The Poisson storm process
Extremal coefficients and simulation
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Storm process

Introduced by Smith (1990) and generalized by Schlather (2002), the storm
process is a prototype of max-stable processes with unit Fréchet margins:

F(z) =exp (—g> z >0
2
Basic ingredients:
— II homogenous Poisson point process (intensity i) in IR? x IR;

— (Yx,t, r € IR t € R+) independent copies of a random function Y,
defined in IR?, positive and integrable.

Definition:




Gaussian storm processes at six different scales
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Maximum of a storm process in a domain

Let K be a nonempty compact subset of IR?, and let Z¥(s) =
SUpyc i Z (s + §') be the sup-convolution of Z w.r.t. K

Example of a function and its sup-convolution by a disk

Provided that Y is integrable, the distribution of 7% is also unit Fréchet:

P{Z5(s) < z} = exp (—ﬁ /RdE{YK(s)} ds)
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Extremal coefficients

Assume Y& to be integrable for each compact subset K of IR?. Then

zZ

0(K
P{Z%(s) < 2} = exp (— ( )) with 0(K) = ,uJ/ E{YK(S)} ds
R4
The coefficients 8(K) are called extremal coefficients (Smith, 1990).

Objectives of the presentation:

— to establish the consistency relationships that exist between extremal
coefficients at various supports;

— to present an example of a storm process for which the extremal coefficients
are analytically tractable;

— to give an algorithm for simulating this storm process.



Consistency relationships
between extremal coefficients



Related work

let Z7 = (Z1,...,Z3) be a max-stable vector with the same unit Fréchet
margins. Following Pickands (1981), its multivariate distribution can be

written as
d 7. d "

i—1 —

where S is the unit simplex (t € S iff t1,...,tg >0and t; +--- +tg3 = 1),
and H is a positive measure on S (spectral measure). This implies

9(1{):/3.\/ LAH() K C {1, d)

From this formula, a set of inequalities relating the different 0(K)'s was
derived by Schlather and Tawn (2002).



Related work (2)

Molchanov (2008) derived another expression for the multivariate distri-
bution of Z using the support function of a max-zonoid. Based on this
expression, he arrived to the following corollary:

A set of coefficients (8(K), K C {1,...,d}) is a set of extremal coefficients
for a simple max-stable distribution if and only if §(¢) = 0 and 6(K) is a
union-completely alternating function of K:

Y (-nle(K UK, <0

JCI

for any subset K and for any family (K, € I) of subsets of {1,....d}. In
the formula, K; is a short notation for U;c s K.

These inequalities complete the set of consistency relationships established
by Schlather and Tawn.



Related work (3)

Regarding the bivariate distributions of a stationary max-stable process
with unit Fréchet margins, Schlather and Tawn (2003) have obtained the

following result:

If K = {x,x+ h}, then 8(K) = 6(0o)[1 + ~v(h)], where ~ is a function
of conditionally negative type, satisfying 0 < ~ < 1 and the triangular
inequality v(h + h'") < ~v(h) + v(h').

In the case of a storm process, we have

1 /]RdE{|Y(s+h) _Y(s)|} ds

v(h) = 9

o E{Y (s)}ds

7y is a function of conditionally negative type if >, . AiX;v(si — s;) < 0 whenever
ZiEI Ai = 0.



Thresholds of a storm process

Definition:

These are the random sets X, = {s € IR? : Z(s) > 2} for each z > 0.

Example of a function and one of its thresholds

If Z is u.s.c., these random sets are topologically closed.
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Statistical description of a random closed set

Avoiding functional:

The random set theory by Matheron (1975) shows that the statistical
properties of X, are given by its avoiding functional:

Q.(K)=P{X.NnK=0} Keck

@
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Remark:

An avoiding functional acts for a random closed set exactly as the comple-
mentary distribution function for a random variable.
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More on the thresholds of a storm process

Avoiding functional of X:

Q.(K) = P{X.NK = 0} = P{Z%(0) < 2} = exp <_9(K)>

Z

X, is infinitely divisible for the union:

X, can be expressed as the union of n independent copies of X,,.:

0.0 - xp (2) - xp (12) - .0

< nz

X has no fixed point:

6(s)

P{sc X,} = P{Z(s) > 2} = 1 — exp (—7> <1
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Characterization of random closed sets
infinitely divisible and without a fixed point

Theorem (Matheron, 1975):

(i) There exists a positive o-finite measure (, on the set F’ of the nonempty
closed subsets of IR? such that (. (Fx) = —InQ.(K) for each compact
subset K of IR%:

(ii)) X, has he same distribution as the union of a Poisson process locally
finite with intensity (, in F'.

