Homogenization of a semi-linear PDE wi discontinuous averaged coefficients via BSL

With A. Elouaflin Université d'Abidjan and E. F Université de Provence

Journées de Probabilités 2008
Lille, 01-05 septembre 2008

We consider the sequence of semilinear PDEs index $\left\{\begin{array}{l}\frac{\partial v^{\varepsilon}}{\partial s}\left(s, x_{1}, x_{2}\right)=L^{\varepsilon}\left(x_{1}, x_{2}\right) v^{\varepsilon}\left(s, x_{1}, x_{2}\right)+f\left(\frac{x_{1}}{\varepsilon}, x_{2}, v^{\varepsilon}\right. \\ v^{\varepsilon}\left(0, x_{1}, x_{2}\right)=H\left(x_{1}, x_{2}\right)\end{array}\right.$
where
$L^{\varepsilon}\left(x_{1}, x_{2}\right)=a_{00}\left(\frac{x_{1}}{\varepsilon}, x_{2}\right) \frac{\partial^{2}}{\partial^{2} x_{1}}+a_{i j}\left(\frac{x_{1}}{\varepsilon}, x_{2}\right) \frac{\partial^{2}}{\partial x_{2 i} \partial x_{2 j}}$
with $a_{i j}$ and $b_{i}^{(1)},: \mathbb{R}^{\mathrm{d}+1} \mapsto \mathbb{R}$
$f: \mathbb{R}^{\mathrm{d}+1} \times \mathbb{R} \mapsto \mathbb{R}, \quad$ and $\quad H: \mathbb{R}^{\mathrm{d}+1} \mapsto \mathbb{R}$

The main goal is to show, by using BSDEs, that if each $g \in\{a, b, f\}$ has a C̀esaro-average,

$$
\begin{aligned}
\bar{g}\left(x_{1}, x_{2}\right):= & \frac{\lim _{x_{1} \rightarrow+\infty} \frac{1}{x_{1}} \int_{0}^{x_{1}} \rho\left(t, x_{2}\right) g\left(t, x_{2}\right)}{\lim _{x_{1} \rightarrow+\infty} \frac{1}{x_{1}} \int_{0}^{x_{1}} \rho\left(t, x_{2}\right) d t} \\
& +\frac{\lim _{x_{1} \rightarrow-\infty \frac{1}{-x_{1}} \int_{0}^{x_{1}} \rho\left(t, x_{2}\right) g\left(t, x_{2}\right.}^{\lim _{x_{1} \rightarrow-\infty} \frac{1}{-x_{1}} \int_{0}^{x_{1}} \rho\left(t, x_{2}\right) d t}}{}=\frac{1}{}
\end{aligned}
$$

With $\rho:=\frac{1}{a_{00}}$

## Then,

i) $v^{\varepsilon}\left(x_{1}, x_{2}\right)$ converges to $v\left(x_{1}, x_{2}\right)$,
ii) $v\left(x_{1}, x_{2}\right)$, is a unique $L^{p}$-viscosity solution to averaged PDE $\left\{\begin{array}{l}\frac{\partial v}{\partial s}\left(s, x_{1}, x_{2}\right)=\bar{L}\left(x_{1}, x_{2}\right) v\left(s, x_{1}, x_{2}\right)+\bar{f}\left(x_{1}, x_{2}, v(s)\right. \\ v\left(0, x_{1}, x_{2}\right)=H\left(x_{1}, x_{2}\right)\end{array}\right.$
where $\bar{L}\left(x_{1}, x_{2}\right):=\sum_{i, j} \bar{a}_{i j}\left(x_{1}, x_{2}\right) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum_{i} \bar{b}_{i}\left(x_{1}, x\right.$

In 2001, R.Z. Khashmiskii and N.V. Krylov, SPA 200 dered the following system of SDEs

$$
\left\{\begin{aligned}
U_{t}^{1, \varepsilon} & =U_{1}+\frac{1}{\varepsilon} \int_{0}^{t} \varphi\left(U_{s}^{1, \varepsilon}, U_{s}^{2, \varepsilon}\right) d W_{s} \\
U_{t}^{2, \varepsilon} & =U_{2}+\int_{0}^{t} b^{(1)}\left(U_{s}^{1, \varepsilon}, U_{s}^{2, \varepsilon}\right) d s+\int_{0}^{t} \sigma^{(1)}\left(U_{s}^{1, \varepsilon}, U\right.
\end{aligned}\right.
$$

They prove that if the averaged system

$$
\left\{\begin{array}{l}
X_{t}^{1}=\int_{0}^{t} \bar{\varphi}\left(X_{s}^{1}, X_{s}^{2}\right) d W_{s} \\
X_{t}^{2}=U_{2}+\int_{0}^{t} \bar{b}^{(1)}\left(X_{s}^{1}, X_{s}^{2}\right) d s+\int_{0}^{t} \bar{\sigma}^{(1)}\left(X_{s}^{1}, X_{s}^{2}\right)
\end{array}\right.
$$

has a weakly unique solution. Then, $\left(\varepsilon U^{1, \varepsilon}, U^{2, \varepsilon)} \stackrel{l a}{=}\right.$

