Crystallization processes : ergodic properties and

statistical inference

Joint work with Youri Davydov

Aude ILLIG

University of Versailles Saint-Quentin

2nd September 2008

] & 2 DAy
Aude ILLIG Crystallization processes



@ Crystallization model

@ Description

@ Assumptions

9 Ergodic properties
o Ergodicity
@ [J-mixing coefficients
© Parameters estimation

@ Absolutely continuous case

@ Case of a discrete measure

(=] =) A
Aude ILLIG Crystallization processes



Crystallization model

Description
Assumptions

@ Germs: g = (xg,tz) € RY x RT

o xg € R? crystallization center location in the growth space
o tg € RT crystallisation center birth time
measure:

@ Birth process: Poisson point process N on R? x Rt with intensity

A(dx x dt) = \(dx) x m(dt)

@ \? Lebesque measure on RY

@ m locally finite measure on R™

@ Crystals growth: ©, = Portion of R9crystallized at time t
o If x, € © : no crystal starts growing at x,
g g g
o If x; ¢ O, instantaneous growth of a crystal at x;
(shape/speed to be defined)

o Growth stops at the meeting points

Model intoduced by Kolmogorov (1937) and Johnson & Mehl (1939)
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Crystallization model

Dimension 2
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Crystallization model

Description
Assumptions
@ Germination process:

©; = Portion of [Rdcrystallized at time t
The set N of germs g, giving birth to a crystal is a point process
with intensity measure:

(1—1e,_ )A(dx x dt)
Capasso & Micheletti (1995,97...) approach
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Crystallization model

Description
Assumptions
@ Germination process:

©; = Portion of [Rdcrystallized at time t
The set N of germs g, giving birth to a crystal is a point process
with intensity measure:

(1- 1o, )A(dx x dt)

Capasso & Micheletti (1995,97...) approach
@ Mgller (1992,95...) approach:

@ Assume, first, that all germs give birth to a crystal: the

germination process is the Poisson point process denoted by A/
with intensity measure:

A(dx x dt)

@ Then, all germs appeared in occupied zone are deleted
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Crystallization model S

Assumptions

Free crystal

A free crystal is a crystal which grows freely and originates from a germ
born in a location not yet occupied by other crystals at the time of its

birth (xg ¢ ©4,)
For all germ g € RY x R™,

@ for all x € RY, Ag(x) is the crystallization time of x by the crystal
associated to the germ g and assumed to be free

@ forall t € R, Gg(t) = {x € R¥| Ag(x) < t} is the free crystal
associated to the germ g

o ] = = £ A
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Crystallization model S

Assumptions

Free crystal

A free crystal is a crystal which grows freely and originates from a germ
born in a location not yet occupied by other crystals at the time of its

birth (xg ¢ ©4,)

For all germ g € RY x R™,

@ for all x € RY, Ag(x) is the crystallization time of x by the crystal
associated to the germ g and assumed to be free

@ forall t € R, Gg(t) = {x € R¥| Ag(x) < t} is the free crystal
associated to the germ g

Crystallization random field

For all x € R,
£(x) = inf Ag(x)

is the crystallization time of the location x. The crystallization process is

then caracterized by the random field (§(x))xcge
=] [ =] £ = A
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Crystallization model

Dimension 1

Description

Assumptions

A €
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Crystallization model

Description
Assumptions

@ Assumptions: For all germ g = (xg, tg) € R? x RT, we assume that
Vt > tg,

Ce(t) = xg D [V(1) — V(5g)]K
@ K convex compact, 0 € K°

» V absolutely continuous function, V(t) = |,
speed 0 <v <M

o v(s)ds with
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Crystallization model

Description
Assumptions

@ Assumptions: For all germ g = (xg,tg) € R? x R*, we assume that
Ve>tg,  Go(t) =xg ®[V(t) — V(tg)]K
@ K convex compact, 0 € K°

» V absolutely continuous function, V(t) = |,
speed 0 < v <M

Ot v(s)ds with
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Crystallization model

Description
Assumptions

@ Assumptions: For all germ g = (xg,tg) € R? x R*, we assume that
Ve>tg,  Go(t) =xg ®[V(t) — V(tg)]K
@ K convex compact, 0 € K°

» V absolutely continuous function, V(t) = |,
speed 0 < v <M

Ot v(s)ds with
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Crystallization model

