so
Pyy (T,Y) can be written in the form

P(T,Y) = (pa.cT® + -+ pao)Y? + -+ (po.cTC + -+ Poo)

For every polynomial with this shape, denote the (d + 1)(C + 1)-tuple of its coefficients

p= [270,07 -++yPo,Cy---yPd,0y - 7pd,C] by [P(Ta Y)] The (d + 1)(0 + 1)—tuple [Pyv (T7 Y)]
defines an algebraic morphism over K

[Py] 3uN _ A(d+1)(C+1)

Denote the image by V; it is a quasi-affine subvariety of AW@TD(C+D) ¢ prior; defined over
K. We will show that if N > N = N(d, g,€), Main Theorem A holds for this variety V.

3.2. Proof of Main Theorem A (1). The variety V is absolutely irreducible (as
Uy is) and is a priori defined over K. To prove that V is defined over K, we will show
that V(K)™ = V(K) for each 7 € G © . This classically guarantees that the variety V is
defined over K; this follows for example from Weil’s descent criterion [We]. Let 7 € G
and v € V(K). By construction, there exists y € Uy (K) such that v = [Pyy (T,Y)]. We
have v™ = [pyy (T,Y)7] (where T acts on the coefficients in K of the polynomial). Clearly,
Py (T,Y)" is the irreducible polynomial over K (T') of

D
Yy =z 2 vi(De]

\_/

i=1
From theorem 2.5 (c), there exists z, € Un(K) such that the elements Yy and Y, are
K (T)-conjugate. Conclude that v™ [Py (1,Y)"] = []5sz (T, ) eV(K). 0O

For Q-covers, it is tempting to use the following alternate argument: the field of moduli K is the intersection
of all fields of definition ([DeDol;§3.4.l},[CoHa]); therefore, from assertion (2) of Main Theorem A (whose proof
given below does not use assertion (1)), K contains the intersection of all fields of definitions of points in V.
However one cannot conclude that K is a field of definition of V: in the preceding sentence, fields of definitions
of points should be understood as fields of definition of coordinates in an affine model; for points in a proper
Zariski closed subset, this may not coincide with the intrinsic notion of fields of definition of points on a scheme
(think of the affine line y=+/2z which is defined over Q(v/2) but passes through (0,0)).
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3.3. Proof of Main Theorem A (2). The “generic” polynomial Py, (T,Y) deter-
mines a family F : X — V x P! of covers of P! parametrized by V. The generic cover Fae,
is the cover of ]P)}((V) induced by the polynomial Py, (T,Y), i.e., the K(V)-cover corre-
sponding to the finite extension K(V)(T,Yy)/K(V)(T). The family F is defined over K
since V is and the coefficients of Py, (T,Y) (as a polynomial in T, Y) lie in K (V).

Let v € V. That is, v is the ordered (d+1)(C+1)-tuple of coefficients of the normalized

irreducible polynomial over K (v)(T") of some element

where y = [yi;]i; € Un (K (v)) and Yy is a priori an element of K (v)(X). Using previous
notation, we have v = [f’yy (T,Y)] € K(v)[T,Y]. The fiber cover F, : X, — IP’}((U)
corresponds to the field extension obtained by specializing the coefficients of the “generic”
polynomial Py., (T,Y) to those of the polynomial ]5yy (T,Y) (i.e., the entries of the tuple
v). This field extension is the extension K (v)(T,Yy)/K (v)(T"). By definition of “y € Un",
this extension yields the extension K (v)(X)/K(v)(T) by extension of scalars. Conclude
that the fiber cover F, : X, — IP%((U) is indeed a K (v)-model of f. Whence assertion (i).

