Joseph Le Potier
Cohomologie du schéma de Hilbert ponctuel d'une surface : travaux de M. Haiman, G. Danila et L. Scala

Soient X une surface algébrique quasi-projective lisse, $\mathrm{X}^{[n]}$ le schéma de Hilbert ponctuel des sous-schémas de X de longueur $n \geq 2$. A tout fibré inversible L sur X est associé de manière standard sur $\mathrm{X}^{[n]}$ un fibré vectoriel de rang n, noté $\mathrm{L}^{[n]}$. Le but principal de l'exposé est de décrire la cohomologie de $\mathrm{X}^{[n]}$ à valeurs dans les puissances extérieures de $\mathrm{L}^{[n]}$. Le résultat attendu est un isomorphisme de modules gradués

$$
\wedge^{\ell} \mathrm{H}^{*}(\mathrm{X}, \mathrm{~L}) \otimes \mathrm{S}^{n-\ell} \mathrm{H}^{*}\left(\mathrm{X}, \mathcal{O}_{\mathrm{X}}\right) \xrightarrow{\sim} \mathrm{H}^{*}\left(\mathrm{X}^{[n]}, \wedge^{\ell} \mathrm{L}^{[n]}\right)
$$

où les puissances extérieures, symétriques ou tensorielles sont prises au sens des modules \mathbb{Z}_{2}-gradués. Cet énoncé est vrai pour $\ell=0$: cela résulte du fait que les singularités de la puissance symétrique $\mathrm{S}^{n} \mathrm{X}$ sont rationnelles. Pour $\ell=1$ c'est un théorème de G. Danila [1]. L. Scala démontre cet énoncé pour $\ell=2$. Il donne aussi la description de la cohomologie à valeurs dans la puissance symétrique $S^{2} \mathrm{~L}^{[n]}$, ce qui étend le résultat obtenu par Danila dans [2] pour $n=2$ et $n=3$.

La démonstration s'appuie sur les travaux de Haiman ([3], [4]) relatifs au schéma de Hilbert isospectral et aux polygraphes.

Références

[1] G. Danila, Sur la cohomologie d'un fibré tautologique sur le schéma de Hilbert d'une surface, Journal of algebraic geometry, 10 (2001) p. 247-280.
[2] G. Danila, Sur la cohomologie de la puissance symétrique du fibré tautologique sur le schéma de Hilbert ponctuel d'une surface. Journal of algebraic geometry 13 (2004) p. 81-113.
[3] M. Haiman, Hilbert schemes, polygraphs, and the Macdonald positivity conjecture, Journal of the American Mathematical Society 14 (2001) p. 941-1006.
[4] M. Haiman, Vanishing theorems and character formulas for the Hilbert scheme of points in the plane, Inventiones math. 149 (2002) p. 371-407.

