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1 Introduction

The first methods used for accelerating the convergence of sequences were the linear summation
processes which go back to Euler, Cesaro, Hausdorff and others; see [42], for example. Among
them, is also the Richardson extrapolation process based on polynomial extrapolation at zero [43]
and which gave rise to Romberg’s method for accelerating the convergence of the trapezoidal rule
[44]. The first nonlinear convergence acceleration method was Aitken’s A? process [1]. It was
generalized by Shanks in 1955 [47] and, one year later, Wynn produced his e-algorithm [56] for its
implementation. Since then, many other extrapolation algorithms have been proposed and studied;
see [20, b4] for a review and [16] for some history.

A quite general framework has been constructed along the years for the theory of extrapolation
methods which, nowadays, lies on a firm basis; see [28, 54] and the first chapter of [20].

The situation is quite different for the practical construction of extrapolation methods, that is
for the algorithms and, up to now, there was no systematic way for deriving them. Thus, in survey
papers or books on the subject (see the bibliography at the end of the paper), each algorithm was
usually presented separately from the others with no logical link between them.

It is our purpose, in this paper, to propose a systematic approach to extrapolation algorithms
and their construction. In fact, such an approach was already used in [49] and in [50] for Levin’s
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transforms, but its formalism is due to Weniger [51]. It is based on remainder (or error) estimates
and annihilation operators. We think that this approach is a very interesting and powerful one
and that it has not been sufficiently exploited. In this paper, we shall develop this point of view
and show its impact on the subject. We shall not enter here into all the details (they will be
treated in subsequent publications) but we only intend to open the way. As we shall see below, this
approach leads to a better understanding of the mechanism of extrapolation algorithms, it gives us
a framework where all the processes actually known can be included and it also provides us new
algorithms and new theoretical results.

2 The scenery

Let us begin by some definitions.

Sequences will be denoted by letters without any index and their terms by the same letter
(unless indicated) with a subscript. If v = (u,) and v = (v,), we shall make use of the notation
u/v = (u,/v,) and a similar notation for the product. A sequence will always start with the index
0.

Definition 1 [55, p.196]:
Let S be the set of complex sequences. A difference operator L is a linear mapping of S into itself

L:u=(u,) €S+— L(u) = ((L(u)),) € S.

Such an operator L is represented by an infinite matrix or, in other terms, by the sequence (L)
of linear forms mapping u into the n—th term of the sequence L(u). This is why, for briefness, the
n—th member (L(u)),, of the sequence L(u) will be denoted by L, (u) or, sometimes, by L(u,). The
notation L = [ (for example, L = A) means that Vn, L, (u) = l(u,) (for example, Vn, L, (u) = Au,).

It is well known [3] that the most general difference operator is defined by

qn

Lo(u) = Y Gi(n)u,,

1=—pn

where p, and ¢, are nonnegative integers which can eventually depend on n, u; = 0 for ¢ < 0, and
the G;’s are given functions of n which can also depend on auxiliary fixed sequences (in theory, with
some supplementary assumptions on the G;(n)’s, ¢, can be infinite. However, in practical situations,
we shall only consider the finite case). It must be clearly understood that, if the auxiliary sequences
on which the G;’s could depend, also depend on some terms of the sequence (u,,) itself, then these
terms are fized in the (G;’s and thus the operator L is still a linear one. In other terms, for defining
L, we must first choose the fixed sequence u which is used in the G;’s and then keep the same
G;’s for all the sequences to which L is applied. Thus we have L(u +v) = L(u) + L(v) since, after
choosing the sequence u which enters into the definition of the auxiliary sequences G;, these G;’s
are kept fixed. Such an assumption is usual for extrapolation algorithms; see [17].

This remark is very important since, in fact, it allows us to use the Toeplitz theorem for proving
the convergence of the transformed sequence to the same limit as the initial sequence. However,



when the G;(n) depend on the sequence to be transformed, the convergence is ensured only for
the sequence under consideration and not for all converging sequences as is the case for linear
summation processes when the G;(n)’s do not depend on the initial sequence. This point will be
discussed in more details in the sequel.

Definition 2 [51, p.212]:
L is called an annihilation difference operator for the sequence a = (a,) if AN such that Yn >
N, L,(a) = 0.

We can assume, without any loss of generality, that N = 0.

Definition 3 [51, p.212]:

The sequence (D,,) is called a remainder (or error) estimate of the sequence (S,) if Vn, Seo — Sp =
a,D,, where (a,) is an unknown sequence and S, a (usually unknown) number. If (S,) converges
to Sy, then Sy is called its limit and, otherwise, its antilimit.

