A J-function for inhomogeneous point processes
 Marie-Colette van Lieshout

CWI \& Eindhoven University of Technology
The Netherlands

Exploratory analysis for spatial point processes

plot(envelope(cells, Gest, simulate=expression(runifpoint(42))))
Generating 99 simulations by evaluating expression ...
lty col key label meaning
obs 11 obs obs(r) observed value of $G(r)$ for data pattern
mmean 22 mmean mean (r) sample mean of $G(r)$ from simulations
hi 18 hi hi(r) upper pointwise envelope of $G(r)$ from simulations
18 lo lo(r) lower pointwise envelope of $G(r)$ from simulations

Summary statistics for stationary point processes

Let X be a stationary point process on \mathbb{R}^{d} with intensity $\rho>0$.

Popular statistics include

$$
\left\{\begin{aligned}
F(t) & =\mathbb{P}(X \cap B(0, t) \neq \emptyset) \\
G(t) & =\mathbb{P}^{!0}(X \cap B(0, t) \neq \emptyset) \\
K(t) & =\mathbb{E}^{!0}\left[\sum_{x \in X} 1\{x \in B(0, t)\}\right] / \rho \\
J(t) & =(1-G(t)) /(1-F(t))
\end{aligned}\right.
$$

where $B(0, t)$ is the closed ball of radius $t \geq 0$ centred at the origin, $\mathbb{P}^{!0}$ the reduced Palm distribution of X.

Product densities and correlation functions

The product densities of a simple point process X satisfy

$$
\begin{aligned}
& \mathbb{E}\left[\sum_{x_{1}, \ldots, x_{n} \in X}^{\neq} f\left(x_{1}, \ldots, x_{n}\right)\right]= \\
& \quad \int \cdots \int f\left(x_{1}, \ldots, x_{n}\right) \rho^{(n)}\left(x_{1}, \ldots, x_{n}\right) d x_{1} \cdots d x_{n}
\end{aligned}
$$

for all measurable $f \geq 0$ (\neq indicates a sum over n-tuples of distinc \dagger points).

In words: $\rho^{(n)}\left(x_{1}, \ldots, x_{n}\right) d x_{1} \cdots d x_{n}$ is the infinitesimal probability of finding points of X at each of $d x_{1}, \ldots, d x_{n}$.
\mathbf{N}-point correlation functions are defined recursively by $\xi_{1} \equiv 1$ and

$$
\frac{\rho^{(n)}\left(x_{1}, \ldots, x_{n}\right)}{\rho\left(x_{1}\right) \cdots \rho\left(x_{n}\right)}=\sum_{k=1}^{n} \sum_{D_{1}, \ldots, D_{k}} \xi_{n\left(D_{1}\right)}\left(\mathbf{x}_{D_{1}}\right) \cdots \xi_{n\left(D_{k}\right)}\left(\mathbf{x}_{D_{k}}\right)
$$

where $\left\{D_{1}, \ldots, D_{k}\right\}$ is a partition of $\{1, \ldots, n\}, \mathbf{x}_{D_{j}}=\left\{x_{i}: i \in D_{j}\right\}$.

Summary statistics and product densities

Let X be a stationary point process with intensity $\rho>0$. Then

$$
\left\{\begin{aligned}
K(t) & =\int_{B(0, t)} \frac{\rho^{(2)}(0, x)}{\rho^{2}} d x \\
F(t) & =-\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!} \int_{B(0, t)} \cdots \int_{B(0, t)} \rho^{(n)}\left(x_{1}, \ldots, x_{n}\right) d x_{1} \cdots d x_{n} \\
G(t) & =-\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!} \int_{B(0, t)} \cdots \int_{B(0, t)} \frac{\rho^{(n+1)}\left(0, x_{1}, \ldots, x_{n}\right)}{\rho} d x_{1} \cdots d x_{n} \\
J(t) & =1+\sum_{n=1}^{\infty} \frac{(-\rho)^{n}}{n!} J_{n}(t)
\end{aligned}\right.
$$

for

$$
J_{n}(t)=\int_{B(0, t)} \cdots \int_{B(0, t)} \xi_{n+1}\left(0, x_{1}, \ldots, x_{n}\right) d x_{1} \cdots d x_{n}
$$

Hence

$$
J(t)-1 \approx-\rho(K(t)-|B(0, t)|) .
$$

Intensity reweighting

Baddeley, Møller and Waagepetersen, SN 2000.

A point process X is second order intensity-reweighted stationary if the random measure

$$
\Xi=\sum_{x \in X} \frac{\delta_{x}}{\rho(x)}
$$

is second-order stationary, where δ_{x} denotes the Dirac measure at x.

Examples

- Poisson point processes;
- location dependent thinning of a stationary point process;
- log Gaussian Cox processes driven by a Gaussian random field with translation invariant covariance function.

