Realisability problems

Ilya Molchanov

University of Bern, Switzerland

joint work with Raphael Lachieze-Rey

University of Lille and University of Luxembourg

Available from Arxiv: math.PR/1102.1950

Expected functionals

- lacksquare ξ is a random element in space $\mathcal X$
- \Box Distribution of ξ is uniquely specified by

 $\mathbf{E}g(\xi)$

for all bounded continuous functions g

- \Box $g \mapsto \Phi(g) = \mathbf{E}g(\xi)$ is a linear functional
- \Box What if $\Phi(g)$ is given only for some functions g?

- \Box Then the distribution of ξ is not uniquely specified.
- \Box But does there exist at least one ξ ?

Positivity

If
$$g \ge 0$$
, then $\Phi(g) = \mathbf{E}g(\xi) \ge 0$.

Idea: positively extend Φ from functions $g \in G$ to a wider family of functions $v \in E$ such that E is a vector lattice.

Daniell's theorem says that a positive linear upper semicontinuous normalised functional on vector lattice E is the Lebesgue integral w.r.t. probability measure, i.e. the expectation.

Trivial example

- lacksquare ξ in a random variable in ${\mathbb R}$
- $\Box \quad \text{Known } m_i = \Phi(g_i) = \mathbf{E}g_i(\xi) = \mathbf{E}\xi^i \text{ for } i = 1, 2$
- $\hfill \hfill \hfill$

$$\Phi(g) = c + 2bm_1 + m_2 \ge (b + m_1)^2 + m_2 - m_1^2 \ge 0$$

only in case $m_2 - m_1^2 \ge 0$.

Classical example (Kellerer 1964)

 \Box Let \mathcal{I} be a certain family of subsets $I \subset \{1, \ldots, d\}$

Given probability distributions \mathbf{P}_I on $\mathbb{R}^{\operatorname{card}(I)}$, does there exist a probability distribution on \mathbb{R}^d whose marginals are \mathbf{P}_I , $I \in \mathcal{I}$.

Solution

lacksquare Need existence of a probability measure ${f P}$ on ${\mathbb R}^d$ such that

$$\Phi(v_I) = \int v_I(x) d\mathbf{P}(x) = \int v_I(x) d\mathbf{P}_I(x)$$

for all functions v_I that depend on the coordinates with numbers from I.

Extend Φ from functions of the type v_I and their linear combinations to all functions v on \mathbb{R}^d .

The functional
$$\Phi$$
 is positive on G iff

$$v(x) = \sum_{I \in \mathcal{I}} a_i v_I(x) \ge 0 \text{ for all } x \quad \Rightarrow \quad \Phi(v) = \sum_{I \in \mathcal{I}} a_i \int v_I(x) d\mathbf{P}_I(x) \ge 0 \,.$$

Random closed sets

- $\label{eq:constraint} X \text{ is a random closed set in space } \mathbb{X} = \mathbb{R}^d$
- The distribution is defined by the capacity functional

 $T(K) = \mathbf{P}\{X \cap K \neq \emptyset\}, \quad K \in \mathcal{K}.$

- A functional T on the family \mathcal{K} of compact sets is the capacity functional of a random closed set X if and only if T is upper semicontinuous and completely alternating.
- \Box Now assume that T is defined only on some compact sets.
- If the family of test sets is sufficiently rich (separating), no problems.

All finite sets

Theorem. A completely alternating functional T defined on the family of all finite sets is the capacity functional of a random closed set if and only if T is upper semicontinuous on finite sets, i.e.

 $\limsup T(K_n) \le T(K)$

for each sequence K_n of finite sets that converges to a finite set K in the Hausdorff metric.

Singletons

One-point covering function

$$p_x = T(\{x\}) = \mathbf{P}\{x \in X\}, \quad x \in \mathbb{X}.$$

Theorem. A function p_x , $x \in X$, with values in [0, 1] is the one-point covering function of a random closed set if and only if p is upper semicontinuous.

Proof. Let $x_n \to x$ and let \overline{U}_n be the closure of an open neighbourhood U_n of x that shrinks to x as $n \to \infty$. The upper semicontinuity and monotonicity of T yield that

$$\limsup p_{x_n} \le \limsup T(\bar{U}_n) \le T(\{x\}) = p_x \, ,$$

that is p_x , $x \in \mathbb{X}$, is upper semicontinuous.