As explained in [20], the first step in the construction of an extrapolation method is to assume
that the sequence under consideration has a certain behavior. In other terms, one should construct
an algorithm able to find the exact limit (or antilimit) S, of certain sequences. This will be
achieved by using an annihilation difference operator, as in [51], but with a slightly generalized
approach.

We assume that the sequence S = (S,,) satisfies Vn,

Seo — Sp = a, D,

where a = (a,) is an unknown sequence and D = (D,,) a known one. We want to construct a
sequence transformation 7" : (S,,) — (7},) such that AN, Vn > N, T, = Sw.

We assume also that 3b = (b,) such that L(b) is known and L is an annihilation difference operator
for a — b. Thus, we have

S0 Sn _
D, D, ™
and s g

Applying L to both sides of this relation and using its linearity property, we obtain Vn > N
SeoLln(1/D) — L,(S/D) — L,(b) = L,(a—b) =0

and it follows
o Lal8/D)+ L)

Ln(1/D)
Thus, if we define the transformation 7" : (S,,) — (7,,) by
o _ L(S/D) + L,(0)
" L.(1/D)

then, by construction, Vn > N, T, = S if and only if Vn > N, S — S,, = a, D,,. We recall the
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Definition 4 [20, p.4]:
Let T : (S,) — (T,,) be a sequence transformation. The kernel Kt of T is the set of sequences
such that 3S,,, AN, VYn > N, T, = S.

Remark: if a sequence o = (a;,) and an operator L are known such that L(aa — b) = 0, then we
can write
Seo — Sp = (an)an(Dn/an)
and thus
L,(aS/D) + L,(b)

Soo = Ln(a/D)

This remark will be useful later.
The simplest form of the transformation 7" is obtained when b = (0). Unless specified (see
sections 3.1, 3.9, 3.14 and 3.15), we shall only consider this case.

Obviously, if the sequence (D,,) is invariant under translation of the sequence (S,,) (that is, if it
remains the same when a constant is added to all the terms of (S,)), then the transformation T
is translative (that is, the same constant is added to all the terms of (7},)). As proved in [14], a
necessary and sufficient condition for that property to hold is that 7}, could be written as

Tn - Fn(So, ey Sk(n))

with

N fn(xo, e ,xk(n))
Fn(ﬂ?o,...,xk(n)) Dfn(xo,---,xk(n))
and D?f, identically zero, where D f, denotes the sum of the partial derivatives of f,, with respect
to g, ..., Trm). The remark that all the translative sequence transformations can be written under
this form was originally made by Benchiboun [4].
The transformation 7', as obtained above, is also homogeneous which means that if, when all the
terms of (S,) are multiplied by a non-zero constant ¢, the D,,’s become cD,,, then the T,’s are
also multiplied by the same constant c¢. A transformation which is translative and homogeneous is
called quasi-linear.

The vector, matrix and confluent cases can also be included into this framework.
If S, S, and a,, are vectors and D,, numbers, then we have

SwLn(1/D) = Lu(S/D) = Ly(a).

where L,, is applied componentwise.

If, now, S, Sy, a, and D,, are p X p complex matrices and S is the set of sequences of complex
p X p matrices, then two cases have to be considered, the right case and the left one as for Padé
approximants for matrix series [2, vol.2, pp.50ff].
We have to assume that L(au,) = aL(u,) in the right case and that L(u,«) = L(u,)« in the left
case where « is an arbitrary matrix.
i) Right case
We write

Seo — Sy =a,D, thatis SD;'—S,D;' = a,.
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Thus
SOOL(DEI) - L(Sanl) = L(an)

and the transformation 7T is defined by

T, = L(S.D;") [L(D;Y)] .

n

i1) Left case
We write

Seo — Sp = Dpa, thatis D,'S, — D,'S, = a,.
Thus

L(Dgl)soo - L(Dr:lsn) = L(an)
and the transformation 7' is defined by
~1

T, = [L(D,Y)]  L(D,'S,).

These questions are discussed in detail in [24].
Let us now consider the confluent case where S, a and D are functions of a variable . We have

Seo — S(t) = a(t)D(t).
If L is a linear operator on the set of functions, then
SeoL(1/D(t)) — L(S(t)/D(t)) = L(a(t))

and the transformation 7" is given by

T(t) = L(S()/D(1))/L(1/D(2))-

Obviously, it is also possible to consider the vector and matrix confluent cases.