We prove now assertion (ii). From theorem 2.5 (b), if N > N, for every overfield k of
K and every k-model f: X — P} of f, there exist y € Uy (k) such that the corresponding
element Y, is a primitive element of the extension k(X)/k(T). Set v = [Py, (T,Y)]. By
construction v € V (k) and the fiber cover F, : X, — P is isomorphic to f over k. OJ

3.4. Proof of Main Theorem A (4’). Consider the morphism [Py] : Uy — V.
By construction, this morphism is dominant and is defined over K. The space Uy is a
rational variety (it is an open subset of an affine space). Therefore, by definition, V is a
K-unirational variety.

It remains to prove that V(k,) is Zariski-dense. We claim that for each y € Un(K),

the corresponding element

o

D 0
1 : 1 m () am
Y, = m;_; vi(T)er s of the form 2 = 'E > (D)

i=1 m=1

for some polynomials 2™ (7T) € K(T') with deg(z;)) < N,i=1,...,D, and m = 1,...,6,
and vice versa, that is, every Z is of the form })),. Here the elements €]* are those defined

in lemma 2.3.
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The Zariski-density of V' (k,) will easily follow. Indeed consider the subset Vy, of Un (K)
consisting of all points y such that )y is of the form Z above with 2]*(T") € k,[T7], i =
1,...,D,and m=1,...,d. We have the following points:

o If k, is infinite, V, is a Zariski-dense subset of Uy (K): this comes from the claim.

o [Py](Vk,) C V(ko): indeed, if y € V4, i.e., with notation as above, 27*(T) € k,|[T],
t=1,....,.D,andm=1,...,0, then Z € ko(X'o) and its irreducible polynomial Py (7,Y")
has coefficients in ko, i.e., v = [Py](y) € V (ko).

It readily follows that V (k,) is Zariski-dense in V (K) = [Py]Un(K)).

To prove the claim, we use the calculation below (see lemma 2.3 for notation):

1 D, ¢
Z =" z(T)ei"
NGPIPY
1 D, ¢
= ———— ZZn(T) Z bgmeg
A(T) 1=1 m=1 lel;
1 D, )
= —— Z bgm ZZm(T) €y
A(T) i=1¢el; [m—l

The converse part of the claim readily follows. For the direct part, it suffices to prove that
fori=1,...,D,, there exist polynomials 2™(T') € K(T), m = 1,...,6 with deg(z") < N
such that an:l borm 2" (T) = ye(T) (¢ € I;). Each of these § x d-linear systems has a

(unique) solution since from lemma 2.3, the matrix B = [bgy ], is invertible. O

3.4.1. The G-cover situation. We briefly explain how to modify the construction of V'
in the situation that f: X — IP’% is a G-cover. We omit the details. Other more general
proofs are given in §4 and §5.

The idea is to enlarge the (d + 1)(C + 1)-tuple of coefficients of JSyy (T,Y) so as to also
contain the “coefficients” of the components of the geometric conjugates Vg of )y in the
basis 1, Vy, ..., V¢ ! (where o ranges over ). These components lie (a priori) in K (y)(1).
For the generic point y =Y, write these components in the form P(Y,T)/Q(Y,T) where
P(Y,T),Q(Y,T) € K[Y][T] are relatively prime and normalized by requiring that some
monomial in (Y,7") in P(Y,T) has coefficient 1. Then the “coefficients” alluded to are
all coefficients in K[Y] of all numerators P(Y,T) and denominators Q(Y,T) of all com-

ponents of 7 in the basis 1, )y, ..., y;l—l (where o ranges over X).
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4. Descent varieties for covers: using marked models

In this section, we consider the general situation of Main Theorem A, except that we
can in fact relax the assumptions on the ‘cover’ considered:

e The base space B is a projective geometrically irreducible K-variety (and no longer
P! as in §2 and §3).

e The given [G-|cover f : X — B® := Bgs is a projective morphism, with X reduced;
we assume that every irreducible component of X maps surjectively on B®, and that f is
generically étale.

e In the G-cover case, we also fix an action of the finite group G on X, compatible with
f and such that, for some nonempty open B® C B%, f~1(B°) is a G-torsor over BY. (If X
and B are irreducible and normal, f is then Galois with group G in the usual sense).