Description
Assumptions

@ Assumptions: For all germ g = (xg,tg) € R? x R*, we assume that
Ve>tg,  Go(t) =xg ®[V(t) — V(tg)]K
@ K convex compact, 0 € K°

» V absolutely continuous function, V(t) = |,
speed 0 < v <M

Ot v(s)ds with
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Crystallization model

Description
Assumptions

@ Assumptions: For all germ g = (xg, tg) € R? x RT, we assume that
Vt > tg,

Ca(t) = xg & [V(t) = V(tg)IK

@ K convex compact, 0 € K°

» V absolutely continuous function, V(t) = |,
speed 0 <v <M

o v(s)ds with
@ Consequences: If t = Ag(x), then

[V(t) = V(te)lpx—sg k=

X — Xg|

Ag(X) — V—l [x—xg

|
Px7><g,K + V(tg):|
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Crystallization model

Description
Assumptions

@ Assumptions: For all germ g = (xg, tg) € R? x RT, we assume that
Vt > tg,

Ca(t) = xg & [V(t) = V(tg)IK

@ K convex compact, 0 € K°

» V absolutely continuous function, V(t) = |,
speed 0 <v <M

o v(s)ds with
@ Consequences: If t = Ag(x), then

[V(t) = V(te)lpx—sg k=

X — Xg|

Ag(X) — V—l [x—xg

|
b+ V()]
@ Example: Linear expansion in all directions for K = B(0,1), v =c¢

X — Xg
te + £
C
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Ergodic properties

Ergodicity

B-mixing

For d > 1, £ = (&(x))xere is mixing.
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Ergodic properties Ergodlmty

B-mixing

Theorem 1

For d > 1, £ = (&(x))xere is mixing.

field £* defined by

Sketch of the proof: For all t > 0, we introduce the stationary random

§'(x) =t Ag(x)
O If, for all t > 0, &' is mixing, then £ is mixing
Q &' is m(t)-dependent with m(t) = 2 d(t) where

d(t) = diam C(O,O)(t)
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Ergodic properties

Ergodicity
(B-mixing coefficients

B-mixing

coefficient is:

For two disjoints subsets T; and T of RY, the absolute regularity

B(T1, T2) = [|[Priur, — P1i X Pl var

where Pt is the distribution of the restriction &1 = (§(x))xeT-
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Ergodic properties

Ergodicity
(B-mixing coefficients

B-mixing

IS:

Oc( Tl, T2) =

For two disjoints subsets T; and T of RY, the strong mixing coefficient
sup

AE}-Tl ,BE]:T2

[P(AN B) — P(A)F(B)|

where Fr, = 0{{(x), x € T;} for i = 1,2. Hence, a(T1, T2) < B(T1, T2)
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Ergodic properties

Ergodicity
(B-mixing coefficients

B-mixing

coefficient is:

For two disjoints subsets T; and T of RY, the absolute regularity

B(T1, T2) = [|[Priur, — P1i X Pl var

where Pt is the distribution of the restriction &1 = (§(x))xeT-
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Ergodic properties

Ergodicity
(B-mixing coefficients

B-mixing

coefficient is:

For two disjoints subsets T; and T of RY, the absolute regularity

B(T1, T2) = [|[Priur, — P1i X Pl var

where Pt is the distribution of the restriction &1 = (§(x))xeT-

@ As ¢ is stationary, it is sufficient to know G( Ty, T2) up to
translations on T; and T»
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Ergodic properties

Ergodicity
(B-mixing coefficients

B-mixing

coefficient is:

For two disjoints subsets T; and T of RY, the absolute regularity

B(T1, T2) = [|[Priur, — P1i X Pl var

where Pt is the distribution of the restriction &1 = (§(x))xeT-

translations on T; and T»

@ As ¢ is stationary, it is sufficient to know G( Ty, T2) up to
(1987)

@ When d > 2, we consider sets separated in the sense of Bulinskii
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sod . Ergodicity
Ergodic properties BT

Dimension 1

Causal cone

For all t > 0, the so-called causal cone K; = {g € Rt x R|Ag(0) < t}

consists of all possible germs that can capture the origin before time t.
The measure A(K;) is denoted by G(t).
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Ergodicity

Ergodic properties BT

Dimension 1

Causal cone

For all t > 0, the so-called causal cone K; = {g € Rt x R|Ag(0) < t}
consists of all possible germs that can capture the origin before time t.
The measure A(K;) is denoted by G(t).

