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Germs: g = (xg , tg ) ∈ Rd × R+

xg ∈ Rd crystallization center location in the growth space
tg ∈ R+ crystallisation center birth time

Birth process: Poisson point process N on Rd × R+ with intensity
measure:

Λ(dx × dt) = λd(dx) × m(dt)

λd Lebesque measure on Rd

m locally finite measure on R+

Crystals growth: Θt = Portion of Rdcrystallized at time t

If xg ∈ Θtg : no crystal starts growing at xg

If xg /∈ Θtg : instantaneous growth of a crystal at xg

(shape/speed to be defined)
Growth stops at the meeting points

Model intoduced by Kolmogorov (1937) and Johnson & Mehl (1939)
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Germination process:

Θt = Portion of Rdcrystallized at time t

The set Nc of germs gc giving birth to a crystal is a point process
with intensity measure:

(1 − 1Θ
t−

)Λ(dx × dt)

Capasso & Micheletti (1995,97...) approach

Møller (1992,95...) approach:

1 Assume, first, that all germs give birth to a crystal: the
germination process is the Poisson point process denoted by N
with intensity measure:

Λ(dx × dt)

2 Then, all germs appeared in occupied zone are deleted
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Free crystal

A free crystal is a crystal which grows freely and originates from a germ
born in a location not yet occupied by other crystals at the time of its
birth (xg /∈ Θtg )

For all germ g ∈ Rd × R+,

for all x ∈ Rd , Ag (x) is the crystallization time of x by the crystal
associated to the germ g and assumed to be free

for all t ∈ R+, Cg (t) = {x ∈ Rd |Ag (x) ≤ t} is the free crystal
associated to the germ g

Crystallization random field

For all x ∈ Rd ,
ξ(x) = inf

g∈N
Ag (x)

is the crystallization time of the location x . The crystallization process is
then caracterized by the random field (ξ(x))x∈Rd
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Assumptions: For all germ g = (xg , tg ) ∈ Rd × R+, we assume that

∀t ≥ tg , Cg (t) = xg ⊕ [V (t) − V (tg )]K

K convex compact, 0 ∈ K ◦

V absolutely continuous function, V (t) =
∫ t

0
v(s)ds with

speed 0 < v ≤ M

Consequences: If t = Ag (x), then :

[V (t) − V (tg )]px−xg ,K = |x − xg |

Ag (x) = V−1
[

|x−xg |
px−xg ,K

+ V (tg )
]

Example: Linear expansion in all directions for K = B(0, 1), v = c

Ag (x) = tg +
|x − xg |

c
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Ergodicity
β-mixing

Theorem 1

For d ≥ 1, ξ = (ξ(x))x∈Rd is mixing.

Sketch of the proof: For all t > 0, we introduce the stationary random
field ξt defined by

ξt(x) = t ∧ ξ(x)

1 If, for all t > 0, ξt is mixing, then ξ is mixing

2 ξt is m(t)-dependent with m(t) = 2 d(t) where

d(t) = diam C(0,0)(t)
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β-mixing coefficients

For two disjoints subsets T1 and T2 of Rd , the absolute regularity
coefficient is:

β(T1, T2) = ‖PT1∪T2 − PT1 × PT2‖var

where PT is the distribution of the restriction ξ|T = (ξ(x))x∈T .

1 As ξ is stationary, it is sufficient to know β(T1, T2) up to
translations on T1 and T2

2 When d ≥ 2, we consider sets separated in the sense of Bulinskii
(1987)
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β-mixing coefficients

For two disjoints subsets T1 and T2 of Rd , the strong mixing coefficient
is:

α(T1, T2) = sup
A∈FT1

,B∈FT2

|P(A ∩ B) − P(A)P(B)|

where FTi
= σ{ξ(x), x ∈ Ti} for i = 1, 2. Hence, α(T1, T2) ≤ β(T1, T2)

1 As ξ is stationary, it is sufficient to know β(T1, T2) up to
translations on T1 and T2

2 When d ≥ 2, we consider sets separated in the sense of Bulinskii
(1987)

Aude ILLIG Crystallization processes



Crystallization model
Ergodic properties

Estimation

Ergodicity
β-mixing

β-mixing coefficients

For two disjoints subsets T1 and T2 of Rd , the absolute regularity
coefficient is:

β(T1, T2) = ‖PT1∪T2 − PT1 × PT2‖var

where PT is the distribution of the restriction ξ|T = (ξ(x))x∈T .

