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A brief introduction to spatial point processes
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http://www-ljk.imag.fr/membres/Jean-Francois.Coeurjolly/

Laboratoire Jean Kuntzmann (LJK), Grenoble University
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Preliminary

Files which can de downloaded
http://www-ljk.imag.fr/membres/Jean-Francois.Coeurjolly/documents/Lille/

or more simply on the workshop webpage, program page
http://math.univ-lille1.fr/ heinrich/geostoch2014/

introductionSPP cours.pdf : pdf file of the slides. Beamer version.

introductionSPP print.pdf : pdf file of the printed version.

Short R code used to illustrate the talks.

The code is using the excellent R package spatstat which can be
downloaded from the R CRAN website.
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1 Examples

2 Definitions, Poisson

3 Summary statistics

4 Modelling and inference
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Spatial data . . .

. . . can be roughly and mainly classified into three categories :

1 Geostatistical data.

2 Lattice data.

3 Spatial point pattern

Notes

Notes
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Geostatistical data

sic.100 dataset (R
package geoR)

Cumulative rainfall in
Switzerlan the 8th May.

The observation consists
in the discretization of a
random field,
X = (Xu, u ∈ R

2)
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Lattice data (1)

Eire dataset (R package
spdep)

% of people with group A
in eire, observed in 26
regions.

The data are aggregated
on the region ⇒ random
field on a network.

Percentage with blood group A in Eire

under 27.91
27.91 − 29.26
29.26 − 31.02
over 31.02

Notes

Notes



Examples Definitions, Poisson Summary statistics Modelling and inference

Lattice data (2)

Lennon dataset (R
package fields)

Real-valued random field
(gray scale image with
values in [0, 1]).

Defined on the network
{1, . . . , 256}2.
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Spatial point pattern (1)

Japanesepines dataset (R
package spatstat)

Locations of 65 trees on a
bounded domain.

S = R2 (equipped with
‖ · ‖).

japanesepines
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Spatial point pattern (2)

Longleaf dataset (R
package spatstat)

Locations of 584 trees
observed with their
diameter at breast height.

S = R2 × R+ (equipped
with max(‖ · ‖, | · |)).

longleaf
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Spatial point pattern (3)

Ants dataset (R package
spatstat)

Locations of 97 ants
categorised into two
species.

S = R2 × {0, 1} (equipped
with the metric
max(‖ · ‖, dM) for any
distance dM on the mark
space).

ants
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Spatial point pattern (3)

chorley dataset (R
package spatstat)

Cases of larynx and lung
cancers and position of an
industrial incinerator.

S = R2 × {0, 1} (equipped
with the metric
max(‖ · ‖, dM) for any
distance dM on the mark
space).

Chorley−Ribble Data
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Spatial point pattern (4)

Beischmedia dataset (R package spatstat)
3604 locations of trees observed with spatial covariates (here
the elevation field).
S = R2 (equipped with the metric ‖ · ‖), z(·) ∈ R2.
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Spatial point pattern (5)

Spatio-temporal point process on a complex space
Daily observation of sunspots at the surface of the sun.
can be viewed as the realization of a marked spatio-temporal
point process on the sphere.
S = S2 × R

+ × R+ (state, time, and mark).
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Spatial point pattern (6)

Towards stochastic geometry . . .
Planar section of the pseudo-stratified epithelium of a
drosophila wing marked with antibodies to highlight cell
borders.
The centers form of the tessellation form a point process.

Notes

Notes
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Mathematical definition of a spatial point process ?

S : Polish state space of the point process (equipped with the
σ-algebra of Borel sets B).

A configuration of points is denoted x = {x1, . . . , xn, . . .}. For
B ⊆ S : xB = x ∩ B.

Nlf : space of locally finite configurations, i.e.

{x , n(xB) = |xB | < ∞,∀B bounded ⊆ S}

equipped with Nlf = σ ({x ∈ Nlf , n(xB) = m},B ∈ B,B bounded,m ≥ 1).

Definition

A point process X defined on S is a measurable application defined on
some probability space (Ω,F ,P) with values on Nlf .

Measurability of X ⇔ N(B) = |XB | is a r.v. for any bounded B ∈ B.

Notes

Notes
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Theoretical characterization of the distribution of X

Proposition

The distribution of a point process X

1 is determined by the finite dimensional distributions of its counting
function, i.e. the joint distribution of N(B1), . . . ,N(Bm) for any
bounded B1, . . . ,Bm ∈ B and any m ≥ 1.

2 is uniquely determined by its void probabilities, i.e. by

P(N(B) = 0), for bounded B ∈ B.

From now on, we assume that S = Rd (and even
d = 2) or a bounded domain of R2.

Everything can de extended to marked spatial point
processes and/or to more complex domains.
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Moment measures

Moments play an important role in the modelling of classical
inference.

For point processes = moments of counting variables.

Definition : for n ≥ 1 we define

the n-th order moment measure (defined on Sn) by

µ(n) = E
∑

u1,...,un

1({u1, . . . , un} ∈ D), D ⊆ Sn.

the n-th order reduced moment measure (defined on Sn) by

α(n)(D) = E
,∑

u1,...,un

1({u1, . . . , un} ∈ D), D ⊆ Sn.

where the , sign means that the n points are pairwise distinct.

Notes

Notes
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Intensity functions

Assume µ(1) and α(2) are absolutely continuous w.r.t. Lebesgue measure, and denote

by ρ and ρ(2) the densities.

Campbell Theorems

1 For any measurable function h : S → R

E
∑
u∈X

h(u) =

∫
S

h(u)ρ(u)du.

2 For any measurable function h : S × S → R

E
,∑

u,v∈X

h(u, v) =

∫
S

∫
S

h(u, v)ρ(2)(u, v)dudv .

ρ(u)du ' Probability of the occurence of u in B(u,du)

ρ(2)(u, v) ' Probability of the occurence of u in B(u,du) and v in B(v ,dv).
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Poisson point processes

Classical definition : X ∼Poisson(S , ρ)

∀m ≥ 1, ∀ bounded and disjoint B1, . . . ,Bm ⊂ S , the r.v.
XB1

, . . . ,XBm
are independent.

N(B) ∼ P
(∫

B
ρ(u)du

)
for any bounded A ⊂ S .

∀B ⊂ S , ∀F ∈ Nlf

P(XB ∈ F ) =
∑
n≥0

e−
∫
B
ρ(u)du

n!

