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Christoph Thäle (Uni Osnabrück) STIT Tessellations 1 / 62



This is part of joint work with Tomasz Schreiber from Toruń
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Construction and Key Properties

We interpret a random tessellation as a special random closed set in
Rd .

STIT tessellations Y (t) formally arise as limits of rescaled iterations
of tessellations.

In bounded windows W there is an explicit construction of Y (t,W )
in terms of waiting times.

There is also an ’explicit’ global construction of STIT tessellations
Y (t) (Poisson point process on a complicated state space).

Important for later considerations: These constructions allow an
interpretation of Y (t,W ) (or Y (t)) as a Markov process on (0,∞)
with values in the space of tessellations.
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Waiting Time Construction

Let W ⊂ Rd be a compact convex polytope and Λ a non-degenerate
locally finite hyperplane measure.

Assign to W an exponentially distributed lifetime with parameter
Λ([W ]).

Upon expiry of this life time, a hyperplane is chosen according to
Λ([W ])−1Λ(· ∩ [W ]), is introduced in W and splits W into two
polyhedral sub-cells W + and W−.

The construction is now continued recursively and independently in
W + and W− until some deterministic time threshold t > 0 is
reached.

Until time t > 0 there was constructed a random tessellation Y (t,W )
inside W with polyhedral cells.
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Waiting Time Construction
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Waiting Time Construction
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Waiting Time Construction
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Waiting Time Construction
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Waiting Time Construction
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Isotropic random STIT Tessellation in 2D
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Anisotropic random STIT Tessellation in 2D
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Isotropic random STIT Tessellation in 3D
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Anisotropic random STIT Tessellation in 3D
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Extension to Rd

We cannot start with a single hyperplane at time 0!

But, Nagel und Weiß (2005) have shown that Y (t,W ) is spatially

consistent, i.e for V ⊂W convex, we have Y (t,V )
D
= Y (t,W ) ∩ V .

Thus, by a consistency theorem there exists a random closed set Y (t)

in Rd with Y (t) ∩W
D
= Y (t,W ).
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Parameter and special cases

The law of Y (t) is characterized by t and Λ.

In general, Y (t) is neither stationary nor isotropic.

If Λ is translation-invariant, then Y (t) is stationary and thus a STIT
tessellation.

If Λ is the the isometry-invariant measure Λiso , then Y (t) is stationary
and isotropic.
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Generator of Y (t, W )

The random process Y (t,W ) is a pure jump Markov process on the space
of tessellations in W and its generator L := LΛ;W is given by:

LF (Y ) =

∫
[W ]

∑
f ∈Cells(Y∩H)

[F (Y ∪ {f })− F (Y )]︸ ︷︷ ︸
’add-one cost’

Λ(dH),

with F measurable on the space of tessellation in W for which the integral
is well defined.
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A derived Martingale

From the standard theory (Dynkin’s formula) it follows that the following
real-valued process is a martingale with respect to the natural filtration of
Y (t,W ):

F (Y (t,W ))−
∫ t

0
LF (Y (s,W ))ds

for F ∈ D(L).
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A more special case

Denote by MaxFacets(Y ) the set of maximal facets of the tessellation Y .
We regard now the special function

Σφ(Y ) :=
∑

f ∈MaxFacets(Y )

φ(f )

with φ measurable and bounded on the space of (d − 1)-polytopes in W .
Applications of the general result from the last slide shows that

Σφ(Y (t,W ))−
∫ t

0

∫
[W ]

∑
f ∈Cells(Y∩H)

φ(f )Λ(dH)ds

is a martingale.
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First Consequences

Consider a STIT tessellation Y (t,W ) = Y (tΛ,W ) and the measures

MY (t,W ) :=
∑

c∈Cells(Y (t,W ))

δc , MY (t,W ) := EMY (t,W )

and likewise MPHT(tΛ,W ) and MPHT(tΛ,W ).
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First Consequences

Consider a STIT tessellation Y (t,W ) = Y (tΛ,W ) and the measures

MY (t,W ) :=
∑

c∈Cells(Y (t,W ))

δc , MY (t,W ) := EMY (t,W )

and likewise MPHT(tΛ,W ) and MPHT(tΛ,W ). Define further

FY (t,W )
k :=

∑
f ∈MaxFacesk (Y (t,W ))

