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We consider the sequence of semilinear PDEs index
O (s,x1,20) = L(x1, 22)v°(s,21,22) + f(5, 20, v°
v®(0, 1, zp) = H(x1, 72)
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The main goal is to show, by using BSDESs, that

if each g € {a,b, f} has a Cesaro-average,
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With p 1= 40o
Then,

i) v¢(xq,x2) converges to v(xq, o),



i) v(xq,x2), iS a unique LP-viscosity solution to t
averaged PDE

%(3, r1, x2) = L(x1, xo)v(s,x1, z2) + f(x1, xo, v(:
v(0,z1, z2) = H(x1, z2)
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where L(z1, o) 1= Zﬁij(wl, o)
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In 2001, R.Z. Khashmiskii and N.V. Krylov, SPA 200:
dered the following system of SDEs

e

U =Uy + L f§o(Us®, USF)dW,

UPT = Us + [EoD(UsE, U %)ds + [§oMD (U %, U
They prove that if the averaged system

Xt = [fe(Xi, X2)dWs

X2 =Up + [Ep (XL, X2)ds + JizD (X1, x2

has a weakly unigue solution. Then, (aUlvé?,UQ»é?) la



As a consequence, Khashmiskii & Krylov prove the
Y(x1,x2) € Cp°, the problem

9U(s,21,22) = L(z1, 22)

(0, 1, z2) = Y(z1,72)

has a unique bounded solution ©(t,z1,x5) € W;fll

any bounded solution v:(t,z1,22) € W;fl loc of the |

g
W (s,21,22) = LZ(x1, 22)v°(s, 21, 22)

v8(07 I, :EQ) — ¢($17$2)

we have, Iim v:(t,x1,22) = v(t, 1, T2)
e—0



We use the idea of Khashmiskii & Krylov, to solve «

We put B := (W, W) := R x R9—Brownian motion
1
We denote, b:= (0, b(1))*  qgg = 5902,

CLZ'j = %(0‘(1)0(1)*)2.].’ i, ] — :]_7 ey d, and o = (

One has o € RA+T1)xK \with

"

g00 — ¥;
O'szo,jzl, ...,k—l
o,0=0,i=1, ....d

oij=ou),i=1,.,dj=1,.. k-1




The PDEs (1) is connected to the sequence of decou

( 1,8 1,8 2
XS = X§+ [§o(Fv, X2 %) du + [§ o (X, X ®

1,¢
xbe 2
| YE=H(X)) + [L (e, X S, Y ) du — [LZE dM

where MX" is a martingale part of the process X¢ :=

We show that :
1) the sequence of proces (X7, Yf, [t Z¢ dM,jfs)g’%(Xi
which is the unique solution to the FBSDE,

Xs=ax4+J; b(Xy)du + J57(Xu)dBy, 0 < s <t

Y = H(Xy) + [t f(Xu, Yo)du — [ Z,dM;E,0 <.

where 7, b and f (defined below) are the averages o



2) As a consequence, we establish that v(xq,29) -
which solves the following PDE in the LP-viscosity

%(8, T, 332) = z(xly $2)U(8,$1, ZBQ) +7($1, L2, ,U(é
v(0, 21, o) = H(z1, z2)
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where L(xzq, 2) = Y a;;(x1, x2)
1,
averaged operator.

+ > bi(z1, x



LP-viscosity solution (L. Caffarelli et al. (CPAM 1!
Let p be an integer such that p > N =d + 2.
-(a)- A continuous function v is a LP-viscosity sut

PDE (9), if
(T, z) < H(z), x € RAT1
and

1,2

for every ¢ € W, <[O, T] x RA+1, ]R) and (tg, xc

RI*1 at which v — ¢ has a local maximum, one ha:s

: . Oy
lim inf< ——(s, 1, — G(s, x, :
ess (5,00 b o) { oy (s, x1, o) (s, z, p(s, x

Here

G(s, z, (s, )) = L(z1, x2)e(s,z1, z2) + f(s, 1, x2,

IS assumed to be merely measurable on the variable



-(b)- A function v € C ([O, T] x RA+1 ]R) is a LP-vis:

solution of PDE (9), if (T, z) > H(z), x ¢ R9T1 3
1,2

for every ¢ € W, 77, ([O, T] x R9+1, ]R) and (to, z¢

RIt+1 at which v; — ¢ has a local minimum, one has

: O
lim sup s ———(s, 1, — G(s, x, :
ess (5,00 T 2oy p{ s (s, z1, T2) (s, z, p(s, x

-(c)- A function v € C ([O, T] x RI+1 ]R'—) is a LP-
lution to PDE (9) if it is both a LP-viscosity sub-
super-solution.



