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Symmetric stable random vectors

A random vector £ in R%is symmetric stable with characteristic exponent

a # 0 (notation Sa.S) if & 2 (—¢&) and for all a, b > 0,

/gy +bleg, 2 (a+b)M¢,

where &1, &5 are independent realisations of &.

Relationships to convex geometry




Minkowski sums

Sums of convex bodies in R¢

A+B={r+y: x€ A, y € B}




Zonotopes

[1  Zonotopes are sums of segments, e.g. parallelograms.

+\:

zonotope

[] Translate all segments, so that their centres are at the origin. Then

n

Z[—ai, ai] E— EX

i=1
is the expectation of the random segment X that equally likely takes values

[—na;, na;]. More general, > " pi[—a;,a;] = EX




Central symmetry

[1  Zonotopes are centrally symmetric — very much centrally symmetric!

[1 A polytope is a zonotope if and only if each its face of any dimension is

centrally symmetric (e.g. icosaedron is not a zonotope).

L] Each centrally symmetric planar polygone is a zononotope.




Zonoids

[1  Zonotopes are expected random segments with a discrete distribution.

[1  Zonoids are limits of zonotopes in the Hausdorff metric, i.e.

expectations of general random segments.

[1  Zonoids are convex and centrally symmetric.

[1 Inthe plane each centrally symmetric convex compact set is a zonoid.

This is wrong for dimensions d > 3 (e.g. icosaedron).

[] Translations are not important; assume that all segments are origin

symmetric, so the sums are also origin symmetric (centred).




Support function

(1 For compact K C R? the support function is

hic(uw) =sup{(u,z): € K}, ueR®

\ hK(U)\\
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[]  Minkowski sum of convex compact sets translates into the arithmetic
sum of their support functions, i.e.

hicyr(u) = hi(u) + hp(u)




Examples of support functions

K =|-z,2]

hic(u) = |z, u)
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K = BT(O)
hic(u) = rllul
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Cosine transform

[]  Zonotope Z is a sum of segments, so its support function is a sum of

support functions of the summands:

hz(u) = Z hi—a;,0:(v) = Ehx (u)

[1  Thus, zonoid becomes the expectation of a random segment X, i.e.

hz(u) = Ehx(u)

[ 1f X = [—n,n|is centred, then hx (1) = |(u, n)|, so that

Z is a centred zonoid if and only if

hz(u) = B | (u, )] = / (u, 2) [Py (dz) = / (u, 2o (dx),

Rd gd—1

where the spectral measure ¢ is a finite measure on the unit sphere St




Equivalent characterisations of zonoids

Z is zonoid is equivalent to

O hz(u) = Jeu s [{u, z)|o(dz) for a finite measure o.

(1 Zis the range of an R%-valued measure.

0 R9 with the norm ||u|| 7 = hz(u) is embeddable in L1 ([0, 1]),
where ' = {u : hz(u) < 1} is the unit ball in this norm (polar set to 7).

0 o(u) = e "2 4 € R?, is a positive definite function.

[] etc. etc.
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Positive definiteness and zonoids

[ Zis zonoid if and only if o(u) = e~"#(") is positive definite.

(] Note that hz (tu) = thz(u), function (u) is continuous and
p(0) = 1.

L] Thus ¢ is the characteristic functions of a stable law with characteristic

exponent & = 1, i.e. the Cauchy distribution.

[] T.Ferguson (1962) noticed the difference between Cauchy laws in

dimensions 2 and 3, but did not explain it in terms of zonoids.
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Lévy representation

(1 Arandom vector £ is Sa.S with 0 < v < 2 if and only if there exists a
unigue symmetric finite (spectral) measure ¢ on the unit sphere S%=1 such

that

d—1

| (u, z>\o‘a(dz)} .

pe(u) = Ee''&" = exp {—/
S

(if « = 2, then |{u, 2)|? is a quadratic form and o is not unique).

[  Density is not known analytically apart from the cases o« = 2 (normal

law) and o« = 1 (Cauchy distribution).
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Star bodies

(] Fis star body if [0, w) C IntF for every u € F' and the Minkowski
functional
1

=inf{s>0: ue€ sk} =
lullp = infis = u€ sk} radial function of F in direction u

IS continuous.

L1 F'is called centred if it is origin-symmetric.

If I is also convex, then ||u/| = is a (convex) norm on R,
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Stable laws, zonoids and star bodies

[ Fora € (0,2],

/Sdl (u, 2)|%o(dz) = |Jul|p = @e(u) = e IlF

for an origin symmetric star body F'.

