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Exploratory analysis for spatial point processes
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envelope(cells, Gest, simulate = expression(runifpoint(42)))
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plot(envelope(cells, Gest, simulate=expression(runifpoint(42))))

Generating 99 simulations by evaluating expression ...

lty col key label meaning

obs 1 1 obs obs(r) observed value of G(r) for data pattern

mmean 2 2 mmean mean(r) sample mean of G(r) from simulations

hi 1 8 hi hi(r) upper pointwise envelope of G(r) from simulations

lo 1 8 lo lo(r) lower pointwise envelope of G(r) from simulations
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Summary statistics for stationary point processes

Let X be a stationary point process on R
d with intensity ρ > 0.

Popular statistics include

8
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>

>
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<

>

>

>

>

>

:

F (t) = P(X ∩ B(0, t) 6= ∅)

G(t) = P
!0(X ∩ B(0, t) 6= ∅)

K(t) = E
!0

ˆ

P

x∈X 1{x ∈ B(0, t)}
˜

/ρ

J(t) = (1 − G(t)) / (1 − F (t))

where B(0, t) is the closed ball of radius t ≥ 0 centred at the origin, P
!0

the reduced Palm distribution of X.
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Product densities and correlation functions

The product densities of a simple point process X satisfy

E

h

X6=

x1,...,xn∈X
f(x1, . . . , xn)

i

=

Z

· · ·

Z

f(x1, . . . , xn) ρ(n)(x1, . . . , xn) dx1 · · · dxn

for all measurable f ≥ 0 (6= indicates a sum over n-tuples of distinct

points).

In words: ρ(n)(x1, . . . , xn) dx1 · · · dxn is the infinitesimal probability of

finding points of X at each of dx1, . . ., dxn.

N-point correlation functions are defined recursively by ξ1 ≡ 1 and

ρ(n)(x1, . . . , xn)

ρ(x1) · · · ρ(xn)
=

n
X

k=1

X

D1,...,Dk

ξn(D1)(xD1) · · · ξn(Dk)(xDk )

where {D1, . . . , Dk} is a partition of {1, . . . , n}, xDj = {xi : i ∈ Dj}.
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Summary statistics and product densities

Let X be a stationary point process with intensity ρ > 0. Then
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:

K(t) =
R

B(0,t)

ρ(2)(0,x)

ρ2 dx

F (t) = −
P∞

n=1
(−1)n

n!

R

B(0,t)
· · ·

R

B(0,t)
ρ(n)(x1, . . . , xn) dx1 · · · dxn

G(t) = −
P∞

n=1
(−1)n

n!

R

B(0,t)
· · ·

R

B(0,t)

ρ(n+1)(0,x1,...,xn)
ρ

dx1 · · · dxn

J(t) = 1 +
P∞

n=1
(−ρ)n

n!
Jn(t)

for

Jn(t) =

Z

B(0,t)

· · ·

Z

B(0,t)

ξn+1(0, x1, . . . , xn) dx1 · · · dxn.

Hence

J(t) − 1 ≈ −ρ (K(t) − |B(0, t)|) .
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Intensity reweighting

Baddeley, Møller and Waagepetersen, SN 2000.

A point process X is second order intensity-reweighted stationary if the

random measure

Ξ =
X

x∈X

δx

ρ(x)

is second-order stationary, where δx denotes the Dirac measure at x.

Examples

• Poisson point processes;

• location dependent thinning of a stationary point process;

• log Gaussian Cox processes driven by a Gaussian random field with

translation invariant covariance function.

A J–function for inhomogeneous point processes – p. 6/27



◭ © ◮

Summary statistics for inhomogeneous patterns

Assume X is second order intensity-reweighted stationary. Define

Kinhom(t) =
1

|B|
E

»

X6=

x,y∈X

1{x ∈ B} 1 {y ∈ B(x, t)}

ρ(x) ρ(y)

–

regardless of the choice of bounded Borel set B ⊂ R
d with strictly

positive volume |B|, and using the convention a/0 = 0 for a ≥ 0.

To define analogues of F and G, for given x ∈ R
d and t ≥ 0, solve

t =

Z

B(x,r(x,t))

ρ(y) dy,

then set
8

<

:

Fx(t) = P(d(x, X) ≤ r(x, t))

Gx(t) = P
!x(d(x, X) ≤ r(x, t))

where d(x, X) denotes the shortest distance from x to a point of X.
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Inhomogeneous J-function

One could define

Jx(t) =
1 − Gx(t)

1 − Fx(t)
.

Drawbacks

• r(x, t) may be hard to compute;

• the definitions depend on x as well as t.

Goal: Give alternative definitions of F , G, and J for intensity-reweighted

moment stationary point processes that do not depend on the choice

of origin and are easy to use in practice.

