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Storm process

Introduced by Smith (1990) and generalized by Schlather (2002), the storm
process is a prototype of max-stable processes with unit Fréchet margins:

F (z) = exp
(
−α

z

)
z > 0

Basic ingredients:

– Π homogenous Poisson point process (intensity µ) in IRd × IR+;

–
(
Yx,t, x ∈ IRd, t ∈ IR+

)
independent copies of a random function Y ,

defined in IRd, positive and integrable.

Definition:

Z(s) = sup
(x,t)∈Π

Yx,t(s− x)
t

s ∈ IRd
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Gaussian storm processes at six different scales

Y (s) = exp
(
−|s|

2

σ2

)
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Maximum of a storm process in a domain

Let K be a nonempty compact subset of IRd, and let ZK(s) =
sups′∈K Z(s + s′) be the sup-convolution of Z w.r.t. K

Example of a function and its sup-convolution by a disk

Provided that Y K is integrable, the distribution of ZK is also unit Fréchet:

P
{
ZK(s) < z

}
= exp

(
−µ

z

∫

IRd
E

{
Y K(s)

}
ds

)
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Extremal coefficients

Assume Y K to be integrable for each compact subset K of IRd. Then

P{ZK(s) < z} = exp
(
−θ(K)

z

)
with θ(K) = µ

∫

IRd
E

{
Y K(s)

}
ds

The coefficients θ(K) are called extremal coefficients (Smith, 1990).

Objectives of the presentation:

– to establish the consistency relationships that exist between extremal
coefficients at various supports;

– to present an example of a storm process for which the extremal coefficients
are analytically tractable;

– to give an algorithm for simulating this storm process.
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Consistency relationships
between extremal coefficients

6



Related work

Let Z = (Z1, ..., Zd) be a max-stable vector with the same unit Fréchet
margins. Following Pickands (1981), its multivariate distribution can be
written as

P

{
d∨

i=1

Zi

zi
< 1

}
= exp

(
−

∫

S

d∨

i=1

ti
zi

dH(t)

)

where S is the unit simplex (t ∈ S iff t1, ..., td ≥ 0 and t1 + · · ·+ td = 1),
and H is a positive measure on S (spectral measure). This implies

θ(K) =
∫

S

∨

i∈K

ti dH(t) K ⊂ {1, ..., d}

From this formula, a set of inequalities relating the different θ(K)’s was
derived by Schlather and Tawn (2002).
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Related work (2)

Molchanov (2008) derived another expression for the multivariate distri-
bution of Z using the support function of a max-zonoid. Based on this
expression, he arrived to the following corollary:

A set of coefficients
(
θ(K),K ⊂ {1, ..., d}) is a set of extremal coefficients

for a simple max-stable distribution if and only if θ(ø) = 0 and θ(K) is a
union-completely alternating function of K:

∑

J⊂I

(−1)|J|θ(K ∪KJ) ≤ 0

for any subset K and for any family (Ki, i ∈ I) of subsets of {1, ..., d}. In
the formula, KJ is a short notation for ∪j∈JKj.

These inequalities complete the set of consistency relationships established
by Schlather and Tawn.
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Related work (3)

Regarding the bivariate distributions of a stationary max-stable process
with unit Fréchet margins, Schlather and Tawn (2003) have obtained the
following result:

If K = {x, x + h}, then θ(K) = θ(o)[1 + γ(h)], where γ is a function
of conditionally negative type, satisfying 0 ≤ γ ≤ 1 and the triangular
inequality γ(h + h′) ≤ γ(h) + γ(h′).

In the case of a storm process, we have

γ(h) =
1
2

∫

IRd
E{|Y (s + h)− Y (s)|} ds

∫

IRd
E{Y (s)} ds

γ is a function of conditionally negative type if
P

i,j λiλjγ(si − sj) ≤ 0 wheneverP
i∈I λi = 0.
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Thresholds of a storm process

Definition:

These are the random sets Xz = {s ∈ IRd : Z(s) ≥ z} for each z > 0.

Example of a function and one of its thresholds

If Z is u.s.c., these random sets are topologically closed.
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Statistical description of a random closed set

Avoiding functional:

The random set theory by Matheron (1975) shows that the statistical
properties of Xz are given by its avoiding functional:

Qz(K) = P{Xz ∩K = ∅} K ∈ K

K

Xz

Xz

Xz

Xc
z

Remark:

An avoiding functional acts for a random closed set exactly as the comple-
mentary distribution function for a random variable.
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More on the thresholds of a storm process

Avoiding functional of Xz:

Qz(K) = P{Xz ∩K = ∅} = P{ZK(o) < z} = exp
(
−θ(K)

z

)

Xz is infinitely divisible for the union:

Xz can be expressed as the union of n independent copies of Xnz:

Qz(K) = exp
(
−θ(K)

z

)
= exp

(
−n

θ(K)
nz

)
=

[
Qnz(K)

]n

Xz has no fixed point:

P{s ∈ Xz} = P{Z(s) ≥ z} = 1− exp
(
−θ(s)

z

)
< 1
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Characterization of random closed sets
infinitely divisible and without a fixed point

Theorem (Matheron, 1975):

(i) There exists a positive σ-finite measure ζz on the set F ′ of the nonempty
closed subsets of IRd such that ζz(FK) = − lnQz(K) for each compact
subset K of IRd;

(ii) Xz has he same distribution as the union of a Poisson process locally
finite with intensity ζz in F ′.