0 Ifa e [1,2], then

for a convex body Z being an L ,-zonoid called the associated zonoid of &.

Then F' = {u : hz(u) < 1} is convex and is the polar set to Z.
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First examples

o (u) = eIl

F'is called the associated star body of &

(1 1f € has independent components, F' = {z: x{ +---+ 25 < r®}
is /,,-ball in R? (not convex if & < 1).

O &= (&1, ..., &) (completely dependent), then ||ul|p = D u;l;
its spectral measure o is not full-dimensional; F' is an infinite strip.
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L,-balls

F' is associated star body of Sa.S law

0

e~ Iull7 is positive definite

0

Fisan L,-ball,ie. (R | - | ) is embeddable in L, ([0, 1]) with p = «

1966: J. Bretagnolle, D. Dacunha Castelle, J.L. Krivine. Lois stables et
espaces LP.

L+ -balls are polar sets to zonoids
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One known result

Theorem 1. If F'is an L,-ball for p € (0, 2], then F'is an L,.-ball for all
r € (0,p].

Proof. £ is Sa.S with « = p and star body F'. Let ( > 0 be strictly stable
with exponent 3 € (0, 1) and independent of £. Define £/ = (/¢

(sub-stable law).

E i€ — BE(EE|0)) = BeClulld — o llulls’

Thus, Fis the associated star body of £’ with the characteristic exponent
r=af € (0,p). ]
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Summary so far
Each Sa.S law is determined by o € (0, 2] and star body F'.
The associated star body F'is an L ,-ball.

If € [1, 2], then F'is convex, its polar is L,-zonoid K, and

e—h(K,u) .

Independent coordinates if and only if £’ is an £,-ball.
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Sub-Gaussian laws

[1  Sub-Gaussian laws appear as products v/C&, where £ is Gaussian

and ¢ > 0 is positive (one-sided) strictly stable.

[] Ellipsoids are associated zonoids (and star bodies) of Gaussian laws,

so all ellipsoids are L,-zonoids for p € [1, 2] and L,-balls for p € (0, 2].

[] Sub-Gaussian laws can be characterised as those having ellipsoids as

associated star bodies (and zonoids).
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Approximation by sub-Gaussian laws

Theorem 2. A law is SaS with o € [1, 2] if and only if it can be obtained
as a weak limit for sums of independent sub-Gaussian laws with the same

characteristic exponent .

Proof. Grinberg—Zhang (1999) result on approximation of Lp-balls by sums

of ellipsoids. H

Dvoretzky’s theorem (1960): Each S«.S law of sufficiently high dimension
can be projected on a lower dimensional subspace, such that the projection

lies arbitrarily close to a sub-Gaussian law.
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Stable density

¢ is Sa.S with associated star body F' and density f. Then

pe(u) = e 1"lF = P{¢ > |ullr} = Elesu)y = ELuecr,

where

(03

P{(>z}t=¢", >0

Fourier inversion

2n)'f(2) = E |

Rd

€_i<u’x>1u€Cqu — E/ e~ HwT) dy
CF

E.Q.

F(l + g)VOId(F)
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Generalised functions

f is the stable density, g is a generalised function

1

(9, f) = o)

<§7 E 1u€CF)

[] Need to find the action of the Fourier transform g on 1,,c¢F.

[ Important example g(z) = ||z||*.

22



Moments of the Euclidean norm

Theorem 3. For A € (—d, )

221 d+ A T(1-2)
A o A
Bl = TS Sy L Il

Proof. Fourier transform for the generalised function || ||* or plain-wave

expansion of the norm.

Known: in the isotropic case ' = B_-1 (o is the scale parameter) and

[(22) T(1 -

) T-

E||¢|* = 2%

A
E)A
5\ .
2

_)0
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wanted [o, , ||lul/pdu !

(] Not easy even if ||u||% is a bilinear form.

[]  This quantity is a dual mixed volume of F'. The dual mixed volume

inequality implies

E ¢ > 2°

VOld(F)

INGE=Y r(l—g)( K )W’

(4 -3y

with the equality if and only if F'is a Euclidean ball (x4 is the volume of the

unit Euclidean ball).