Idea: Use the representation in terms of product densities!
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Intensity-reweighted moment stationarity

Let X be a simple point process on R
d for which product densities of all

orders exist and infx ρ(x) = ρ̄ > 0. If the ξn are translation invariant, that

is,

ξn(x1 + a, . . . , xn + a) = ξn(x1, . . . , xn)

for almost all x1, . . . , xn ∈ R
d and all a ∈ R

d, X is intensity-reweighted

moment stationary.

Examples

• Poisson point processes;

• location dependent thinning of a stationary point process;

• log Gaussian Cox processes driven by a Gaussian random field with

translation invariant covariance function.
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Inhomogeneous J-function

Let X be an intensity-reweighted moment stationary point process. Set

Jn(t) =

Z

B(0,t)

· · ·

Z

B(0,t)

ξn+1(0, x1, . . . , xn) dx1 · · · dxn

and define

Jinhom(t) = 1 +

∞
X

n=1

(−ρ̄)n

n!
Jn(t).

Remarks

• Jinhom(t) > 1 indicates inhibition at range t;

• Jinhom(t) < 1 suggests clustering;

• Jinhom(t) − 1 ≈ −ρ̄ (Kinhom(t) − |B(0, t)|);

• the definition does not depend on the choice of origin.
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The generating functional

Recall that for any function v : R
d → [0, 1] that is measurable and

identically 1 except on some bounded subset of R
d,

G(v) = E

"

Y

x∈X

v(x)

#

,

where by convention an empty product is taken to be 1.

Properties

• the distribution of X is determined uniquely by G;

• suppose product densities of all orders exist and let u : R
d → [0, 1] be

measurable with bounded support. Then

G(1−u) = 1+

∞
X

n=1

(−1)n

n!

Z

· · ·

Z

u(x1) · · ·u(xn) ρ(n)(x1, . . . , xn) dx1 · · · dxn

(provided the series converges).

A J–function for inhomogeneous point processes – p. 11/27



◭ © ◮

Jinhom in terms of generating functionals

Write, for t ≥ 0 and a ∈ R
d,

ua
t (x) =

ρ̄ 1{x ∈ B(a, t)}

ρ(x)
, x ∈ R

d.

Then

Jinhom(t) =
G!a (1 − ua

t )

G (1 − ua
t )

where G!a is the generating functional of the reduced Palm distribution

P
!a at a, G that of P itself.

Note: G!a (1 − ua
t ) and G (1 − ua

t ) do not depend on the choice of a and

lend themselves to estimation.
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Remarks

For stationary X, ua
t (x) = 1{x ∈ B(a, t)}, hence

8

<

:

G (1 − ua
t ) = P(X ∩ B(a, t) = ∅) = 1 − F (t)

G!a (1 − ua
t ) = P

!a(X ∩ B(a, t) = ∅) = 1 − G(t)

Consequently, one retrieves the classic definition of the J-function.

For intensity-reweighted moment stationary X, we get counterparts of

the F - and G-functions:
8

<

:

Finhom(t) = 1 − G (1 − ua
t ) ;

Ginhom(t) = 1 − G!a (1 − ua
t )

which do not depend on the choice of origin a and are easy to use in

practice.
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Example 1: The Poisson process

Let X be a Poisson point process with intensity function ρ : R
d → R

+ that

is bounded away from zero. Then

ρ(n)(x1, . . . , xn) =
Y

i

ρ(xi)

so X is intensity-reweighted moment stationary and

8

>

>

<

>

>

:

Jinhom(t) ≡ 1

Finhom(t) = 1 − exp [−ρ̄ |B(0, t)|]

Ginhom(t) = Finhom(t)
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Example 2: Location dependent thinning

Let X be a simple, stationary point process on R
d that is thinned with

retention probability p : R
d → (0, 1). Then

ρ
(n)
th (x1, . . . , xn) = ρ(n)(x1, . . . , xn)

n
Y

i=1

p(xi)

so

ρ
(n)
th (x1, . . . , xn)

ρth(x1) · · · ρth(xn)
=

ρ(n)(x1, . . . , xn)

ρn

and

ξth
n (x1, . . . , xn) = ξn(x1, . . . , xn)

is translation invariant.
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Example 2: Location dependent thinning (ctd)

If the retention probabilities are bounded away from zero by p̄,

8

>

>

>

<

>

>

>

:

Jth
inhom(t) = 1 +

P∞

n=1
(−ρ p̄)n

n!
Jn(t)

1 − F th
inhom(t) = E

h

(1 − p̄)n(X∩B(0,t))
i

1 − Gth
inhom(t) = E

!0
h

(1 − p̄)n(X∩B(0,t))
i

where Jn(t) refers to the underlying point process X.
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Example 3: Log Gaussian Cox process

The intensity function of the driving random measure is of the form

Λ(x) = exp [Z(x)]

where Z is a Gaussian field with mean function µ and covariance

function σ2r(·).