Comments:

– FK = {F ∈ F ′ : F ∩K 6= ∅}
– a Poisson process in F ′ is locally finite if the number of elements of each
FK is almost surely finite.
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Relationship between extremal coefficients
and the hitting measures

ζz(FK) = − ln Qz(K) =
θ(K)

z
K ∈ K

This implies θ(K) = ζ1(FK). From now onwards, we note ζ instead of ζ1.
Therefore

θ(K) = ζ(FK)

Note also the consistency relationship between the different ζz:

ζz(FK) =
1
z

ζ(FK) z > 0 K ∈ K
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Consistency relationships

θ(K) = ζ(FK) K ∈ K

– θ(K) ≥ 0 and θ(∅) = ζ(F∅) = 0;

– K ⊂ K ′ =⇒ θ(K) = ζ(FK) ≤ ζ(FK′) = θ(K ′);

– Let FK
(Ki,i∈I) the family of closed sets hitting each Ki and avoiding K.

Then

0 ≤ ζ
(FK

(Ki,i∈I)

)

= ζ
(F(Ki,i∈I)

)− ζ
(F(Ki,i∈I),K

)

=
∑

J⊂I

(−1)|J|−1ζ
(FKJ∪K

)
(KJ=∪j∈JKj)

=
∑

J⊂I

(−1)|J|−1θ(KJ ∪K)
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Construction of a storm process
with explicit extremal coefficients
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Case where the storms are indicator functions

θ(K) = µ

∫

IRd
E{Y K(s)} ds

If Y (s) = 1s∈X where X is a random compact subset of IR2, then
Y K(s) = 1s∈δKX where δKX is the dilation of X by K.

KδKXX

Accordingly
θ(K) = µE{a(δKX)}

How to choose X so as to have E{a(δKX)} analytically tractable?
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Poisson polygons

Parametrization of a line in two dimensions

p

L(a,p)

α

0 0 π
α

p

Equation of a line:
x cos α + y sin α = p

0 ≤ α < π direction −∞ < p < +∞ location
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Poisson polygons

Poisson line process

A Poisson line process is parametrized by a homogeneous Poisson point
process with intensity λ on [0, π[×IR.

Poisson lines delimit Poisson polygons
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Realizations of Poisson polygons
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Number of Poisson lines
hitting a convex domain

0 0 π

r

−r

r

B

The number of lines hitting a convex domain B is Poisson distributed with
mean λ p(B)

– λ Poisson line intensity

– p(B) perimeter of B
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Conditional invariance by erosion

Property:

Poisson polygons are conditionally invariant by erosion (Matheron, 1975)

X

BεBX

E{ϕ(εBX) | εBX 6= ∅} = E{ϕ(X)}
Remark:

This property is a generalization in more than one dimension of the lack of
memory of the exponential distribution.
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Extremal coefficients of a Poisson storm process
Case where K is convex

θ(K) = µE{a(δKX)}

By Steiner’s formula (that applies because X is isotropic)

θ(K) = µ

[
E{a(X)}+

1
2π

E{p(X)}p(K) + a(K)
]

θ(K) = µ

[
1

πλ2
+

p(K)
πλ

+ a(K)
]
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Extremal coefficients of a Poisson storm process
Case where K is finite

θ(K) = µE{a(δKX)}

Apply the inclusion-exclusion formula

θ(K) = µ
∑

∅6=L⊂K

(−1)|L|−1E{a(εLX)}

where a(X) is the area of X and εBX is the erosion of X by B.
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Extremal coefficients of a Poisson storm process
Case where K is finite (2)

E{a(εLX)} = E{a(εLX) | εLX 6= ø}P{εLX 6= ø}

By the conditional invariance by erosion, we have

E{a(εLX) | εLX 6= ø}=E{a(X)} =
1

πλ2

On the other hand, L is contained in a Poisson polygon if and only if no
Poisson line hits the convex hull L̂ of L. Accordingly

P{εLX 6= ø} = exp(−λp(L̂))

Hence

θ(K) =
µ

πλ2

∑

∅6=L⊂K

(−1)|L|−1 exp
(−λp(L̂)

)

µ = Poisson storm intensity λ = Poisson line intensity
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Extremal coefficients of a Poisson storm process
Case where K is finite (3)

Consider on 2K the equivalence relation LRL′ if and only if L̂ = L̂′. Let
C(L) be the equivalence class of L.

