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σ ∈ Ω, σ(x) ∈ {0,1}
ր
ց

1 : there is a particle at site x

0 : there is no particle at site x

The process in infinite volume is described by the following
generator

Lf (σ) = ∑
x∈Zd

cx(σ) [µx(f )− f (σ)] f local.

cx is the constraint that depends on the model

cx(σ) =

{

1 if the constraint around site x is satisfied by σ
0 otherwise.

µx are independent Bernoulli-p probability measures, p ∈ [0,1].
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cx(σ)=

{

1 if σ(x + 1) = 0
0 otherwise. Z

x

x −1 x +1

The two dimentional FA2f model (Fredrickson-Andersen (84)):

cx(σ) = 1 if at least 2 neighboors of
x are empty;
cx(σ) = 0 otherwise.

x x

cx(σ) = 0cx(σ) = 1
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An infinite double line of
occupied sites.

x

The site x have 3 occupied
neighbors (i.e. more than 2).
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Ergodicity

Due to the blocking structures, the product of Bernoulli-p measures µ
is not the only invariant measure of the system.

Does µ ergodic for the system ?

To answer this question we have the following result (see Liggett) : are
equivalent

(a) limt→∞ Pt f = µ(f ) in L
2(µ) for all f ∈ L

2(µ) (ergodicity).

(b) 0 is a simple eigenvalue for L.

Define, for q = 1−p,

qc = inf{q ∈ [0,1] : 0 is a simple eigenvalue for L}.

Due to the definition of the constraints cx ,

q > qc ⇒ 0 is a simple eigenvalue for L.
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Bootstrap percolation

Define the (deterministic) Bootstrap percolation map :

T : {0,1}Z
d

→ {0,1}Z
d

σ 7→ T (σ)(x) =

{

0 if either σ(x) = 0 or cx(σ) = 1
1 otherwise.

Let
qbp = inf{q ∈ [0,1] : µ({σ : T ∞(σ) ≡ 0}) = 1}

i.e. the infimum of the values q such that, with probability one, the
lattice can be entirely emptied.

Proposition

qc = qbp.

Thus, for the east model and the FA2f model (Schonmann), we have

qc = 0.
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The process in finite volume

In a finite volume Λ ⊂ Z
d , the process is defined by the generator

LΛf (σ) = ∑
x∈Λ

cx ,Λ(σ) [µx(f )− f (σ)] ∀f

with
cx ,Λ(σ) = cx

(

σΛ · τZd\Λ

)

where τ is a boundary condition.

For the east model on Λ = {1, . . . ,L}, τ(L+ 1) = 0 is a boundary
condition that makes the system irreducible.

1 L

L + 1



Irreducibility of the east model

1 L

L + 1



Irreducibility of the east model

1 L

L + 1

1 L

L + 1



Irreducibility of the east model

1 L

L + 1

1 L

L + 1

1 L

L + 1



Irreducibility of the east model

1 L

L + 1

1 L

L + 1

1 L

L + 1

. . .

1 L

L + 1



Good boundary condition for the FA2f model

In a volume Λ = {1, . . . ,L}×{1, . . . ,L} an example of nice boundary
condition is :

L1



Good boundary condition for the FA2f model

In a volume Λ = {1, . . . ,L}×{1, . . . ,L} an example of nice boundary
condition is :

L1 L1



Good boundary condition for the FA2f model

In a volume Λ = {1, . . . ,L}×{1, . . . ,L} an example of nice boundary
condition is :

L1 L1

. . .

L1



Good boundary condition for the FA2f model

In a volume Λ = {1, . . . ,L}×{1, . . . ,L} an example of nice boundary
condition is :

L1 L1

. . .

L1

. . .

L1



Results

Define D(f ) = ∑
x∈Zd

µ(cx Varx(f )) and

gap(L) = inf
f∈Dom
f 6=const

D(f )

Varµ(f )
.



Results

Define D(f ) = ∑
x∈Zd

µ(cx Varx(f )) and

gap(L) = inf
f∈Dom
f 6=const

D(f )

Varµ(f )
.

One asks for

The positivity of gap(L) ?

The assymptotic behavior of gap(L) when q → 0 ?



Results

Define D(f ) = ∑
x∈Zd

µ(cx Varx(f )) and

gap(L) = inf
f∈Dom
f 6=const

D(f )

Varµ(f )
.

One asks for

The positivity of gap(L) ?

The assymptotic behavior of gap(L) when q → 0 ?

Theorem (Cancrini-Martinelli-Roberto-Toninelli/Aldous-Diaconis)

For any q ∈ (0,1), the spectral gap of the East model is positive and

lim
q→0

log
(

1
gap(L)

)

(log 1
q )2

=
1

2log 2
.



Results

Theorem

The spectral gap of the FA2f model is positive and there exists C such
that

exp
(

−
1

Cq5

)

≤ gap(L) ≤ exp
(

−
C

q

)

∀q ∈ (0,1).
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The aim is to get a bound of the type

gap({1, . . . ,L})−1 ≤ (1+ ε(L))gap({1, . . . ,
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∏
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(1+ ε(L/2n)) ≤ C′ ∀L.



The bisection-constrained technique on the east model

The aim is to get a bound of the type

gap({1, . . . ,L})−1 ≤ (1+ ε(L))gap({1, . . . ,
L

2
})−1.

If ε(L) is sufficiently small,

gap({1, . . . ,L})−1 ≤ C
log2 L

∏
n=1

(1+ ε(L/2n)) ≤ C′ ∀L.

Consider Λ = {1, . . . ,L}, A = {1, . . . , L
2} and B = {L

2 + 1, . . . ,L}

A B

Λ

1 LL/2+1L/2
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The bisection-constrained technique on the east model

Since µ= µA ⊗µB is product,
one has
VarµΛ

(f ) ≤
µΛ (VarµA(f )+ VarµB (f ))

L/2+1
A

Due to the particle at site L
2 + 1 the system is not ergodic inside A!

One has to force a good boundary condition. This is achieved by
means of an auxiliary constrained two block dynamics.

A B

|I| = LδI

VarµΛ
(f ) ≤ (1+ ε(L))µΛ (cAVarµA(f )+ VarµB(f )) with

cA(σ)=

{

1 if σ(x) = 0 for some x ∈ I
0 otherwise.

, ε(L)2 ≈P(cA = 0)≤ e−qLδ
≪ 1



The bisection-constrained technique on the east model

From there the expected result follows

gap({1, . . . ,L})−1 ≤ (1+ ε(L))gap({1, . . . ,
L

2
})−1.



Extensions

Non-product measures.

For some models, on general graphs.

Link with information storage (Aldous).

Conservative dynamics (Kawasaki type) with boundary sources.



Thanks for your attention!