[  Sophisticated bounds (Litvak—Milman—Schechtman, 1998: Averages of
norms and quasi-norms) imply inequalities between moments of different

orders.
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Other moments

[J  Expressions for mixed moments E(|&; [t - - - |£4]*¢) and signed
powers B(&; - e,

[]  Forinstance, if d is even,

d
Esign(&;---&q) = Z—d/F du

T Up v Ug

The integral is scale-invariant and does not exceed 7% in absolute value.
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Integrals of the density

/Rf(tu)dt — (275‘1—1 F(l + %)Vold_l(F Nut)

[J  Busemann problem: Does Volg_1(F; Nut) < Volg_1(Fy Nut)
for all u and centred F, F5 imply Volg(F1) < Voly(F5)?
Gardner et al., 1999: yes if d < 4, otherwise not.

L] Flis an Ly-ball, and so is an intersection body. Thus, in all dimensions

/ fi(tu)dt < / Poltwdt, uwes™' = £1(0) < f-(0)
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Covariation

¢ is SauS in R? with o > 1 and associated zonoid Z
The covariation of £ is defined as [£1, &2]q fgl Slsé >O’<d8)

Theorem 4. If {(x1,x2)} is the support point (necessarily unique!) of Z in
direction (0, 1), then

&1, 8]0 = z1ay ™!

‘regression line

/
/
/.

Extension for multiple regression.

E(&i]&2) = 2é as.
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One-sided stable laws

[1  How to describe geometrically a strictly stable (not symmetric!) & with

values in Ri?

[] How to describe geometrically distributions stable with respect to other

operations, e.g. max-stable laws?
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le_ with maximum operation

[0 ¢ is max-stable random vector in RZ | i.e.

at/ ¢ v bt/ gy 2 (a+b)H/¢

[1  Assume ac = 1; then £ is said to have a semi-simple max-stable

distribution. Up to a scale of coordinates, all marginals are unit Fréchet

r <0,
’ :CZO)

—1

and & has a simple max-stable distribution.
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Representation of semi-simple max-stable
distributions

Theorem 5. A random vector £ is semi-simple max-stable if and only if

P{¢{ <z} =exp{—hz(z7")}, weRY,
where 2~ = (z] ', ...,z ") and

Z =cEA,

IS the expectation of the random crosspolytope

An = conV(O, mei,. .. ,nded) n

for c > 0 and a random vector 7} in Si_l (unit sphere in Ri).
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Max-zonoids

T)2
An

m
[l ThesetZ = cE A, is said to be a max-zonoid.
[l If d = 2, then each convex set Z satisfying

Ay C Z C[0,a1] x [0,a2] fora = (ar,az) € (0,00)%isa
max-zonoid. This is not the case if d > 3.
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Summary so far

[] Stable & has the chacteristic function

plu) = e~he ("

Y

for an L-zonoid Z (L,-expectation of a segment).

[1  Max-stable & with a = 1 has the cumulative distribution function

F(x) — e—hz(g;_l)’

where Z is a max-zonoid (expectation of a random triangle).
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Between the sum and the maximum

[l p-addition (assume p > 0)

S+pt= (Sp+tp)1/p, s,t >0

Special cases: p = 1 (arithmetic sum); p = oo (maximum).

L] Thep-sumz +, yforz,y € Ri is defined coordinatewisely.
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Stability for p-sums: definition

[ Random vector £ in Ri is Sa.S for p-sums if

at ey 4, b6y 2 (a4 b)1/ ¢

forall a, b > 0, some o« # 0, and &1, &> being independent copies of &.
Assume p € (0, 00).

[ Stability on semigroups = o € (0, pl.
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Stability for p-sums: characterisation

Theorem 6. £ is Sa.S for p-sums with o = 1 if and only if

F e 2(uwi&)? — o—hz(u) . U € ]Rf{i_ :

where Z = E X is the expectation of

X = {(mor, o mava) : Jollg <1, veRE}

being randomly rescaled Kq-ball.

(] The set Z is said to be an L1 (p)-zonoid.
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Case p = 2,i.e. S+ot = /5% + 12
(1 L1(2)-zonoid Z is the expectation of the ellipsoid

X = {(mv1,...,nqva) : vl <1, veRY}

with random semi-axes 771_1, Cey ngl.

-8

[]  The Laplace transform of £ is given by

E exp {_ Z(&%V} _ o—hz(w)
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Arithmetic sums and o« € (0, 1)

0 ¢€isSaSinRL witha € (0,1).

[0 Then &% is S1S for p-sums with p = .

(87

L1 Finally
Fe 2 wibi — g=hz(u®) :

where Z is the expectation of randomly rescaled Eq-ball with

o : TP |
q = 1/(1 — ), e.g. expectation of an ellipsoid if o« = 3.
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