In the other direction, consider a random variable υ uniformly distributed on [0,1]. Then

$$X = \{x : p_x \ge v\}$$

is closed by the upper semicontinuity of p and $\mathbf{P}\{x \in X\} = \mathbf{P}\{v \le \Phi(x)\} = p_x$ for all x.

Two-point covering function

 \Box Two-point covering function of a random closed set X is

$$p_{x_1,x_2} = \mathbf{P}\{x_1, x_2 \in X\}, \quad x_1, x_2 \in \mathbb{X}.$$

If X is stationary, then p_{x_1,x_2} depends only on $x_1 - x_2$.

Problem: Characterise two-point covering functions of random closed sets, i.e. covariance functions of (stationary) upper semicontinuous indicator functions.

Linear space G generated by constants and $g_{x,y}(F) = 1 I_{x,y \in F}$, $x, y \in X$. Note that $\min(g_{x,y}, g_{z,w})$ does not belong to G. $\Phi : \mathsf{G} \mapsto \mathbb{R}$ is determined by $\Phi(g_{x,y}) = p_{x,y}$, i.e. two-point covering probabilities.

 \Box Φ is positive if and only if

$$\sum_{ij=1}^n a_{ij} 1\!\!\mathrm{I}_{x_i, x_j \in F} \quad \Rightarrow \quad \sum_{ij=1}^n a_{ij} p_{x_i, x_j} \ge 0 \,.$$

Equivalently, $\sum_{ij=1}^{n} a_{ij} p_{x_i, x_j} \ge 0$ for all corner-positive matrices (a_{ij}) (nonnegative sums of all main minors), McMillan (1955), Shepp (1967)

If $a_{ij} = a_i a_j$, we recover the positive-definiteness of $p_{x,y}$ (only necessary condition).

Example (closedness condition)

Let
$$p_{x,y} = \frac{1}{4}$$
 and let $p_x = \frac{1}{2}$ for all points $x, y \in \mathbb{R}$.

While this two-point covering function corresponds, e.g., to the indicator field with independent values, it cannot be obtained as the covering function of a random closed set.

Covariances in the product form

Theorem. Assume that X is a separable space. A function

$$p_{x_1,x_2} = \begin{cases} p_{x_1}p_{x_2} & \text{if } x_1 \neq x_2 \\ p_{x_1} & \text{if } x_1 = x_2 \end{cases}$$

is a two-point covering function of a random closed set if and only if p_x , $x \in \mathbb{X}$, is an upper semicontinuous function with values in [0, 1] such that each point x with $p_x \in (0, 1)$ has an open neighbourhood U such that $p_y > 0$ only for at most a countable number of $y \in U$ and

$$\sum_{y \in U} p_y < \infty \, .$$

Correlation measures of point processes

lacksquare ξ is a point process in $\mathbb X$

Use Which measures ρ on $\mathbb{X} \times \mathbb{X}$ appear as the second-order factorial moment measure (correlation measure) of a point process.

□ Kuna, Lebowitz and Speer (2011) characterised correlation measures for point processes with finite third moments or under hard-core exclusion condition with fixed exclusion range.

Plan

Tool: extension of a positive linear functional, i.e. $\Phi(g) \ge 0$ if $g \ge 0$ (w.r.t. the chosen order).

Positivity condition: difficult computational problem.

How to ensure that the extension is sufficiently regular and so the corresponding linear functional corresponds to a probability measure?

Note: linear functionals on functions are not always representable as Lebesgue integral (Daniell's theory)!

Positive functionals and their extensions

E is a vector lattice, G is a vector sub-space of E (e.g. E is generated by $I\!I_{x_1,...,x_k\in F}$ for all $k \ge 1$ and G is a linear space generated by $I\!I_{x\in F}$)

G majorises E if each $v \in E$ satisfies $|v| \leq g$ for some $g \in G$ **Theorem** (Kantorovich). Assume that G is a majorising vector subspace of a vector lattice E. Then each positive linear functional on G admits a positive extension on the whole E.

Regularity (e.g. continuity) of the extension is not guaranteed!

Positivity

Theorem. Assume that G can be represented as the direct sum of \mathbb{R} (i.e. constant functions) and a vector space G'. Then a linear functional $\Phi: \mathsf{G} \mapsto \mathbb{R}$ with $\Phi(1) = 1$ is positive if and only if

$$\Phi(g) \ge \inf_{x \in \mathcal{X}} g(x), \quad g \in \mathsf{G}'$$

Regularity modulus

Assume that the vector space G of functions on \mathcal{X} contains constants and, for each $g_1, g_2 \in G$, there is $g \in G$ such that $(g_1 \vee g_2) \leq g$.