1 As ξ is stationary, it is sufficient to know β(T1, T2) up to
translations on T1 and T2

2 When d ≥ 2, we consider sets separated in the sense of Bulinskii
(1987)

Aude ILLIG Crystallization processes



Crystallization model
Ergodic properties

Estimation

Ergodicity
β-mixing

β-mixing coefficients

For two disjoints subsets T1 and T2 of Rd , the absolute regularity
coefficient is:

β(T1, T2) = ‖PT1∪T2 − PT1 × PT2‖var

where PT is the distribution of the restriction ξ|T = (ξ(x))x∈T .

1 As ξ is stationary, it is sufficient to know β(T1, T2) up to
translations on T1 and T2

2 When d ≥ 2, we consider sets separated in the sense of Bulinskii
(1987)

Aude ILLIG Crystallization processes



Crystallization model
Ergodic properties

Estimation

Ergodicity
β-mixing

β-mixing coefficients

For two disjoints subsets T1 and T2 of Rd , the absolute regularity
coefficient is:

β(T1, T2) = ‖PT1∪T2 − PT1 × PT2‖var

where PT is the distribution of the restriction ξ|T = (ξ(x))x∈T .

1 As ξ is stationary, it is sufficient to know β(T1, T2) up to
translations on T1 and T2

2 When d ≥ 2, we consider sets separated in the sense of Bulinskii
(1987)

Aude ILLIG Crystallization processes



Crystallization model
Ergodic properties

Estimation

Ergodicity
β-mixing

Dimension 1

Causal cone

For all t > 0, the so-called causal cone Kt = {g ∈ R+ × R |Ag (0) ≤ t}
consists of all possible germs that can capture the origin before time t.
The measure Λ(Kt) is denoted by G(t).

Theorem 2

If d = 1, for two intervals T1 = (−∞, 0] and T2 = [r , +∞), the
coefficient β(T1, T2) is denoted by β(r) and satisfies:

β(r) ≤ C1 e
−G(C2 r)

where C1 = 8 and C2 = 1
2 M
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Sketch of the proof:

Lemme 1

Let (η(x))x∈R be a random process and T1 and T2 two disjoints subsets
of R. If there exists two independent processes (η1(x))x∈R, (η2(x))x∈R
and two positive constants δ1, δ2 such thatP{η(x) = ηi (x), ∀x ∈ Ti} ≥ 1 − δi for i = 1, 2,

then
β(T1, T2) ≤ 4 (δ1 + δ2).
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Introduce, for all T ⊂ R, ξT (x) = inf
g ∈ N
xg ∈ T

Ag (x).

Lemme 2

∀R > 0, P{ξ(x) = ξ(−∞,R](x), ∀x ≤ 0} ≥ 1 − e
−G(R)

Lemme 3

∀R > 0, P{ξ(x) = ξ[R,+∞)(x), ∀x ≥ 2 R} ≥ 1 − e
−G(R)P{ξ(0) ≤ R} = P{N ∩ KR 6= ∅} = 1 − e

−G(R)
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If v = 1 and K = B(0, 1)

R

O R−R
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Causal cone

For all t > 0, the so-called causal cone Kt = {g ∈ R+ × Rd |Ag (0) ≤ t}
consists of all possible germs that can capture the origin before time t.
The measure Λ(Kt) is denoted by G(t).

Crystals shape

The crystals shape are defined by the convex compact K :

DK is the diameter of the smallest ball centered at zero and
containing K

dK is the diameter of the greatest ball centered at zero and
contained in K

A = DK

dK
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Dimension d ≥ 2

Let T1 =
∏d

i=1(−∞, 0] and T2 =
∏d

i=1[ai , +∞) be two quadrants (Q)

separated by a r -width band with r =
Pd

i=1 ai√
d

> 0

r

T

T

0

(a a 2 )1 ,

1

2
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Theorem 3

If d ≥ 2, for two quadrants (Q) T1 =
∏d

i=1(−∞, 0] and

T2 =
∏d

i=1[ai , +∞), the coefficient β(T1, T2) is denoted by βQ(a, r)
where a stands for (a1, . . . , ad). If βQ(r) = supa∈Rd βQ(a, r), then

βQ(r) ≤ C1

∞
∑

k=1

kd−1
e
−G(C2(d) r k)

where C1 = 8 and C2(d) = 1
d H2 with H = 2 (A + M).
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Dimension d ≥ 2