Comments:
- Fx={FeF : FNnK#0}

— a Poisson process in F’ is locally finite if the number of elements of each
Fi is almost surely finite.

13



Relationship between extremal coefficients
and the hitting measures

CFR) = Qo) = 2B ke

<

This implies 0(K) = (1(Fk). From now onwards, we note ( instead of (;.
Therefore

0(K) = ((Fk)

Note also the consistency relationship between the different (,:

Q:(Ec)z%((fx) 2>0 Kek
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Consistency relationships

0(K)=((Fk) Kek

—6(K) >0and 0(0) = ((Fy) = 0;
- K CK = 0(K) =((Fk) < ((Fgr) = 0(K');

— Let f(II{QﬂEI) the family of closed sets hitting each K; and avoiding K.

Then
0 S C(fgfz,zéf)>
= ((Fik,ien) — C(Fik,ien) k)
— Z(_l)U'_lC(ijuK) (Kj=UjesK;)
JCl

= ) (-)ITY(K,; UK)

JCI
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Construction of a storm process
with explicit extremal coefficients
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Case where the storms are indicator functions

O(K) = p o E{Y*(s)} ds

If Y(s) = lsex where X is a random compact subset of IR? then
YE(s) = lses, x where 0 X is the dilation of X by K.

O X K

Accordingl
- I(K) = uE{a(dxX))

How to choose X so as to have E{a(dx X )} analytically tractable?
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Poisson polygons

Parametrization of a line in two dimensions

D —

. i
> 0 TT
0 a
\ L(a, p)

Equation of a line:
TrcCcosa+ysina =p

0 < o < 7 direction —00 < p < +0o0 location
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Poisson polygons

Poisson line process

A Poisson line process is parametrized by a homogeneous Poisson point
process with intensity A on [0, 7[x IR.

Poisson lines delimit Poisson polygons
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Realizations of Poisson polygons

I&/l‘* V (

¢<,4I s.q
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Number of Poisson lines
hitting a convex domain

\ :

B =TI

The number of lines hitting a convex domain B is Poisson distributed with
mean A p(B)

— A\ Poisson line intensity

— p(B) perimeter of B
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Conditional invariance by erosion

Property:

Poisson polygons are conditionally invariant by erosion (Matheron, 1975)

O

B

X

E{p(epX)|epX # 0} = E{p(X)}

Remark:

This property is a generalization in more than one dimension of the lack of
memory of the exponential distribution.
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Extremal coefficients of a Poisson storm process
Case where K is convex

O(K) = pEia(0xX)}

By Steiner’s formula (that applies because X is isotropic)

0(K) = | E{a(X)} + 5 B{p(X) () + a(k)

1 p(K)

9<K>=“[W+ ™

- a(K)]
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Extremal coefficients of a Poisson storm process
Case where K is finite
0(K) = pE{a(dxX)}

Apply the inclusion-exclusion formula

—p Y () E{a(er X))

0ALCK

where a(X) is the area of X and egX is the erosion of X by B.
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Extremal coefficients of a Poisson storm process
Case where K is finite (2)

F{la(ep X))} = E{a(erX) | e X # 0} P{er X # o}

By the conditional invariance by erosion, we have

Ela(erX) | e X #o}=E{a(X)} = %)\2

On the other hand, L is contained in a Poisson polygon if and only if no
Poisson line hits the convex hull L of L. Accordingly

Pler X # ¢} = eXP(—)\p(Z))

Hence

Q(K):# Y (=) exp(=Ap(L))
0ALCK

p = Poisson storm intensity A = Poisson line intensity
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Extremal coefficients of a Poisson storm process
Case where K is finite (3)

Consider on 2% the equivalence relation LR L’ if and only if L=1L Let
) be the equivalence class of L.

AN AN

So (D)EF T exp(—ap(L) = exp(-Ap(D) Y (-1IFI!

L'eC(L) L'eC(L)

= exp(=Ap(L)) o=

Finally

Q(K)ZWLA? Y (=) exp(=Ap(L))

0ALCK
|C(L)]=1
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Extremal coefficients of a Poisson storm process
Case where K is finite with points in general position

oK) =5 3. (=D exp(-2w(D))

Example:

The computation of #(K) involves 67 terms (7 points, 21 segments, 25
triangles, 12 quadrilaterals and 2 pentagons).