Except for the above changes, we adhere to the notation of §1. Moreover we denote by I
the (finite) group of [G-] BS-automorphisms of X. With our assumptions, I', when viewed
as a K®S-group scheme, is also the automorphism scheme of f (“f has no infinitesimal
automorphisms”). More precisely, I' represents the functor I from K®-schemes to groups
sending U to the group of U X g« BS-automorphisms of U X g X.

(To see this, observe first that I is representable by a K3-group scheme locally of finite
type, by general results of Grothendieck; to conclude, it suffices to note that ['(K®) =T
and the Lie algebra of I is the space of Ogs-derivations of Ox which is clearly zero with

our assumptions.)

4.1. Models. The notion of a model of f can be generalized to arbitrary “parameter”
K-schemes. Namely, if U is a K-scheme, a U-model of f over K (or “U/K-model” for
short) is a U-morphism ¢ : Y — By := B X U [with a compatible G-action on Y], which
is locally isomorphic to f in the following sense: over Ugs := K® ® x U we have two covers
f"and ¢’ of B® x ¢ U = B X i Ugs deduced from f and g by base change, and we require
these to be isomorphic over some U’ — Uks, étale and surjective over Uk=. (In this case,
the Ugs-scheme Isom(f’, ¢’) will in fact be a I'-torsor: as a consequence, we can take U’
finite étale over Uks). A morphism of U/K-models is an isomorphism of [G-]covers of
Byr. We denote by MOD¢ i (U) the category of U/K-models of f. For every K-morphism
U’ — U, we have an obvious base change functor MOD x(U) — MOD¢ g (U’).

Observe that any two U/K-models of f are locally isomorphic for the étale topology
on U since, by definition, they become locally isomorphic over Ugs.

Of course, if U = Spec (A) is affine, we shall speak of an A/K-model of f.
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Remark 4.1. To compare with the definition of a model given in §1, let us see what
an L/K-model is when L is a finite separable extension of K. Putting U = Spec (L) in
the above definition, we note that the scheme Uk := Spec (L @ K?) is a disjoint sum
of copies of Spec (K¥), indexed by the finite set of K-embeddings of L into K*. Given a
[G-]cover g : Y — B x L, the cover ¢’ above corresponds to the finite family of covers of
Bpgs deduced from B via these embeddings. To say that g is an L/K-model of f therefore
means that each of these covers of Bgs is isomorphic to f.

One can observe that the above definitions do not make use of the assumption that K
is the field of moduli of f; on the other hand, K is indeed present in the definition of a
U/K-model via the fibre products such as B xx U. What would happen if K were not
the field of moduli is simply that f would have no model over any nonempty K-scheme;

in particular (equivalently, in fact) f would not be a K®-model of f!

From now on we shall drop K from the notations and speak, for instance, of the category
MOD(U) of U-models of f, whenever it can be done safely.

4.2. Markings. Since we have assumed f generically étale, we can choose a closed
point ) of B such that f is étale over the finite subset () xs of Bgs. The restriction of X —
Bgs above Qs is the spectrum of a finite-dimensional (étale) KS-algebra: specifically, its
dimension is N = (deg f)(degy Q).

More generally, every model g : Y — By over some K-scheme U induces by restriction
a finite étale Qu-scheme which is (when viewed as a U-scheme) the spectrum of a locally
free Op-algebra of rank N. We denote the underlying Op-module by W (g), and we
define a Q-marking of g to be a basis of W(g). We view such a basis as an isomorphism
a: O — W(g) of Oy-modules. For given g we have a “scheme of Q-markings” of g which
is a right torsor over U, for the natural action of GLy ¢ on markings. In particular, every
U-model admits a Q-marking locally on U for the Zariski topology.