3 Some extrapolation algorithms

Let us now consider different choices of the linear operator L and some particular choices of the
error estimates (D,). We shall see that they lead to different well-known transformations and we
shall also propose some natural generalizations.

The examples 1 to 8 concern a linear operator which is independent of the sequence (S,,). In the
examples 9 to 11, L depends on (S,). The case where L is a linear combination of several other
operators is considered in the examples 12 and 13. Finally, generalizations with a correction factor
are treated in the examples 14 and 15.



3.1 A simple transformation

The simplest difference operator is the identity. In this case, the most general form of the trans-
formation 7" leads to
T,=S5,+b,D,.

The kernel of this transformation is the set of sequences of the form S, — S, = b,D,,. Such a
transformation was considered in [21] where some theoretical results about it can be found.

3.2 The ©—procedure

If Vn,a, = a,b, =0, and if L = A, the forward difference operator, then we have

Dn—HSn - DnSn—H -9 — ASnD

T, = =
Dyi1 — D, AD,,

This transformation was considered in [10]. It is called the ©—procedure.

When D,, = z,, — z, where (z,) is a known sequence converging to a known limit z, then
the second standard process of Germain-Bonne [30] is recovered. For some particular choices of
the sequence (z,), new acceleration processes based on convergence tests for sequences and error
estimates can be constructed as introduced in [15] and developed in [34].

3.3 Summation processes

If L, (u) = Y%, Gi(n)u; where the G;(n)’s are given numbers, if L(b) = 0, and if Vn, D,, = 1, then T
is a linear summation process as defined, for example, in [54]. The convergence of the sequence (7},)
to S for all sequences (S,,) converging to Sy, is given by the Toeplitz theorem. Their acceleration
properties were studied in [53].

3.4 Column and diagonal transformations

If b, =0,D, = AS, and L = AF, then for k = 1 we obtain Aitken’s A? process, while £k = 2
corresponds to the second column of the #—algorithm [5]. The case of an arbitrary value of & was
considered by Drummond [29].

Because of this example, let us discuss the case where the linear forms defining L also depend on
a second integer k. We shall denote them by L, ; and consider, as before, the difference operator
L defined by the sequence (L, = Ly ), for a fixed value of k£ or the operator obtained by reversing
the roles of n and k, that is the operator L' defined by the sequence (L}, = L, k) for a fixed value
of n. We shall see, in the sequel, many other examples of such linear forms.
Thus, for the above operator, we obtain two alternatives

i) k fixed and n varying. In this case we shall consider the sequence L = AF as above (that is
L, (v) = A*u,). We obtain, for n =10,1,...

T, = A*(S,/AS,)/A*(1/AS,)



and we shall speak about a column transformation,
ii) n fixed and k varying. In that case we shall consider the sequence L} = AF (that is L} (u) =
AFu,,) which gives, for k =0,1,...

T, = A*(S,/AS,)/AF(1/AS,)

and we shall speak about a diagonal transformation.
The reasons for these names are clearly understood if we set

T = A*(S,/AS,)/AF(1/AS,)

and if we display these quantities into a two-dimensional table as follows

T

Tél) Tl(O)

T0(2) Tl(l) TQ(O)
Té?,) T1(2) T2(1) TE’EO)

So, n indicates the minimal index of the sequence S which is used in the computation of T,g") while
the index k is related to the number of terms of S needed and, thus, it is, in some sense, a measure
of the complexity of the sequence transformation.

Obviously, it is also possible to define other difference operators by letting n and k£ vary arbi-
trarily.

3.5 Levin’s transforms

If b, = 0 and if a,, is a polynomial of degree k — 1 in n + 1, then it is well known that L = A*
is an annihilation difference operator for (a,). This remark is the basis used by Levin [33] for
constructing his various sequence transformations based on different choices of the sequence (D,,)
and by Weniger [51] for extending them. Levin’s transforms can be generalized by taking, for a,,
a polynomial of degree £k — 1 in z,,. In that case, the annihilation difference operator is the divided
difference operator 6 that will be defined in the next subsection and Levin’s transformations appear
as a generalization of Richardson’s. The generalization of Richardson process introduced by Sidi
[48] can also be put into this framework and Drummond’s method [29] as well. The connections
between these processes are discussed in more detail in [51, pp.236-238] and [20, pp.116-119].
Levin’s transforms will be discussed again in sections 4.1 and 4.2.