Proofs. Step 1

Assume that (A), (B) hold. Then,

e By Khasminskii & Krylov (SPA 2001) : the pre
(xX1.e X2:¢) converges in law to the process X := (
and

e By Krylov (SPA 2004) : The limit X = (X1, X2
weak solution to the forward component of FBSDE



Step 2 Let M€ := the mart. part of Y¢©.
Arguing as in Pardoux (1999), we show that :

There exists (Y, M) and a countable subset D of [O,
along a subsequence of ¢,

law

(1) (X5, Y5, M*) = (X,Y,M) on C x D([0, t], R) x
The space D is endowed with the Jakubowski S-tor

(12) (Y®, M®) — (Y, M) in finite-distribution on D¢.
(iii) Ys = H(Xy) + [EF(XE, X2, Yu)du — (M; — M)

The strong uniqueness of the BSDE (f, H(X;)) all
that, M, = [§ Zy, dM*.



Step 3 The function v(t,z) = Yo(t"”) is continuo
LP—viscosity solution to PDE (9).

Remark : The main difficulty, in the proof, stays in t
1) The identification of the the limit as /f(...)

2) The continuity of Yo(t’x) in (t,x).
3) the fact that Yo(t’x) is a LP viscosity solution

The point 1) can be proved by using the almost
of Skorokhod’s representation theorem (proved by
and the following lemma which is an extension, of K
Krylov result, to FBSDESs.



Lemma 1 Assume (A), (B), (C2) and (C3). Fo
VE&(x1, xo,y) denote the solution of the following ec

T1 L1

a’OO(?v $2)D§1’U,($1, x27y) — f(?a Lo, y) T ]F(xla
u(0, ) = Dgz,u(0, o) = 0.

T hen,

() DuyVo(e1, 22,y) = e1(1 + o2’ + |y?)BC a2,

(ii) for any
K¢ € {V¢, Dy, Ve, D2,VE, Dy Dy, VE, DyVE, D2VE, Dy,
it holds,

Il
Kg(xla CCQ,y) — CIS‘%(]. + |x2|2 + |y|2)6(?7 LD



where 3(x1, x>, y) is some bounded function which

lim sup  |B(z1,22,y)] =0
21700 (a5 y) e R



The point 2) is proved as follows,

Let (tn, zn) — (¢, ). We assume that ¢t > t, > 0. W

tn__ b
ylnon — H(thln)+[9 Fox, Yimmydu— [ 2]
law

where X*n =" X7,

Since H is a bounded continuous function and f sc
one can easily show that the sequence {(Yin % |4 Lis
is tight in D([0, ] x R x R) endowed with the S-toj



We rewrite equation (11) as follows,
t t
vim = HXE) + [ T, iy — [ 1y,
S S

t__

~ / F(XTn, yimen) gy,
tn

= A+ A7

e Convergence of A2

t_
One has E /t FOCn, vy qul < Kt — ta]. Hence
n

zero in probability.
e Convergence of A}
Denote by (Y, M’) the weak limit of {(Y**, fs 11,

t_
Arguing as previously, we show that/ F(XZEn yitnTn
S



Passing to the limit in (12), we obtain that

t_

vl = HXP)+ [ FOG, Yi)du— (M = M), s €
S

The uniqueness of the considered BSDE ensures that

Yi®P-ps. Hence Yiman & yte Ag in (i), one

an’x” law Yg"” which vyields to the continuity of Yg’:



3. Proof of LP viscosity solution We assume tt
continuous. We only prove that v is LP- viscosity su

Note that the definition of LP- viscosity sub-solution
to the following : for every € > 0, r > 0, there exis
By (tg, xg) of positive measure such that, V (s, z1, x5

Jp

—5(37 rq, xz)—Z(f]_, ZCQ)QO(S,xly IQ)_f(Sa L1, L2, U(‘S

: 1,2
Since ¢ € Wp,loc([o, T] x RI+1, R) and p>d+ 2,
continuous version which will be considered below.
Let (tg, zg) € [0, T] x R9T1 be a local maximum ¢

assume that v(tg, zg) = ©(tg, o).