Let T1 = [−a, a]d and T2 = ([−b, b]d )c be two enclosed domains (ED)

separated by a r -width polygonal band with r = (b−2a)
√

d

2 > 0

2

0 a b

T

T

r
1
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Theorem 4

If d ≥ 2, for two enclosed domains (ED) T1 = [−a, a]d and
T2 = ([−b, b]d )c separated by a r -width polygonal band, the coefficient
β(T1, T2) is denoted by βED(a, r). If βED(r) = supa>0 βED(a, r), then

βQ(r) ≤ C1(d)

∞
∑

k=1

kd−1
e
−G(C2(d) r k)

where C1(d) = 4(1 + d 2d) and C2 = 1
d H2 with H = 2 (A + M).
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Continuous case
Discrete case

Intensity measure parameters estimation

The intensity measure of the Poisson point process is:

Λ = λd × m

Two cases:

1 The measure m is absolutely continuous and m(dt) = a tb−1dt with
a, b > 0

2 The measure m is discrete and m =
∑q

i=1 pi δai
with

∑q

i=1 pi = 1,
pi > 0 for all i = 1 . . . q and 0 < a1 < · · · < aq

We assume that v = 1 and K = B(0, 1)
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The intensity measure of the Poisson point process is:

Λ = λd × m

Two cases:

1 The measure m is absolutely continuous and m(dt) = a tb−1dt with
a, b > 0 ⇒ a, b
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Continuous case
Discrete case

F(t) = P{ξ(0) ≤ t}

= 1 − e
−Λ(Kt)

= 1 − e−G(t) ⇒ G(t) = − log(1 −F(t))

Proposition 1

F̂n(t) :=
1

nd

∫

[0,n]d
1[0,t](ξ(x))λd (dx)

Ĝn(t) := − log(1 − F̂n(t))

are strongly consistant estimtors for F(t) and G(t):

F̂n(t)
p.s.−−−→

n→∞
F(t)

Ĝn(t)
p.s.−−−→

n→∞
G(t)
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Let (η(x))x∈Rd be a stationary random field:E(η(x)) = µ

R(u) = Cov(η(0), η(u))

Sn =
∫

[0,n]d
(η(x) − µ) dx

We are interested in the asymptotic behaviour of Sn

σn
d
2

under α-mixing

conditions:

when d = 1:

α(ρ) = sup
A∈F(−∞,0],B∈F[ρ,+∞)

|P(A ∪ B) − P(A)P(B)|

when d ≥ 2:
αED(ρ) = sup

a>0
αED(a, ρ)
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Theorem 5

If for some δ > 0,
‖η(x)‖2+δ < ∞ (1)

and
∫ ∞

0

ρd−1 α(ρ)
δ

2+δ dρ < ∞ (2)

then
∫Rd |R(u)| du < ∞. Moreover, if σ2 =

∫Rd R(u) du > 0, then

Sn

σn
d
2

D−−−→
n→∞

N (0, 1).

Analogue of Bolthausen’s theorem (1982) for continuous-parameter

random fields
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Theorem 5

If
sup
x∈Rd

|η(x)| < ∞ (1)

and
∫ ∞

0

ρd−1 α(ρ) dρ < ∞ (2)

then
∫Rd |R(u)| du < ∞. Moreover, if σ2 =

∫Rd R(u) du > 0, then

Sn

σn
d
2

D−−−→
n→∞

N (0, 1).

Analogue of Bolthausen’s theorem (1982) for continuous-parameter

random fields
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Corollary 1

Let (ξ(x))x∈Rd be a stationary random field satisfying the α-mixing
condition. For all t ∈ R+, write

ηt(x) = 1{ξ(x)≤t} ∀x ∈ Rd .

Let h be fixed in N∗. If, for (t1, . . . , th)
′ ∈ (R+)d , the matrix

Γ = (γi ,j)i ,j=1...h which (i , j)-th entry equals

γi ,j =

∫Rd

Cov
(

ηti (0), ηtj (x)
)

dx

is positive-definite, then,

n
d
2

(

(F̂n(t1), . . . , F̂n(th))
′ − (F(t1), . . . ,F(th))

′
) D−−−→

n→∞
N (0, Γ).