3.6 Richardson extrapolation

Let us now consider the well-known Richardson extrapolation procedure [43]. It consists in assum-
ing that

_ k
Sp =8 —C1Tp — -+ — kT,
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where (x,,) is a given auxiliary sequence. Thus

k—1

Soo — S =(c1 + -+ cxy )Ty

which corresponds to D,, =z, and a, = ¢; +--- + ckxﬁ_l. The divided difference operator 6 of
order k£ at the points z; is an annihilation operator for the sequence (a,). Let us recall that this
operator is recursively defined by

Ok (Un+1) — O (Un)
Tptk+1 — Tp

5k+1 (un) =

with do(u,) = u,. Thus, we are in the case, described in the example 3.4, of an operator depending
on a second index k. Using the same notations as above, we can construct a two—dimensional array
by
T(n) _ 5k(Sn/-Tn)
Ok (1/n)

with To(n) = S,. By construction, if S, — S,, has the form above, then Vn, T,Sn) = Seo-
We shall now prove that these numbers are identical to the numbers U,E") constructed by the
Richardson extrapolation scheme

U(n) _ mn—f—kU]Sri)l - xnU]gﬁ_;l)
=

Tn+k — Tn

with U™ = ,.
By using the recurrence relation between divided differences, it is easy to prove by induction that

0k(L/@n) = (=1)* /(2 - Tas)-

We can also prove by induction that

50(S, /1) = — =D gy

xn"'xn—l—k

where U,g") is the quantity computed by the Richardson scheme. The property is true for £ = 0.
Assuming that it is true for k, we have

n+1) (n)
e '$n+kUk — Tp41 '$n+k+1Uk

kTn
(_1) 2 2
TnTpi1" " TpykTntht1(Tnths1 — Tn)

5k—|—1(Sn/~'17n)

Thus, using the Richardson scheme, we obtain 0y, 1(Sn/2n) = 0ky1(1 /xn)U,gi)l which shows that

Tk(") =0, ,§"). A similar derivation can be found in [51, pp.246-247]. The expression for the divided
differences of 1/z,, is also given [39, p.8].

Thus, the Richardson extrapolation method can also be implemented via the recurrence relations
for divided differences as already mentioned in [48]. However, the Richardson scheme is simpler
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because it is a relation between the T,c(")’s themselves instead of two separate recurrence relations

for their numerators and their denominators. If the Richardson extrapolation method has to be
applied simultaneously to several sequences with the same auxiliary sequence (z,) then, since the
denominators are the same, it could be preferable to use the preceding scheme based on divided
differences.

Using the usual determinantal formula for divided differences and the definition of Tk(”) given
above, we recover the expression of these quantities as a ratio of two determinants, see [20, p.72].
It will probably be possible to derive new extrapolation schemes by using the recurrence relationship
for generalized divided differences obtained by Miihlbach [40].

3.7 Overholt’s process
The Overholt process [41] is defined by

AWV J(AS,)F )
A(1/(AS, )51

Vi -

with V" = ..
For this algorithm, it is known that the quantities Vk(n) can be expressed as a ratio of determinants
but these determinants have not yet been found [26].

From the above expression, we immediately see that Vn, V/c(ﬂ = S, if and only if there exists a
constant ¢, such that
Soo = V™ = p(AS,ik)* .

Thus, assuming that the constant ¢ is replaced by a polynomial of degree m; — 1 in n, we obtain
a generalization of Overholt’s process

) _ ATV /(A8 )"
T A (1/ (A )F)

If ¢, is replaced by a polynomial in z,, then divided differences have to be used instead of the
operator A.

3.8 The E—-algorithm

Let us now consider some more difficult examples where, in particular, the sequences G; in the
definition (given above) of the most general difference operator, can depend on some terms of the
sequence (S,).

Let us take
Uy, un+1 . un+k
. gi(n) gi(ln+1) -+ gi(n+k)
Lo(w) = L) = | “7 0 |
g(n) grn+1) - gr(n+k)



where the (g;(n)) are given auxiliary sequences which can depend on (S,,) itself and define T as
above.

If we set
Up, Up+1 T Un+k
gl(n)Dn g1 (n + 1)Dn+1 s 91(” + k)Dn-Hc
gk(n)Dn gk(n + l)Dn—l—l e gk(n + k)Dn—Hc

then we also have

_ Lu(S/D) _ My(S)
- La(1/D)  My(1)

and a similar property for Lj. For more properties of this type, see [17].