They can be summarized in a list of 5 maximal configurations:
2700y A
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Extremal coefficients of a Poisson storm process
Case where K is a square grid

OK) =5 > () exp(—an(D))

0ALCK
|C(L)|=1

Results:
—a(L) = |L|/2 — 1 (consequence of Pick’s formula);
— |L| < 4 (application of the pigeonhole principle);

— quadrilaterals are parallelograms.

Pick's formula: if X is a simple polygon and its
vertices are the nodes of a square grid (unit mesh),
then a(X) = ¢(X) + B(X)/2 — 1. Here a(X) =
6+8/2—1=09.
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Extremal coefficients of a Poisson storm process
Case where K is a square grid (2)

10 15 20 25 3.0 35 40 45

1 10 100 1000 10000
number of nodes

Poisson storm process with Poisson intensity 4 = 0.01 and Poisson line intensity A =
0.1/+/m = 0.0564. The domain under study, a 10 X 10 square, is sampled by different
square grids, ranging from 1 to 10000 nodes.
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Simulation
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Presentation of the problem

Model: |
Z(s)= sup - s € IR?
(x,t)€EIl
s—meXx’t

where IT is a Poisson process with intensity p on IR? x IRy, and the X, ;'s
are independent copies of Poisson polygons with line intensity .

objective:

Produce realizations of the model in a continuous domain D.

Remark:

There is no inconvenience to assume that D is a disk with center o and
radius 7.

31



First remark

The Poisson storms hitting D occur in time according to a Poisson process

with intensity

1/t

Z(S)

uE{a(5pX)} = 6(D)
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Second remark

A storm X hitting D has its distribution weighted by a(dpX):
dF(X)a(dpX)

dFp(X) =
P = B a(6p X))

Using Steiner's formula a(6pX) = a(X) + rp(X) + 7r?, dFp(X) can be
rewritten as

_dP(X)a(X) Efa(X)} | dF(X)p(X) rE{p(X)} 2

W) = TR(X)) BlaoX)) T B(X)) Blapx)) Y Bapx))

or equivalently

 dF(X)a(X) 1 dF (X)p(X) 2mAr TA\2r?
X)) = a7 Ao EpX) @tan2 (1 + 7Ar)?2

Accordingly, everything boils down to simulate polygons weighted in area,
in perimeter and in
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Simulation of weighted polygons

Area: Generate Poisson lines sequentially by increasing distance from the
origin. Continue the procedure until the generation of additional lines no
longer affects the polygon containing the origin.

Perimeter: Split an area-weigted polygon using a uniformly oriented line

through the origin. Select at random one of two polygons thus delimited.
(Thanks to P. Calka).

Take the intersection between an area-weigted polygon and a cone
delimited by two uniform rays emanating from the origin and separated by
an angle with p.d.f. f(a) = asina/7 on [0, 7| (Miles, 1974).
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Algorithm

Notation:
— &(a) exponential distribution with parameter a (mean 1/a)

— U(A) uniform distribution over the domain A.

Algorithm:

(i) set t = 0;

(ii) generate u ~ E(O(D)) and put t =t + u;
(iii) generate X ~ dFp and x ~U(0pX);
(iv) save (X, x,t) and then goto (ii).

Problem:

This algorithm does has no stopping criterion.
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How does the algorithm terminate?

Consider a covering of the simulation domain D:

/ AN
/ \
/ \
\ /
\ /
\ / N )
AN - N\ 4

The algorithm terminates once all cells of the covering are contained in a
Poisson storm.
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Realization of a Poisson storm process

Simulation field 300 x 200 — mean polygon area 1007 ~ 314
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Conclusions and perspectives

— All extremal coefficients are characterized by a hitting measure. This
measure provides a physical interpretation of a number of consistency
relationships between them;

— A planar storm process has been devised using the indicator function of
Poisson polygons. Its extremal coefficients §(K') are analytically tractable
when K is convex or of limited cardinality;

— This spatial model can be extented to work in 3 dimensions (Poisson
polyedra) and more than 3 dimensions (Poisson polytopes). However the
question of how to simulate weighted polytopes is still open;

— It could be used as a benchmark to compare the performances of various
estimators of extremal coefficients.

38



