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d
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d
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Proof: connection with random coverings of the sphere
Proof: covering probability of S

d−1

Proof: asymptotic estimation of the covering probability
Continuum percolation vs. visibility percolation in R

d

Convergence with small obstacles
Visibility to infinity in the Euclidean space

Visibility in a hyperbolic Boolean model

Visibility in a Poisson line tessellation



default
Boolean model in R

d

◮ Xλ := homogeneous Poisson point process of intensity λ in
R

d

◮ K := random convex compact set containing the origin and
with an a.s. bounded diameter

◮ Kx , x ∈ X := collection of i.i.d. random convex grains
distributed as K

◮ O :=
⋃

x∈X

(x ⊕ Kx) occupied phase

◮ Process conditioned on the event A = {O 6∈ O},
P[A] = exp(−λE[Vd(K)])

◮ O := observer at the origin



default
Visibility star and maximal visibility

0



default
Visibility star and maximal visibility

0

V := maximal visibility, i.e. distance to the furthest visible point



default
Visibility in one direction and spherical contact length

O u

V (u)

Visibility in direction u ∈ S
d−1

V (u) := sup{r > 0 : [0, r ]u ⊂ Oc}

P[V (u) ≥ r ] =
exp(−λ

sd−1

(d−1)sd
E[Vd−1(K)]r)

0

S

Spherical contact length
S := infu∈Sd−1 V (u)

P[S ≥ r ] =
exp(−λE[Vd(B(0, r) ⊕ K) − Vd(K)])



default
Distribution tail of the maximal visibility

ρmax(K) := sup{r > 0 :

∃ (d − 1)-dimensional ball Bd−1(x , r) ⊂ K}

If (d = 2) or
if (d ≥ 3 and P[ρmax(K) ≤ εd−2] = O(ε) when ε→ 0),
then

log P[V ≥ r ] = log P[V (u) ≥ r ] + d(d − 1) log(r) + O(1).

Remark. Non-asymptotic upper and lower bounds in dimension two



default
Proof: connection with random coverings of the sphere

Each obstacle creates a shadow on the sphere of radius r :

O
r

P[V ≥ r ] = probability that the sphere of radius r is not covered



default
Proof: covering probability of S

d−1

L1

L2

L3

◮ n i.i.d. random geodesic balls in the unit-sphere S
d−1 with

uniformly distributed centers and
ν-distributed random (normalised) radii
(where ν is a probability measure on [0, 1/2]).

◮ Probability to cover S
d−1?



default
Proof: asymptotic estimation of the covering probability

P[u0 not covered] =

(

1 −

∫

ϕd (z)dν(z)

)n

(u0 ∈ S
d−1 fixed)

where ϕd(t) =
sd−1

sd

∫ πt

0
sind−2(θ)dθ, 0 ≤ t ≤ 1 and sd is the area of S

d−1.

If ν([0, ε]) = O(ε) when ε→ 0, then

log P[Sd−1 uncovered] = log P[u0 uncovered]+(d−1) log(n)+O(1).

The expansion only depends on the mean ϕ−1
d

(∫

ϕd(z)dν(z)
)

.



default
Percolation in visibility vs. continuum percolation

Continuum percolation:
if the vacant set has an unbounded component with probability > 0
Percolation in visibility:
if the visibility is not finite with probability > 0

Roy (1990), Meester & Roy (1994), Sarkar (1997)
In R

2 with balls, ∃ 0 < λc <∞ s.t. with probability 1

λ # unbounded c.c. of O # unbounded c.c. of H
2 \ O

[0, λc ) 0 1

λc 0 0

(λc ,∞) 1 0

But there is no percolation in visibility in R
d !



default
Convergence with small obstacles

Context: deterministic radii all equal to R → 0.
Question: behaviour of the associated visibility VR?

VR = −c
(1)
d

log(R)

Rd−1
+ c

(2)
d

log | log(R)|

Rd−1
+

c
(3)
d

+ c
(4)
d
ξR

Rd−1

where ξR converges in distribution to the Gumbel law when R → 0.

Proof. P[VR ≥ f (R)] = probability to cover the unit-sphere with a
large number of small spherical caps.

Janson (1986): Poisson number of mean Λ of spherical caps with
radius εU (U bounded variable). If

K1ε
d−1Λ + (d − 1) log(ε) − (d − 1) log(− log(ε)) + K2 −→

ε→0
u,

then the covering probability goes to exp(−e−u).



default
Visibility to infinity in the Euclidean space

Shrinking obstacles when the distance to the origin increases:

Oβ :=
⋃

x∈X

B(x , ‖x‖β)

Visibility to infinity with probability > 0 iff β < −1/(d − 1)

Rarefaction of the Boolean model at large distances:

Yα := Poisson point process of intensity measure ‖x‖α−d
dx

Visibility to infinity with probability > 0 iff α < 1
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Outline

Visibility in the vacancy of the Boolean model in R
d

Visibility in a hyperbolic Boolean model
Poincaré disc model
Boolean model in the hyperbolic plane
Continuum percolation vs. visibility percolation in H

2

Visibility in one direction in H
2

Distribution tail of the maximal visibility in H
2

Proof: second moment method
Further results

Visibility in a Poisson line tessellation



default
Poincaré disc model

◮ Model Unit disc D = H
2 equipped with the hyperbolic metric

ds2 = 4
dx2 + dy2

(1 − (x2 + y2))2

◮ Length L(γ) = 2

∫ 1

0

|γ′(t)|

1 − |γ(t)|2
dt

◮ Isometries Aut(D) = {z 7−→ az+c

cz+a
: |a|2 − |c |2 = 1}

◮ Area

µH(dr , dθ) =
4r

(1 − r2)2
1]0,1[(r)drdθ

◮ Balls R > 0, R := tanh(R/2)