If Vn, D, =1 and S,, = 2", then the formal biorthogonal polynomials defined in [19] are recov-

ered.
If D, =1,if b, = Y% | ¢;g;(n) where the ¢;’s are arbitrary numbers and if the operator L is defined
by the sequence (L,,) of linear forms given above, then the transformation 7" corresponds to the
k-th column of the E—algorithm [9, 31] with the (g;(n))’s as auxiliary sequences. If L' is defined
by the sequence of linear forms (L},), then T corresponds to the n—th diagonal of the E—algorithm.
Another approach to the E-algorithm and some related algorithms can be found in [23]. It is
also related to annihilation difference operators, but does not make use of determinants in their
definition.

The E-algorithm is the most general existing extrapolation algorithm. Almost all the sequence
transformations actually known are particular cases of the E—algorithm and they can be recovered
by different choices of the auxiliary sequences g;. We shall now study one of them in more details.

Let us take

15

Uy, U/n—|—1 e un+k
ASn ASn—l—l e ASn—l—lc
L,(u) =L (u) = : : :
ASpik—1 ASppr -+ ASnyor—1

ftD,=1,ifb, = Zle ciAS,1;—1 where the ¢;’s are arbitrary numbers and if the operator L is
defined by the sequence (L), then 7" is the k—th column of the Shanks transformation [47], or, in
other words, 2k—th column of the e—algorithm of Wynn [56]. If L' is defined by the sequence (L},),
then T corresponds to the n—th diagonal of the Shanks transformation or the e-algorithm. The
first and second generalizations of the e—algorithm [6] can also be put into this framework since
they correspond to replacing the operator A by a more general one [7, 45].

3.9 Padé and Padé-type approximants

Let us consider, in the e-algorithm, the particular case S = (S,) where S, = co+ 12+ -+ - + ¢, 2"
(that is the n—th partial sum of the series So. = f(2) = ¢y + 12 + c22° + --+). Since we have

10



Seo — Sp = €412 + - -+, then it corresponds to D, = 1 and we shall take

q g—1 cen
ZiUp—qg 27 “Up—qt1 Up
C _ c _ e c
71 _ | “p—atl P—q+2 p+1
Cp Cp+1 T Opig

with the convention that ¢; = 0 for 7 < 0.
If b, = 31, ¢py42P™, and if the operator L is defined by the sequence (L,), then T, is the [p/q]
Padé approximant of the series f at the point z [25]. We obtain

f(z)L(1) — L(S) = L((Cp+1zp+1 + - )p)-

Using the definition of L, we easily see that

Zq(cp_(ﬁ_ﬂpw+1 +) e cp+12p+1 4+
L((cp1 2Pt +--4),) = Cp_;qﬂ sz+1 = (290(z"*))
G T Cptq
since the terms in zP*! ... 2P*9 in the first row disappear by linear combination with the other

rows. This is the usual approximation-through—order property of the Padé approximants and we
have, for a fixed value of ¢

Ly(S)/Ly(1) = [p/dls(2)-
Of course, the same property holds if p is fixed and ¢ changes.

If we set

L,(u) = a(()k)zkun + agk)zk_lunﬂ + - a,(ck)umk

then, for b, = 0 and D,, = 1, it is easy to see that
F(2)Ln(1) = Ln(S) = O(z"**)

which shows that L, (S)/L,(1) is the (n + k/k) Padé—type approximant of f with vg(z) = al? +
-+ afck)zk as its generating polynomial [8] since L,(1) is a polynomial of degree £ and L, (S) is a
polynomial of degree n + k.

3.10 #—-algorithm
The -algorithm [5] can be written as

w _ AOSTV/DE, )
2k+2 — n
A(1/DS )

with
n n+1 n
ogk)Jrl = eék:) + Dék)
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DM =1/(67+) — o)

and 6™ =0,600" = S,.
Thus, the #-algorithm can also be put into our framework since it corresponds to an iterative use
of our basic procedure with S = (0§Z+1)) , D = (Déz)ﬂ) and b = (0). From theoretical reasons, it

is known [26] that the quantities 0&2) can be expressed as a ratio of two determinants but these
determinants have not yet been found.
From the above expression, we immediately see that Vn, Oéz)ﬂ = Sy if and only if there exists a

constant ¢ such that
n+1 n n
Soo — 6§k+ ) = Ckng)H = Ck/Aeék)H-

Thus, assuming that the constant ¢ is replaced by a polynomial of degree m; — 1 in n, we obtain
a generalization of the #—-algorithm

m n+1 n
(Z) _A k(9§k+ )/Dék)ﬂ)
2k+2 = n

Ami(1/D )

If ¢, is replaced by a polynomial in z,, then divided differences have to be used instead of the
operator A.