δf , FY (t,W )
k := EFY (t,W )

k ,

k = 1, . . . , d − 1, and

FPHT(tΛ,W )
k :=

∑
f ∈Facesk (PHT(tΛ,W ))

δf , FPHT(tΛ,W )
k := EFPHT(tΛ,W )

k

for k = 1, . . . , d − 1,.
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First Consequences

Theorem: It holds
MY (t,W ) = MPHT(tΛ,W )

and

FY (t,W )
k = (d − k)2d−k−1

∫ t

0

1

s
FPHT(sΛ,W )

k ds

for k = 1, . . . , d − 1.
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First Consequences

Theorem: It holds
MY (t,W ) = MPHT(tΛ,W )

and

FY (t,W )
k = (d − k)2d−k−1

∫ t

0

1

s
FPHT(sΛ,W )

k ds

for k = 1, . . . , d − 1.

This means that STITs and PHTs have the same typical cell
distribution, but

the spatial arrangement of the cells is different in both tessellation
models.

Christoph Thäle (Uni Osnabrück) STIT Tessellations 25 / 62



First Consequences

Theorem: It holds
MY (t,W ) = MPHT(tΛ,W )

and

FY (t,W )
k = (d − k)2d−k−1

∫ t

0

1

s
FPHT(sΛ,W )

k ds

for k = 1, . . . , d − 1.
Idea of the proof:

(1) uses a uniqueness theorem for the solution of a certain operator
differential equation on a space of measures together with a derived
martingale.

(2) uses a derived martingale, part (1), Slivnyak’s theory for Poisson
point process, scaling properties and adjacency relationships for
Poisson hyperplane tessellations.
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Application: Typical k-dimensional maximal faces

Let us consider the isotropic case, i.e. Λ = Λiso and Y (t) = Y (tΛiso).

Fix a measurable and translation-invariant ϕk : MaxFacesk → R,
ϕ ≥ 0.

Define the ϕk -density of Y (t):

ϕk(Y (t)) = lim
r→∞

1

rd Vold(W )
E

∑
f ∈MaxFacesk (Y (t,rW ))

ϕk(f ).

Apply now the theory from above.
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Application: Typical k-dimensional maximal faces

We have

ϕk(Y (t)) = (d − k)2d−k−1

∫ t

0

1

s
ϕk(PHT(s))ds.

For ϕk ≡ 1 this yields

Nk = (d − k)2d−k−1

∫ t

0

1

s

(
d

k

)
κd

(
κd−1

dκd

)d

sdds

= (d − k)2d−k−1κd

d

(
d

k

)(
κd−1

dκd

)d

td .
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Application: Typical k-dimensional maximal faces

Now the same procedure for ϕk(f ) := 1[·](f − c(f )) with some center
function c, f ∈ MaxFacesk(Y (t)).

We get

NkQY (t)
k = (d − k)2d−k−1

∫ t

0

1

s
N

PHT(s)
k QPHT(s)

k ds

(the distribution of the ’naked’ polytopes).

Inserting the values for Nk and N
PHT(s)
k gives

QY (t)
k =

∫ t

0

dsd−1

td
QPHT(s)

k ds.

The mixing distribution is a beta-distribution on (0, t) with
parameters d and 1.
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Application: Typical maximal segment

Let p
(d)
l (x) be the length density of the typical maximal Segment in Rd .

Then

p
(d)
l (x) =

∫ t

0
λ1se

−λ1sx
dsd−1

td
ds =

d

(λ1t)dxd+1
γ(d + 1, λ1tx) with

λ1 =
Γ
(

d
2

)
√
πΓ
(

d+1
2

) .
d = 2:

1

t2x3

(
π2 − (π2 + 2πtx + 2t2x2)e−

2
π

tx
)

, mean π
t , no higher

moments exist.

d = 3:
3

t3x4

(
48− (48 + 24tx + 6t2x2 + t3x3)e−

1
2
tx
)

, mean 3
t ,

variance 24
t2 , no higher moments exist.
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Application: Typical k-dimensional maximal faces

For the mean j-th intrinsic volume of the typical k-dimensional maximal
face, 0 ≤ j ≤ k , we have

EVj(Ik) =
d

(d − j)κj

(
k

j

)(
2
√
πΓ
(

d+1
2

)
Γ
(

d
2

) )j
1

t j
.
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Next goal

The next goal is to use the martingale approach to study second-order
properties of the STIT tessellations, such as variances and covariances.
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Another derived Martingale - Notation

Let φ be bounded and measurable on the space of (d − 1)-polytopes.