As a consequence, Khashmiskii \& Krylov prove tha $\psi\left(x_{1}, x_{2}\right) \in \mathcal{C}_{b}^{\infty}$, the problem

$$
\left\{\begin{array}{l}
\frac{\partial \bar{v}}{\partial s}\left(s, x_{1}, x_{2}\right)=\bar{L}\left(x_{1}, x_{2}\right) \\
\bar{v}\left(0, x_{1}, x_{2}\right)=\psi\left(x_{1}, x_{2}\right)
\end{array}\right.
$$

has a unique bounded solution $\bar{v}\left(t, x_{1}, x_{2}\right) \in W_{d+1, l}^{1,2}$ any bounded solution $v_{\varepsilon}\left(t, x_{1}, x_{2}\right) \in W_{d+1, l o c}^{1,2}$ of the

$$
\left\{\begin{array}{l}
\frac{\partial v^{\varepsilon}}{\partial s}\left(s, x_{1}, x_{2}\right)=\mathcal{L}^{\varepsilon}\left(x_{1}, x_{2}\right) v^{\varepsilon}\left(s, x_{1}, x_{2}\right) \\
v^{\varepsilon}\left(0, x_{1}, x_{2}\right)=\psi\left(x_{1}, x_{2}\right)
\end{array}\right.
$$

we have, $\lim _{\varepsilon \rightarrow 0} v_{\varepsilon}\left(t, x_{1}, x_{2}\right)=v\left(t, x_{1}, x_{2}\right)$

We use the idea of Khashmiskii \& Krylov, to solve We put $B:=(W, \widetilde{W}):=\mathbb{R} \times \mathbb{R}^{\mathrm{d}}$-Brownian motion We denote, $b:=\left(0, b^{(1)}\right)^{*}, \quad a_{00}:=\frac{1}{2} \varphi^{2}$,

$$
a_{i j}:=\frac{1}{2}\left(\sigma^{(1)} \sigma^{(1) *}\right)_{i j}, i, j=1, \ldots, d, \quad \text { and } \quad \sigma:=
$$

One has $\sigma \in \mathbb{R}^{(d+1) \times k}$ with

$$
\left\{\begin{array}{l}
\sigma_{00}=\varphi \\
\sigma_{0 j}=0, j=1, \ldots, k-1 \\
\sigma_{i 0}=0, i=1, \ldots, d \\
\sigma_{i j}=\sigma_{i j}^{(1)}, i=1, \ldots, d, j=1, \ldots, k-1
\end{array}\right.
$$

The PDEs (1) is connected to the sequence of decou

$$
\left\{\begin{array}{l}
X_{s}^{\varepsilon}=X_{0}^{\varepsilon}+\int_{0}^{s} b\left(\frac{X_{u}^{1, \varepsilon}}{\varepsilon}, X_{u}^{2, \varepsilon}\right) d u+\int_{0}^{s} \sigma\left(\frac{X_{u}^{1, \varepsilon}}{\varepsilon}, X_{u}^{2, \varepsilon}\right) \\
Y_{s}^{\varepsilon}=H\left(X_{t}^{\varepsilon}\right)+\int_{s}^{t} f\left(\frac{X_{u}^{1, \varepsilon}}{\varepsilon}, X_{u}^{2, \varepsilon}, Y_{u}^{\varepsilon}\right) d u-\int_{s}^{t} Z_{u}^{\varepsilon} d M
\end{array}\right.
$$

where $M^{X^{\varepsilon}}$ is a martingale part of the process $X^{\varepsilon}:=$

We show that :

1) the sequence of proces $\left(X_{t}^{\varepsilon}, Y_{t}^{\varepsilon}, \int_{s}^{t} Z_{u}^{\varepsilon} d M_{u}^{X^{\varepsilon}}\right) \stackrel{\text { law }}{\Longrightarrow}\left(X_{t}\right.$ which is the unique solution to the FBSDE,

$$
\left\{\begin{array}{l}
X_{s}=x+\int_{0}^{s} \bar{b}\left(X_{u}\right) d u+\int_{0}^{s} \bar{\sigma}\left(X_{u}\right) d B_{u}, 0 \leq s \leq t \\
Y_{s}=H\left(X_{t}\right)+\int_{s}^{t} \bar{f}\left(X_{u}, Y_{u}\right) d u-\int_{s}^{t} Z_{u} d M_{u}^{X}, 0 \leq
\end{array}\right.
$$

where $\bar{\sigma}, \bar{b}$ and $\bar{f}$ (defined below) are the averages $o$
2) As a consequence, we establish that $v^{\varepsilon}\left(x_{1}, x_{2}\right)$ which solves the following PDE in the $L^{p}$-viscosity $\left\{\begin{array}{l}\frac{\partial v}{\partial s}\left(s, x_{1}, x_{2}\right)=\bar{L}\left(x_{1}, x_{2}\right) v\left(s, x_{1}, x_{2}\right)+\bar{f}\left(x_{1}, x_{2}, v(s\right. \\ v\left(0, x_{1}, x_{2}\right)=H\left(x_{1}, x_{2}\right)\end{array}\right.$
where $\bar{L}\left(x_{1}, x_{2}\right)=\sum_{i, j} \bar{a}_{i j}\left(x_{1}, x_{2}\right) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum_{i} \bar{b}_{i}\left(x_{1}, x\right.$ averaged operator.
$L^{p}$-viscosity solution (L. Caffarelli et al. (CPAM 1 Let $p$ be an integer such that $p>N=d+2$.
-(a)- A continuous function $v$ is a $L^{p}$-viscosity suk PDE (9), if
$v(T, x) \leq H(x), x \in \mathbb{R}^{\mathrm{d}+1}$
and
for every $\varphi \in W_{p, \text { loc }}^{1,2}\left([0, T] \times \mathbb{R}^{\mathrm{d}+1}, \mathbb{R}\right)$ and $\left(t_{0}, x_{0}\right.$ $\mathbb{R}^{d+1}$ at which $v-\varphi$ has a local maximum, one has

$$
\text { ess } \lim _{(s, x) \rightarrow\left(t_{0}, x_{0}\right)} \inf \left\{-\frac{\partial \varphi}{\partial s}\left(s, x_{1}, x_{2}\right)-G(s, x, \varphi(s, x)\right.
$$