Theorem 2

If d =1, for two intervals T; = (—00,0] and Ty = [r, +00), the
coefficient 5( Ty, T7) is denoted by 5(r) and satisfies:

B(r) < G e 9(Gn)
where GG =8 and G, =

L
2M

] & = 2 DAy
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Ergodicity

Ergodic properties BT

Dimension 1

Sketch of the proof:

Lemme 1

Let (n(x))xer be a random process and T; and T, two disjoints subsets
of R. If there exists two independent processes (11 (x))xer, (72(x))xer
and two positive constants d1, do such that

P{n(x) =ni(x), ¥xe€ T;} >1—¢; for i =1,2,

then
B(T1, T2) < 4(61 + 02).

] & = 2 DAy
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Ergodic properties

Dimension 1

Ergodicity
B-mixing

Introduce, for all T C R, £7(x)

inf  Ag(x)
geEN ¢

xg €T
VR > 0, [P{g(X) = é(—oo,R](X)7VX < 0} >1- e_g(R)
] & DAy



Ergodic properties EI’gO.dI.CIty
B-mixing

Dimension 1

Introduce, for all T C R, £7(x)

inf  Ag(x).
geEN ¢
xg €T
VR > 0, [P{g(X) = é(—oo,R](X)7VX < 0} >1- e_g(R)
Lemme 3

VR >0, P{&(x) = &R 4oo) (), VX > 2R} > 1 — e 9R)
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Ergodic properties EI’gO.dI.CIty
B-mixing

Dimension 1

Introduce, for all T C R, £7(x)

inf

Ag(x).
geEN ¢
xg €T
VR > 07 [P{g(X) = é(—oo,R](X)7VX < 0} > 1-— e_g(R)
Lemme 3

VR >0, P{&(x) = &R 4oo) (), VX > 2R} > 1 — e 9R)

P{€(0) <R} =P{NNKg#0} =1—c9R
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Ergodic properties E’_%?i:‘;;y
Dimension 1

If v=1and K =B(0,1)

-R (0] R
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Ergodic properties

Dimension 1

Ergodicity
B-mixing

If v=1and K =B(0,1)
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Ergodicity

Ergodic properties g
b ProF B-mixing

Dimension 1

If v=1and K =B(0,1)

PV SRy U
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Ergodicity

Ergodic properties g
b ProF B-mixing

Dimension 1

If v=1and K =B(0,1)

PV SRy U
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Ergodicity

Ergodic properties BT

Dimension d > 2

Causal cone

For all t > 0, the so-called causal cone K; = {g € R x RY| A,(0) < t}
consists of all possible germs that can capture the origin before time t.
The measure A(K;) is denoted by G(t).

Crystals shape

The crystals shape are defined by the convex compact K:

@ Dy is the diameter of the smallest ball centered at zero and
containing K

@ dk is the diameter of the greatest ball centered at zero and
contained in K

— Dk
oA_dK
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Ergodic properties

Ergodicity
Dimension d > 2

B-mixing

Z?’:l i

Let T = Hf_l(—oo,O] and T, = H;j:l[a,-, +00) be two quadrants (Q)
separated by a r-width band with r = > 0

Aude ILLIG
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Ergodic properties BT

Dimension d > 2

If d > 2, for two quadrants (Q) Ty = H?zl(—oo,O] and

T, = H:-jzl[a,-, +00), the coefficient 5(T1, T2) is denoted by Bg(a, r)
where a stands for (a1, ..., aq). If Bo(r) = sup,cre Bo(a, r), then

,BQ(f) < Cl Z kd—le—g(Cz(d)rk)
k=1

where C; = 8 and G(d) = Sz with H=2(A+ M).
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Ergodic properties

Ergodicity
Dimension d > 2

B-mixing

) Vd

Let T; = [~a,a]? and T, = ([~b, b]9) be two enclosed domains (ED)
separated by a r-width polygonal band with r = (b—2; >0

o =
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Ergodic properties

Ergodicity

B-mixing
Dimension d > 2

If d > 2, for two enclosed domains (ED) T; = [—a, a]? and

T2 = ([~ b, b]9)¢ separated by a r-width polygonal band, the coefficient
B(Tx, T) is denoted by Bep(a, r). If Bep(r) = sup,q Bep(a, r), then

(oe]

Balr) < Gi(d) Y kéte 9@k

k=1

where Ci(d) =4(14 d29) and G, = o5 with H =2 (A+ M).