BH(z ,R) = BR2(z
1 − R

2

1 − |z |2R
2 ,R

1 − |z |2

1 − |z |2R
2 )



default
Boolean model in the hyperbolic plane

Xλ := Poisson point process of intensity measure λµH(dr)

O :=
⋃

z∈Xλ
BH(z ,Rz) =

⋃

z∈Xλ
BR2(z 1−Rz

2

1−|z |2Rz

2 ,Rz
1−|z |2

1−|z |2Rz

2 )

where Rx , x ∈ Xλ, bounded i.i.d. r.v.



default
Continuum percolation and visibility percolation in H

2

Tykesson (2005)
∃ 0 < λo < λv <∞ s.t. with probability 1

λ # unbounded c.c. of O # unbounded c.c. of H
2 \ O

[0, λo ] 0 1

(λo , λv ) ∞ ∞
[λv ,∞) 1 0

Benjamini, Jonasson, Schramm, Tykesson (2009)
(deterministic R)

◮ Visibility to infinity with probability > 0 iff 2λsinh(R) < 1

◮ Visibility to infinity with probability > 0 inside balls iff λ > λ′c



default
Visibility in one direction in H

2

Deterministic R

Benjamini, Jonasson, Schramm, Tykesson (2009)
V (u) := sup{r > 0 : [0, ru] ⊂ H

2 \ O}

P[V (u) ≥ r ] = Θ(e−αr ) where α = 2λsinh(R)

Proof.

◮ Positive correlations E[ϕ(O)ψ(O)] ≥ E[ϕ(O)]E[ψ(O)] for all
bounded, increasing and measurable functions ϕ and ψ

P[V (u) ≥ r + s] ≥ P[V (u) ≥ r ]P[V (u) ≥ s], r , s > 0

◮ Calculation of µH2({z ∈ H
2 : dH2(z , [0, ru]) < R})

Random R: if E(eR) <∞, α = 2λE[sinh(R)]



default
Distribution tail of the maximal visibility in H

2

V := sup{r > 0 : ∃u ∈ S
1 s.t. ru ∈ H

2 \ O}

P[V ≥ r ] =







Ω(1)e−(α−1)r if α > 1
Ω(1)1

r
if α = 1

C + o(1) if α < 1

◮ Different behaviours of V and V (u)

◮ Polynomial decay in the critical case



default
Proof: second moment method

u0 ∈ S
1 fixed

Yr = Yr (ε) := {u ∈ S
1 : 〈u, u0〉 ∈ [0, ε) and [0, ru] ⊂ H

2 \ O}

yr = yr (ε) :=
∫

Yr (ε)
dθ

E[yr ]
2

E[y2
r ]

≤ P[Yr 6= ∅] = P[V(ε) ≥ r ] ≤ 4
E[yr ]

2

E[y2
r ]

where
E[yr (ε)] = εP[u0 ∈ Yr (ε)]

E[yr (ε)
2] = Θ

(

ε

∫ ε

0
P[u0, uθ ∈ Yr (ε)]dθ

)



default
Proof

Upper bound of the second moment method

P[Yr 6= ∅] =
E[yr ]

E[yr |Yr 6= ∅]

≤ 2
E[yr ]

E[yr |u0 ∈ Yr ]
=

2E [yr ]
2

ε
∫ ε

0 P[u0, uθ ∈ Yr ]dθ

≤: discretization and sort of ’Markovianity’ of 1Yr
(uθ)

Calculation of P[u0, uθ ∈ Yr ]

Measure of the union of two hyperbolic cylinders
Use of FKG inequality



default
Further results

Near criticality: critical exponents

E := {z ∈ H
2 : [0, z ] ∈ H

2 \ O}
When λց λc = (2E[sinh(R)])−1,

E[µH2(E)] = Θ
(

1
α−1

)

and E[V] = Θ
(

1
α−1

)

Rarefaction of the Boolean model

When λց 0, P[V = ∞] → 1

Intensity as a functional of the radius

R deterministic

For r > 0 and p ∈ (0, 1), ∃ explicit λ(R) s.t. limR→0 P[V ≤ r ] = p.



default
Outline

Visibility in the vacancy of the Boolean model in R
d

Visibility in a hyperbolic Boolean model

Visibility in a Poisson line tessellation
Poisson line tessellation
Visibility in the Poisson line tessellation



default
Poisson line tessellation

Pλ := Poisson point process in H
2 of intensity measure

νλ(dr , dθ) = 2λ
1 + r2

(1 − r2)2
drdθ

L :=
⋃

x∈Pλ
Gx invariant by Aut(D)

where Gx := hyperbolic line containing x and orthogonal to [0, x ]



default
Visibility in the Poisson line tessellation

V := sup{r > 0 : ∃ u ∈ S
1 s.t. ru ∩ L = ∅}

V circumscribed radius of the zero-cell from the tessellation

P[V ≥ r ] =







Ω(1)e−(2λ−1)r if λ > 1/2

Ω(1)1
r

if λ = 1/2
C + o(1) if λ < 1/2

Euclidean case

No visibility percolation, explicit distribution in dimension two
(2002)



default
Prospects

◮ Visibility star, study of its radius-vector function

◮ Number of visible obstacles

◮ Extension to other covering models with hard spheres

◮ Behaviour of the visibility near the criticality

◮ Calculation of a Hausdorff dimension

◮ Visibility inside balls



default

Thank you for your attention!
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