Here
$G(s, x, \varphi(s, x))=\bar{L}\left(x_{1}, x_{2}\right) \varphi\left(s, x_{1}, x_{2}\right)+\bar{f}\left(s, x_{1}, x_{2}\right.$, is assumed to be merely measurable on the variable
-(b)- A function $v \in \mathcal{C}\left([0, T] \times \mathbb{R}^{\mathrm{d}+1}, \mathbb{R}\right)$ is a $L^{p^{-} \text {-vis }}$ solution of $\operatorname{PDE}$ (9), if $v(T, x) \geq H(x), x \in \mathbb{R}^{\mathrm{d}+1}$ a for every $\varphi \in W_{p, l o c}^{1,2}\left([0, T] \times \mathbb{R}^{\mathrm{d}+1}, \mathbb{R}\right)$ and $\left(t_{0}, x_{0}\right.$ $\mathbb{R}^{\mathrm{d}+1}$ at which $v_{l}-\varphi$ has a local minimum, one has

$$
\text { ess } \lim _{(s, x) \rightarrow\left(t_{0}, x_{0}\right)} \sup \left\{-\frac{\partial \varphi}{\partial s}\left(s, x_{1}, x_{2}\right)-G(s, x, \varphi(s, x\right.
$$

-(c)- A function $v \in \mathcal{C}\left([0, T] \times \mathbb{R}^{\mathrm{d}+1}, \mathbb{R}^{\mathrm{L}}\right)$ is a $L^{p_{-}}$ lution to PDE (9) if it is both a $L^{p}$-viscosity sub-super-solution.

## Proofs. Step 1

Assume that (A), (B) hold. Then,

- By Khasminskii \& Krylov (SPA 2001) : the pr $\left(X^{1, \varepsilon}, X^{2, \varepsilon}\right)$ converges in law to the process $X:=($ and
- By Krylov (SPA 2004) : The limit $X=\left(X^{1}, X^{2}\right)$ weak solution to the forward component of FBSDE

Step 2 Let $M^{\varepsilon}:=$ the mart. part of $Y^{\varepsilon}$. Arguing as in Pardoux (1999), we show that :

There exists $(Y, M)$ and a countable subset D of $[0$, along a subsequence of $\varepsilon$,
(i) $\left(X^{\varepsilon}, Y^{\varepsilon}, M^{\varepsilon}\right) \stackrel{\text { law }}{\Longrightarrow}(X, Y, M)$ on $\mathcal{C} \times \mathcal{D}([0, t], \mathbb{R}) \times$ The space $\mathcal{D}$ is endowed with the Jakubowski $\mathbf{S}$-top
(ii) $\left(Y^{\varepsilon}, M^{\varepsilon}\right) \longrightarrow(Y, M)$ in finite-distribution on $\mathrm{D}^{c}$.
(iii) $Y_{s}=H\left(X_{t}\right)+\int_{s}^{t} \bar{f}\left(X_{u}^{1}, X_{u}^{2}, Y_{u}\right) d u-\left(M_{t}-M_{s}\right)$

The strong uniqueness of the $\operatorname{BSDE}\left(\bar{f}, H\left(X_{t}\right)\right)$ all that, $M_{r}=\int_{0}^{r} Z_{u} d M_{u}^{X}$.

Step 3 The function $v(t, x):=Y_{0}^{(t, x)}$ is continuo $L^{p}$-viscosity solution to PDE (9).

Remark : The main difficulty, in the proof, stays in $t$ 1) The identification of the the limit as $\int \bar{f}(\ldots)$
2) The continuity of $Y_{0}^{(t, x)}$ in $(t, x)$.
3) the fact that $Y_{0}^{(t, x)}$ is a $L^{p}$ viscosity solution

The point 1) can be proved by using the almost of Skorokhod's representation theorem (proved by and the following lemma which is an extension, of K Krylov result, to FBSDEs.

Lemma 1 Assume (A), (B), (C2) and (C3). Fo $V^{\varepsilon}\left(x_{1}, x_{2}, y\right)$ denote the solution of the following ec

$$
\left\{\begin{array}{l}
a_{00}\left(\frac{x_{1}}{\varepsilon}, x_{2}\right) D_{x_{1}}^{2} u\left(x_{1}, x_{2}, y\right)=f\left(\frac{x_{1}}{\varepsilon}, x_{2}, y\right)-\bar{f}\left(x_{1},\right. \\
u\left(0, x_{2}\right)=D_{x_{1}} u\left(0, x_{2}\right)=0 .
\end{array}\right.
$$