∫
B
. . .

∫
B

1({x1, . . . , xn} ∈ F )
n∏

i=1

ρ(xi )dxi .

If ρ(·) = ρ, X is said to be homogeneous which implies

EN(B) = ρ|B |, VarN(B) = ρ|B |.

and if S = Rd , X is stationary and isotropic.

Notes

Notes
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A few realizations on S = [−1, 1]2

ρ(u) = βe−u1−u
2
1−.5u

3
1 .

ρ = 200.

ρ(u) = βe2 sin(4πu1u2).

(β is adjusted s.t. the mean number of points in S ,
∫
S
ρ(u)du = 200.)
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A few properties of Poisson point processes

Proposition : if X ∼Poisson(S , ρ)

Void probabilities : v(B) = P(N(B) = 0) = e−
∫
B

(ρ(u)du).

For any u, v ∈ S , ρ(2)(u, v) = ρ(u)ρ(v) (also valid for ρ(k), k ≥ 1)

and if |S | < ∞, X admits a density w.r.t. Poisson(S , 1) given by

f (x) = e |S |−
∫
S
ρ(u)du

∏
u∈x

ρ(u).

Slivnyak-Mecke Theorem : for any non-negative function
h : S × Nlf → R

+, then

E
∑
u∈X

h(u,X \ u) =

∫
S
Eh(u,X )ρ(u)du.

Example : if ρ(·) = ρ, E
∑

u∈X∩[0,1]2 1(d(u,X \ u) ≤ R) = ρ
(
1 − e−ρπR

2 )

Notes

Notes
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Simulation

27
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ρ = 20, R = 0.1 ρ = 100, R = 0.05∑
u∈x 1(d(u, x \ u) ≤ R) = 9

∑
u∈x 1(d(u, x \ u) ≤ R) = 60

ρ(1 − exp(−ρπR2)) ' 9.33 ρ(1 − exp(−ρπR2)) ' 54.41
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Statistical inference for a Poisson point process

Simulation :

homogeneous case : very simple
inhomogeneous case : a thinning procedure can be efficiently
done if ρ(u) ≤ c : simulate Poisson(c,W) and delete a point u
with prob. 1 − ρ(u)/c.

Inference :

consists in estimating ρ, ρ(·; θ) or ρ(u) depending on the
context.
All these estimates can be used even if the spatial point
process is not Poisson (wait for a few slides)
Asymptotic properties very simple to derive under the Poisson
assumption.

Goodness-of-fit tests : tests based on quadrats counting,
based on the void probability,. . .

Notes

Notes
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Homogeneous case

We consider here the problem of estimating the parameter ρ of a
homogeneous Poisson point process defined on S and observed on a
window W ⊆ S .

Since N(W ) ∼ P(ρ|W |), the natural estimator of ρ is

ρ̂ = N(W )/|W |

Properties

(i) ρ̂ corresponds to the maximum likelihood estimate.

(ii) ρ̂ is unbiased.

(iii)Var ρ̂ = ρ
|W | .

Proof : (i) follows from the definition of the density (ii-iii) can be checked

using the Campbell formulae.
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Homogeneous case (2)

Asymptotic results

For large N(W ), ρ̂|W | ' N(ρ|W |, ρ|W |) and so

|W |1/2(̂ρ − ρ) ' N(0, ρ).

(the approximation is actually a convergence as W → Rd)

Variance stabilizing transform :

2|W |1/2(
√
ρ̂ −
√
ρ) ' N(0, 1)

We deduce a 1 − α (α ∈ (0, 1)) confidence interval for ρ

IC1−α(ρ) =

(√
ρ̂ ±

zα/2

2|W |1/2

)2

.

Notes

Notes
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A simulation example

We generated m = 10000 replications of homogeneous Poisson point
processes with intensity ρ = 100 on [0, 1]2 (blcak plots) and on [0, 2]2

(red plots).

Histograms of ρ̂ Histograms of 2̂|W |1/2(
√
ρ̂ −
√
ρ)
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A simulation example

We generated m = 10000 replications of homogeneous Poisson point
processes with intensity ρ = 100 on [0, 1]2 (black plots) and on [0, 2]2

(red plots).

W = [0, 1]2 W = [0, 2]2

Emp. Mean of ρ̂ 100.17 100.07
Emp. Var. of ρ̂ 98.57 25.69
Emp. Coverage rate
of 95% confidence intervals 95.31% 94.78%

Notes

Notes
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Application : pines datasets

We consider three unmarked datasets : japanesepines,
swedishpines, finpines.

Plot the data, estimate the intensity parameter.

Construct a confidence interval for each of them. Which one is
significantly more abundant ?

Judge the assumption of the Poisson model using a GoF test
based on quadrats.

Examples Definitions, Poisson Summary statistics Modelling and inference

Inhomogeneous case : parametric estimation

Assume that ρ is parametrized by a vector θ ∈ Rp (p ≥ 1). The most
well-known model is the log-linear one :

ρ(u) = ρ(u; θ) = exp(θ>z(u))

where z(u) = (z1(u), z2(u), . . . , zp(u)) correspond to known spatial
functions or spatial covariates.

θ can be estimated by maximizing the log-likelihood on W

lW (X , θ) =
∑
u∈XW

log ρ(u; θ) +

∫
W

(1 − ρ(u; θ))du

= |W |+
∑
u∈XW

θ>z(u) −

∫
W

exp(θ>z(u))du︸                                        ︷︷                                        ︸
:=`W (X ,θ)

.

In other words
θ̂ = Argmaxθ `W (X , θ).

Notes

Notes
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Inhomogeneous case : parametric estimation (2)

Why would θ̂ be a good estimate ?
Compute the score function

sW (X , θ) = ∇`W (X , θ) =
∑
u∈XW

z(u) −

∫
W

z(u) exp(θ>z(u))︸         ︷︷         ︸
:=ρ(u)

du.

The true parameter θ0 (i.e. X ∼ Pθ0
) minimizes the expectation of

the score function. Indeed from Campbell formula

EsW (X , θ) =

∫
W

z(u) (exp(θ>0 z(u)) − exp(θ>z(u)))du = 0

when θ = θ0.

