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Configuration space Q = {0, 1}Zd

Ve 1: there is a particle at site x

ce, o(x)e{o,1}
7 N 0 : there is no particle at site x

m The process in infinite volume is described by the following
generator
Lf(o) = Z cx(0) [ (f) —f(0)]  flocal.
xezZd
B C, is the constraint that depends on the model

cx(0) = 1 if the constraint around site x is satisfied by 0
AU/ 0 otherwise.

My are independent Bernoulli-p probability measures, p € [0,1].
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Two examples

m The one dimentional East Model (Eisinger-Jackle 91):

ooy 1 folx+1)=0 )
XY 0 otherwise. o-Q@-S— 7
X—1 X+1

m The two dimentional FA2f model (Fredrickson-Andersen (84)):

D D
cx(0) = 1if at least 2 neighboors of b b
X are empty; Q5P @@
cx(0) = 0 otherwise. @ @
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There might exist blocking structures, as e.g. for the FA2f model :

An infinite double line of The site x have 3 occupied
occupied sites. neighbors (i.e. more than 2).
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Ergodicity

Due to the blocking structures, the product of Bernoulli-p measures [
is not the only invariant measure of the system.

m Does [ ergodic for the system ?

To answer this question we have the following result (see Liggett) : are
equivalent

(@) lim;_e Pif = W(f) in L2(p) for all f € IL2(W) (ergodicity).
(b) 0is a simple eigenvalue for L.

Define, forq =1 —p,
qc =inf{q € [0,1] : 0 is a simple eigenvalue for L}.
Due to the definition of the constraints c,

q>qc = 0 is a simple eigenvalue for L.
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Bootstrap percolation

Define the (deterministic) Bootstrap percolation map :
T:{0,1}% — {0,1}%

0 ifeithera(x)=0o0rcs(0)=1
o = TO)x)= { 1 otherwise.( : )
Let
dop = inf{q € [0,1] : p({o: T*(0) =0}) =1}
i.e. the infimum of the values q such that, with probability one, the
lattice can be entirely emptied.

Proposition
Gc = Qbp-

Thus, for the east model and the FA2f model (Schonmann), we have

qC:O'
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The process in finite volume

In a finite volume A C Z9, the process is defined by the generator
Laf(0) = ZACX/\(") [ (f)—f(0)]  vf
Xe
with
CX’/\(O') = Cy (0'/\ 'TZd\/\)
where T is a boundary condition.

For the east model on A = {1,...,L}, T(L+ 1) = 0 is a boundary
condition that makes the system irreducible.
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Good boundary condition for the FA2f model

Inavolume A ={1,...,L} x {1,...,L} an example of nice boundary
condition is :
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Results

Define D(f) = Z U (cx Var(f)) and

x€Zd

GRp(L) = i,

f-£const
One asks for
m The positivity of gap(L) ?
m The assymptotic behavior of gap(L) when q — 0 ?

Theorem (Cancrini-Martinelli-Roberto-Toninelli/Aldous-Diaconis)

For any g € (0,1), the spectral gap of the East model is positive and

log (ﬁ) 1

-0 (log)?  2log2’




Results

The spectral gap of the FA2f model is positive and there exists C such
that

1

exp(~ 515) < (L) < exp(—) va € (0,1).
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The bisection-constrained technique on the east model

The aim is to get a bound of the type

gap({1,...,L}) * < (1+8(L)gap({L,.. 5 1) "

If (L) is sufficiently small,
log, L

gap({1,...,L}) "t <C [](1+e(L/2m))<c’  wL

Consider A={1,...,L},A={1,...,5}andB={5+1,...,L}

A
| || |
11 L2l TL/241 IL

A B
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The bisection-constrained technique on the east model

Since l= P @ Mg is product,

one has o— --
Vary, (f) < A L/2+1
M (Vary, (f) + Var, (f))

Due to the particle at site % + 1 the system is not ergodic inside A!

One has to force a good boundary condition. This is achieved by
means of an auxiliary constrained two block dynamics.

] =12
A B
Vary, (f) < (1+€(L)) b (caVary, (f) + Var (f)) ~ with

1if o(x) = 0 for some x € | > _ql®
= ~ = < a
ca(9) { 0 otherwise. &L ~Plea=0)<e <1



The bisection-constrained technique on the east model

From there the expected result follows

gep({1,....L}) < (1 e(U)gep({1, 5 1) "



Extensions

m Non-product measures.
m For some models, on general graphs.
m Link with information storage (Aldous).

m Conservative dynamics (Kawasaki type) with boundary sources.



Thanks for your attention!