Then,
(i) $D_{x_{1}} V^{\varepsilon}\left(x_{1}, x_{2}, y\right)=x_{1}\left(1+\left|x_{2}\right|^{2}+|y|^{2}\right) \beta\left(\frac{x_{1}}{\varepsilon}, x_{2}\right.$,
(ii) for any
$K^{\varepsilon} \in\left\{V^{\varepsilon}, D_{x_{2}} V^{\varepsilon}, D_{x_{2}}^{2} V^{\varepsilon}, D_{x_{1}} D_{x_{2}} V^{\varepsilon}, D_{y} V^{\varepsilon}, D_{y}^{2} V^{\varepsilon}, D_{x_{1}}\right.$ it holds,

$$
K^{\varepsilon}\left(x_{1}, x_{2}, y\right)=x_{1}^{2}\left(1+\left|x_{2}\right|^{2}+|y|^{2}\right) \beta\left(\frac{x_{1}}{\varepsilon}, x_{2}\right.
$$

where $\beta\left(x_{1}, x_{2}, y\right)$ is some bounded function which

$$
\lim _{\left|x_{1}\right| \longrightarrow \infty} \sup _{\left(x_{2}, y\right) \in \mathbb{R}^{d+1}}\left|\beta\left(x_{1}, x_{2}, y\right)\right|=0
$$

The point 2) is proved as follows,

Let $\left(t_{n}, x_{n}\right) \rightarrow(t, x)$. We assume that $t>t_{n}>0$. W

$$
Y_{s}^{t_{n}, x_{n}}=H\left(X_{t_{n}}^{x_{n}}\right)+\int_{s}^{t_{n}} \bar{f}\left(X_{u}^{x_{n}}, Y_{u}^{t_{n}, x_{n}}\right) d u-\int_{s}^{t_{n}} Z_{u}^{t}
$$

where $X^{x_{n}} \stackrel{\text { law }}{\Rightarrow} X^{x}$.
Since $H$ is a bounded continuous function and $\bar{f}$ sa one can easily show that the sequence $\left\{\left(Y^{t_{n}}, x_{n}, \int_{\dot{0}} 1_{[s}\right.\right.$ is tight in $\mathcal{D}([0, t] \times \mathbb{R} \times \mathbb{R})$ endowed with the $\mathbf{S}$-to

We rewrite equation (11) as follows,

$$
\begin{aligned}
Y_{s}^{t_{n}, x_{n}} & =H\left(X_{t_{n}}^{x_{n}}\right)+\int_{s}^{t} \bar{f}\left(X_{u}^{x_{n}}, Y_{u}^{t_{n}, x_{n}}\right) d u-\int_{s}^{t} 1_{\left[s, t_{n}\right]} \\
& -\int_{t_{n}}^{t} \bar{f}\left(X_{u}^{x_{n}}, Y_{u}^{t_{n}, x_{n}}\right) d u . \\
& =A_{n}^{1}+A_{n}^{2}
\end{aligned}
$$

- Convergence of $A_{n}^{2}$

One has $\mathbb{E}\left|\int_{t_{n}}^{t} \bar{f}\left(X_{u}^{x_{n}}, Y_{u}^{t_{n}}, x_{n}\right) d u\right| \leq K\left|t-t_{n}\right|$. Hence zero in probability.

- Convergence of $A_{n}^{1}$

Denote by $\left(Y^{\prime}, M^{\prime}\right)$ the weak limit of $\left\{\left(Y^{t_{n}, x_{n}}, \int_{\dot{0}} 1_{\left[s, t_{n}\right.}\right.\right.$ Arguing as previously, we show that $\int_{s}^{t} \bar{f}\left(X_{u}^{x_{n}}, Y_{u}^{t_{n}, x_{n}}\right)$

Passing to the limit in (12), we obtain that

$$
Y_{s}^{\prime}=H\left(X_{t}^{x}\right)+\int_{s}^{t} \bar{f}\left(X_{u}^{x}, Y_{u}^{\prime}\right) d u-\left(M_{t}^{\prime}-M_{s}^{\prime}\right), s \in
$$

The uniqueness of the considered BSDE ensures that $Y_{s}^{t, x} \mathbb{P}$-ps. Hence $Y^{t_{n}, x_{n}} \stackrel{\text { law }}{\Rightarrow} Y^{t, x}$. As in (i), one $Y_{0}^{t_{n}, x_{n}} \stackrel{l a w}{\Rightarrow} Y_{0}^{t, x}$ which yields to the continuity of $Y_{0}^{t,}$
3. Proof of $L^{p}$ viscosity solution We assume th continuous. We only prove that $v$ is $L^{p}$ - viscosity su

Note that the definition of $L^{p}$ - viscosity sub-solution to the following : for every $\varepsilon>0, r>0$, there exis $B_{r}\left(t_{0}, x_{0}\right)$ of positive measure such that, $\forall\left(s, x_{1}, x_{2}\right.$ $-\frac{\partial \varphi}{\partial s}\left(s, x_{1}, x_{2}\right)-\bar{L}\left(x_{1}, x_{2}\right) \varphi\left(s, x_{1}, x_{2}\right)-f\left(s, x_{1}, x_{2}, v(s\right.$ Since $\varphi \in W_{p, \text { loc }}^{1,2}\left([0, T] \times \mathbb{R}^{\mathrm{d}+1}, \mathbb{R}\right)$ and $p>d+2$, continuous version which will be considered below. Let $\left(t_{0}, x_{0}\right) \in[0, T] \times \mathbb{R}^{\mathrm{d}+1}$ be a local maximum assume that $v\left(t_{0}, x_{0}\right)=\varphi\left(t_{0}, x_{0}\right)$.