Rathbun and Cressie (1994) showed the strong consistency and

the asymptotic normality of θ̂ as W → Rd .
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Data example : dataset bei

A point pattern giving the locations of 3605 trees in a tropical rain forest.
Accompanied by covariate data giving the elevation (altitude) (z1) and
slope of elevation (z2) in the study region.

elevation, z1

12
0

13
0

14
0

15
0

16
0

elevation gradient, z2
0

0.
1

0.
2

0.
3

Assume an inhomogeneous Poisson point process (which is not true, see
the next chapter) with intensity

log ρ(u) = β + θ1z1(u) + θ2z2(u).

Question : how can we prove that each covariate has a significant

influence ?

Notes

Notes
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Inhomogeneous case : nonparametric estimation

(Diggle 2003)

Idea is to mimic the kernel density estimation to define a
nonparametric estimator of the spatial function ρ.

Let k : Rd → R+ a symmetric kernel with intensity one.
Examples of kernels

Gaussian kernel : (2π)−d/2 exp(−‖y‖2/2).
Cylindric kernel : 1

π
1(‖y‖ ≤ 1).

Epanecnikov kernel : 3
4 1(|y | < 1)(1 − |y |2).

Let h be a positive real number (which will play the role of a
bandwidth window), then the nonparametric estimate (with border
correction) at the location v is defined as

ρ̂h(v) = Kh(v)−1
∑
u∈XW

1

hd
k

(
‖v − u‖

h

)
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Intuitively, this works . . .

Indeed, using the Campbell formula and a change of variables we can
obtain

E ρ̂h(v) = Kh(v)−1E
∑
u∈XW

1

hd
k

(
‖v − u‖

h

)

= Kh(v)−1

∫
W

1

hd
k

(
‖v − u‖

h

)
ρ(u)du

= Kh(v)−1

∫
W−v
h

k (‖ω‖) ρ(ωh + v)dω

h small
' Kh(v)−1

∫
W−v
h

k (‖ω‖) ρ(v)dω

' ρ(v).

More theoretical justifications and properties and a discussion on the

bandwidth parameter and edge corrections can be found in Diggle (2003).

Notes

Notes
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Objective and classification

Objective :

Define some descriptive statistics for s.p.p. (independently on any
model so).

Measure the abundance of points, the clustering or the repulsiveness
of a spatial point pattern w.r.t. the Poisson point process.

Classification :

First-order type based on the intensity function.

Second-order type statistics : pair correlation function, Ripley’s K
function.

Statistics based on distances : empy space function F ,
nearest-neigbour G , J function.

(We assume that ρ and ρ(2) exist in the rest of the talk)
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Summary statistics based on the intensity function

Thanks to Campbell formulae, the estimates of the intensity for a
Poisson point process can be used to estimate the intensity of a general
spatial point process X . In particular

1 if X is stationary ρ̂ = N(W )/|W | is an estimate of ρ.

2 Non-stationary, parametric estimation of the intensity : if
ρ(u) = ρ(u; θ) can be used using the “Poisson likelihood”, i.e.

lW (X , θ) =
∑
u∈XW

log ρ(u; θ) −

∫
W
ρ(u; θ)du.

3 Non stationary, non-parametric estimation of the intensity (see
previous chapter for notation) :

ρ̂h(u) = Kh(u)−1
∑
v∈XW

1

hd
k

(
‖v − u‖

h

)
.

Notes

Notes
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A simulation example in the stationary case

We generated m = 10000 replications of a stationary log-Gaussian Cox
processes (Thomas process, κ = 50, σ = .005) with intensity ρ = 400.
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W = [0, 1]2 W = [0, 2]2

Emp. Mean of ρ̂ 400.4 399.5
Emp. Var. of ρ̂ 1741.4 507.4

A survey of the estimation of the asymptotic variance of ρ̂ can be found in
Prokesova and Heinrich (2010) and references therein.
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Parametric intensity estimation for non Poisson models

We generated B = 1000 replications of Thomas
process with parameters κ = 50, σ = .005 and
with intensity function

ρ(u) = exp(β − θu2
1u2

2)

with θ = −2 and β adjusted s.t. EN(W ) = 200
for W = [0, 1]2 and 800 for W = [0, 2]2.
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Then for each replication, θ is
estimated using the “Poisson
likelihood”

W = [0, 1]2 W = [0, 2]2

Emp. Mean of θ̂ -2.03 -2.01

Emp. Var. of θ̂ 0.13 0.03

Asymptotic results are more awkward to derive and depend on mixing
coefficients of the spatial point process X .

See Guan (2006), Guan and Loh (2008), Waagepetersen, Guan and Jalilian
(2012) and Coeurjolly and Møller (2012) for details and refinements.

Notes

Notes
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Ripley’s K function

We assume (for simplicity) the stationarity and isotropy of X .

Definition

The Ripley’s K function is literally defined for r ≥ 0 by

K (r) =
1

ρ
E
(
number of extra events within distance r of a randomly chosen event

)
=

1

ρ
E
(
N(B(0, r) \ 0) | 0 ∈ X

)
We define the L function as L(r) = (K (r)/π)1/2.

Properties :

Under the Poisson case, K (r) = πr 2 ; L(r) = r .

If K (r) > πr 2 or L(r) > r (resp. K (r) < πr 2 or L(r) < r) we suspect
clustering (regularity) at distances lower than r .
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Pair correlation function

Definition

If ρ and ρ(2) exist, then the pair correlation function is defined by

g(u, v) =
ρ(2)(u, v)

ρ(u)ρ(v)

where we set for convention a/0 = 0 for a ≥ 0.

g(u, v)


= 1 if X ∼ Poisson(S , ρ).
> 1 for attractive point pattern.
< 1 for repulsive point pattern.

If S = Rd and X is stationary and isotropic, then

g(u, v) =
ρ(2)(‖v − u‖)

ρ2
= g(‖v − u‖.

Notes

Notes
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Particular case for stationary and isotropic processes

Theorem

For stationary and isotropic processes in S = Rd

g(r) =
K ′(r)

σd rd−1

where σd = dωd is the surface area of unit sphere Sd−1 in Rd .

Proof : Using polar decomposition we obtain

K (r) =

∫
B(0,r)

g(‖u‖)du =

∫ r

0

∫
Sd−1

td−1g(t)dt = σd

∫ r

0
td−1g(t)dt.
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Edge corrected estimation of the K function

Definition

We define

the border-corrected estimate as

K̂BC (r) =
1

ρ̂

,∑
u∈XW	r ,v∈XW

1(v ∈ B(u,R))

N(W	r )

where W	r = {u ∈W : B(u, r) ⊆W } is the erosion of W by r .

the translation-corrected estimate as

K̂TC (r) =
1

ρ̂2

,∑
u,v∈XW

1(v − u ∈ B(0, r))

|W ∩Wv−u |

where Wu = W + u = {u + v : v ∈W }.