] & 2 DAy
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Continuous case
. . Discrete case
Estimation .

Intensity measure parameters estimation

The intensity measure of the Poisson point process is:

A=) xm

Two cases:

© The measure m is absolutely continuous and m(dt) = a t>~1dt with
a,b>0

@ The measure m is discrete and m = Z?:l pi 04, with Z?:1 pi =1,
pi>0foralli=1...gand 0 < a; <--- < aq

We assume that v =1 and K = B(0, 1)
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Continuous case
. . Discrete case
Estimation .

Intensity measure parameters estimation

The intensity measure of the Poisson point process is:

A=) xm

Two cases:

© The measure m is absolutely continuous and m(dt) = a t>~1dt with
ab>0= ab

@ The measure m is discrete and m = Y7, pi 8, with >.7_, p; = 1,
pi>0foralli=1...gqand0<a; < ---<ag= p, i=1...q

We assume that v =1 and K = B(0,1)
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Continuous case
Estimation

Discrete case
F(t) =

P{£(0) <t}

1 — e MK)

1 — e 9(1)
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Continuous case

. . Discrete case
Estimation

F(t) = P{g0) <t}
= 1—eMK)

= 1—e 90 = G(t) = —log(1 — F(t))

=] & = 2 A
Aude ILLIG Crystallization processes



Continuous case

. . Discrete case
Estimation

F(t) = P{g0) <t}

= 1— e_A(K‘)

= 1—e901

Proposition 1

() = = [ 104(E00) A (dx)

d
= Jio,n)¢

Gn(t) — log(1 — Fa(t))
are strongly consistant estimtors for F(t) and G(t):

3
3

p.s.

Q@
3
&
53
)

u}
L)
1
u
it
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Continuous case
. . Discrete case
Estimation

Let (n(x))xere be a stationary random field:
° E(n(x)) = n
® R(u) = Cov(n(0),n(u))
© Sn = Jig na(n(x) — ) dx

We are interested in the asymptotic behaviour of s"g under a-mixing
onz2
conditions:

@ when d =1:
alp)=  sup  [P(AUB)—P(A)R(B)
AG}‘(,OOYO],BE]:[KJFOO)
@ when d > 2:

aep(p) = sup aep(a, p)
a>0

=] & = 2 A
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Continuous case
. . Discrete case
Estimation

If for some 6 > 0,

[n()l2+6 < 00 (1)
and

/0 PPl a(p)=s dp < oo (2)

then [, |R(u)| du < co. Moreover, if 02 = [, R(u)du > 0, then

5,,4 LN(O, 1).

Analogue of Bolthausen's theorem (1982) for continuous-parameter
random fields

[m] = = =
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Continuous case

. . Discrete case
Estimation

If
sup |n(x)| < oo (1)
xERA
and -
/O p?a(p)dp < oo (2)

then [., |R(u)| du < co. Moreover, if 62 = ., R(u) du > 0, then
Sn D
—

d
2

N(0,1).
onz N

Analogue of Bolthausen's theorem (1982) for continuous-parameter
random fields

=] F = = DA
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Continuous case
Estimation

Discrete case

Corollary 1
Let (&(x))xere be a stationary random field satisfying the a-mixing
condition. For all t € RT, write

nt(X) = ]l{f(x)gt} Vx € R.
Let h be fixed in N*. If, for (t1,

ooy tn) € (RT), the matrix
I'= (7ij)ij=1...n which (i, j)-th entry equals

Yij = / | Cov (1,(0), mg;(x)) dx
R
is positive-definite, then,

nf ((Falta), o Falt)) = (F(82), ... (&)

D
—— N(0,T).
n—oo
(=] =) A
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Continuous case
Estimation

Discrete case

Corollary 2
If (&(x))xere is a stationary random field satisfying the a-mixing
condition and the matrix ' of Corollary 1 is positive definite, then

nf ((Gn(t),- - G(tn)) = (G(81),- . G(2)))

e9(6) 9(8)

(=] =) A
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—2 , N(0,V)
n—oQo
where the (i, j)-th entry of the covariance matrix V = (v; ;)i j=1...» equals