We will argue by contradiction. Assume that there e 0 such that
$\frac{\partial \varphi}{\partial s}\left(s, x_{1}, x_{2}\right)+\bar{L}\left(x_{1}, x_{2}\right) \varphi\left(s, x_{1}, x_{2}\right)+\bar{f}\left(s, x_{1}, x_{2}, v(\right.$ $-\varepsilon_{0}$,
$\lambda$-a.s in $B_{r_{0}}\left(t_{0}, x_{0}\right)$

## Define

$$
\tau=\inf \left\{s \geq t_{0} ; \quad\left|X_{s}^{t_{0}, x_{0}}-x_{0}\right|>r\right\} \wedge\left(t_{0}+r_{0}\right.
$$

Since $X$ is a Markov diffusion, $Y_{s}^{t_{0}, x_{0}}=v\left(s, X_{s}^{t_{0}, x_{0}}\right.$ an process

$$
\begin{aligned}
\left(\bar{Y}_{s}, \bar{Z}_{s}\right): & =\left(\left(Y_{s \wedge \tau}^{t_{0}, x_{0}}\right), 1_{[0, \tau]}(s)\left(Z_{s}^{t_{0}, x_{0}}\right)\right)_{s \in\left[t_{0}, t_{0}+r_{0}\right]} \text { solv } \\
\bar{Y}_{s}= & v\left(\tau, X_{\tau}^{t_{0}, x_{0}}\right)+\int_{s}^{t_{0}+r_{0}} 1_{[0, \tau]}(u) \bar{f}\left(u, X_{u}^{t_{0}, x_{0}}\right. \\
& -\int_{s}^{t_{0}+r_{0}} \bar{Z}_{u} d M_{u}^{X^{t_{0}, x_{0}}}, s \in\left[t_{0}, t_{0}+r_{0}\right] .
\end{aligned}
$$

On other hand, by Itô-Krylov formula, the process $\left(\hat{Y}_{s}, \hat{Z}_{s}\right)=\left(\varphi\left(s, X_{s \wedge \tau}^{t_{0}, x_{0}}\right), 1_{[0, \tau]}(s) \nabla \varphi\left(s, X_{s}^{t_{0}, x_{0}}\right)\right)_{s \in\left[t_{0}\right.}$, the BSDE

$$
\begin{aligned}
\widehat{Y}_{s}= & \varphi\left(\tau, X_{\tau}^{t_{0}, x_{0}}\right)-\int_{s}^{t_{0}+r_{0}} 1_{[0, \tau]}(u)\left[\left(\frac{\partial \varphi}{\partial u}+\bar{L} \varphi\right)\right. \\
& -\int_{s}^{t_{0}+r_{0}} \widehat{Z}_{u} d M_{u}^{X^{t_{0}, x_{0}}} .
\end{aligned}
$$

From the choice of $\tau,\left(\tau, X_{\tau}^{t_{0}, x_{0}}\right) \in B_{r_{0}}\left(t_{0}, x_{0}\right)$. Therefore, $v\left(\tau, X_{\tau}^{t, x}\right) \leq \psi\left(\tau, X_{\tau}^{t_{0}, x_{0}}\right)$ and hence, the strict comparison theorem $\Longrightarrow \bar{Y}_{t_{0}}<\hat{Y}_{t_{0}}$, i.e $\varphi\left(t_{0}, x_{0}\right)$, which contradicts our assumptions.

Caffarelli, L., Crandall, M.G., Kocan, M., Świech, sity solutions of fully nonlinear equations with meas dients. Comm. Pure Appl. Math. 49, 365-397, 1996

Jakubowski, A. A non-Skorohod topology on the Sko Electron. J. Probab. 2 , paper no. 4, pp.1-21, 1997

Khasminskii, R. Z; Krylov, N. V. On averaging prin fusion processes with null-recurrent fast component Processes and their applications, 93, 229-240, 2001

Krylov, N. V. On weak uniqueness for some diffusic continuous coefficients. Stochastic Processes and $t$ tions, 113, 37-64, 2004.

Pardoux, E. BSDEs, weak convergence and homos semilinear PDEs in F. H Clarke and R. J. Stern (eds Analysis, Differential Equations and Control, 503Academic Publishers., 1999.

Averaged coefts. For function $g \in\left\{b_{i}, a_{i j}, f\right\}$, we de $g^{+}\left(x_{2}\right):=\lim _{x_{1} \rightarrow+\infty} \frac{1}{x_{1}} \int_{0}^{x_{1}} g\left(t, x_{2}\right) d t$,
$g^{-}\left(x_{2}\right):=\lim _{x_{1} \rightarrow-\infty} \frac{1}{-x_{1}} \int_{0}^{x_{1}} g\left(t, x_{2}\right) d t$
$g^{ \pm}$is called the C̀esaro limit (or mean) of $g$.