Remark : everything extends to 2nd-order reweighted stationary point processes ;

asymptotic properties depend on mixing conditions,. . .

Notes

Notes
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Estimation of the pair correlation function

For convenience, we consider only stationary and isotropic point
processes.

Then, the pair correlation function g(u, v) = g(‖u − v‖) can be
estimated using the following edge corrected kernel estimate

ĝ(r) =
1

ρ̂2

,∑
u,v∈XW

kh(‖v − u‖ − r)

σd rd−1|W ∩Wv−u |

where kh(t) = h−dk(t/h).

Alternatively, we can estimate estimate the derivative of the K
function (after smooting using e.g. spline techniques) and define

ĝ(r) =
K̂ ′(r)

σd rd−1
.
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Example of L function for a Poisson point pattern
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The enveloppes are constructed using a Monte-Carlo approach
under the Poisson assumption.

⇒ we don’t reject the Poisson assumption.

Notes

Notes
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Example of L function for a repulsive point pattern
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⇒ the point pattern does not come from the realization of a
homogeneous Poisson point process.

exhibits repulsion at short distances (r ≤ .05)
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Example of L function for a clustered point pattern

Xth
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⇒ the point pattern does not come from the realization of a
homogeneous Poisson point process.

exhibits attraction at short distances (r ≤ .08).

Notes

Notes
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Statistics based on distances : F , G and J functions

Assume X is stationary (definitions can be extended in the general case)

Definition

The empty space function is defined by

F (r) = P(d(0,X ) ≤ r) = P(N(B(0, r)) > 0), r > 0.

The nearest-neighbour distribution function is

G (r) = P(d(0,X \ 0) ≤ r |0 ∈ X )

J-function : J(r) = (1 − G (r))/(1 − F (r)), r > 0.

Poisson case : ∀r > 0, F (r) = G (r) = 1 − e−πr
2
, J(r) = 1.

F (r) < Fpois(r), G (r) > Gpois(r), J(r) < 1 : attraction at dist. < r .

F (r) > Fpois(r), G (r) < Gpois(r), J(r) > 1 : repulsion at dist. < r .

Examples Definitions, Poisson Summary statistics Modelling and inference

Non-parametric estimation of F , G and J

As for the K and L functions, several edge corrections exist. We focus here only on the

border correction. We assume that X is observed on a bounded window W with

positive volume.

Definition

Let I ⊆W be a finite regular grid of points and n(I ) its cardinality.
Then, the (border corrected) estimator of F is

F̂ (r) =
1

n(Ir )

∑
u∈Ir

1(d(u,X ) ≤ r)

where Ir = I ∩W	r .

The (border corrected) estimator of G is

Ĝ (r) =
1

N(W	r )

∑
u∈X∩W	r

1(d(u,X \ u) ≤ r)

Notes

Notes
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Application to a clustered point pattern data
Xth
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Objective

The main objectives of this section are

to present more realistic models than the too simple Poisson point
process to take into account the spatial dependence between points.

to present statistical methodologies to infer these models.

We can distinguish several classes of models for spatial point processes

1 point processes based on the thinning of a Poisson point processes,
on the superimposition of Poisson point processes. [sometimes hard to

relate the stochastic process producing the realization and the physical

phenomenon producing the data]

2 Cox point processes (which include Cluster point processes,. . . ).

3 Gibbs point processes.

4 Determinental point processes.

Notes

Notes
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An attempt to classify these models . . .

Model Allows to model Are moments Density w.r.t.
expressible Poisson ?
in a closed form ?

Cox attraction yes no

Gibbs repulsion no yes
but also attraction

Determinental repulsion yes yes

This course only focuses on the two first classes of point processes, i.e.

on Cox and Gibbs point processes.

Examples Definitions, Poisson Summary statistics Modelling and inference

Definition

We let S ⊆ Rd throughout this section. B denotes any bounded domain
⊆ S .

Definition

Suppose that Z = {Z (u) : u ∈ S} is a nonnegative random field so that
with probability one, u → Z (u) is a locally integrable function. If the
conditional distribution of X given Z is a Poisson process on S with
intensity function Z , then X is said to be a Cox process driven by Z .

Remarks :

Z is a random field means that Z (u) is a random variable ∀u ∈ S .

if EZ (u) exists and is locally integrable then w.p. 1, Z (u) is a
locally integrable function.

Notes

Notes
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Basic properties

Proposition

1 Provided Z (u) has finite expectation and variance for any u ∈ S

ρ(u) = EZ (u), ρ(2)(u, v) = E[Z (u)Z (v)], g(u, v) =
E[Z (u)Z (v)]

ρ(u)ρ(v)
.

2 The void probabilities are given by

v(B) = E exp

(
−

∫
B

Z (u)du

)
for bounded B ⊆ S .

Proof : direct consequence of the fact that X |Z is a Poisson point

process with intensity function Z .
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Over-dispersion of Cox processes

Proposition

Let A,B bounded sets of S , then

Cov(N(A),N(B)) =

∫
A

∫
B
Cov(Z (u),Z (v))dudv +

∫
A∩B

EZ (u)du

Consequence :

In particular, VarN(A) ≥ EN(A) with equality only when X is a
Poisson process.

⇒ over-dispersion of the counting variables.

Other remarks :

Most of models have pcf such that g ≥ 1 (but a few exceptions ∃).

If S = Rd and X is stationary and/or isotropic then X is stationary
and/or isotropic.

Explicit expressions of the F ,G and J functions in the stationary
case are in general difficult to derive.

Notes

Notes
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A first example

Definition

A mixed Poisson process is a Cox process where Z (u) = Z0 is given by a
positive random variable for any u ∈ S , i.e. X |Z0 follows a homogeneous
Poisson process with intensity Z0.

Limited interest . . .

X is stationary and (provided Z0 has first two moments)

ρ = EZ0 and g(u, v) =
E[Z 2

0 ]

E[Z0]2
≥ 1.

The K and L functions are given by

K (r) = βωd rd and L(r) = β1/d r ≥ r

where ωd = |B(0, 1)| and β =
E[Z 2

0 ]

E[Z0]2 .