Define
Σφ(Y (t,W )) :=

∑
f ∈MaxFacets(Y (t,W ))

φ(f )

and

Aφ(Y (t,W )) :=

∫
[W ]

∑
f ∈Cells(Y (t,W )∩H)

φ(f )Λ(dH)

and put

Σ̄φ(Y (t,W )) := Σφ(Y (t,W ))− EΣφ(Y (t,W )),

Āφ(Y (t,W )) := Aφ(t,W )− EAφ(t,W ).
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Another derived Martingale

Let φ be bounded and measurable on the space of (d − 1)-polytopes.

Define
Σφ(Y (t,W )) :=

∑
f ∈MaxFacets(Y (t,W ))

φ(f )

and

Aφ(Y (t,W )) :=

∫
[W ]

∑
f ∈Cells(Y (t,W )∩H)

φ(f )Λ(dH).

A ’second-order’ martingale

The random process

Σ̄2
φ(Y (t,W ))−

∫ t

0
Aφ2(Y (s,W ))ds − 2

∫ t

0
Āφ(Y (s,W ))Σ̄φ(Y (s,W ))ds

is a martingale wrt. filtration induced by (Y (t,W ))t>0.
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Variance of the Total Surface Area

A ’second-order’ martingale

The random process

Σ̄2
φ(Y (t,W ))−

∫ t

0
Aφ2(Y (s,W ))ds − 2

∫ t

0
Āφ(Y (s,W ))Σ̄φ(Y (s,W ))ds

is a martingale wrt. filtration induced by (Y (t,W ))t>0.

Take φ(f ) := Vold−1(f ).

Then, AVold−1
(Y (·,W )) is constant, thus ĀVold−1

≡ 0.

Taking expectations in the above formula, we get

Var Vold−1(Y (t,W )) =

∫ t

0
EAVol2d−1

(Y (s,W ))ds.

It remains to calculate EAVol2d−1
(Y (s,W )).
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Calculation of EAVol2d−1
(Y (s, W ))

EAVol2d−1
(Y (s,W ))

= E
∫

[W ]

∑
f ∈Cells(Y (s,W )∩H)

Vol2d−1(f )Λ(dH)

= E
∫

[W ]

∫
W∩H

∫
W∩H

1[x , y in the same cell of Y (s,W ) ∩ H]dxdyΛ(dH)

=

∫
[W ]

∫
W∩H

∫
W∩H

e−sΛ([xy ])dxdyΛ(dH),

since STIT tessellations have Poisson typical cells and Y (s) ∩ H is also a
STIT tessellation.
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Variance of the Total Surface Area

Putting together

Var Vold−1(Y (t,W )) =

∫ t

0
EAVol2d−1

(Y (s,W ))ds

and

EAVol2d−1
(Y (s,W )) =

∫
[W ]

∫
W∩H

∫
W∩H

e−sΛ([xy ])dxdyΛ(dH),

we get by integration

Var Vold−1(Y (t,W )) =

∫
[W ]

∫
W∩H

∫
W∩H

1− e−tΛ([xy ])

Λ([xy ])
dxdyΛ(dH).
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Variance of the Total Surface Area

Assume that Λ = Λiso .

Then, the affine Blaschke-Petkantschin formula implies∫
[W ]

∫
W∩H

∫
W∩H

g(x , y)dxdyΛiso(dH)

=
(d − 1)κd−1

dκd

∫
W

∫
W

g(x , y)

‖x − y‖
dxdy .

Take now

g(x , y) =
1− exp(−tΛiso([xy ]))

Λiso([xy ])
=

1− e
−

2κd−1
dκd

t‖x−y‖

2κd−1

dκd
‖x − y‖

.
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Variance of the Total Surface Area

Theorem (Schreiber and T. 2010)

For a stationary and isotropic STIT tessellation Y (t) we have

Var(Vold−1(Y (t,W )))

=
d − 1

2

∫
W

∫
W

1− e
−

2κd−1
dκd

t‖x−y‖

‖x − y‖2
dxdy

=
d(d − 1)κd

2

∫ ∞
0

γW (r)rd−3

(
1− e

−
2κd−1
dκd

tr
)

dr .
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Variance of the Total Surface Area

Theorem (Schreiber and T. 2010)

For a stationary and isotropic STIT tessellation Y (t) we have

Var(Vold−1(Y (t,W ))) =
d(d − 1)κd

2

∫ ∞
0

γW (r)rd−3

(
1− e

−
2κd−1
dκd

tr
)

dr .