A Q-marked model of f over U is a U-model g together with a ()-marking of g; a
morphism of such -marked models is a morphism of models which is compatible with
the markings, in the obvious sense. In this way we obtain a category MOD?(U ) which
depends functorially on U (i.e. there are base change functors), and we have obvious
forgetful functors MOD?(U ) — MOD(U), compatible with base change.

Note that by construction both MOD;(U) and MOD?(U ) are groupoids (all their
morphisms are isomorphisms). But the nice feature of MOD?(U ) (as compared with
MOD((U)) is that its objects have no nontrivial automorphisms. Indeed, an automor-
phism of a marked model (g, @) is an automorphism of the cover g which must fix a basis

of W (g), hence induce the identity above Qy, so that it must be the identity. Since
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MOD?(U ) is a groupoid, it is equivalent to the discrete category defined by the set

M]?(U ) := { isomorphism classes of @-marked models of f over U }

which is functorial in U. Now Main Theorem A follows from the following facts:

Proposition 4.2 — (1) The functor U M]?(U) is representable by a smooth affine
K-scheme V', which is a homogeneous space under GLy i for the natural action of this
group on markings.
(2) Moreover, if R is a semi-local K -algebra (e.g. an extension of K ), every R-model of f
18 obtained, up to isomorphism, from the universal marked model over V', by base change
via some v € V(R).

Proof. (2) follows from the fact that markings exist Zariski-locally, and even semilocally.
Let us prove (1).

First, the functor MJ? in question is clearly a sheaf for the étale topology (even for
the fpqc topology) on the category of K-schemes. This is because models of f over U are
finite By-schemes, and finite (and, more generally, affine) morphisms satisfy étale descent
([SGA 1], VIII, 2.1); further, being a U-model of f is clearly a local condition on U for a
given morphism ¢ : Y — By; finally, markings can be descended, since they can be seen
as morphisms of quasi-coherent sheaves.

Now assume, temporarily, that f has a K-model gy : Yo — B, and fix a ()-marking
ao : KV = W(go) of go. The action of GLy k defines an “orbit” morphism of functors = :
GLy k — M]? sending 7y to (go, apoy). We claim that 7 is an epimorphism of étale sheaves:
indeed, every U-model of f is locally isomorphic to gy for the étale topology on U, and
any two markings of a given model “differ” by an element of GLy. So, M)? is isomorphic
to the quotient (in the category of étale sheaves) of GLy x by the equivalence relation
determined by 7, which is easy to describe: v and 7' € GLy(U) determine isomorphic

marked models if and only if yy'~!

is induced by an automorphism of go,, under the
natural map Aut (go,y) — GLy(U) deduced from the marking . This map comes from
an injection Aut (go) — GLy x of affine algebraic K-groups, and our discussion shows
that M@(f) is isomorphic to GLy r/Aut (go) which is well known to be representable,
affine and smooth over K since Aut (go) is finite.

Finally, in the general case, we observe that f admits a model over a finite separable
extension of K, so the result follows from the above discussion by étale (or Galois) descent

of affine schemes. O
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Remark 4.3. The assumptions on f and B can be relaxed. In fact, the projectivity of
B is not used (any K-scheme of finite type will do), and the properties of f that we have
really used are étale descent (for which finiteness of f is enough), and finiteness of the
automorphism group scheme of f. We leave it to the reader to work out variants of the

above results under weaker assumptions.

5. Generalization to gerbes

5.1. Linear quotient stacks. We shall now freely use the language of algebraic
stacks [LaMo]. If X is an algebraic stack (over a scheme S) and U is an S-scheme, we shall
denote by X(U) the fiber category of X over U (denoted by Xy in [LaMo]). Recall that the
stack X is determined by the data X(U) for affine U — S, plus the base change functors
X(U) — X(U") for all S-morphisms U’ — U.