A regularity modulus is a lower semicontinuous function $\chi : \mathcal{X} \mapsto [0, \infty]$ such that

$$H_g = \{ x \in \mathcal{X} : \ \chi(x) \le g \}$$

is relatively compact for each $g \in G$.

Assume that each $g \in G$ is χ -regular, i.e. g is continuous on $H_{g'}$ for each g' in G.

Regular extension (main theorem)

Theorem. If Φ is a linear functional on G with $\Phi(1) = 1$, then there exists a Borel random element ξ in \mathcal{X} such that

$$\begin{cases} \mathbf{E}g(\xi) = \Phi(g) & \text{for all } g \in \mathsf{G} \,, \\ \mathbf{E}\chi(\xi) \leq r, \end{cases}$$

for some real r if and only if

 $\sup_{g \in \mathsf{G}, g \leq \chi} \Phi(g) \leq r.$

G Equivalent condition (if $G = \mathbb{R} + G'$)

$$\inf_{x \in \mathcal{X}} [\chi(x) - g(x)] + \Phi(g) \le r \,, \quad g \in \mathsf{G}' \,.$$

Family of extensions

Theorem. Assume that G consists of continuous functions. Let Φ be a linear positive functional on G.

Then the family \mathcal{M} of all Borel random elements ξ that satisfy $\mathbf{E}g(\xi) = \Phi(g)$ for all $g \in \mathsf{G}$ and $\mathbf{E}\chi(\xi) \leq r$ is weak compact.

Invariant extension

 $lacksymbol{\square}$ $heta\in\Theta$ are transformations acting on $\mathcal X$

■ Φ is a Θ -invariant functional and χ is a regularity modulus **Theorem.** Assume that at least one of the following conditions holds 1) G consists of continuous functions on \mathcal{X} and χ is pointwisely approximated from below by a monotone sequence of functions $g_n \in G$. 2) χ is Θ -invariant.

Then Φ is realisable by a Θ -stationary random element ξ with $\mathbf{E}\chi(\xi) \leq r$ if and only if

 $\sup_{g\in\mathsf{G},\ g\leq\chi}\Phi(g)\leq r\,.$

Finite point processes

- \Box \mathcal{N} locally finite counting measures with the vague topology
- $\begin{tabular}{ll} \hline & Y \in \mathcal{N} \end{tabular} \end{tabular} is a counting measure, ξ is a point process \end{tabular}$

Functional

$$g_h(Y) = \sum_{x_i, x_j \in Y, \ i \neq j} h(x_i, x_j), \quad Y \in \mathcal{N},$$

 $h \in \mathcal{C}_{\mathrm{o}}$ — symmetric continuous with compact support

Correlation measure ρ of point process ξ

$$\int_{\mathbb{X}\times\mathbb{X}} h(x,y)\rho(dx,dy) = \mathbf{E}g_h(\xi), \quad h \in \mathcal{C}_{\mathrm{o}}.$$

Positivity condition

■ Functional Φ on $G = \{g_h : h \in C_o\}$ is positive if $\Phi(g_h) \ge \inf_{Y \in \mathcal{X}} g_h(Y), \quad h \in C_o,$

where $\mathcal{X} \subseteq \mathcal{N}$.

 $\hfill \square$ Need to ensure that the extension of Φ corresponds to a probability measure. Note that

- each function g_h is vague-continuous, and so is χ -regular for any χ ;
- \mathcal{N} is locally compact.

Bounded cardinality

 \square \mathcal{X}_k consists of counting measures with total mass at most k on a compact space \mathbb{X} .

 $\Box \quad \mathcal{X}_k$ is compact, g_h is continuous and so Riesz–Markov is applicable

Example. If k = 2, then $\inf_{Y \in \mathcal{X}_2} g_h(Y)$ is the minimum of zero (in case Y is empty or consists of a single point) or the minimum of h. A point process ξ realising ρ consists of coordinates of a random vector distributed according to the normalised ρ with probability $\rho(\mathbb{X} \times \mathbb{X})$ and otherwise letting $\xi = \emptyset$.

Moment condition

$$\chi_{\alpha}(Y) = Y(\mathbb{X})^{\alpha}, \quad Y \in \mathcal{N}.$$

is a regularity modulus, since

$$\{Y \in \mathcal{N} : \chi_{\alpha}(Y) \le c + g_h(Y)\} \subset \{Y \in \mathcal{N} : Y(\mathbb{X})^{\alpha} \le c + c'Y(\mathbb{X})^2\}$$

The realisability condition

$$\sup_{g\in\mathsf{G},\ g\leq\chi_{\alpha}}\Phi(g)<\infty$$

ensures the existence of a point process with finite α -moment, i.e.