(recall that K ′(r) = dωdg(r)rd−1).
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Neymann-Scott processes

Definition

Let C be a stationary Poisson process on Rd with intensity κ > 0.
Conditional on C , let Xc , c ∈ C be independent Poisson processes on Rd

where Xc has intensity function

ρc(u) = αk(u − c)

where α > 0 is a parameter and k is a kernel (i.e. for all c ∈ Rd ,
u → k(u − c) is a density function). Then X = ∪c∈CXc is a
Neymann-Scott process with cluster centres C and clusters Xc , c ∈ C .

X is also a Cox process on Rd driven by Z (u) =
∑

c∈C αk(u − c).

Simulating a Neymann-Scott process (on W ) is very simple (if k
has compact support T < ∞)

1 Generate C ∼ Poisson(W ⊕ T , κ).
2 For each c ∈ C , generate Xc ∼ Poisson(W , ρc).

3 Concatenate all the Xc ’s.

If k has unbounded support, an exact simulation is still possible.

Notes

Notes
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Two classical NS pp

We obtain specific models by choosing specific kernel densities.

1 the Matérn cluster process where

k(u) = 1(‖u‖ ≤ R)
1

ωdRd

is the uniform density on the B(0,R).

2 the Thomas process where

k(u) =
( 1

2πσ2

)d/2
exp

(
−
‖u‖2

2σ2

)
is the density of N(0, σ2Id).

When R is small or when σ is small, then point pattern exhibit strong

attraction.
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Basic properties of NS pp

κ is the mean number of cluster centres per unit square, α is the
mean number of daughters points per cluster.

X is stationary (since Z is stationary) and is isotropic if
k(u) = k(‖u‖).

Intensity of X : ρ(u) = ακ.

The (stationary) pair correlation function is given by

g(u, v) = 1+
k ∗ k(v − u)

κ
≥ 1 where k∗k(u) =

∫
k(c)k(v−u+c)dc .

The F , G and J functions are also expressible in terms of k. In
particular

J(r) =

∫
k(u) exp

(
−α

∫
‖v‖≤r

k(u + v)dv

)
du

whereby we deduce that exp(−α) ≤ J(r) ≤ 1.

Notes

Notes
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Back to the Thomas process

Recall that k is the density of a N(0, σ2Id). Applying the previous results,
we get (for the pcf)

g(r) = 1 +
1

(4πσ2)d/2
exp

(
−r 2/(4σ2)

)
/κ
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(similar developments can be done for the K ,L, J functions and with more work for the
Matérn process).
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Four realizations of Thomas point processes
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Correponding L estimates
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Correponding J estimates
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Complements

Inhomogeneous Neymann-Scott processes can be obtained by
replacing the intensity parameter κ by a spatial function κ(u).

The natural extension of NS processes is given by shot-noise Cox
processes which is a Cox process driven by

Z (u) =
∑

(c ,γ)∈Φ

γk(c , u)

where k(·, ·) is a kernel and Φ is a Poisson point process on
Rd × (0,∞) with a locally integrable intensity function ζ. (see e.g.
Møller and Waagepetersen 2004 for complements).
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Log-Gaussian Cox processes

Definition

Let X be a Cox process on Rd driven by Z = exp Y where Y is a
Gaussian random field. Then, X is said to be a log Gaussian Cox process
(LGCP).

Remarks :

we could consider Z = h(Y ) for some non-negative function h, but
the exp leads to tractable calculations.

another possibility : using a χ2 field, i.e.
Z (u) = Y1(u)2 + . . . + Ym(u)2 are the Yi ’s are independent
Gaussian fields with zero mean.

LGCP are easy to simulate since the problem is transfered to
generate a Gaussian field (which can be handled by several
methods).

The mean and covariance function of Y determine the distribution
of X .

Notes

Notes
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Particular cases

In the following we let

m(u) = EY (u) and c(u, v) = Cov(Y (u),Y (v))

and we focus on the case where c(u, v) depends only on ‖v − u‖
(covariance function invariant by translation and by rotation).

Conditions on c are needed to get a covariance function. Among
functions satisfying these properties we find :

the power exponential family satisfies these conditions

c(u, v) = σ2r(‖v − u‖/α) with r(t) = exp
(
−tδ

)
, t ≥ 0

with α, σ > 0. δ = 1 is the exponential correlation function ;
δ = 1/2 is the stable correlation function ; δ = 2 is the
Gaussian correlation function.
the cardinal sine correlation :

c(u, v) = σ2r(‖v − u‖/α) with r(t) =
sin(t)

t
, t ≥ 0
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Summary statistics for the LGCP

Proposition

Let X be a LGCP then under the previous notation

1 the intensition function of X is

ρ(u) = exp (m(u) + c(u, u)/2) .

2 The pair correlation function g of X is

g(u, v) = exp(c(u, v)).

Proof : based on the fact that for U ∼ N(ζ, σ2), the Laplace transform of
U is E exp(tU) = exp(ζ + σ2t/2).

one to one correspondendce between (m, c) and (ρ, g).

If c is translation invariant then X is second order reweighted
stationary (stationary if m is constant, and isotropic if in addition
c(u, v) depends only on ‖v − u‖).

Notes

Notes



Examples Definitions, Poisson Summary statistics Modelling and inference

A few plots of pair correlation function

pcf for the power exponential family : log g(r) = σ2 exp
(
−

(
r
α

)δ)
, α, σ, δ > 0

pcf for the cardinal sine correlation : log g(r) = σ2 sin(r/α)
r/α , α, σ > 0
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Four realizations of (stationary) LGCP point processes

with exponential correlation
function (δ = 1).

The mean m of the
Gaussian process is such
that ρ = exp(m + σ2/2).
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Correponding L estimates
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Correponding J estimates
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Is likelihood available ?

Assume (only here) that S is a bounded domain, then the density of
XS w.r.t a Poisson processes with unit rate is given by

f (x) = E

exp

(
|S | −

∫
S

Z (u)du

)∏
u∈x

Z (u)


for finite point configurations x ⊂ S . Explicit expression of the
expectation is usually unknown and the integral may be difficult to
calculate.
⇒ MLE is usually impossible to calculate (approximations or
Bayesian should be used)

In most of applications, we only observe the realization of X .
⇒ Z should be considered as a latent process generating the point
process, which is not observed.
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General method based on minimum contrast estimation

Assume we observe the realization of a stationary Cox point process
which belongs to a parametric family with parameter θ (ex :
θ = (α, κ, σ2) for the Thomas process, θ = (µ, α, σ2) for a LGCP
with exponential correlation function).