Corollary (Weiß, Ohser, Nagel, d = 2 and Schreiber and T. in general)

The pair-correlation function gd(r) of the random surface measure of a
stationary and isotropic Y (t) is given by

gd(r) = 1 +
d − 1

2t2r2

(
1− e

−
2κd−1
dκd

tr
)
.
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Variances for Intrinsic Volumes

We consider only the stationary and isotropic case Λ = Λiso .

Our aim is to calculate Var ΣVj
(Y (t,W )), where, recall,

ΣVj
(Y (t,W )) =

∑
f ∈MaxFacets(Y (t,W ))

Vj(f ).
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Variances for Intrinsic Volumes

We consider only the stationary and isotropic case Λ = Λiso .

Our aim is to calculate Var ΣVj
(Y (t,W )), where, recall,

ΣVj
(Y (t,W )) =

∑
f ∈MaxFacets(Y (t,W ))

Vj(f ).

However, we start with

Fj(Y (t,W )) :=
∑

c∈Cells(Y (t,W ))

Vj(c).

If f splits c into c+ and c−, we have

Fj(Y (t,W )∪{f })−Fj(Y (t,W )) = Vj(c
+)+Vj(c

−)−Vj(c) = Vj(f ),

thus Fj(Y (t,W )) = ΣVj
(Y (t,W )) + Vj(W ).
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Variances for Intrinsic Volumes

Recall, that AVj
(Y (t,W )) =

∫
[W ]

∑
f ∈Cells(Y (t,W )∩H)

Vj(f )Λiso(dH).

Crofton’s formula and Fj(Y (t,W )) = ΣVj
(Y (t,W )) + Vj(W ) implies

now

AVj
(Y (t,W )) =

∑
c∈Cells(Y (t,W ))

∫
[W ]

Vj(c ∩ H)Λiso(dH)

=
∑

c∈Cells(Y (t,W ))

γj+1Vj+1(c)

= γj+1Fj+1(Y (t,W ))

= γj+1(ΣVj+1
(Y (t,W )) + Vj+1(W )),

thus
ĀVj

(Y (t,W )) = γj+1Σ̄Vj+1(Y (t,W )).
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Another Martingale

Denote Σφ;t := Σφ(Y (t,W )).

By considering once again the time-augmented process (Y (t,W ), t)
and Dynkin’s formula one shows that

Σ̄Vi ;tΣ̄Vj ;t −
∫ t

0
AViVj ;sds −

∫ t

0
[ĀVi ;sΣ̄Vj ;s + ĀVj ;sΣ̄Vi ;s ]ds

is a martingale wrt. filtration induced by (Y (t,W ))t>0.
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Another Martingale

Denote Σφ;t := Σφ(Y (t,W )).

By considering once again the time-augmented process (Y (t,W ), t)
and Dynkin’s formula one shows that

Σ̄Vi ;tΣ̄Vj ;t −
∫ t

0
AViVj ;sds −

∫ t

0
[ĀVi ;sΣ̄Vj ;s + ĀVj ;sΣ̄Vi ;s ]ds

is a martingale wrt. filtration induced by (Y (t,W ))t>0.

Using that ĀVj
(Y (t,W )) = γj+1Σ̄Vj+1(Y (t,W )), also

Σ̄Vi ;tΣ̄Vj ;t −
∫ t

0
AViVj ;sds −

∫ t

0
[γi+1Σ̄Vi+1;sΣ̄Vj ;s + γj+1Σ̄Vi ;sΣ̄Vj+1;s ]ds

is a martingale as well.
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The Recursion Formula

Using that ĀVj
(Y (t,W )) = γj+1Σ̄Vj+1(Y (t,W )), also

Σ̄Vi ;tΣ̄Vj ;t −
∫ t

0
AViVj ;sds −

∫ t

0
[γi+1Σ̄Vi+1;sΣ̄Vj ;s + γj+1Σ̄Vi ;sΣ̄Vj+1;s ]ds

is a martingale as well.