We will argue by contradiction. Assume that there e
O such that

5 o _

8—?(8, X1, 332) + L(CIJ]_, 332)@(87:617 CBQ) + f(87 1, L2, U(
—€0;

A-a.s in Bry(to, x0)

Define

T = inf{szto; |X§O’xo—3}0| >T}/\(t0—|—TO



Since X is a Markov diffusion, Y0%0 = y(s, X070 an
process

(Ys, Zs) = ((Yafi®): 110, () (Z22™))sefto, to4-ro) SOM

_ to+r _
Ve = ol X0+ [T 10 () Fu, X0
S

to+7ro — t @
_ / ZudMX0™ 5 € [to, to + 0]
S

On other hand, by It6-Krylov formula, the process
(Ys, Zs) = (p(s, X7°), 1[0, 11(8)Vee(s, X270))

s€|to,
the BSDE



From the choice of 7, (1, Xﬁo’xo) € Bry(to, z0).
Therefore, v(r, X2%) < (1, X:07) and hence,

the strict comparison theorem == Y, < YQO .6
o(tg, o), which contradicts our assumptions.
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Averaged coefts. For function g € {b;, a;;, f}, we de
g+($2> = Iimx1—>—|—oowilfgl g(t, xo2)dt,
g—(fEQ) L= |im$1_>_oo_imlfgjl g(t, wQ)dt

gT is called the Cesaro limit (or mean) of g.

We put, p(z1, 22) 1= ago(z1, 22) 71 = [3¢? (21, 22)]~
£( ) i=gT(z2)1 + g (z2)1

g L1, £2) . g D {5131>O} g D {:IZ1§O}

and

(pg)*E(z1, 2)
pt(z1, z2)

g(z1, z2)



We have,

iMoo 3 Jo * p(E 22)g(t, 22)
limx1—>—|—oo x_ll fgl p(t, z2)dt

g(z1, 2)

My, oo —L:cl fgl p(t, z2)g(t, z2

+ :
liMg; 0o }M f(g)vl p(t, xo)dt

b, @ and f may have discontinuity at =1 = O.



Assumptions. We consider the following conditions,

(A1) The function b1, (1) » are uniformly Lips
variables (x1, zo),

(A2) for each z1, their derivative in x> up to and incli
order derivatives are bounded continuous functions

(A3) a:= (Va1 *) js uniformly elliptic, i.e : IA >
RY,  £*a(x)E > AJ¢2.

Moreover, there exists positive constants Cy, (5, C-
(1) C1 < apo(z1, z2) < C>

(i) Y4 [aii(x1, v2) + b2 (21, 22)] < C3(1 +



(B1l) Let Dgz,u and D%Qu denote respectively the gre
and the matrix of second derivatives of u with respec
following limits are uniform in xo,

1 Il +
— [ p(t, xz2)dt — p~(x2) as  x1 — -
x1 /0
1 1 +
— [ Dayp(t, x2)dt — Dzyp~(22) as 3
x1 /0
171 0o > +
o DZEQIO(t? $2)dt — D:Czp (ZEQ) as ooy

x1 /0



(B2) For every i and j, the funct. pb;, Dz, (pb;), D2, (;
Dz (pa;j) have limits in Cesaro sense.

(B3) For every k € {p, pb;, Du,(pb;), Dz,(pb;), pajj, D
there
exists a bounded function « such that

”m|:1:1|—>oo SquQE]Rd |O¢(331, 332)‘ = 0.

\

(C1) There are positive constants C4, Cs such th
(z1, 2, ¥, ¥') ERxRIx R? :

(i) |f(z1, z2, y) — f(z1, z2, ¥)| < Caly — '],

(¢¢) H is a continuous bounded function and |f(x



(C2) pf has a limit in Cesaro sense and there exist
measurable function g such that

f aj_]-lf(SEQ p(t7 xQ)f(ta L2, y)dt — (pf)j:(x]_, o, y) p— (]_ -

\ ||m|$1|—>oo SuD(wQ,y)E]RdX]R |B($17 o, y)| — 07

where (pf)+(z1, 22, y) := (pf) T (22, ¥) 11z, >0y +(0f)

(C3) For each x1, pf has a derivatives up to a sec
x> uniformly in y and these derivatives are boundec

(C2).