For most of Cox point processes, ρ = ρθ, K = Kθ or g = gθ
functions are expressible in a closed form, for instance :

for a planar (d = 2) Thomas process (NS process with
Gaussian kernel) : ρ = ακ and

gθ(r) = 1 +
1

√
4πσ2

exp
(
−r2/(4σ2)

)
/κ and Kθ(r) = πr2 +

(
1 − exp

(
−r2/(4σ2)

))
/κ

for a LGCP with exponential correlation function

ρ = exp(m + σ2/2) and log gθ(r) = σ2 exp(−r/alpha).

Notes

Notes
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General method based on minimum contrast estimation (2)

Then the idea is then to estimate θ using a minimum contrast
approach : i.e. define θ̂ as the minimizer of∫ r2

r1

∣∣∣∣K̂ (r)q − Kθ(r)q
∣∣∣∣2 dr or

∫ r2

r1

∣∣∣̂g(r)q − gθ(r)q
∣∣∣2 dr

where

K̂ (r) and ĝ(r) are the nonparametric estimates of K (r) and
g(r).
where [r1, r2] is a set of r fixed values.
q is a power parameter (adviced in the literature to be set to
q = 1/4 or 1/2).
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A short simulation

we generated 200 replications of a Thomas process with parameters
κ = 100, σ2 = 10−4 and α = 5

we estimated the parameters σ2 and κ using the minimimum
contrast estimat based on the K function.

Then α is estimated using α̂ = ρ̂/̂κ

Parameter κ
W = [0, 1]2 W = [0, 2]2

Emp. mean 98.9 102.4
Emp. var. 251.9 78.1

Parameter α
W = [0, 1]2 W = [0, 2]2

Emp. mean 4.9 4.9
Emp. var. 40.1 6.1

Parameter σ2

W = [0, 1]2 W = [0, 2]2

Emp. mean 1.01 × 10−4 9.7 × 10−5

Emp. var. 1.5×10−5 8.2×10−6

Notes

Notes
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Introduction

the objective of this section is to introduce a new class of point
processes : the class of Gibbs point processes.

Gibbs point process :

are mainly used to model repulsion between point (but a few
models allows also to produce aggregated models ). That’s
why this kind of models are widely used in statistical physics to
model particles systems.
are defined (in a bounded domain) by a density w.r.t. a
Poisson point process
⇒ very easy to interpret the model and the parameters.
their main drawback : moments are not expressible in a
closed form and density known up to a scalar
⇒ specific inference methods are required.
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Important restriction of this section

Throughout this chapter : we assume that the point process X is
defined in a bounded domain S ⊂ Rd (|S | < ∞).

Gibbs point processes defined on Rd are of particular interest :

in statistical physics because they can model phase
transition .
in asymptotic statistics : if for instance we want to prove the
convergence of an estimator as the window expands to Rd

However, the formalism is more complicated and technical and this
is not considered here.

⇒ from now, X is a finite point process in S (bounded) taking values
in Nf (space of finite configurations of points)

Nf =
{
x ⊂ S : n(x) < ∞

}
.

Most of the results presented here have an extension to S = Rd .

Notes

Notes
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Definition of Gibbs point processes

Definition

A finite point process X on a bounded domain S (0 < |S | < ∞) is said to
be a Gibbs point process if it admits a density f w.r.t. a Poisson point
process with unit rate, i.e. for any F ⊆ Nf

P(X ∈ F ) =
∑
n≥0

exp(−|S |)

n!
×∫

S
. . .

∫
S

1({x1, . . . , xn} ∈ F )f ({x1, . . . , xn})dx1 . . . dxn

where the term n = 0 is read as exp(−|S |)1(∅ ∈ F )f (∅).

Gpp can be viewed as a perturbation of a Poisson point process.

f is easily interpretable since it is in some sense a weight w.r.t. a
Poisson process.
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The simplest example . . .

is the inhomogeneous Poisson point process. Indeed for X ∼
Poisson(S , ρ) (such that µ(S) < ∞), we recall that X admits a density
w.r.t. to a Poisson point process with unit rate given for any x ∈ Nf by

f (x) = exp(|S | − µ(S))
∏
u∈x

ρ(u).

In most of cases, f is specified up to a proportionality f = c−1h where
h : Nf → R

+ is a known function.
⇒ c is given by

c =
∑
n≥0

exp(−|S |)

n!

∫
S
. . .

∫
S

h({x1, . . . , xn})dx1 . . . dxn = E[h(Y )]

where Y ∼ Poisson(S , 1).

Notes

Notes



Examples Definitions, Poisson Summary statistics Modelling and inference

Papangelou conditional intensity

Definition

The Papangelou conditional intensity for a point process X with density f
is defined by

λ(u, x) =
f (x ∪ u)

f (x)

for any x ∈ Nf and u ∈ S (u < x), taking a/0 = 0 for a ≥ 0.

λ does not depend on c.

for Poisson(S , ρ), λ(u, x) = ρ(u) does not depend on x !

λ(u, x)du can be interpreted as the conditional probability of
observing a point in an infinitesimal region containing u of size du
given the rest of X is x .
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Attraction, repulsion, heredity

Definition

We often say that X (or f ) is

attractive if
λ(u, x) ≤ λ(u, y) whenever x ⊂ y .

repulsive if
λ(u, x) ≥ λ(u, y) whenever x ⊂ y .

hereditary if

f (x) > 0⇒ f (y) > 0 for any y ⊂ x .

if f is hereditary, then f ⇔ λ (one-to-one correspondence).

Notes

Notes
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Existence of a Gpp in S (|S | < ∞)

Proposition

Let φ? : S → R+ be a function so that c? =
∫
S
φ?(u)du < ∞. Let

h = cf , we say that X (or f ) satisfies the

local stability property if for any x ∈ Nf , u ∈ S

h(x ∪ u) ≤ φ?(u)h(x)⇔ λ(u, x) ≤ φ?(u).

the Ruelle stability property if for any x ∈ Nf and for α > 0

h(x) ≤ α
∏
u∈x

φ?(u).

local stability condition ⇒ Ruelle stability condition (and that f is
hereditary) ⇒ existence of point process in S .