We put, $\rho\left(x_{1}, x_{2}\right):=a_{00}\left(x_{1}, x_{2}\right)^{-1}=\left[\frac{1}{2} \varphi^{2}\left(x_{1}, x_{2}\right)\right]$
$g^{ \pm}\left(x_{1}, x_{2}\right):=g^{+}\left(x_{2}\right) 1_{\left\{x_{1}>0\right\}}+g^{-}\left(x_{2}\right) 1_{\left\{x_{1} \leq 0\right\}}$ and

$$
\bar{g}\left(x_{1}, x_{2}\right):=\frac{(\rho g)^{ \pm}\left(x_{1}, x_{2}\right)}{\rho^{ \pm}\left(x_{1}, x_{2}\right)}
$$

We have,

$$
\begin{aligned}
\bar{g}\left(x_{1}, x_{2}\right)= & \frac{\lim _{x_{1} \rightarrow+\infty} \frac{1}{x_{1}} \int_{0}^{x_{1}} \rho\left(t, x_{2}\right) g\left(t, x_{2}\right)}{\lim _{x_{1} \rightarrow+\infty} \frac{1}{x_{1}} \int_{0}^{x_{1}} \rho\left(t, x_{2}\right) d t} \\
& +\frac{\lim _{x_{1} \rightarrow-\infty} \frac{1}{-x_{1}} \int_{0}^{x_{1}} \rho\left(t, x_{2}\right) g\left(t, x_{2}\right.}{\lim _{x_{1} \rightarrow-\infty} \frac{1}{-x_{1}} \int_{0}^{x_{1}} \rho\left(t, x_{2}\right) d t}
\end{aligned}
$$

$\bar{b}, \bar{a}$ and $\bar{f}$ may have discontinuity at $x_{1}=0$.

Assumptions. We consider the following conditions, (A1) The function $b^{(1)}, \sigma^{(1)}, \varphi$ are uniformly Lips variables ( $x_{1}, x_{2}$ ),
(A2) for each $x_{1}$, their derivative in $x_{2}$ up to and inclu order derivatives are bounded continuous functions
(A3) $a:=\left(\sigma^{(1)} \sigma^{(1) *}\right)$ is uniformly elliptic, i.e : $\exists \wedge$ $\mathbb{R}^{\mathrm{d}}, \quad \xi^{*} \mathrm{a}(\mathrm{x}) \xi \geq \wedge|\xi|^{2}$.

Moreover, there exists positive constants $C_{1}, C_{2}, C_{3}$

$$
\left\{\begin{array}{l}
\text { (i) } C_{1} \leq a_{00}\left(x_{1}, x_{2}\right) \leq C_{2} \\
\text { (ii) } \sum_{i=1}^{d}\left[a_{i i}\left(x_{1}, x_{2}\right)+b_{i}^{2}\left(x_{1}, x_{2}\right)\right] \leq C_{3}(1+
\end{array}\right.
$$

(B1) Let $D_{x_{2}} u$ and $D_{x_{2}}^{2} u$ denote respectively the gra and the matrix of second derivatives of $u$ with respec following limits are uniform in $x_{2}$,

$$
\frac{1}{x_{1}} \int_{0}^{x_{1}} \rho\left(t, x_{2}\right) d t \longrightarrow \rho^{ \pm}\left(x_{2}\right) \quad \text { as } \quad x_{1} \rightarrow
$$

$$
\frac{1}{x_{1}} \int_{0}^{x_{1}} D_{x_{2}} \rho\left(t, x_{2}\right) d t \longrightarrow D_{x_{2}} \rho^{ \pm}\left(x_{2}\right) \quad \text { as } \quad x_{1}
$$

$$
\frac{1}{x_{1}} \int_{0}^{x_{1}} D_{x_{2}}^{2} \rho\left(t, x_{2}\right) d t \longrightarrow D_{x_{2}}^{2} \rho^{ \pm}\left(x_{2}\right) \quad \text { as } \quad x_{1}
$$

(B2) For every $i$ and $j$, the funct. $\rho b_{i}, D_{x_{2}}\left(\rho b_{i}\right), D_{x_{2}}^{2}(\rho$ $D_{x_{2}}^{2}\left(\rho a_{i j}\right)$ have limits in Cesaro sense.
(B3) For every $k \in\left\{\rho, \rho b_{i}, D_{x_{2}}\left(\rho b_{i}\right), D_{x_{2}}^{2}\left(\rho b_{i}\right), \rho a_{i j}, D\right.$ there
exists a bounded function $\alpha$ such that

$$
\left\{\begin{array}{l}
\frac{1}{x_{1}} \int_{0}^{x_{1}} k\left(t, x_{2}\right) d t-k_{ \pm}\left(x_{1}, x_{2}\right)=\left(1+\left|x_{2}\right|^{2}\right) \alpha\left(x_{1}\right. \\
\lim _{\left|x_{1}\right| \longrightarrow \infty} \sup _{x_{2} \in \mathbb{R}^{d} \mid}\left|\alpha\left(x_{1}, x_{2}\right)\right|=0 .
\end{array}\right.
$$

(C1) There are positive constants $C_{4}, C_{5}$ such th $\left(x_{1}, x_{2}, y, y^{\prime}\right) \in \mathbb{R} \times \mathbb{R}^{\mathrm{d}} \times \mathbb{R}^{2}:$
$\left\{\begin{array}{l}\text { (i) }\left|f\left(x_{1}, x_{2}, y\right)-f\left(x_{1}, x_{2}, y^{\prime}\right)\right| \leq C_{4}\left|y-y^{\prime}\right|, \\ \text { (ii) } H \text { is a continuous bounded function and } \mid f(x\end{array}\right.$
(C2) $\rho f$ has a limit in Česaro sense and there exist measurable function $\beta$ such that
$\left\{\begin{array}{l}\frac{1}{x_{1}} \int_{0}^{x_{2}} \rho\left(t, x_{2}\right) f\left(t, x_{2}, y\right) d t-(\rho f)_{ \pm}\left(x_{1}, x_{2}, y\right)=(1- \\ \lim _{\left|x_{1}\right| \rightarrow \infty} \sup _{\left(x_{2}, y\right) \in \mathbb{R}^{d} \times \mathbb{R}}\left|\beta\left(x_{1}, x_{2}, y\right)\right|=0,\end{array}\right.$
where $(\rho f)_{ \pm}\left(x_{1}, x_{2}, y\right):=(\rho f)^{+}\left(x_{2}, y\right) 1_{\left\{x_{1}>0\right\}}+(\rho f)$
(C3) For each $x_{1}, \rho f$ has a derivatives up to a sec $x_{2}$ uniformly in $y$ and these derivatives are boundec (C2).