Aude ILLIG Crystallization processes



Crystallization model
Ergodic properties

Estimation

Continuous case
Discrete case

Corollary 2

If (ξ(x))x∈Rd is a stationary random field satisfying the α-mixing
condition and the matrix Γ of Corollary 1 is positive definite, then

n
d
2

(

(Ĝn(t1), . . . , Ĝn(th))
′ − (G(t1), . . . ,G(th))

′
) D−−−→

n→∞
N (0, V )

where the (i , j)-th entry of the covariance matrix V = (vi ,j)i ,j=1...h equals

eG(ti ) eG(tj ) γi ,j .
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m(dt) = a tb−1dt

G(t) = Λ(Kt)

=

∫ t

0

λd(B(0, t − s))a sb−1ds

= cd a td+b ld(b),

where
cd = λd (B(0, 1))

and

ld(b) =
d !

b (b + 1) . . . (b + d)
.
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For t = t1 and t = t2, we obtain the following system:



























b =
log
(

G(t1)
G(t2)

)

log t1 − log t2
− d

a =
G(t1)

cd ld(b) td+b
1

We introduce the continuous functions

g(x1, x2) =
log( x1

x2
)

log t1 − log t2
− d

and
f (x1, x2) =

x1

cd ld(g(x1, x2)) t
d+g(x1,x2)
1
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The system can be summerized under the following form:







a = f (G(t1),G(t2))

b = g(G(t1),G(t2))

Proposition 2

The following statistics are strongly consistent estimators for parameters
a and b:

b̂n := g(Ĝn(t1), Ĝn(t2))
p.s.−−−→

n→∞
b

ân := f (Ĝn(t1), Ĝn(t2))
p.s.−−−→

n→∞
a.
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When d = 1, we get that

α(r) ≤ β(r) ≤ C1 e−γ r1+b

with γ = −cd a C 1+b
2 ld(b).

⇒
∫ ∞

0

α(r) dr < ∞

When d ≥ 2, we obtain that

αED(r) ≤ βED(r) ≤ C1(d)

( ∞
∑

k=1

kd−1e−γ(d) rd+b(kd+b−1)

)

e−γ(d) rd+b

with γ(d) = cd a ld(b)C2(d)d+b and for A > 0

sup
r≥A

∞
∑

k=1

kd−1e−γ(d) rd+b(kd+b−1) < ∞.

⇒
∫ ∞

0

rd−1αED(r) dr < ∞
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When d = 1, we get that

α(r) ≤ β(r) ≤ C1 e−γ r1+b

with γ = −cd a C 1+b
2 ld(b).

⇒
∫ ∞

0

α(r) dr < ∞

When d ≥ 2, we obtain that

αED(r) ≤ βED(r) ≤ C1(d)

( ∞
∑

k=1

kd−1e−γ(d) rd+b(kd+b−1)

)

e−γ(d) rd+b

with γ(d) = cd a ld(b)C2(d)d+b and for A > 0

sup
r≥A

∞
∑

k=1

kd−1e−γ(d) rd+b(kd+b−1) < ∞.

⇒
∫ ∞

0

rd−1αED(r) dr < ∞
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Theorem 6

Assume, for h = 2, that the matrix Γ of Corollary 1 is positive definite.
Then,

n
d
2

(

(ân, b̂n) − (a, b)
) D−−−→

n→∞
N (0, MVM ′)

where V is the matrix defined in Corollary 2 and M = (mi ,j)i ,j=1,2 with
for j = 1, 2,

m1,j = δf
δxj

(G(t1),G(t2))

m2,j = δg
δxj

(G(t1),G(t2))
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m =
∑q

i=1 pi δai

G(t) = Λ(Kt)

= cd

q
∑

i=1

pi (t − ai )
d
1{ai≤t}.

where
cd = λd (B(0, 1))

Aude ILLIG Crystallization processes



Crystallization model
Ergodic properties

Estimation

Continuous case
Discrete case

For t = ai with i = 2 . . . q, we obtain the following equations:

G(ai ) = cd

i−1
∑

j=1

pj (ai − aj)
d ∀i = 2 . . . q.

Equivalently, we have that































p1 =
1

(a2 − a1)d
G(a2)

cd

pi =
1

(ai+1 − ai)d





G(ai+1)

cd

−
i−1
∑

j=1

pj(ai+1 − aj)
d



 ∀i = 2 . . . q − 1
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Introducing the following functions,

f1(x2, . . . , xq) =
1

(a2 − a1)d
x2

cd

fi (x2, . . . , xq) =
1

(ai+1 − ai)d





xi+1

cd

−
i−1
∑

j=1

fj(x2, . . . , xq)(ai+1 − aj)
d





∀i = 2 . . . q − 1.
The previous equations can be rewritten as follows

pi = fi (G(a2), . . . ,G(aq)) ∀i = 1 . . . q − 1.