Summary statistics for inhomogeneous patterns

Assume X is second order intensity-reweighted stationary. Define

$$
K_{\text {inhom }}(t)=\frac{1}{|B|} \mathbb{E}\left[\sum_{x, y \in X}^{\neq} \frac{1\{x \in B\} 1\{y \in B(x, t)\}}{\rho(x) \rho(y)}\right]
$$

regardless of the choice of bounded Borel set $B \subset \mathbb{R}^{d}$ with strictly positive volume $|B|$, and using the convention $a / 0=0$ for $a \geq 0$.

To define analogues of F and G, for given $x \in \mathbb{R}^{d}$ and $t \geq 0$, solve

$$
t=\int_{B(x, r(x, t))} \rho(y) d y
$$

then set

$$
\left\{\begin{array}{l}
F_{x}(t)=\mathbb{P}(d(x, X) \leq r(x, t)) \\
G_{x}(t)=\mathbb{P}^{!x}(d(x, X) \leq r(x, t))
\end{array}\right.
$$

where $d(x, X)$ denotes the shortest distance from x to a point of X.

Inhomogeneous J-function

One could define

$$
J_{x}(t)=\frac{1-G_{x}(t)}{1-F_{x}(t)} .
$$

Drawbacks

- $r(x, t)$ may be hard to compute;
- the definitions depend on x as well as t.

Goal: Give alternative definitions of F, G, and J for intensity-reweighted moment stationary point processes that do not depend on the choice of origin and are easy to use in practice.

Idea: Use the representation in terms of product densities!

Intensity-reweighted moment stationarity

Let X be a simple point process on \mathbb{R}^{d} for which product densities of all orders exist and $\inf _{x} \rho(x)=\bar{\rho}>0$. If the ξ_{n} are translation invariant, that is,

$$
\xi_{n}\left(x_{1}+a, \ldots, x_{n}+a\right)=\xi_{n}\left(x_{1}, \ldots, x_{n}\right)
$$

for almost all $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$ and all $a \in \mathbb{R}^{d}, X$ is intensity-reweighted moment stationary.

Examples

- Poisson point processes;
- location dependent thinning of a stationary point process;
- log Gaussian Cox processes driven by a Gaussian random field with translation invariant covariance function.

Inhomogeneous J-function

Let X be an intensity-reweighted moment stationary point process. Set

$$
J_{n}(t)=\int_{B(0, t)} \cdots \int_{B(0, t)} \xi_{n+1}\left(0, x_{1}, \ldots, x_{n}\right) d x_{1} \cdots d x_{n}
$$

and define

$$
J_{\mathrm{inhom}}(t)=1+\sum_{n=1}^{\infty} \frac{(-\bar{\rho})^{n}}{n!} J_{n}(t)
$$

Remarks

- $J_{\text {inhom }}(t)>1$ indicates inhibition at range t;
- $J_{\text {inhom }}(t)<1$ suggests clustering:
- $J_{\text {inhom }}(t)-1 \approx-\bar{\rho}\left(K_{\text {inhom }}(t)-|B(0, t)|\right)$;
- the definition does not depend on the choice of origin.

The generating functional

Recall that for any function $v: \mathbb{R}^{d} \rightarrow[0,1]$ that is measurable and identically 1 except on some bounded subset of \mathbb{R}^{d},

$$
G(v)=\mathbb{E}\left[\prod_{x \in X} v(x)\right]
$$

where by convention an empty product is taken to be 1 .

Properties

- the distribution of X is determined uniquely by G;
- suppose product densities of all orders exist and let $u: \mathbb{R}^{d} \rightarrow[0,1]$ be measurable with bounded support. Then

$$
G(1-u)=1+\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!} \int \cdots \int u\left(x_{1}\right) \cdots u\left(x_{n}\right) \rho^{(n)}\left(x_{1}, \ldots, x_{n}\right) d x_{1} \cdots d x_{n}
$$

(provided the series converges).

$J_{\text {inhom }}$ in terms of generating functionals

Write, for $t \geq 0$ and $a \in \mathbb{R}^{d}$,

$$
u_{t}^{a}(x)=\frac{\bar{\rho} 1\{x \in B(a, t)\}}{\rho(x)}, \quad x \in \mathbb{R}^{d} .
$$

Then

$$
J_{\mathrm{inhom}}(t)=\frac{G^{!a}\left(1-u_{t}^{a}\right)}{G\left(1-u_{t}^{a}\right)}
$$

where $G^{!a}$ is the generating functional of the reduced Palm distribution $\mathbb{P}^{!a}$ at a, G that of \mathbb{P} itself.

Note: $G^{!a}\left(1-u_{t}^{a}\right)$ and $G\left(1-u_{t}^{a}\right)$ do not depend on the choice of a and lend themselves to estimation.