L

∑

L′∈C(L)

(−1)|L
′|−1 exp

(−λp(L̂′)
)

= exp
(−λp(L̂)

) ∑

L′∈C(L)

(−1)|L
′|−1

= exp
(−λp(L̂)

)
1|C(L)|=1

Finally

θ(K) =
µ

πλ2

∑
∅6=L⊂K
|C(L)|=1

(−1)|L|−1 exp
(−λp(L̂)

)
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Extremal coefficients of a Poisson storm process
Case where K is finite with points in general position

θ(K) =
µ

πλ2

∑
∅6=L⊂K

int(bL)∩K=ø

(−1)|L|−1 exp
(−λp(L̂)

)

Example:

The computation of θ(K) involves 67 terms (7 points, 21 segments, 25
triangles, 12 quadrilaterals and 2 pentagons).

They can be summarized in a list of 5 maximal configurations:
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Extremal coefficients of a Poisson storm process
Case where K is a square grid

θ(K) =
µ

πλ2

∑
∅6=L⊂K
|C(L)|=1

(−1)|L|−1 exp
(−λp(L̂)

)

Results:

– a(L̂) = |L|/2− 1 (consequence of Pick’s formula);

– |L| ≤ 4 (application of the pigeonhole principle);

– quadrilaterals are parallelograms.

Pick’s formula: if X is a simple polygon and its

vertices are the nodes of a square grid (unit mesh),

then a(X) = ι(X) + β(X)/2− 1. Here a(X) =

6 + 8/2− 1 = 9.
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Extremal coefficients of a Poisson storm process
Case where K is a square grid (2)

1 10 100 1000 10000

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

number of nodes

θ

Poisson storm process with Poisson intensity µ = 0.01 and Poisson line intensity λ =

0.1/
√

π = 0.0564. The domain under study, a 10× 10 square, is sampled by different

square grids, ranging from 1 to 10000 nodes.
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Simulation
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Presentation of the problem

Model:

Z(s) = sup
(x,t)∈Π

s−x∈Xx,t

1
t

s ∈ IR2

where Π is a Poisson process with intensity µ on IR2× IR+, and the Xx,t’s
are independent copies of Poisson polygons with line intensity λ.

objective:

Produce realizations of the model in a continuous domain D.

Remark:

There is no inconvenience to assume that D is a disk with center o and
radius r.
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First remark

The Poisson storms hitting D occur in time according to a Poisson process
with intensity

µE{a(δDX)} = θ(D)

Z(s)

sD
0

1/t
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Second remark

A storm X hitting D has its distribution weighted by a(δDX):

dFD(X) =
dF (X)a(δDX)
E{a(δDX)}

Using Steiner’s formula a(δDX) = a(X) + rp(X) + πr2, dFD(X) can be
rewritten as

dFD(X) =
dF (X)a(X)
E{a(X)}

E{a(X)}
E{a(δDX)}+

dF (X)p(X)
E{p(X)}

rE{p(X)}
E{a(δDX)}+dF (X)

πr2

E{a(δDX)}
or equivalently

dFD(X) =
dF (X)a(X)
E{a(X)}

1
(1 + πλr)2

+
dF (X)p(X)
E{p(X)}

2πλr

(1 + πλr)2
+ dF (X)

π2λ2r2

(1 + πλr)2

Accordingly, everything boils down to simulate polygons weighted in area,
in perimeter and in number.
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Simulation of weighted polygons

o o o

Area: Generate Poisson lines sequentially by increasing distance from the
origin. Continue the procedure until the generation of additional lines no
longer affects the polygon containing the origin.

Perimeter: Split an area-weigted polygon using a uniformly oriented line
through the origin. Select at random one of two polygons thus delimited.
(Thanks to P. Calka).

Number: Take the intersection between an area-weigted polygon and a cone
delimited by two uniform rays emanating from the origin and separated by
an angle with p.d.f. f(α) = α sin α/π on [0, π[ (Miles, 1974).
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Algorithm

Notation:

– E(a) exponential distribution with parameter a (mean 1/a)

– U(A) uniform distribution over the domain A.

Algorithm:

(i) set t = 0;

(ii) generate u ∼ E(θ(D)) and put t = t + u;

(iii) generate X ∼ dFD and x ∼ U(δDX);

(iv) save (X,x, t) and then goto (ii).

Problem:

This algorithm does has no stopping criterion.
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How does the algorithm terminate?

Consider a covering of the simulation domain D:

The algorithm terminates once all cells of the covering are contained in a
Poisson storm.
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Realization of a Poisson storm process

Simulation field 300× 200 – mean polygon area 100π ≈ 314

37



Conclusions and perspectives

– All extremal coefficients are characterized by a hitting measure. This
measure provides a physical interpretation of a number of consistency
relationships between them;

– A planar storm process has been devised using the indicator function of
Poisson polygons. Its extremal coefficients θ(K) are analytically tractable
when K is convex or of limited cardinality;

– This spatial model can be extented to work in 3 dimensions (Poisson
polyedra) and more than 3 dimensions (Poisson polytopes). However the
question of how to simulate weighted polytopes is still open;

– It could be used as a benchmark to compare the performances of various
estimators of extremal coefficients.
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