Throughout the paper, (A) stands for conditions
(A3); (B) for conditions (B1), (B2), (B3) and (¢
(C2), (C3).



Remarque 1 (i) Whenever f does not depends on
?Ot’w is a LP-viscosity solution of the PDE

80(s,21,22) = Lz, 22)v(s, 21, 2) + f(21, 22, v(s,

v(0,z1,22) = H(x1,72), == (x1,z5) € RITL

where (X, V0% ZL% 0 < s<t), solves the decou

XT=z+ [§0(XE)du + [§o(XE)dBuy, 0 < s < t.

VI? = H(XE) + [P g(XE, Vo) du — [P Z5E7dMX", C



(#1) Since f satisfies (C) and p is bounded, one can
that f satisfies (C1). Therefore, for a fixed positiv
the BSDE with data (H(XY), f) admit a unique str
(Yo, Z&")o<s<i- Moreover, if the function z € RI+1
Yg’x is continuous, it is a LP-viscosity solution of Pl



proof of the identification of [ f

There exists a positive constant C' which does not
such that

e2 1 (Y5212 4/naXE
sup{E [ sup |Yg| +/ 1752 d(M¥s | L < ¢
€ <t 0]

law

t t_
Lemma 2 /Of(X,i’g, X2¢ YE)du == Of(X&»XzQL,

The proof of this Lemma is based on the following,



Lemma 3 Assume (A2-i), (B1).
S
Let X! =uy +/O B(XL, X2)dW,, 0 < s < t. Then, .
sequence, the set )
D 1= {s - seo,4 / X! e B(o, —)} satisfies  lii
B(Oaﬁ) n n—-
where |.| stands for the Lebesgue’s measure on [0,

l,¢e

S X _

Lemma 4 sup (f( Y X2E V) — f(XLE X
0<s<t|J0 g

tends to O in probability as e — 0.



law

t t_
Lemma 5 /Of(X&’g, X228 YE)du = Of(X&,Xga
as e — 0.

The proof of this Lemma is based on the following,

Lemma 6 Assume (A2-i), (B1).
S
Let X! = 4, +/O B(XL, X2)dW,, 0 < s <t. Then, .

sequence, the set DB(O 1y = {s :s€e[0,t] / X;l €.
tisfies '
lim |D

n——+oo

B(0 l)| =0 IP a.s,

where |.| stands for the Lebesgue’s measure on [0,



Identification of the limits

Proposition 1 Let (Y, M), the limit process definec
?7?. Then,

(1) For every s € [0, t] — D,

(Ys=H(Xy) + [LF(XE, X2, Y)du— (M — M

| E (supocs<t [Ys|2 + [X¢[2 + [X2]?) < C.

(ii) Moreover, M is Fs-martingale, where Fg = a{Xu,



Proposition 2 Let (Ys, Zs, 0 < s < t) be the uniqu
the BSDE (H(X:), f). Then, for every s € [0, t], E

1/ T
JE ([I\/I —/Ozudlvlf}]t— [M —/Ozude}]S) — 0.

Proposition 3 (Yg, /o. ZZdM§€> law (Y, /o‘ ZudMX



Application to PDE.

Proposition 4 (Continuity in law of the flow x +— J
Assume (A), (B). Let XY be the unique weak sol
SDE (?7?), and

S _ S
X" =z, +/O b(X™)du +/O 5(X")dBy, 0<s<t
Assume that z, converges towards z = (zl, z2) € 1

xn 4 v



Théoréme 1 Assume (A), (B), (C). Let p >
(@) lim E|Y§ — v(t, x)[? = 0.
E—

(i5) Yy* = v(t, z) € C(Ry x RITL) and it is a
solution of PDE (?7?).



Proof (i) We shall prove that lim. o E|Y§—Yq|? =
Y§ = H(XP) + J§ £(X5, Xoo%, Y)du — M;

Yo = H(Xy) + fS f(Xu, Yu)du — My
>From Jakubowski (1997), the projection : y —
nuous in the S-topology. We then deduce that Y
towards Y in distribution. Moreover, since Y§ and °
ministic and bounded, we have lim._qE|Y§ — Yo|?
lima_o E|VE(t, x) — v(t, X)|2 = 0.

(ii) (t, ) € Ry x RITL— ybUX is continuous in law z
we derive the result.