If X is an algebraic stack over some Noetherian base scheme S, we shall say that X is a
linear quotient stack if it is isomorphic to the quotient stack [ X/GL,, s|, for some positive
integer n and some algebraic space X of finite type over S with an action of GL,, 5. We

list some elementary facts:

(1) If H is a subgroup scheme of GL,, g, flat over S, acting on an algebraic S-space Y of
finite type, then [Y/H] is a linear quotient stack; in fact, it is isomorphic to [X/GL,, ]
where X is the “contracted product” Y x# GL,,s, the quotient of Y x GL,, s by H (where
h € H acts on Y as itself and on GL, s by h™1).

In particular, if T' is a finite group acting on an S-scheme X of finite type, then [X/T

is a linear quotient stack.

(2) ([EdHaKrVi], lemma 2.13) Let X be an algebraic stack of finite type over S. Then X
is a linear quotient stack if and only if there is a vector bundle E on X with the property
that, for every geometric point £ of X (of the form Spec (k) — X), the natural action of
the algebraic k-group Aut () on the k-vector space Eg is faithful.

Specifically, from such a vector bundle E (of rank N, say) we can construct the GL -
torsor P over X parametrizing bases of sections of F; the condition on E means that P
(a priori just an algebraic stack) is in fact an algebraic space: recall ([LaMo], 8.1.1) that
this is equivalent to the condition that for any U, the objects of the groupoid Py have no

nontrivial automorphisms.

5.2. Example: the gerbe of models of a cover. Let us return to the situation
of the preceding section. We have defined a stack over K, namely the “gerbe of models”
MOD; (the assignment to each K-scheme U of the groupoid MOD(U)). It is an algebraic

stack of finite type over K, and moreover it is a gerbe, meaning that:
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(1) for some finite separable extension L of K, MOD¢(L) is nonempty;
(2) any two U-models of f are locally isomorphic (for the étale topology on U).

What we have actually shown in §4.2 is that MODy is a linear quotient stack, by finding
a vector bundle as in (2) of §5.1. Namely, we have assigned to every U-model g of f a
vector bundle W (g) over U, in a way which is compatible with base change functors. This
means that W is a vector bundle on MOD/, and the faithfulness property of §5.1 (2) boils
down to the fact, observed in §4.2, that an automorphism of g inducing the identity on
W (g) must be the identity.

So MOD; “is” the quotient by GLy of the “space of bases of W” which is nothing else
than the variety V constructed in proposition 4.2 above. In fact, we can replace the proof
of §4.2 by the following arguments:

e the “faithfulness property” considered above shows that the GLy-torsor V'— MOD/ of
bases of W (a priori an algebraic stack) is an algebraic space;

e the fact that MODy is a gerbe implies that the action of GLy on V is transitive; as
a consequence V is a smooth quasiprojective K-variety, and even an affine one since the

action of GLy has finite stabilizers (because Autgs(f) is finite).

We can generalize this to other gerbes:

Proposition 5.1 — Let K be a field and let G be a K-gerbe (for the étale topology)
which is a Deligne-Mumford stack. Then:
(1) there is a finite separable K -algebra L with a left action of a finite group T, with ring
of invariants K, such that G is isomorphic to the quotient stack [Spec (L)/T;
(2) there is a smooth affine K-scheme V, an integer n > 0, a right action of GL,, gk on V,
and a 1-morphism 7 : V' — G (an object of the category G(V')) with the following properties:

(i) m induces an isomorphism of the quotient stack [V/GL,, k] with G;

(ii) V is (smooth and) geometrically irreducible;

(iii) the action of GLy k on V is transitive, with finite stabilizers;

(iv) for every extension k of K, every object of G(k) lifts to a point of V (k) via 7.

In particular, because of (iii) and (iv), if k is an extension of K such that G(k) # 0,
the k-variety V Q@ k is isomorphic to the quotient of GL,, 1, by a finite subgroup.