Throughout the paper, (A) stands for conditions (A3); (B) for conditions (B1), (B2), (B3) and (d (C2), (C3).

Remarque 1 (i) Whenever $f$ does not depends on $\tilde{Y}_{0}^{t, x}$ is a $L^{p}$-viscosity solution of the PDE

$$
\left\{\begin{array}{l}
\frac{\partial v}{\partial s}\left(s, x_{1}, x_{2}\right)=\bar{L}\left(x_{1}, x_{2}\right) v\left(s, x_{1}, x_{2}\right)+f\left(x_{1}, x_{2}, v(s,\right. \\
v\left(0, x_{1}, x_{2}\right)=H\left(x_{1}, x_{2}\right), \quad x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{\mathrm{d}+1}
\end{array}\right.
$$

where $\left(X^{x}, \tilde{Y}_{s}^{t, x}, \tilde{Z}_{s}^{t, x} ; \quad 0 \leq s \leq t\right)$, solves the decou

$$
\left\{\begin{array}{l}
X_{s}^{x}=x+\int_{0}^{s} \bar{b}\left(X_{u}^{x}\right) d u+\int_{0}^{s} \bar{\sigma}\left(X_{u}^{x}\right) d B_{u}, 0 \leq s \leq t \\
\tilde{Y}_{s}^{t, x}=H\left(X_{t}^{x}\right)+\int_{s}^{t} g\left(X_{u}^{x}, \tilde{Y}_{u}^{t, x}\right) d u-\int_{s}^{t} \widetilde{Z}_{u}^{t, x} d M_{u}^{X^{x}}, 0
\end{array}\right.
$$

(ii) Since $f$ satisfies (C) and $\rho$ is bounded, one can that $\bar{f}$ satisfies ( $C 1$ ). Therefore, for a fixed positiv the BSDE with data $\left(H\left(X_{t}^{x}\right), \bar{f}\right)$ admit a unique str $\left(Y_{s}^{t, x}, Z_{s}^{t, x}\right)_{0 \leq s \leq t}$. Moreover, if the function $x \in \mathbb{R}^{\mathrm{d}+1}$ $\mathrm{Y}_{0}^{\mathrm{t}, \mathrm{x}}$ is continuous, it is a $L^{p^{2}}$-viscosity solution of Pl

## proof of the identification of $\int \bar{f}$

There exists a positive constant $C$ which does not such that

$$
\sup _{\varepsilon}\left\{\mathbb{E}\left(\sup _{0 \leq s \leq t}\left|Y_{S}^{\varepsilon}\right|^{2}+\int_{0}^{t}\left|Z_{S}^{\varepsilon}\right|^{2} d\left\langle M^{X^{\varepsilon}}\right\rangle_{s}\right)\right\} \leq c
$$

Lemma $2 \int_{0}^{t} \bar{f}\left(X_{u}^{1, \varepsilon}, X_{u}^{2, \varepsilon}, Y_{u}^{\varepsilon}\right) d u \stackrel{\text { law }}{\Longrightarrow} \int_{0}^{t} \bar{f}\left(X_{u}^{1}, X_{u}^{2}\right.$,
The proof of this Lemma is based on the following,

Lemma 3 Assume (A2-i), (B1).
Let $X_{s}^{1}=x_{1}+\int_{0}^{s} \bar{\varphi}\left(X_{u}^{1}, X_{u}^{2}\right) d W_{u}, 0 \leq s \leq t$. Then, sequence, the set $D_{B\left(0, \frac{1}{n}\right)}=\left\{s: s \in[0, t] / X_{s}^{1} \in B\left(0, \frac{1}{n}\right)\right\}$ satisfies $\lim _{n \rightarrow-}$ where |.| stands for the Lebesgue's measure on [0,

Lemma $4 \sup _{0 \leq s \leq t} \left\lvert\, \int_{0}^{s}\left(f\left(\frac{X_{u}^{1, \varepsilon}}{\varepsilon}, X_{u}^{2, \varepsilon}, Y_{u}^{\varepsilon}\right)-\bar{f}\left(X_{u}^{1, \varepsilon}, X\right.\right.\right.$ tends to 0 in probability as $\varepsilon \longrightarrow 0$.

Lemma $5 \int_{0}^{t} \bar{f}\left(X_{u}^{1, \varepsilon}, X_{u}^{2, \varepsilon}, Y_{u}^{\varepsilon}\right) d u \xrightarrow{\text { law }} \int_{0}^{t} \bar{f}\left(X_{u}^{1}, X_{u}^{2}\right.$, as $\varepsilon \longrightarrow 0$.

