Eistimating the pollen backward
dispersion function using genetic
markers



The backward dispersion function 7

e Forward dispersion function:

”where does the pollen go when flying from a father tree at 0 7”

e Backward dispersion function:

"where does the pollen grain observed on the seed of a mother
tree at 0 come from?



Model

e trees = stationary point process X
e genotypes of trees = marks M

e cenotype of seeds attached to trees = marks G



Assumptions

genotypes are randomly independently distributed among trees
the loci are independent

the two alleles at a given locus are independent

a seed receives an allele from the father, the other from the mother

the allele received from a given parent (father or mother) is chosen
randomly among the two alleles of the parent



Data

e sample some trees and genotype them

e sample some seeds on these trees

locations of other trees unknown



What do researcher in pollen dispersion do 7

X Poisson

e f(x —y) = probability density to find the father of a flower at y
at position x

e copaternity QQ(A, B) = probability that two flowers on trees at A
and B have the same father

e adjust parameters by least square between Q(A, B)/Q(A, A) and
its estimator



Computing Q(A, B)

1
QAB) = [ fa- 2 f(z - B) ~dr
tree pollinating A tree pollinating B around x
is at x falls within there are \dx trees

the same region

e self-pollination not taken into account

e dependance between the two pollination events is not taken into
account

e Poisson necessary to drop A in Q(A, B)/Q(A, A)



What do we want to estimate ?

1{pollimator of Aisat x} — 1{93€X}1{:L' pollinates A}

e p(the pollinator of A is at ) = Mh(z; A)r(x — A), x # A

e p(the pollinator of A is at x) = h(x; A), r= A

e ) intensity of X
e r(u),u € R pair correlation function

e h(y;0) probability that a tree at y pollinates 0

==> f(x) = lzzny Ah(2;0)r(x),  F(0) = h(0;0)



Looking at the copaternity

1{pollinator of A is at x}l{pollinator of Bisat z} —
1{w€X}1{x pollinates A}l{x pollinates B}

e p(the pollinator of A and B is at z) = Ah®) (z; A, B)r(x; A, B),
x # Ax # B,

e p(the pollinator of A is at ) = h(?)(z; A, B),
r=Aorx=208



W (z;A,B) = E(l{x pollinates A} 1{z pollinates B} |z € X)

° 7 E(l{x pollinates A} |z € X>E(1{£IZ pollinates B} |z € X)
= h(z; A)h(z; B)

e \r(x; A, B) intensity of the Palm measure with respect to A and
B.

Q(A, B) = 2hP(z; A, B) + )\/ h2) (z; A, B)r(x; A, B)dx

x

Conclusion

e No self-pollination taken into account

e what is estimated is not what is wanted



Estimating f(x)

Assumptions
e X stationary isotropic point process
e marks M are independent

e No self-pollination

e )\ and r(z) classically

e estimate h(x;0) through observations of the genotypes of x, 0 and
seeds on 0



Non parametric estimation

e (m1,ms2) the alleles of the tree at 0

o (k1,ks) the alleles of the tree at B

e (g1,92) the alleles of a seed on the tree at O

e o, the allele frequency of g in the tree population
e I = {the father gives the first allele}

e C = {0 carries (m1,ms), B carries ...}

P(gl ‘ N F) — %h(x)(l{g1:k1} T 1{912162}) - (1 o h(x))&gr



P((91,92) | C) = a1cg, h(x)Fazag, h(z)+bh(x)+crag, +cz0y,
with

ar = %(1{92=m1} + 1{92=m2})
a2 1_1(1{91277%1} + 1{91=m2})
b = §(11{91=7€1} + 1{91=k2})(1{QQZM1} + 1{92=m2})
5 (Mga=a} T Hga=a}) (g =m1} + 1{g1=ma})
T %(1{922”%1} T 1{92=m2}) — a1
C2 = Z(l{glzml} + 1{91=m2}) — —a2
fz(x) _ Zz Zk Zgl 292 Ku(l‘— \ Ly —Yi |)U7;(g1792)
2G? ) ;> Kulz— [ @i —yi |)
with
PR (g1 go)—elAim) g (A
Ui (g1, g2) = (91,92) 1S5 2

A,B,i,k ; ,
ag ndls )ozg —I—a(A’B’Z’k)ag +b(A,B,i,k)

H(B,i,k B7':k B:.7k
P )(91’92>_C§ ' )0491_(3; ' )a92

+ (B,A,i,k) (B,A,i,K) 5 A
a; g, tas ag2-|-b( VA1, k)

(1)
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Parametric estimation

P((gi""" g$ Y | Ca g i) = Paikho(d(As, By))+Pair(1—he(d(As, By)))
B is not the father

L
Pl,z',k = H {Oé (Azk) (1 ﬁzk) (A i) + 1 (Azk) m(A z))

2,1
I<L

+« NERED (1 (Ayik) _ (Az)"_l(Azk) (A@)}
91,1 92,1 My ™My
B is the father

Ps iy = (%)LH

I<L

AtR) g (A0 + 1 gL R (A0 L caimy_ o)+ 1 aim_ (5.0

{( ( = —Ma ) ( 92,1 =M 92,1 —Ma

—|—< (Azk) (Bz)"‘l(Azk) m(B@) (1 (A,ik)_ (Az)"_l(Azk) (A z))}
my g 91,1 2,1 921 my 921 may



Conclusion

parametric and non-parametric estimations can be performed
no need to use second order statistics

interest in confronting this estimation with one based on second
order stat?

convergence... strong mixing

confidence intervals block-bootstrap



self-pollination

i(x) = P(the tree at 0 is the father of its flower | x # 0)
e(x) = P(the father of the flower at 0 ¢ {0, z})

z)

1 =h(z)+i(x) + €
= ah(h) 4+ bi(z) + ¢

P((g1,92) | C

e h(x) and i(x) estimated in the same way
e self-pollination estimated as 1 — A [ h(z)r(x)dx

e i(x) can be used to choose the self-pollination model



genetic dependance of trees

e no self-pollination
e \r.(y) intensity of the Palm measure with respect to 0 and .

e h.(y) the probability that a tree a y pollinates a given seed at 0
knowing that trees are present at 0 ant x,

e P.((I1(y),l2(y)) | C) the probability that the tree at y carries
genotype (l11(y),l2(y)) knowing the genotypes of the trees at 0
and .

/N

P(gl | CnN F) — h;)(l{gl:/ﬂ} - 1{91:k2}) .
A, 2 @)ha () ) _Pe((h() ba(y) = (1, 12) | C)5(H{gr = b} + Ligp=1))dy

l1,l2



Conclusion(1)

estimate effectively f(x)
no need to impose Poisson assumption

possible to estimate furthermore with self-pollination,

spatial genetic dependance(?)

focus on h(x) instead of f(x)

link between i(x) (self-pollination knowing a tree at x)

and self-pollination 7

estimate h,(y) (opening toward classical

forward dispersion function) knowing h(x) ?



Conclusion(2)

use of Campbell theorems

0,Ae X

1 = P(flower at 0 pollinated)

= 114 pollinates) T 2_zex\{0,4} Lz pollinates)

Austerlitz and al focus on the second term and forget the first
term

we focus on the first term and consider the second one as noise

—=> How to combine ?