Remarks

For stationary $X, u_{t}^{a}(x)=1\{x \in B(a, t)\}$, hence

$$
\begin{cases}G\left(1-u_{t}^{a}\right) & =\mathbb{P}(X \cap B(a, t)=\emptyset)=1-F(t) \\ G^{!a}\left(1-u_{t}^{a}\right) & =\mathbb{P}^{!a}(X \cap B(a, t)=\emptyset)=1-G(t)\end{cases}
$$

Consequently, one retrieves the classic definition of the J-function.
For intensity-reweighted moment stationary X, we get counterparts of the F - and G-functions:

$$
\left\{\begin{array}{l}
F_{\mathrm{inhom}}(t)=1-G\left(1-u_{t}^{a}\right) \\
G_{\mathrm{inhom}}(t)=1-G^{!a}\left(1-u_{t}^{a}\right)
\end{array}\right.
$$

which do not depend on the choice of origin a and are easy to use in practice.

Example 1: The Poisson process

Let X be a Poisson point process with intensity function $\rho: \mathbb{R}^{d} \rightarrow \mathbb{R}^{+}$that is bounded away from zero. Then

$$
\rho^{(n)}\left(x_{1}, \ldots, x_{n}\right)=\prod_{i} \rho\left(x_{i}\right)
$$

so X is intensity-reweighted moment stationary and

$$
\begin{cases}J_{\text {inhom }}(t) & \equiv 1 \\ F_{\text {inhom }}(t) & =1-\exp [-\bar{\rho}|B(0, t)|] \\ G_{\text {inhom }}(t) & =F_{\text {inhom }}(t)\end{cases}
$$

Example 2: Location dependent thinning

Let X be a simple, stationary point process on \mathbb{R}^{d} that is thinned with retention probability $p: \mathbb{R}^{d} \rightarrow(0,1)$. Then

$$
\rho_{\mathrm{th}}^{(n)}\left(x_{1}, \ldots, x_{n}\right)=\rho^{(n)}\left(x_{1}, \ldots, x_{n}\right) \prod_{i=1}^{n} p\left(x_{i}\right)
$$

so

$$
\frac{\rho_{\mathrm{th}}^{(n)}\left(x_{1}, \ldots, x_{n}\right)}{\rho_{\mathrm{th}}\left(x_{1}\right) \cdots \rho_{\mathrm{th}}\left(x_{n}\right)}=\frac{\rho^{(n)}\left(x_{1}, \ldots, x_{n}\right)}{\rho^{n}}
$$

and

$$
\xi_{n}^{\mathrm{th}}\left(x_{1}, \ldots, x_{n}\right)=\xi_{n}\left(x_{1}, \ldots, x_{n}\right)
$$

is translation invariant.

Example 2: Location dependent thinning (ctd)

If the retention probabilities are bounded away from zero by \bar{p},

$$
\begin{cases}J_{\text {inhom }}^{\mathrm{th}}(t) & =1+\sum_{n=1}^{\infty} \frac{(-\rho \bar{p})^{n}}{n!} J_{n}(t) \\ 1-F_{\text {inhom }}^{\mathrm{th}}(t) & =\mathbb{E}\left[(1-\bar{p})^{n(X \cap B(0, t))}\right] \\ 1-G_{\text {inhom }}^{\text {th }}(t) & =\mathbb{E}^{!0}\left[(1-\bar{p})^{n(X \cap B(0, t))}\right]\end{cases}
$$

where $J_{n}(t)$ refers to the underlying point process X.

Example 3: Log Gaussian Cox process

The intensity function of the driving random measure is of the form

$$
\Lambda(x)=\exp [Z(x)]
$$

where Z is a Gaussian field with mean function μ and covariance function $\sigma^{2} r(\cdot)$.

Assume that μ is continuous and bounded and r translation invariant. Then the Cox process X defined by Λ is well-defined and

$$
\rho_{\mathrm{th}}^{(n)}\left(x_{1}, \ldots, x_{n}\right)=\mathbb{E}\left[\prod_{i=1}^{n} \Lambda\left(x_{i}\right)\right]=\mathbb{E}\left[e^{\sum_{i=1}^{n} Z\left(x_{i}\right)}\right] .
$$

Consequently, X is intensity-reweighted moment stationary with

$$
\rho(x)=\exp \left[\mu(x)+\sigma^{2} / 2\right]
$$

bounded away from zero.