Assume that µ is continuous and bounded and r translation invariant.

Then the Cox process X defined by Λ is well-defined and

ρ
(n)
th (x1, . . . , xn) = E

"

n
Y

i=1

Λ(xi)

#

= E

h

e
Pn

i=1 Z(xi)
i

.

Consequently, X is intensity-reweighted moment stationary with

ρ(x) = exp
ˆ

µ(x) + σ2/2
˜

bounded away from zero.
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Example 3: Log Gaussian Cox process (ctd)

Write µ̄ = infx∈Rd eµ(x) and Y (x) = Z(x) − µ(x). Then Y is stationary and

8

<

:

1 − Finhom(t) = EY

h

exp
h

−µ̄
R

B(a,t)
eY (x)dx

ii

1 − Ginhom(t) = EY

h

eY (a)

eσ2/2
exp

h

−µ̄
R

B(a,t)
eY (x)dx

ii

regardless of the choice of a. Hence

Jinhom(t) =
EY

h

eY (0) exp
h

−µ̄
R

B(0,t)
eY (x)dx

ii

EY [eY (0)] EY

h

exp
h

−µ̄
R

B(0,t)
eY (x)dx

ii .
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Estimation

Let W ⊂ R
d be compact with non-empty interior. Suppose X is

observed in W and ρ̄ = infx∈W ρ(x) > 0.

Let L ⊆ W be a finite point grid. Set

8

>

<

>

:

̂1 − Finhom(t) =

P

lk∈L∩W⊖t

Q

x∈X∩B(lk,t)

h

1− ρ̄
ρ(x)

i

#L∩W⊖t

̂1 − Ginhom(t) =

P

xk∈X∩W⊖t

Q

x∈X\{xk}∩B(xk,t)

h

1− ρ̄
ρ(x)

i

#X∩W⊖t

where W⊖t = {x ∈ W : B(x, t) ⊆ W}.

Remarks

• ̂1 − Finhom(t) is unbiased, ̂1 − Ginhom(t) ratio-unbiased;

• if ρ is unknown, plug in its kernel estimator.
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Example 1: The Poisson process
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Intensity function

ρ(x, y) = 100 e−y.
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Example 2: Log Gaussian Cox process
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Mean function µ satisfying

eµ(x,y) = 100 e−y−1/2,

σ2 = 1, and

r(t) = exp [−t/0.143] .

Hence ρ(x, y) = 100 e−y.
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Example 3: Location dependent thinning
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Hard core process with conditional intensity

β 1{d(x, X \ {x} > R}

for β = 200, R = 0.05. For retention probability

p(x, y) = e−y,

ρ(x, y) = ρ e−y so that ρ(x, y)/ρ̄ is equal to that of the previous examples.
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Pakistani earthquakes

Pakistan is regularly affected by earthquakes due to the subduction of

the Indo-Australian continental plate under the Eurasian plate.

There are two convergence zones: One crosses the country from its

South-West border with the Arabic Sea to Kashmir in the North-East, the

other crosses the Northern part of the country in the East-West direction.

Two major earthquakes were recorded during 1973–2008:

• 1997: magnitude 7.3 along the SW to NE zone; about seventy

casualties;

• 2005: magnitude 7.6 in Kashmir; devastating with at least 86, 000

casualties.

Restrict to shallow quakes (depth less than 70 km) of magnitude at least

4.5 as deeper and weaker ones may not be felt.
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Pakistani earthquakes: intensity function

• To avoid edge effects, include earthquakes within a distance of

about one degree from the Pakistan border;

• aggregate into a single pattern, but exclude the major earthquake

years;

• calculate the kernel estimator of intensity (isotropic Gaussian kernel

with standard deviation 0.5, that is, approximately 50 km).

Pooled earthquake intensity
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Earthquake data 2005–2007

Note: a KPSS test indicates the intensity pattern persists over the years.

2005 2006 2007

Question: can the data be explained by a series of inhomogeneous

Poisson processes?
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Inhomogeneous J-functions 2005–2007
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Ĵinhom for the locations of shallow earthquakes of magnitude at least 4.5

in 2005–2007 with upper and lower envelopes based on 19 independent

realisations of an inhomogeneous Poisson process.

Conclusion: evidence of clustering over and beyond that explained by

the spatial variation.
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Summary and extensions

• We defined three new summary statistics for intensity-reweighted

moment stationary point processes;

• calculated them explicitly for the three representative classes;

• derived minus sampling estimators;

• presented simulation examples;

• applied them to earthquake data;

• extension to marked point processes is straightforward;

• the statistics can be extended to space-time point processes cf.

Gabriel and Diggle, SN 2009.
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