Discrete case

Continuous case
Estimation
m(dt) = atPldt

= A(Ky)
t
= M (B(0,t —s))asP"lds
0
= Cdatd+b/d(b),
where
and

] & 2 DAy
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Continuous case
Estimation

Discrete case

For t = t; and t = t,, we obtain the following system:

g(t1)
log (g(ti)) J
logt; — log tp

_ G(t1)

a
d+b
Cd /d(b) t; +
We introduce the continuous functions

log(3L)

= X: — d
g(a,x) logt; — log ts

and 1

fxa, %) =

cd la(g(x1, x2)) t

d+g(xi,x)
1
(=] =) A
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Continuous case
Estimation

Discrete case

The system can be summerized under the following form:

a=f(G(t1),9(t2))

b=g(G(t1),G(t2))

Proposition 2
The following statistics are strongly consistent estimators for parameters
a and b: ~
by o=

g(Gn(11), Gu(t2)) =" b

= £(Gn(t1),Gn(t2)) = a

p.s.
dp

n—oo

(=] =) A
Aude ILLIG Crystallization processes



Continuous case
Estimation

Discrete case
® When d =1, we get that

a(r) <B(r) < e
with v = —cga Gy I4(b).

:5/\ a(r)dr < oo
Jo

(=] =) A
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Continuous case
Estimation

Discrete case
® When d =1, we get that

with v = —cy4 a

a(r) <B(r) < e
la(b).

:5/ r)dr < oo

@ When d > 2, we obtain that

aep(r) < Bep(r) < Gi(d ( 3

1+b
G

de 1g—(d)r pAEb (b 1)> o) r )
k=1
with v(d) = ¢4 aly(b) Co(d)¥*? and for A > 0
Supzkd_le_,y(d)rd+b(kd+b 1) 0.
r>A =1
= L

rfl

aep(r)dr < oo
J0
=] & 2 A
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Continuous case
Estimation

Discrete case

Theorem 6

Then,

Assume, for h = 2, that the matrix I of Corollary 1 is positive definite.

nt ((é,,, by) — (a, b)) —2 ., N(0, MVM)

n—oo
where V is the matrix defined in Corollary 2 and M = (mj ;)i j=1, with
forj=1,2,

my = ££(9(n),6(r))
m27j g—f

(G(1), 6(t2))

(=] =) A
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Estimation

Continuous case
Discrete case

where

] & DAy
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Continuous case
Estimation

Discrete case

For t = a; with i =2

g, we obtain the following equations

(ai) = chpj(

ai—a)? Vi=2...
Equivalently, we have that
1 g(ag)
po= p—
(a2 —a1)? ¢y
pi = L 9(ai1) Zp a Vi=2
' (ai41 — ai)d e o

(=] =) A
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Continuous case
Estimation

Discrete case

Introducing the following functions,

1 X2
filxa, ..., x = —
1( 25 9 q) (32 — al)d Cy

1
filxo,....,xq) =

Vi=2...q—1.

The previous equations can be rewritten as follows

pi = fi(G(a2),...,G(aq)) Vi=1...q—1

(=] =) A
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Continuous case
Estimation

Discrete case

The following statistics are strongly consistent estimators for parameters
pi:
ﬁi,n = ;

p.s.

—_—

ﬁ(gn(a2)7 000 ,g"n(aq))
Moreover,

n—oo

pi Vi=1...q—-1

q—1

ﬁq,n =1- Z p e

Pi,n %

n— o0 4
j=1

(=] =) A
Aude ILLIG Crystallization processes



Continuous case
Estimation

Discrete case

We have that

q
G(t)=cay pi(t—a
i=1

YVt > aq.
As a consequence

g(t) ~

oo Cd td
For d > 1 and r sufficiently large, we get that

Br)< Ce™ ",

where C and vy are some positive constants

é/ r)dr < oo

(=] =) A
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Continuous case
Estimation

Discrete case

Assume, when h=q — 1, t; = a;11 forall i=1...qg — 1, that the matrix
I" of Corollary 1 is positive definite. Then,
n .

(B Bg—1.0)' = (Pr, - Pg—1)') —— N(0, MVM')
(7,/)-th entry equals

where V is the matrix defined in Corollary 2 and M is the matrix which

Nl

of;
= @(g(@)) .

(=] =) A
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Example

Estimation

Continuous case
Discrete case

We assume that:

Qd=1

Q m=pidy +pd, with0<ag <ax=a;+1

] & DAy
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