Example 3: Log Gaussian Cox process (ctd)

Write $\bar{\mu}=\inf _{x \in \mathbb{R}^{d}} e^{\mu(x)}$ and $Y(x)=Z(x)-\mu(x)$. Then Y is stationary and

$$
\left\{\begin{aligned}
1-F_{\text {inhom }}(t) & =\mathbb{E}_{Y}\left[\exp \left[-\bar{\mu} \int_{B(a, t)} e^{Y(x)} d x\right]\right] \\
1-G_{\text {inhom }}(t) & =\mathbb{E}_{Y}\left[\frac{e^{Y(a)}}{e^{\sigma^{2} / 2}} \exp \left[-\bar{\mu} \int_{B(a, t)} e^{Y(x)} d x\right]\right]
\end{aligned}\right.
$$

regardless of the choice of a. Hence

$$
J_{\text {inhom }}(t)=\frac{\mathbb{E}_{Y}\left[e^{Y(0)} \exp \left[-\bar{\mu} \int_{B(0, t)} e^{Y(x)} d x\right]\right]}{\mathbb{E}_{Y}\left[e^{Y(0)}\right] \mathbb{E}_{Y}\left[\exp \left[-\bar{\mu} \int_{B(0, t)} e^{Y(x)} d x\right]\right]}
$$

Estimation

Let $W \subset \mathbb{R}^{d}$ be compact with non-empty interior. Suppose X is observed in W and $\bar{\rho}=\inf _{x \in W} \rho(x)>0$.

Let $L \subseteq W$ be a finite point grid. Set

$$
\left\{\begin{aligned}
1-\widehat{F_{\text {inhom }}}(t) & =\frac{\sum_{l_{k} \in L \cap W_{\ominus t}} \Pi_{x \in X \cap B\left(l_{k}, t\right)}\left[1-\frac{\bar{\rho}}{\rho(x)}\right]}{\# L \cap W_{\ominus t}} \\
1-\widehat{G_{\text {inhom }}}(t) & =\frac{\sum_{x_{k} \in X \cap W_{\ominus t} \prod_{x \in X \backslash\left\{x_{k}\right\} \cap B\left(x_{k}, t\right)}\left[1-\frac{\bar{\rho}}{\rho(x)}\right]}^{\# X \cap W_{\ominus t}}}{}
\end{aligned}\right.
$$

where $W_{\ominus t}=\{x \in W: B(x, t) \subseteq W\}$.

Remarks

- $1-\widehat{F_{\text {inhom }}}(t)$ is unbiased, $1-\widehat{G_{\text {inhom }}}(t)$ ratio-unbiased;
- if ρ is unknown, plug in its kernel estimator.

Intensity function

$$
\rho(x, y)=100 e^{-y}
$$

Example 2: Log Gaussian Cox process

Mean function μ satisfying

$$
e^{\mu(x, y)}=100 e^{-y-1 / 2}
$$

$\sigma^{2}=1$, and

$$
r(t)=\exp [-t / 0.143] .
$$

Hence $\rho(x, y)=100 e^{-y}$.

Example 3: Location dependent thinning

Hard core process with conditional intensity

$$
\beta 1\{d(x, X \backslash\{x\}>R\}
$$

for $\beta=200, R=0.05$. For retention probability

$$
p(x, y)=e^{-y},
$$

$\rho(x, y)=\rho e^{-y}$ so that $\rho(x, y) / \bar{\rho}$ is equal to that of the previous examples.

Pakistani earthquakes

Pakistan is regularly affected by earthquakes due to the subduction of the Indo-Australian continental plate under the Eurasian plate.

There are two convergence zones: One crosses the country from its South-West border with the Arabic Sea to Kashmir in the North-East, the other crosses the Northern part of the country in the East-West direction.

Two major earthquakes were recorded during 1973-2008:

- 1997: magnitude 7.3 along the SW to NE zone; about seventy casualties;
- 2005: magnitude 7.6 in Kashmir; devastating with at least 86, 000 casualties.

Restrict to shallow quakes (depth less than 70 km) of magnitude at least 4.5 as deeper and weaker ones may not be felt.

Pakistani earthquakes: intensity function

- To avoid edge effects, include earthquakes within a distance of about one degree from the Pakistan border;
- aggregate into a single pattern, but exclude the major earthquake years;
- calculate the kernel estimator of intensity (isotropic Gaussian kernel with standard deviation 0.5 , that is, approximately 50 km).

Earthquake data 2005-2007

Note: a KPSS test indicates the intensity pattern persists over the years.

Question: can the data be explained by a series of inhomogeneous Poisson processes?

Inhomogeneous J-functions 2005-2007

$\widehat{J_{\text {inhom }}}$ for the locations of shallow earthquakes of magnitude at least 4.5 in 2005-2007 with upper and lower envelopes based on 19 independent realisations of an inhomogeneous Poisson process.

Conclusion: evidence of clustering over and beyond that explained by the spatial variation.

Summary and extensions

- We defined three new summary statistics for intensity-reweighted moment stationary point processes;
- calculated them explicitly for the three representative classes;
- derived minus sampling estimators;
- presented simulation examples;
- applied them to earthquake data;
- extension to marked point processes is straightforward;
- the statistics can be extended to space-time point processes cf. Gabriel and Diggle, SN 2009.