The proof of this Lemma is based on the following

Lemma 6 Assume (A2-i), (B1). Let $X_{s}^{1}=x_{1}+\int_{0}^{s} \bar{\varphi}\left(X_{u}^{1}, X_{u}^{2}\right) d W_{u}, 0 \leq s \leq t$. Then, sequence, the set $\quad D_{B\left(0, \frac{1}{n}\right)}=\left\{s: s \in[0, t] / X_{s}^{1} \in\right.$ tisfies
$\lim _{n \rightarrow+\infty}\left|D_{B\left(0, \frac{1}{n}\right.}\right|=0 \quad \mathbb{P}$ a.s,
where |.| stands for the Lebesgue's measure on [0,

## Identification of the limits

Proposition 1 Let $(\bar{Y}, \bar{M})$, the limit process defined ??. Then,
(i) For every $s \in[0, t]-\mathrm{D}$,

$$
\left\{\begin{array}{l}
\bar{Y}_{s}=H\left(X_{t}\right)+\int_{s}^{t} \bar{f}\left(X_{u}^{1}, X_{u}^{2}, \bar{Y}\right) d u-\left(\bar{M}_{t}-\bar{M}\right. \\
\mathbb{E}\left(\sup _{0 \leq \mathrm{s} \leq \mathrm{t}}\left|\bar{Y}_{s}\right|^{2}+\left|\mathrm{X}_{\mathrm{s}}^{1}\right|^{2}+\left|\mathrm{X}_{\mathrm{s}}^{2}\right|^{2}\right) \leq \mathrm{C} .
\end{array}\right.
$$

(ii) Moreover, $\bar{M}$ is $\mathcal{F}_{s}$-martingale, where $\mathcal{F}_{s}=\sigma\left\{X_{u}\right.$,

Proposition 2 Let $\left(\tilde{Y}_{s}, \tilde{Z}_{s}, 0 \leq s \leq t\right)$ be the uniqu the BSDE ( $\left.H\left(X_{t}\right), \bar{f}\right)$. Then, for every $s \in[0, t]$, $\frac{1}{2} \mathbb{E}\left(\left[\bar{M}-\int_{0} \tilde{Z}_{u} d M_{u}^{\times}\right]_{t}-\left[\bar{M}-\int_{0} \tilde{Z}_{u} d M_{u}^{x}\right]_{s}\right)=0$.

Proposition $3\left(Y^{\varepsilon}, \int_{0} Z_{u}^{\varepsilon} d M_{u}^{X^{\varepsilon}}\right) \stackrel{\text { law }}{\Longrightarrow}\left(\tilde{Y}, \int_{0}^{\cdot} \tilde{Z}_{u} d M_{u}^{X}\right.$

## Application to PDE.

Proposition 4 (Continuity in law of the flow $x \mapsto$ Assume (A), (B). Let $X_{s}^{x}$ be the unique weak sol SDE (??), and
$X_{s}^{n}:=x_{n}+\int_{0}^{s} \bar{b}\left(X_{u}^{n}\right) d u+\int_{0}^{s} \bar{\sigma}\left(X_{u}^{n}\right) d B_{u}, 0 \leq s \leq t$
Assume that $x_{n}$ converges towards $x=\left(x^{1}, x^{2}\right) \in \mathbb{I}$ $X^{n} \xrightarrow{\text { law }} X^{x}$.

Théorème 1 Assume (A), (B), (C). Let $p>$ (i) $\lim _{\varepsilon \rightarrow 0} \mathbb{E}\left|\mathrm{Y}_{0}^{\varepsilon}-\mathrm{v}(\mathrm{t}, \mathrm{x})\right|^{2}=0$.
(ii) $Y_{0}^{t, x}:=v(t, x) \in \mathcal{C}\left(\mathbb{R}_{+} \times \mathbb{R}^{d+1}\right)$, and it is a solution of PDE (??).

Proof $(i)$ We shall prove that $\lim _{\varepsilon \rightarrow 0} \mathbb{E}\left|Y_{0}^{\varepsilon}-\bar{Y}_{0}\right|^{2}=$

$$
\left\{\begin{array}{l}
Y_{0}^{\varepsilon}=H\left(X_{t}^{\varepsilon}\right)+\int_{0}^{t} f\left(\bar{X}_{u}^{\varepsilon}, X_{u}^{2, \varepsilon}, Y_{u}^{\varepsilon}\right) d u-M_{t}^{\varepsilon} \\
\bar{Y}_{0}=H\left(X_{t}\right)+\int_{0}^{t} \bar{f}\left(X_{u}, \bar{Y}_{u}\right) d u-\bar{M}_{t}
\end{array}\right.
$$

$>$ From Jakubowski (1997), the projection : $y \mapsto$ nuous in the S-topology. We then deduce that $Y$ towards $\bar{Y}_{0}$ in distribution. Moreover, since $Y_{0}^{\varepsilon}$ and ministic and bounded, we have $\lim _{\varepsilon \rightarrow 0} \mathbb{E}\left|Y_{0}^{\varepsilon}-\bar{Y}_{0}\right|^{2}$ $\lim _{\varepsilon \rightarrow 0} \mathbb{E}\left|\mathrm{v}^{\varepsilon}(\mathrm{t}, \mathrm{x})-\mathrm{v}(\mathrm{t}, \mathrm{x})\right|^{2}=0$.
(ii) $(t, x) \in \mathbb{R}_{+} \times \mathbb{R}^{\mathrm{d}+1} \mapsto \mathrm{Y}^{\mathrm{t}, \mathrm{x}}$ is continuous in law a we derive the result.