Taking expectation, we get the recursion formula

Cov(ΣVi ;t ,ΣVj ;t) =

∫ t

0
EAViVj ;sds

+

∫ t

0
[γi+1 Cov(ΣVi+1;s ,ΣVj ;s) + γj+1 Cov(ΣVi ;s ,ΣVj+1;s)]ds.

The recursion terminates, since ΣVd ;t ≡ 0, which allows an explicit
expression for all Cov(Vi ;t ,Vj ;t).

Recall that Var ΣVd−1;t =
∫ t

0 EAV 2
d−1;sds.
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Exact Expression

In(f ; t) :=

∫ t

0

∫ s1

0
· · ·
∫ sn−1

0
f (sn)dsndsn−1 · · · ds1

=
1

(n − 1)!

∫ t

0
(t − s)n−1f (s)ds.

Theorem (Schreiber and T. 2010)

The covariance between ΣVd−1−k ;t and ΣVd−1−l ;t for k , l ∈ {0, . . . , d − 1}
of a stationary and isotropic random STIT tessellation Y (t,W ) is given by

Cov(ΣVd−1−k ;t ,ΣVd−1−l ;t) =
k∑

m=0

l∑
n=0

(
k + l −m − n

k −m

)
(

k∏
i=m+1

γd−i

) l∏
j=n+1

γd−j

 Ik+l−m−n+1(EAVd−1−mVd−1−n;(·); t).

Christoph Thäle (Uni Osnabrück) STIT Tessellations 47 / 62



Asyptotic Expressions: The Problem

Take a convex body W ⊂ Rd and consider the sequence
WR := R ·W as R →∞.

How does Var ΣVi
(Y (t,WR)) behave, as R →∞?

Which terms dominate the expression?

How is the formula influenced by the geometry of W ?

The answers for d = 2 and d ≥ 3 are different!

For simplicity we consider only d ≥ 3.
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Asymptotics

Proposition

For k , l ,m, n ∈ {0, . . . , d − 1}, with t fixed we have with
p := k + l −m − n + 1

Ip(EAWR

Vd−1−mVd−1−n;(·); t) =


O(R2(d−1)−m−n), if m + n ≤ d − 3,
O(Rd log R), if m + n = d − 2,
O(R2d−1−m−n), if m + n ≥ d − 1.

Christoph Thäle (Uni Osnabrück) STIT Tessellations 49 / 62



Asymptotic picture

Proposition

For k , l ,m, n ∈ {0, . . . , d − 1}, with t fixed we have with
p := k + l −m − n + 1

Ip(EAWR

Vd−1−mVd−1−n;(·); t) =


O(R2(d−1)−m−n), if m + n ≤ d − 3,
O(Rd log R), if m + n = d − 2,
O(R2d−1−m−n), if m + n ≥ d − 1.

Corollary

The asymptotic covariance Cov(ΣVd−1−k ;t ,ΣVd−1−l ;t) is dominated by the
term n = m = 0, i.e. by

Ik+l+1(EAWR

Vol2d−1
; t) = Ik+l(Var ΣWR

Vd−1
).

Christoph Thäle (Uni Osnabrück) STIT Tessellations 50 / 62



Influence of W

The geometry of W is for d ≥ 3 reflected by either one of the
(non-additive) functionals

E2(W ) =

∫
W

∫
W

dxdy

‖x − y‖2

or

Id−1(W ) =
dκd

2

∫
L

Vold−1
1 (W ∩ L)dL,

since

E2(W ) =
2

(d − 1)(d − 2)
Id−1(W ).

For d = 2 only the area Vol2(W ) matters, but not the precise shape
of W . But here some logarithm enters the discussion ...
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The Asymptotic result

Theorem (Schreiber and T. 2010)

Asymptotically, as R →∞, we have for k , l ∈ {0, . . . , d − 1}

Cov(ΣWR
Vd−1−k ;t ,Σ

WR
Vd−1−l ;t

) =

1

d − 2

(
k∏

i=1

γd−i

) l∏
j=1

γd−j

 tk+l

k!l!
Id−1(W )R2(d−1) + O(R2d−3)

and for k = l

Var(ΣWR
Vd−1−k ;t) =

1

d − 2

(
k∏

i=1

γd−i

)2
t2k

(k!)2
Id−1(W )R2(d−1) + O(R2d−3).
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Limit theorems

We restrict ourself from now on to the case of the total surface area, but
limit theorems for other functionals are also available.
We approach the problem in two different (but closely related) settings:

We can consider the surface area constructed by facets born after an
initial time instant s0 > 0.