Proof : the first implication is obvious ; for the last one it consists in checking that

c < ∞.
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Pairwise interaction point processes

For simplicity, we focus on the isotropic case.

Definition

A istotropic parwise interaction point process (PIPP) has a density of the
form (for any x ∈ Nf )

f (x) ∝
∏
u∈x

φ(u)
∏
{u,v }⊆x

φ2(‖v − u‖)

where φ : S → R+ and φ2 : R+
∗ → R+.

If φ is constant (equal to β) then the Gpp is said to be
homogeneous (note that

∏
u∈x φ(u) = βn(x)).

φ2 is called the interaction function.

this class of models is hereditary

f is repulsive if φ2 ≤ 1, in which case the process is locally
stable if

∫
S
φ(u)du.

Notes

Notes
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Strauss point process

Among the class of PIPP, the main example is the Strauss point process
defined by

f (x) ∝ βn(x)γsR (x) λ(u, x) = βγtR (u,x)

where β > 0,R < ∞, where sR(x) is the number of R-close pairs of points
in x and tR(u, x) = sR(x ∪ u) − sR(x) is the number of R-close
neighbours of u in x

sR(x) =
∑
{u,v }∈x

1(‖v − u‖ ≤ R) and tR(u, x) =
∑
v∈x

1(‖v − u‖ ≤ R).

The parameter γ is called the interaction parameter :

γ = 1 : homogeneous Poisson point process with intensity β.

0 < γ < 1 : repulsive point process.

γ = 0 : hard-core process with hard-core R ; the points are
prohibited from being closer han R.

γ > 1 : the model is not well-defined (if there exists a set A ⊂ S with

|A| > 0 and diam(A) ≤ R, then c >
∑

n≥0
(β|A|)n

n! γn(n−1)/2 = ∞).
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Realizations of Strauss point processes

(simulation of spatial Gibbs
point processes can be done
using spatial birth-and-death
process or using MCMC with
reversible jumps, see Møller and
Waagepetersen for details)
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Corresponding L estimates
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Corresponding J estimates
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Finite range property (spatial Markov property)

Definition

A Gibbs point process X has a finite range R if the Papangelou
conditional intensity satisfies

λ(u, x) = λ(u, x ∩ B(u,R)).

the probability to insert a point u into x depends only on some
neighborhood of u.

this definition is actually more general and leads to the definition of
Markov point process (omitted here to save time).

interesting property when we want to deal with edge effects.

Finite range of the Strauss point process = R.
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Other pairwise interaction point processes

Strauss point process : φ2(r) = γ1(r≤R).

Piecewise Strauss point process :

φ2(r) = γ
1(r≤R1)
1 γ

1(R1<r≤R2)
2 . . . γ

1(Rp−1<r≤R)
p ,

with γi ∈ [0, 1] and 0 ≤ R1 < . . . < Rp = R < ∞ (finite range R) .

Overlap area process :

φ2(r) = γ|B(u,R/2)∩B(v ,R/2)|,

with r = ‖v − u‖ with γ ∈ [0, 1] (finite range R) .

Lennard-Jones process :

φ2(r) = exp(α1(σ/r)6 − α2(σ/r)12),

with α ≥ 0, α2 > 0, σ > 0 (well-known example used in statistical
physics, not locally stable but Ruelle stable) (infinite range) .

Notes

Notes
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Non pairwise interaction point processes

Geyer’s triplet point process :

f (x) ∝ βn(x)γsR(x)δuR(x)

β > 0, sR(x) is defined as in the Strauss case and

uR(x) =
∑
{u,v ,w }

1(‖v − u‖ ≤ R , ‖w − v‖ ≤ R , ‖w − u‖ ≤ R)

(i) γ ∈ [0, 1] and δ ∈ [0, 1] : locally stable, repulsive, finite
range R.
(ii) γ > 1 and δ ∈ (0, 1) : locally stable, neither attractive nor
repulsive, finite range R.
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Non pairwise interaction point processes (2)

Area-interaction point process :

f (x) ∝ βn(x)γ−|Ux ,R |

where Ux ,R = ∪u∈xB(u,R), β > 0 and γ > 0. It is attractive
for γ ≥ 1 and repulsive for 0 < γ ≤ 1. In both cases, it is
locally stable since

λ(u, x) = βγ−|B(u,R)\∪v∈x :‖v−u‖≤2RB(v ,R)|

satisfies λ(u, x) ≤ β when γ ≥ 1 and λ(u, x) ≤ βγ−ωdR
d

in the
other case. (finite range 2R)

Notes

Notes



Examples Definitions, Poisson Summary statistics Modelling and inference

GNZ formula

The following result is also a characterization of a Gibbs point process.

Georgii-Nguyen-Zeissin Formula

Let X be a finite and hereditary Gibbs point process defined on S . Then,
for any function h : S × Nf → R

+, we have

E

[ ∑
u∈X

h(u,X \ u)

]
=

∫
S
E[h(u,X )λ(u,X )]du.

Proof : we know that Eg(X ) = E[g(Y )f (Y )] where f is the density of a Poisson point
process with unit rate Y . Apply this to the function g(X ) =

∑
u∈X h(u,X \ u)

E[g(X )] = E
[ ∑
u∈Y

h(u,Y \ u)f (Y )
]

=

∫
S
E[h(u,Y )f (Y ∪ u)]du from the Slivnyak-Mecke Theorem

=

∫
S
E[h(u,Y )f (Y )λ(u,Y )]du since X is hereditary

=

∫
S
E[h(u,X )λ(u,X )]du.
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First and second order intensities

Proposition

1 The intensity function is given by

ρ(u) = E[λ(u,X )].

2 The second order intensity function is given by

ρ(2)(u, v) = E[λ(u,X )λ(v ,X )]

can be deduced from the GNZ formula.

Except for the Poissonian case, moments are not expressible in a
closed form, e.g.

ρ(u) =
1

c

∑
n≥0

exp(−|S |)

n!

∫
S
. . .

∫
S
λ(u, {x1, . . . , xn})h({x1, . . . , xn})dx1 . . .dxn.

Approximations can be obtained using a Monte-Carlo approach or
using a saddle-point approximation (very recent).

Notes

Notes
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Position of the problem

we observe a realization of X on W = S (|S | < ∞ ; edge effects
occur when W ⊂ S) of a parametric Gibbs point process with
density which belongs to a parametric family of densities
(fθ = hθ/cθ)θ∈Θ for Θ ⊂ Rp.