3.11 p-algorithm

Extrapolation at infinity by a rational function consists in assuming that

SooZk + 1z 1 -+
ok + bkt 4o 4 by

n:

It leads to a slight generalization the p-algorithm of Wynn [57] whose quantities are defined by a
ratio of two determinants as follows (we only indicate their first rows)

(n) _‘ 1S, , x5, - a:ffl xﬁ_lSn szn ‘
o = | 1S, zn ©,5, --- ak-1 zk-1S, zk|
It corresponds to D,, = 1 and Ln(u)z‘ 1 S, @ 2,8y +-- a1t 2FLS, a2k, ‘

These ratios of determinants can be recursively computed by the p-algorithm whose rules are

n n+1 n+1 n
P = o8+ (@ — @) /(0 — M)

with p™ = 0 and p{” = S,. These quantities are the usual reciprocal differences which play,
p—1 Po

in rational interpolation and in continued fractions, the role of divided differences in polynomial
interpolation.
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3.12 Composite transformations

Let L, L® .. L®) be difference operators and (bin)) given sequences of numbers. We shall define
the difference operator L by

k
Ly =Y 6L
i=1
and the transformation 7" as usual by T,, = L,(S/D)/L,(1/D).
Defining the transformation 74 :  (S,) — (T™) by

T = L(S/D)/LY(1/D),

K3

we have
d (n)(n)
i=1
with ,
o) _ ym L (/D)
' ' L,(1/D)"
Thus

k
chn) =1
i=1

and we recover the composite sequence transformations introduced in [13].
We want to choose the bz(-n)’s so that the kernel of the transformation 7' contains the kernels of
the transformations 7. So, let us assume that 3i, LY (a) = 0. In order that, Vn,T, = S, we

must have bg") # 0 and Vj # z',bg-") = 0. Thus, CE") =1 and Vj # z',cg-") = 0. Since, in that case,
T = S, and AT™ =0, a possible choice for L, when Vn, D, = 1, is given by

LS) e L%k)
B A 1(") oA IS")
ATl(n'qLH) o ATk(n.+k72)

This transformation, given in [13], generalizes Shanks’ which is recovered for the choice Ti(”) =

Sn—l—z'—l-
A possible generalization consists in taking
k o
La(u) = Y00 L(u/ DY)

=1

where the D®’s are known sequences.
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3.13 Least squares extrapolation

T,, as defined in section 2, is the value minimizing f(¢) = (tL,(1/D) — L,(S/D))?. Let us now
define 7T;, as the value minimizing

k
=¥ [tPa/D) - L (s/D)]’
=0

where LV, L) ... L®) are difference operators. We obtain

i LY (1/D)LY (5/D)

st (19(1/D))”

T, =

If the difference operators are taken as L% (u) = L, ;(u), where L is some difference operator, then

we recover an extrapolation procedure, called extrapolation in the least squares sense, which was
studied by Cordellier [27] (see also [11]).
If we define the operator L' by

iLZ (1/D)LY) (u)

then T,, = L! (S/D)/L} (1/D) which shows that such an extrapolation process can also be considered
as the composite sequence transformation corresponding to the choice bg") = LW(1/D).

3.14 Cauchy—-type approximants

If we define 3, by
Bn = —Ln(b)/Ln(S/D)

then the most general form of the transformation 7', as given in section 2 with an auxiliary sequence
b, can be written

L.(S/D)
T,=1-pBp)—"==
=5, 1/D)
which shows that we have, in fact, introduced a correction factor in its simplest form (corresponding

to b = (0)).

Let us see now how, using this expression, the Cauchy-type approximants can be put into our
framework.

Let f(2) = ¥°,ciz* be a formal power series and f,(2) its partial sums. Let g(z) = 3, d;2* be
a known auxiliary series with partial sums g,(z). We set 7,(z) = ¢g(2) — gn(2). The Cauchy-type
approximants [18] are defined by

_ hn(2) _ Yo a; 72’
9(2) 9(2)




where h,(z) = Y1, a;2" is the n—th partial sum of the series f(z)g(z). Thus
a; = doc; + dici—1 + - + dico
and C,(z) can also be written as
Cu(2) = B fol2) + BV fu() + - + B fu(2)

with BZ-(n) =dp_iz" t/g(z) fori=0,...,n.
Taking D, = 1 and defining the operator L by

Ln(u) = Z dp_iz"
=0

we obtain
Culz) = (1 —m%

with 8, = r,(2)/g(2). It must be noticed that (5,) tends to 0 when n goes to infinity.
Acceleration properties of the Cauchy-type approximants were studied in [35, 36, 37].