Proof. (1) By [LaMo], (6.1.1), there is a nonempty open substack of G which is isomorphic
to a quotient [X/T'] for some affine scheme X with an action of a finite group I'. But since
G is a K-gerbe, the only nonempty open substack of G is G, so we have an isomorphism
[X/T] =2 G of K-stacks. Now, it is immediately seen that [X/I'] is a K-gerbe if and only
if X — Spec (K) is epimorphic (i.e. X # () and the action of ' on X is transitive (in
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the sense that the map (z,7) — (z,27v) from T' X X to X x X is epimorphic for the étale
topology). We also know that, as a Deligne-Mumford gerbe, G must be étale over K.
Since X — [X/I'] is obviously étale, this implies that X must be the spectrum of a finite
separable K-algebra, and the transitivity condition for the group action means that the

ring of invariants is K.

(2) Since G is a quotient by a finite group, it is also a linear quotient stack by 5.1 (1) above.
Now if G = [V/GL,, k], we deduce the other properties of V' by much the same arguments
as in proposition 4.2 (1): first, the action is transitive since G is a gerbe; next, properties
(ii) and (iii) can be checked after a base field extension, so we may assume that V has a
rational point x, with stabilizer H. In this case, G = [Spec (K)/H] so H is finite étale
over K, and on the other hand V' = GL,, x/H which is smooth, affine and geometrically
irreducible. Finally, for property (iv) we may asume k = K, and we just observe that
liftings of an object of G(k) to V (k) are classified by a GLj-torsor over K, and any such

torsor is trivial. [l

Remark 5.2. (a) In (1), one may assume that L is a field (necessarily a Galois extension
of K). Indeed, L must be isomorphic to a product of finitely many copies of a Galois
extension M of K; the finite group I' permutes the factors transitively, and the stabilizer
Ty of a given factor My maps surjectively to Gal (M/K). Replacing L by My and T" by T'g
does not change the quotient stack.

(b) Let us briefly indicate how one can construct L and T" in (1), without using the general
method of [LaMo]. First choose a finite Galois extension Ly of K such that Gp,, is trivial,
and pick an object x of G(Lg). The automorphism scheme of x is a finite étale Ly-group
scheme, so it becomes constant over a finite extension L; of Ly, which we may assume
Galois over K (in classical terms, “all automorphisms of x are defined over L;”). Finally,
all conjugates of x under Gal (Ly/K) become isomorphic over a finite extension Lo which
we may assume Galois over K and containing L;. Now take L = Lo: we have an object of
G(L) deduced from x, which we shall still denote by z; for each o € Gal (L/K) we denote
by oz the object of G(L) obtained from x by the extension o : L — L. (Note that we view
Gal (L/K) as acting on the left on L, hence on the right on Spec (L) and on the left on the
category Gr,). Let T be the set of all pairs (o, ¢) where o € Gal (L/K) and ¢ : oz =z is
an isomorphism in G(L). There is an obvious group structure on I', for which the natural
projection I' — Gal (L/K) is a morphism, which is surjective by the assumption that all
ox’s are isomorphic. So I' acts transitively on Spec (L), and one then checks that the

gerbes G and [Spec (L)/I'] are equivalent.
(c¢) The choice of GL,, in the above results is motivated by the following properties: (i)
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GL,, k is a smooth connected linear algebraic K-group; (ii) every given finite group can be
embedded in it, for some n; (iii) for every field (and in fact every semi-local ring) k, every
GL,, x-torsor is trivial; in other words, H!(k,GL,) = {1}. We see in particular that GL,,
could have been replaced by SL, throughout. There are certainly variants using other

groups, meeting various needs.

(d) Examples of K-gerbes to which proposition 5.1 (hence also Main Theorem A) applies

are:

e the gerbe of models of a given projective K*°-variety X with field of moduli K, provided
the automorphism scheme Auty.(X) is a finite étale group scheme over K*®; this is the
case in particular if X is a smooth (or more generally stable) curve of genus > 2;

e the gerbe of polarized models of a given polarized abelian variety (X, \) over K*®. Here
of course, in the definition of a model, we require isomorphisms to respect the polarizations,
and again we assume that the field of moduli of (X, \) is K.