Aude ILLIG Crystallization processes



Crystallization model
Ergodic properties

Estimation

Continuous case
Discrete case

Proposition 3

The following statistics are strongly consistent estimators for parameters
pi :

p̂i ,n := fi (Ĝn(a2), . . . , Ĝn(aq))
p.s.−−−→

n→∞
pi ∀i = 1 . . . q − 1.

Moreover,

p̂q,n := 1 −
q−1
∑

j=1

p̂i ,n
p.s.−−−→

n→∞
pq.
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We have that

G(t) = cd

q
∑

i=1

pi (t − ai )
d ∀t > aq .

As a consequence,
G(t) ∼∞ cd td

For d ≥ 1 and r sufficiently large, we get that

β(r) ≤ C e−γ rd

,

where C and γ are some positive constants.

⇒
∫ ∞

0

rd−1α(r) dr < ∞
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Theorem 7

Assume, when h = q − 1, ti = ai+1 for all i = 1 . . . q − 1, that the matrix
Γ of Corollary 1 is positive definite. Then,

n
d
2 ((p̂1,n, . . . , p̂q−1,n)

′ − (p1, . . . , pq−1)
′)

D−−−→
n→∞

N (0, MVM ′)

where V is the matrix defined in Corollary 2 and M is the matrix which
(i , j)-th entry equals

mi ,j =
δfi

δxj+1
(G(a2), . . . ,G(aq))
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Example

We assume that:

1 d = 1

2 m = p1δa1 + p2δa2 with 0 < a1 < a2 = a1 + 1

We obtain that:

1 (p̂1,n, p̂2,n) = (
Ĝn(a2)

2
, 1 − p̂1,n)

p.s.−−−→
n→∞

(p1, p2).

2

σ2 =
∫R Cov

(1{ξ(0)≤a2}, 1{ξ(x)≤a2}
)

dx

= e−4 p1
∫ 2

0 e−p1 (1− x
2 ) − 1 dx = e−4 p1 f (p1) > 0
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We assume that:

31 d = 1

2 m = p1δa1 + p2δa2 with 0 < a1 < a2 = a1 + 1

We obtain that:

1 (p̂1,n, p̂2,n) = (
Ĝn(a2)

2
, 1 − p̂1,n)

p.s.−−−→
n→∞

(p1, p2).

2

σ2 =
∫R Cov

(1{ξ(0)≤a2}, 1{ξ(x)≤a2}
)

dx

= e−4 p1
∫ 2

0 e−p1 (1− x
2 ) − 1 dx = e−4 p1 f (p1) > 0
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We assume that:

31 d = 1

2 m = p1δa1 + p2δa2 with 0 < a1 < a2 = a1 + 1

We obtain that:

1 (p̂1,n, p̂2,n) = (
Ĝn(a2)

2
, 1 − p̂1,n)

p.s.−−−→
n→∞

(p1, p2).

2

σ2 =
∫R Cov

(1{ξ(0)≤a2}, 1{ξ(x)≤a2}
)

dx

= e−4 p1
∫ 2

0 e−p1 (1− x
2 ) − 1 dx = e−4 p1 f (p1) > 0
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We assume that:

31 d = 1

2 m = p1δa1 + p2δa2 with 0 < a1 < a2 = a1 + 1

We obtain that:

1 (p̂1,n, p̂2,n) = (
Ĝn(a2)

2
, 1 − p̂1,n)

p.s.−−−→
n→∞

(p1, p2).

2

σ2 =
∫R Cov

(1{ξ(0)≤a2}, 1{ξ(x)≤a2}
)

dx

= e−4 p1
∫ 2

0 e−p1 (1− x
2 ) − 1 dx = e−4 p1 f (p1) > 0

3 √
n(p̂1,n − p1)

D−−−→
n→∞

N (0, (e4 p1/4)σ2).
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Example

We assume that:

1 d = 1

2 m = p1δa1 + p2δa2 with 0 < a1 < a2 = a1 + 1

We obtain that:

1 (p̂1,n, p̂2,n) = (
Ĝn(a2)

2
, 1 − p̂1,n)

p.s.−−−→
n→∞

(p1, p2).

2

σ2 =
∫R Cov

(1{ξ(0)≤a2}, 1{ξ(x)≤a2}
)

dx

= e−4 p1
∫ 2

0 e−p1 (1− x
2 ) − 1 dx = e−4 p1 f (p1) > 0

3 √
n(2 (p̂1,n − p1)/f (p̂1,n))

D−−−→
n→∞

N (0, 1).
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