It is also natural to ask for the surface area constructed by all facets.

Interestingly both approaches lead to results of very different
qualitative nature!
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First limit theorem

Theorem (Schreiber and T. 2010)

For each s0 > 0, the random variable

1

Rd/2
[(Vold−1(Y (1,WR))− EVold−1(Y (1,WR)))

−(Vold−1(Y (s0,WR))− EVold−1(Y (s0,WR)))]

converges, as R →∞, in law to N (0,VW (Vold−1,Λ)
∫ 1
s0

s1−dds), a

normal distribution with mean 0 and variance VW (Vold−1,Λ)
∫ 1
s0

s1−dds,
where VW (Vold−1,Λ) is explicitly known.
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First limit theorem

Theorem (Schreiber and T. 2010)

For each s0 > 0, the random variable

1

Rd/2
[(Vold−1(Y (1,WR))− EVold−1(Y (1,WR)))

−(Vold−1(Y (s0,WR))− EVold−1(Y (s0,WR)))]

converges, as R →∞, in law to N (0,VW (Vold−1,Λ)
∫ 1
s0

s1−dds), a

normal distribution with mean 0 and variance VW (Vold−1,Λ)
∫ 1
s0

s1−dds,
where VW (Vold−1,Λ) is explicitly known.

Idea of the proof:

Use STIT scaling and ergodicity to calculate the asymptotic variance.

Check the assumptions of the martingale CLT for cadlag martingales.

Christoph Thäle (Uni Osnabrück) STIT Tessellations 55 / 62



Planar CLT

Theorem (Schreiber and T. 2010)

We have for the stationary and isotropic STIT tessellation Y (1) in the
plane

1

R
√

log R
[Vol1(Y (1,WR))− EVol1(Y (1,WR))] =⇒ N (0, π Vol2(W )),

where =⇒ means convergence in law.
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Planar CLT

Theorem (Schreiber and T. 2010)

We have for the stationary and isotropic STIT tessellation Y (1) in the
plane

1

R
√

log R
[Vol1(Y (1,WR))− EVol1(Y (1,WR))] =⇒ N (0, π Vol2(W )),

where =⇒ means convergence in law.

Idea of the proof:

Use a space-time scaling to construct an asymptotically equivalent
martingale with good properties.

Check again the assumptions of the martingale CLT for cadlag
martingales.
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Higher dimensions

Theorem (Schreiber and T. 2010)

For d > 2, Λ =
∑d

i=1

∫ +∞
−∞ δrei +e⊥i

dr and W = [0, 1]d ,

R2(d−1)[Vold−1(1,WR)− EVold−1(1,WR)]

converges, as R →∞, to a non-Gaussian square-integrable random
variable Ξ(W ) with explicitly known variance.
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Higher dimensions

Theorem (Schreiber and T. 2010)

For d > 2, Λ =
∑d

i=1

∫ +∞
−∞ δrei +e⊥i

dr and W = [0, 1]d ,

R2(d−1)[Vold−1(1,WR)− EVold−1(1,WR)]

converges, as R →∞, to a non-Gaussian square-integrable random
variable Ξ(W ) with explicitly known variance.

Idea of the proof:

Show by a conditioning argument that Ξ(W ) satisfies

P(Ξ(W ) > ξ) = exp(−Θ(ξ log ξ)),

whereas a Gaussian random variable has tails of order exp(−Θ(ξ2)).
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Why this difference?

Overall variance is of order R2(d−1) for d > 2 and of order R2 log R
for d = 2.

The variance contribution after the initial time instant s0 > 0 is of
order Rd for all d .

Thus, for d = 2 the initial segments contribute a negligible amount to
the total variance.

But, in higher dimensions d > 2, the big bang phase is crucial and
dominates the scenery.
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Thank you for your attention!
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