Here are examples where 5.1 does not apply:

e the gerbe of models of a given smooth curve of genus 1;

e the gerbe of models of a given abelian variety over K*® (without polarization);

In these cases, there is in general no “descent variety” V' (affine or not) having property

(iv) of 5.1, even if the given curve or abelian variety can be defined over K.

6. Descent varieties and moduli spaces of covers

6.1. General moduli for covers of P!. Fix integers d > 0, g > 0. For every scheme

T, let COVd’g(T) be the category whose objects are T-morphisms 7 : X — PL., where:

e X is a smooth proper T-scheme whose geometric fibers are connected genus g curves;
e 7 is a finite flat T-morphism of degree d;
e for every geometric point £ of 7', the induced morphism ¢ : X¢ — Pi(@ is separable.

(In other words, the étale locus of 7 in X is surjective over T').

We define morphisms in COV®9 (T) to be PL-isomorphisms. Clearly, we get a fibered
category COV®9 over the category of schemes. Standard arguments (see for instance [Mo3],
§7) show that COV?®Y is an algebraic stack of finite type over Z. Morover, it is a Deligne-

Mumford stack since the automorphism group of a (finite separable) cover is unramified.”

Remark for the experts: we don’t have to worry about effectivity of descent for COV?'9 because we deal with
curves which are finite over P, hence satisfy effective descent. This is why we can safely take our curves to be
schemes instead of algebraic spaces. In fact, for any TK':X—)]P%-. in COVd’g(T), the curve X carries a natural ample
sheaf — namely 7*(O(1)) — and is therefore projective over T.
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Theorem 6.1 — COV®Y is a linear quotient stack.

We give two proofs, both using the criterion (2) of §5.1, but with different vector bundles.

First proof. For every scheme T' and object m: X — PL of COV*9(T), denote by L(r)
the line bundle 7*(O(1)) on X, and by f, the structural morphism X — 7. There exists
an integer N, depending only on g (in fact N = 2g + 1 will do) such that £(m)®¥ is very
ample relative to T and the direct image fr.L(m)®" is locally free and commutes with
every base change 7" — T. Put W(r) = fL(7)®Y: this defines a vector bundle W on
COVY (of rank Nd+1— g), and the fact that £(7)®" is very ample implies that Aut(r)
injects into GL(W (7)). We conclude by §5.1 (2).

Second proof. If k is an algebraically closed field, and 7 : X — P} is an object of
COV%9(k), then the number of branch points of 7 in P!(k) is bounded in terms of g and
d alone (by 2g — 2+ 2d, in fact). As a consequence, we can choose a finite flat subscheme
Z C PL in such a way that any 7 as before is étale above at least one point of Z(k). This
implies that any automorphism of 7 inducing the identity over Z must be the identity.
Now, for any scheme T" and object 7 : X — PL. of COVd’g(T), put Xz = X Xp1 Zp: this
is a finite locally free T-scheme of degree md where m is the degree of Z over Spec (Z). So
it is the spectrum of a finite locally free Op-algebra, whose underlying module we denote
by W’(r). Now it is clear that this construction defines a vector bundle W’ on COV%9,
and the preceding discussion shows that Aut(7) injects into GL(W'(r)) for every 7. [

Remark 6.2. The first proof is clearly related to the constructions in §2 and §3. On the
other hand, the second proof is a variant of the idea of “markings” used in §4.

In the second proof, if one restricts to tame covers (which form an open substack of
COV®¥) one can simply take Z C PP} to be the image of a section (for instance c0). The
point is that a nontrivial automorphism of a tame cover cannot induce the identity on a

(scheme-theoretic) fiber, even at a branch point.