3.15 Error control

Procedures for controlling the error in convergence acceleration methods were introduced in [12].
They consist in setting

L,(S/D) L,(a) ,
h=5=1.amp = L.a/m) ~ P

n

with e, = L,(a) and D], = 1/L,(1/D). Then, a second sequence transformation T* is defined by
L,(S/D)
T o= (1))
+ = UL ayD)
= T, — ’YnD;z = Tn("m)
with v, = 8,L,(S/D). It can be proved that, under certain assumptions, the limit S,, of the

sequence (S,,) belongs to the interval with bounds T,,(7,) and T,,(—7x).
In our case, if

AT, 1
"~ AD, 1+ D},.,/D,
and if L.(1/D) Lo (a)
1. A _ 1 n+1(Q 1
0 L1 (1/D)  nos L (a) 7
then T _ g
lim —»—= =0.
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Moreover, if we set

T;(e) =Th — (1 + 5)7nD;L
then, under the preceding assumptions, Ve # 0,3N,Vn > N,S, belongs to the interval whose
bounds are T} (¢) and T} (—¢).
These results can be applied to the Cauchy-type approximants introduced in the preceding example.
These approximants are recovered by the choice

and we have

) - )
% G2 f) O
if
lim Tn(z) =1.

4 Composition of operators

In this section it will be easier to denote by L(u,) the n—th term of the sequence L(u). We shall
use again several difference operators denoted by L®.

4.1 A particular case

As in section 2, let us assume that
Sec — Sp = an,D,,.

In practical situations, most of the time, an annihilation operator for the sequence (a,) is not
known. Thus we begin by choosing an operator L(). Applying it to the previous relation leads to
a first sequence transformation defined by

7" = LY(S,/D,) /LM (1/D,)

and we have
Soo = T = LM (a,) /LD (1/ D).

Setting a{” = LM (a,) and D{™ = 1/LM(1/D,,), we have
oo~ T = o DY

Let us now choose another difference operator L(® (which can be the same as the first one) and
apply it to the previous relation. It leads to a second sequence transformation defined by

LY = 19T /D) /12 (/DY)
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and we have
Seo = Ty = L (a{")/1?(1/ D).
It is easy to see that
) _ LPLW(S,/Dy)
> 7 LOLO(1/D,)

and so on.
Thus we have the following iterative use of the procedure.
We set
To(n) =S, and D(()n) =D,.

Then, for £k =0,1,..., we set
m _ LEDTM /DY)

k+1 = L(’““)(I/D,(C")) )
and
Dy, =1/L% D (1/D).
We have
Soo — k(:L—)l = agcnjL)lDi(c:L-)1
with

a’l(cr—LBl — L(k—H) (a'l(gn))

It can be easily checked that
L% .. -L(l)(Sn/Dn)
L&) ... LO(1/D,)’

a™ = LW ...10(q,)

" =

and
D™ =1/L® ... LO(1/D,).

For example, if V&, L) is the operator A, we have

7, =70 - A% p
AD{

where A operates on the superscripts n, and

D, = —D" DD JADM.
This is a particular case of the algorithm (30) given by Homeier [32] when his quantities Ar,(c”) are
all taken equal to 1.
As another application of this iterative procedure, let us consider the family of sequence transfor-
mations defined by
rim) _ L®(Sn/Dy)
* LW(1/Dy)
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where the difference operators L*) satisfy the following recurrence relation
D () = 0L ) + AOLO )

with L (u,) = u,, (o) and (3%)) being given auxiliary sequences of numbers. Then, we can
write

g = LD _ o LO(Syss/Daga) + SLY (S, Dr)

LED(1/Dy) A L®)(1/Dyyr) + B LO(1/D,,)
o LW (1/ D) TV + BOLW (1/D,) T
A LW (1/ D) + BELOA/D,)

So we get,
o _ LT /D)
with
LED () = aPuyy + WP,

DI = 1/L®W(1/D,) = 1/L® L=V ... LO(1/D,).