 $\mathbf{E}\xi(\mathbb{X})^{lpha} < \infty.$

Non-finite point processes

 $\label{eq:left} \square \quad \text{Let } \beta: \mathbb{X} \mapsto \mathbb{R} \text{ be a lower semi-continuous strictly positive function.}$

Then

$$\chi_{\alpha,\beta}(Y) = \left(\sum_{x \in Y} \beta(x)\right)^{\alpha}, \quad Y \in \mathcal{N},$$

is a regularity modulus for $\alpha > 2$.

Realisability condition becomes

$$\inf_{Y \in \mathcal{X}} \left[\chi_{\alpha,\beta}(Y) - g_h(Y) \right] + \int_{\mathbb{X} \times \mathbb{X}} h(x,y) \rho(dx,dy) \le r \,, \quad h \in \mathcal{C}_{o} \,.$$

Hard-core point processes with a fixed exclusion distance

 \Box X is a compact metric space with metric d

 \square $\mathcal{X}^{\varepsilon}$ be the family of ε -hard-core point sets and so is a subset of \mathcal{N}_s (simple counting measures)

 \Box $\mathcal{X}^{\varepsilon}$ is compact, so only positivity condition is required

$$\Phi(g_h) \ge \inf_{Y \in \mathcal{X}^{\varepsilon}} g_h(Y)$$

This is a stronger condition than

$$\Phi(g_h) \ge \inf_{Y \in \mathcal{N}_s} g_h(Y)$$

Hard-core point process on a compact space

Counting measures from $\cup_{\varepsilon>0} \mathcal{X}^{\varepsilon}$ (the exclusion distance is not specified)

Define

$$\chi_{\psi}^{\mathrm{hc}}(Y) = \sum_{x_i, x_j \in Y, \ i \neq j} \psi(\mathsf{d}(x_i, x_j)), \quad Y \in \mathcal{N}_s ,$$

where $\psi: (0,\infty) \mapsto [0,\infty]$ be a monotone decreasing right-continuous function, such that $\psi(t) \to \infty$ as $t \downarrow 0$.

 $\hfill \psi$ should grow at zero sufficiently fast to ensure that χ^{hc}_{ψ} is a regularity modulus.

A combinatorial lemma

 $P_t(\mathbb{X})$ denotes the packing number of \mathbb{X} with metric d, i.e. the maximum number of points in the space \mathbb{X} with pairwise distance exceeding t. **Lemma 1.** If $Y = \sum \delta_{x_i}$ is a counting measure of total mass n, then for all t > 0,

$$\sum_{i \neq j} \mathbb{I}_{\mathsf{d}(x_i, x_j) \le t} \ge n(\frac{n}{P_t(\mathbb{X})} - 1)$$

Proof. Successive transformations of Y that decrease the value of the left-hand sum and eventually bring Y to a set of multiple points with equal multiplicities.

Asymptotics for the minimal number of close pairs

- \neg $\gamma_t(n)$ is the minimal number of pairs (x_i, x_j) with $d(x_i, x_j) \leq t$ and $x_i, x_j \in Y$ over all counting measures of total mass n
- \Box Then, for t > 0,

$$\lim_{n \to \infty} \frac{\gamma_t(n)}{n^2} = P_t(\mathbb{X})^{-1} \,,$$

Regularity modulus $\chi_\psi^{ m hc}$

Lemma 2. Function χ_{ψ}^{hc} is a regularity modulus on \mathcal{N}_s if $\psi(t)/P_t(\mathbb{X}) \to \infty \quad \text{as } t \downarrow 0.$

Proof. Show that the total mass of any Y from

$$H_{\lambda} = \{ Y \in \mathcal{N}_s : \ \chi_{\psi}^{\mathrm{hc}}(Y) \leq \lambda Y(\mathbb{X})^2 \}$$
$$\subset \{ Y : \ n^{-2} \gamma_t(n) \psi(t) \leq \lambda \}$$

is bounded from above.