Problem : estimate the parameter θ based on a single realization.

MLE approach : the log-likelihood is `W (x ; θ) = log hθ − log cθ .

Pbm : Given a model hθ can be computed but cθ cannot be
evaluated even for a single value of θ ; asymptotic properties are
only partial.
⇒ several solutions exist

1 Approximate cθ using a Monte-Carlo approach.
2 Bayesian approach, importance sampling method (to estimate

a ratio of normalizing constants).
3 Combine the MLE with the Ogata-Tanemura approximation.
4 Find another method which does not involve cθ.
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Pseudo-likelihood

To avoid the computation of the normalizing constant, the idea is to
compute a likelihood based on conditional densities

PLW (x ; θ) = exp(−|W |) lim
i→∞

mi∏
j=1

f (xAij
|xW \Aij

; θ)

where {Aij : j = 1, . . . ,mi } i = 1, 2, . . . are nested subdivisions of W .

By letting mi → ∞ and mi max |Aij |
2 → 0 as i → ∞ and taking the

log, Jensen and Møller (91) obtained

LPLW (x ; θ) =
∑
u∈xW

λ(u, x \ u; θ) −

∫
W
λ(u, x ; θ)du

Notes

Notes
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Comments on the Pseudo-likelihood

The MPLE is the estimate θ̂ maximizing

LPLW (x ; θ) =
∑
u∈xW

log λ(u, x \ u; θ) −

∫
W
λ(u, x ; θ)du

1 Independent on cθ, so the LPL is up to an integral discretization
and up to edge effects very to compute.

2 If X has a finite range R, then since x is observed in W , we can
replace W by W	R so that for instance λ(u, x ; θ) can always be
computed for any u ∈W	R (border correction).

3 If log λ(u, x ; θ) = θ>v(u, x) (exponential family - class of all
examples presented before), then LPL is a concave function of θ.

4 under suitable conditions θ̂ is a consistent estimate and satisfies a
CLT (and a fast covariance estimate is available) as the window W
expands to Rd . [Jensen and Künsch’94, Billiot Coeurjolly and

Drouilhet’08-’10, Coeurjolly and Rubak’12].
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Simulation example

We generated 100 replications of Strauss point processes (a border correction was
applied) :

1 mod1 : β = 100, γ = 0.2, R = .05.
2 mod2 : β = 100, γ = 0.5, R = .05.

Estimates of β
W = [0, 1]2 W = [0, 2]2

mod1 99.52 (17.84) 97.98 (9.24)
mod2 99.28 (20.48) 98.21 (8.53)

Estimates of γ
W = [0, 1]2 W = [0, 2]2

mod1 0.20 (0.09) 0.21 (0.06)
mod2 0.52 (0.19) 0.51 (0.09)
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Takacs-Fiksel method

Denote for any function h (eventually depending on θ)

LW (X , h; θ) =
∑
u∈XW

h(u,X\u; θ) and RW (X , h; θ) =

∫
W

h(u,X ; θ)λ(u,X ; θ)du

The GNZ formula states : E[LW (X , h; θ)] = E[RW (X , h; θ)].

Idea : if θ is a p-dimensional vector,

1 choose p test function hi and define the contrast

UW (X , θ) =

p∑
i=1

(LW (X , h; θ) − RW (X , h; θ))2 .

2 Define θ̂TF = argminθUW (X , θ).
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Takacs-Fiksel (2)

General comments :

like the MPLE :

independent of cθ, border correction possible in case of X has
a finite range
consistent and asymptotically Gaussian estimate (Coeurjolly et

al.’12).

Another advantage : interesting choices of test functions cal least
to a decreasing of computation time.
Ex : hi (u,X ) = n(B(u, ri ))λ−1(u,X ; θ) ⇒ RW independent of θ.

Actually : MPLE = TFE with h = (h1, . . . , hp)> = λ(1)(·, ·; θ).
Indeed (assume log λ(u,X ; θ) = θ>v(u,X ) (for simplicity)

∇LPLW (X ; θ) =
∑
u∈XW

v(u,X \ u) −

∫
W

v(u,X )λ(u,X ; θ)du.

Notes

Notes
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A funny example for the Strauss point process

Recall that the Papangelou conditional intensity of a Strauss point
process is

λ(u,X ) = βγtR (u,X ) with tR(u,X ) =
∑
v∈X

1(‖v − u‖ ≤ R).

Choose h1(u,X ) = 1(n(B(u,R) = 0)) and
h2(u,X ) = 1(n(B(u,R) = 1)), then

LW (X , h1) = L1 and RW (X , h1) = β
∫
W

1(n(B(u,R) = 0)) = βI1.

LW (X , h2) = L2 and RW (X , h2) = βγ
∫
W

1(n(B(u,R) = 1)) = βI2.

Then, the contrast function rewrites

UW (X ) = (L1 − βI1)2 + (L2 − βγI2)2

which leads to the explicit solution

β̂ =
L1

I1
and γ̂ =

L2

I2
×

I1
L1
.
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Complements

Other parametric approaches :

Variational approach : (Baddeley and Dereudre’12).

Method based on a logistic regression likelihood (Baddeley, Coeurjolly,

Rubak, Waagepetersen’13).

Model fitting :

Monte-Carlo approach : we can compare a summary statistic e.g. L
with Lθ̂.
Pbm : Lθ not expressible in a closed form and must be
approximated.

We can still use the GNZ formula : given a test function h, we can
construct

LW (X , h; θ̂) − RW (X , h; θ̂) =: Residuals(X,h).

If the model is correct, then Residuals(X,h) should be close to
zero. (Baddeley et al.’05,08’, Coeurjolly and Lavancier’12).

Notes

Notes
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General Conclusion

The anaysis of spatial point pattern

very large domain of research including probability, mathematical
statistics, applied statistics

own specific models, methodologies and software(s) to deal with.

is involved in more and more applied fields : economy, biology,
physics, hydrology, environmetrics,. . .

Still a lot of challenges

Modelling : the“true model”, problems of existence, phase transition.

Many classical statistical methodologies need to be adapted (and
proved) to s.p.p. : robust methods, resampling techniques, multiple
hypothesis testing.

High-dimensional problems : S = Rd with d large, selection of
variables, regularization methods,. . .

Space-time point processes.

Notes

Notes
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