We can easily see that
Dy = 1/£%(1/ DY)

which shows that T,ﬁ)l can be obtained by composing difference operators.
As an example, let us consider Levin’s transforms introduced in section 3.5. The algorithm for
their implementation given in [50] enables us to write

) _ A0+ 1) 1S,/ Dy) _ L®(S,/Dn)
g Ak((n+1)*1/D,) ~ L®W(1/D,)

with
(n+1)(n+k+1)1

(n+k+2)*
and D,, chosen according to the Levin’s transform under consideration. We immediately see that
this algorithm fits into the previous iterative procedure by choosing

(n+1D)(n+k+1)k1
(n+k+2)*

L(k+1)(un) = L(k)(un—}—l) - L(k) (un), L(O) (un) = Un

o® =1 and B¥ =—

4.2 The general case
It is also possible to iterate as before, but with arbitrary D,(c”)’s no more related to the D,(c"_)l’s
by the above recurrence relation. This is the most general case and it includes, for example, the

E-algorithm since we have
A(EM, /0, 1)
A1/gi) )
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with E{™ = S, and the quantities g,(ctli) computed by

g(n) _ A(gl(cri)l,i/gl(cri)l,k)
ki — n
A(1/gi™ )

with g((fi) = gi(n).
Overholt’s process (example 3.7) and the §-algorithm (example 3.10) also fit into this category.
Let us set

1
DM L®(1/D{M))
af’) = bML® ().

b

Y

We have
T LB G LED (.. LO G LO(S, /D,) )

L™, L LB LM1/D,) )

Let us denote, in this general case, by T} the transformation (S,) — (T,E")) for a fixed value of
k. The kernel of such a composed transformation was studied in [22] where the following results
were proved

Theorem 1 :
The kernel of Ty11 contains the kernel of Tj.

Theorem 2 :
The kernel of Ty, is the set of sequences such that Vn,

Soo = Sp = an Dy, with L® (™, LED (... LG LD (g,)--) = 0.

When the operators L®) are all identical to A then, by the theory developed in [26], we know that

the quantities T,g”) can be expressed as a ratio of two determinants. However, these determinants
are only known in a few particular cases and for many transformations they still have to be found.

Let us now give three examples.
i) We consider the sequence of transformations given by
" = 8,
a,(AT")?

T(") — T(") _ .
Frt g an+1ATk("+1) — anATkn)

These transformations were studied by Matos [34] in the cases a, = n and a,, = nlogn. It is easy
to see that they can be obtained by composition of operators in two different ways. First of all,
these transformations can be written as

" = s,
L(T(")/D("))

(m) _ 2\ [Pk )

L(1/D{M)
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with L = A and D\ = q,AT™.
The same sequence of transformations can also be obtained as in subsection 4.1 with
D,(Cn—kl) D](Cn)

L(k+1) Up) = —— 71 Un — e P
( ) Gn+1ATk(n+1) o a’nATlgn)

and
Dy =1/1% 1/ D).

ii) The transformations defined by

M o= s,
n n AT(")
Tkg+)1 = TIS ) k_ 1
Pk+1

are recovered by the choice L = A and D,(C") = P41~ Such transformations were introduced by
Matos [34]. They were proved to accelerate the convergence of monotone sequences such that, ¥n

AS, = a1p] + agpy + -+
with 1 > p; > ps > --- > 0 and Vi,a; # 0, that is, we have V&,

lim (737, - S) /(T = S) =0.

n—oo

iii) Let us consider again Levin’s transforms as defined in the previous section. If we set ) =
n---(n+ k)= (n)gs1, the Pochhammer symbol, then we can write

ALY (up) P (n + k)* 1)

L(k—f—l)(u ) —
R

which gives

L(kil)(sn/Dn) (k—-1)
L®(S,/D,) _ = \ LED(1/D,) "
L®(1/D,) A (4 + k — 1=206-0(1/D,))

(n+k— 1)k—2L<k—1>(1/Dn)>

" =

Setting

Dl(cn)1 = .
ANy 4k — 1)k2L0-D(1/D,,)

we get
w _ A (15D
’ A (1/D)
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In this case, the D,g”)’s are not related by D,(cn) =1/A(1/ D,(c"_)l) but it is easy to see that they satisfy

1
n(n + k)A(1/D™,)

DM =

which shows that Levin’s transforms also fit into the general case with
B =n(n+ k).

Iteration of sequence transformations is considered in [52] and their kernels are studied in [22].

5 Conclusions

As can be seen from what precedes, the framework developed in this paper is quite powerful and
interesting and it could certainly be extended furthermore. In particular, an important question
will be to study the convergence and acceleration properties of extrapolation algorithms within
this formalism in order to obtain more general results than those actually known. Some results
in this direction have already been obtained by Matos [38]. The mechanism introduced in [23]
has been extended to the vector and matrix cases in [24]. Including in this mechanism the recent
interpretation of the vector e—algorithm of Wynn [58] obtained by Salam [46] is under consideration.
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