Realisability condition

Theorem. A locally finite measure ρ on $\mathbb{X} \times \mathbb{X}$ is the correlation measure of a simple point process ξ such that $\mathbf{E}\chi^{\mathrm{hc}}_{\psi}(\xi) \leq r$ if and only if

$$\Phi(g_h) \ge \inf_{Y \in \mathcal{N}_s} g_h(Y)$$

and

$$\int_{\mathbb{X}\times\mathbb{X}}\psi(\mathsf{d}(x,y))\rho(dx,dy)\leq r\,.$$

□ Note that χ_{ψ}^{hc} can be approximated from below by functions g_h and so this yields the existence of invariant extensions.

A direct condition on ρ

Theorem. A locally finite measure ρ on $\mathbb{X} \times \mathbb{X}$ is a correlation measure of a simple point process ξ if

$$\Phi(g_h) \ge \inf_{Y \in \mathcal{N}_s} g_h(Y)$$

and

$$r = \int_{\mathbb{X} \times \mathbb{X}} P_{\mathsf{d}(x,y)}(\mathbb{X}) \rho(dx, dy) < \infty \,.$$

In this case, for every r' > r, there exists ξ such that

$$\mathbf{E}\sum_{x_i,x_j\in\xi,\ i\neq j}P_{\mathsf{d}(x_i,x_j)}(\mathbb{X})\leq r'\,.$$

for every r' > r.

If furthermore Θ is a group of continuous transformations on X that leave ρ invariant, then ξ can be chosen Θ -stationary.

Non-compact case (\mathbb{R}^d)

Usual positivity condition

$$\Phi(g_h) \ge \inf_{Y \in \mathcal{N}_s} g_h(Y)$$

Regularity condition

$$\int_{B_n \times B_n} \|x - y\|^{-d} \rho(dx, dy) < \infty$$

for each ball B_n of radius n.

Random binary functions

- $\hfill\square$ $\hfill \hfill \mathcal{X}$ is the family of all subsets of $\mathbb X$ with the topology of pointwise convergence
- **Random indicator function** ξ

Let G be a family of continuous (for pointwise convergence) functionals on \mathcal{X} .

A linear functional Φ on G is realisable, i.e. $\Phi(g) = \mathbf{E}g(\xi)$ if and only if Φ is positive, i.e.

$$\Phi(g) \ge \inf_{F \subset \mathbb{X}} g(F), \quad g \in \mathsf{G}.$$

Example: one-point covering function

- \Box G generated by constants and $g_x(F) = \mathbb{1}_{x \in F}$
- $\Box \quad \Phi: \mathsf{G} \mapsto \mathbb{R} \text{ is determined by } \Phi(g_x) = p_x.$
- \square Positivity condition $p_x \in [0,1]$
- \Box Note that ξ is the indicator of a not necessarily closed random set.

Two-point covering function

G generated by constants and $g_{x,y}(F) = 1_{x,y\in F}$, $x, y \in X$. $\Phi : \mathsf{G} \mapsto \mathbb{R}$ is determined by $\Phi(g_{x,y}) = p_{x,y}$, i.e. two-point covering probabilities.

oxdot Φ is positive if and only if

$$\sum_{ij=1}^{n} a_{ij} p_{x_i, x_j} \ge \inf_{F \subset \mathbb{X}} \sum_{ij=1}^{n} a_{ij} \mathbb{I}_{x_i, x_j \in F}$$

Functionals

 \square ν is a σ -finite reference measure on $\mathbb X$

Define

$$g_h(F) = \int_{F \times F} h(x, y) \nu(dx) \nu(dy)$$
$$\Phi(g_h) = \int_{\mathbb{X} \times \mathbb{X}} p_{x,y} h(x, y) \nu(dx) \nu(dy) \, .$$

 $\square \quad p_{x,y} \text{ is weakly realisable if there exists random set } X \text{ such that} \\ \mathbf{E}g_h(X) = \Phi(g_h) \text{ for all } h \text{, i.e. } p_{x,y} = \mathbf{P}\{x, y \in X\} \text{ for almost all } x, y. \end{cases}$

 $\square \quad p_{x,y} \text{ is strongly realisable if there exists } X \text{ with} \\ p_{x,y} = \mathbf{P}\{x, y \in X\} \text{ for all } x, y.$

Difficulties

- Aim to realise a random closed set
- Good: The family \mathcal{F} of closed sets is compact in the Fell topology
- Bad: The functional g_h is not continuous
- Even worse: The finite point covering probabilities do not generate the Fell σ -algebra (only for the subfamily of regular closed sets).

ε -neighbourhoods

igsquire $\mathcal{F}^{arepsilon}$ is the family of arepsilon-neighbourhoods of closed sets in \mathbb{R}^d

G is generated by constants and the functions g_h , which are shown to be continuous on $\mathcal{F}^{\varepsilon}$.