6.2. Hurwitz spaces and stacks. Here, as in §1.4, we fix an integer d > 0, a finite
subgroup G C Sy, and an integer r > 3. We consider the moduli spaces H2, Hi%, H/Gab,
H/Ci;n and the corresponding moduli stacks HaGb, H%, H/C?b, H/Ci;n.

In the statements below, the situation is any of these four situations. We denote by
H (resp. H) the corresponding stack (resp. moduli space). Note that the choice of H
determines a genus (the genus of X, for any cover X — P! corresponding to a point of H),

which we denote by g. We have an obvious “forgetful” morphism

q:H— COVE? = COVHY xgpec () Spec (Q)
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which is easily seen to be representable and quasi-finite. In particular, H is a Deligne-
Mumford stack of finite type over Q, and in fact a linear quotient stack (because covd
is, and ¢ is representable; alternatively one can mimic the proof of theorem 6.1). The
automorphism group of any object of H(T'), for a Q-scheme T, is a finite étale T-group
scheme, locally isomorphic to

center of G (G-cover case)
centralizer of G in Sy (mere cover case).

We have a canonical morphism « : H — H which is the “Hurwitz gerbe” of [DeDoEm].
It is known that H is an étale gerbe over H, locally bound by C.

The following result is a more precise form of Main Theorem B.

Theorem 6.3 — There is a smooth quasi-projective Q-scheme V, an integer n > 0, a
right action of GL,, g on V with finite stabilizers, and a 1-morphism m:V — H (an object
of the category H(V)) with the following properties:

(i) m induces an isomorphism of the quotient stack [V/GLy, q] with H;

(ii) the composite map V = H > H is smooth, with geometrically irreducible fibers, and
identifies H with the quotient scheme V/GL,, g;

(iii) for every field k of characteristic zero (more generally, for every semi-local ring
with residue field of characteristic zero), every object of H(k) lifts to a point of V(k) via 7;

(iv) (local description of V over H) there is an étale surjective morphism p : U — H
such that U xy V is U-isomorphic to T\GL,, yy (with the natural projection on U and the
natural right action of GL, ), where T' is a subgroup of GL,, y isomorphic to the group
C defined above.

Remark 6.4. The l-morphism 7 corresponds to the Hurwitz family f : X — ]P’%, of
Main Theorem B. Condition (iii) corresponds to condition (2). Conditions (ii) and (iv) are
properties of the composite map V = H = H, which is the classifying moduli map of f.

Condition (i), which implies the others, is somewhat less simple. Obviously, any mor-
phism h : T — V determines by pullback a Hurwitz family over T'; conversely, given a
Hurwitz family over T', one may ask whether it can be obtained in this way (for instance,
if T' is a point the answer is yes, according to (iii)). Condition (i) says that for such a Hur-
witz family, there is a GL,-torsor over 1" whose sections correspond to “maps h: T — V),
plus isomorphisms of the given family with the pullback of f by A”. In particular, the
obstruction to finding h lives in H'(T, GLy,).

Proof. We have just seen that H is a linear quotient stack, so there is an algebraic space

V with an action of GL, g for some n, and an isomorphism [V/GL, o] = H. Define 7
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to be the composite of this isomorphism with the canonical projection ¥V — [V/GLy, gl.
Property (i) is now obvious, and so is (iii) because every GL,,-torsor over a field is trivial.
Property (ii) clearly follows from (iv), which also implies that the map V — H is an affine
morphism, hence V is quasi-projective since H is.

So there remains to prove (iv). But we know that [V/GL,, ] is a gerbe over ‘H, which
is equivalent to the assertions that V — H is epimorphic and the action of GL,, » on V
is transitive (relative to H). So, locally for the étale topology on H, V is isomorphic to a
quotient I'\GL,, 3 for some subgroup scheme I" of GL,, 3, (the stabilizer of a local section of
V). But then the quotient gerbe is locally isomorphic to the trivial gerbe BT" of I'-torsors,
which implies that I' is locally isomorphic to C. O
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