Theorem. A function $p_{x,y}$, $x, y \in \mathbb{R}^d$, is weakly realisable by a random closed set X with realisations in $\mathcal{F}^{\varepsilon}$ for some $\varepsilon > 0$ if and only if

$$\Phi(g_h) \ge \inf_{F \in \mathcal{F}^{\varepsilon}} g_h(F), \quad h \in \mathcal{C}_{o}.$$

$\varepsilon\text{-neighbourhoods}$ of varying ε

Regularity modulus

$$\chi(F) = \inf\{\varepsilon > 0 : F \in \mathcal{F}^{1/\varepsilon}\}\$$

Theorem. A function $p_{x,y}$, $x, y \in \mathbb{R}^d$, is weakly realisable by a random closed set X such that $\mathbf{E}\chi(X) \leq r$ if and only if

$$\inf_{F \in \mathcal{F}^0} [\chi(F) - g_h(F)] + \Phi(g_h) \le r, \qquad h \in \mathcal{C}_o.$$

If $p_{x,y} = S_{x-y}$ for $x, y \in \mathbb{R}^d$, with an even continuous function S, then $p_{x,y}$ is strongly realisable by a stationary random closed set X.

Convexity restriction

 \Box C is the family for convex closed sets

A functional $\Phi(g_h)$ is realisable as the covariance of a convex random closed set if and only if

$$\Phi(g_h) \ge \inf_{F \in \mathcal{C}} g_h(F) \,.$$

For sets from the convex ring the regularity modulus is the smallest number of convex components.

One-dimensional case

Let $\chi(F)$ be the number of convex components of F**Theorem.** If $p_{x,y}$ is a function of $x, y \in [0, 1]$ such that

$$\sup_{\varphi \in \mathcal{C}^1_{o}, 0 \le \varphi \le 1} \int_{\mathbb{X} \times \mathbb{X}} p_{x,y} \varphi'(x) \varphi'(y) dx dy = \infty \,,$$

then there is no random closed set X satisfying $\mathbf{E}\chi(X)^2 < \infty$ having $p_{x,y}$ as its two-point covering function.

Contact distribution function

 $T_X(B_r(x)) = \mathbf{P}\{X \cap B_r(x) \neq \emptyset\}$

is related to the spherical contact distribution function

$$H_X(r;x) = \mathbf{P}\{\mathsf{d}(x,X) \le r | x \notin X\}, \quad r \ge 0.$$

Realisability of capacity functionals on balls

Theorem. A function $\tau_x(r)$, $r \ge 0$, $x \in \mathbb{R}^d$, is realisable as $T_X(B_r(x))$ for a random closed set X if and only if

$$\Phi(g) = \sum_{i=1}^{q} a_i \tau_{x_i}(r_i) \ge 0$$

for each non-negative function

$$g(F) = \sum_{i=1}^{q} a_i \, \mathrm{I}_{B_{r_i}(x_i) \cap F \neq \emptyset} \ge 0 \,, \quad F \in \mathcal{F} \,.$$

Example: two-points

Theorem. Let $x_1, x_2 \in \mathbb{R}^d$, with $l = ||x_1 - x_2||$, and let $\tau_{x_1}(r)$ and $\tau_{x_2}(r)$ be cumulative distribution functions of two sub-probability measures on \mathbb{R}_+ . Then there exists a random closed set X such that $\tau_{x_i}(r) = T_X(B_r(x_i))$ for $r \ge 0$ and i = 1, 2 if and only if for all $r \ge 0$ $\tau_{x_1}(\max(r-l,0)) \le \tau_{x_2}(r) \le \tau_{x_1}(r+l).$

References

- [1] T. Kuna, J. L. Lebowitz, and E. R. Speer. Necessary and sufficient conditions for realizability of point processes. *Ann. Appl. Probab.*, 2011.
- [2] A. Lenard. States of classical statistical mechanical systems of infinitely many particles. I & II. Arch. Rational Mech. Anal., 59:219–256, 1975.
- [3] J. A. Quintanilla. Necessary and sufficient conditions for the two-point probability function of two-phase random media. *Proc. R. Soc. A*, 464:1761–1779, 2008.
- [4] L. A. Shepp. Covariances of unit processes. In *Proc. Working Conf.* Stochastic Processes, pages 205–218, Santa Barbara, California, 1967.
- [5] B. Z. Vulikh. Introduction to the Theory of Partially Ordered Spaces. Wolters-Noordhoff, Groningen, 1967.