

Visibility estimates in Euclidean and hyperbolic germ-grain models and line tessellations

Sac

< □ > < 同 > < 回 > <

Visibility in the vacancy of the Boolean model in \mathbb{R}^d

Visibility in a hyperbolic Boolean model

Visibility in a Poisson line tessellation

Collaborators: Julien Michel (Poitiers), Sylvain Porret-Blanc (Lyon) and Johan Tykesson (Weizmann Institute, Rehovot)

Outline

Visibility in the vacancy of the Boolean model in \mathbb{R}^d Boolean model in \mathbb{R}^d Visibility star and maximal visibility Visibility in one direction and spherical contact length Distribution tail of the maximal visibility Proof: connection with random coverings of the sphere Proof: covering probability of \mathbb{S}^{d-1} Proof: asymptotic estimation of the covering probability Continuum percolation vs. visibility percolation in \mathbb{R}^d Convergence with small obstacles Visibility to infinity in the Euclidean space

▲□▶▲□▶▲□▶▲□▶ ■ のへで

Visibility in a hyperbolic Boolean model

Visibility in a Poisson line tessellation

- $\blacktriangleright \ \mathbf{X}_{\lambda} :=$ homogeneous Poisson point process of intensity λ in \mathbb{R}^d
- K := random convex compact set containing the origin and with an a.s. bounded diameter
- ► K_x, x ∈ X := collection of i.i.d. random convex grains distributed as K

•
$$\mathcal{O} := \bigcup_{x \in \mathbf{X}} (x \oplus K_x)$$
 occupied phase

- ► Process conditioned on the event $A = \{ O \notin O \}$, $\mathbb{P}[A] = \exp(-\lambda \mathbb{E}[V_d(\mathbf{K})])$
- ► *O* := observer at the origin

Visibility star and maximal visibility

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ 臣 - のへで

Visibility star and maximal visibility

 $\mathcal{V} :=$ maximal visibility, i.e. distance to the furthest visible point

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Visibility in one direction and spherical contact length

Visibility in direction $u \in \mathbb{S}^{d-1}$ $V(u) := \sup\{r > 0 : [0, r]u \subset \mathcal{O}^c\}$

$$\mathbb{P}[V(u) \ge r] = \\ \exp(-\lambda \frac{s_{d-1}}{(d-1)s_d} \mathbb{E}[V_{d-1}(\mathbf{K})]r)$$

Spherical contact length $S := \inf_{u \in \mathbb{S}^{d-1}} V(u)$

$$\mathbb{P}[\mathcal{S} \geq r] = \ \exp(-\lambda \mathbb{E}[V_d(B(0,r) \oplus \mathbf{K}) - V_d(\mathbf{K})])$$

< ロ > < 同 > < 回 > < 回 >

SQA

Distribution tail of the maximal visibility

$$ho_{\mathsf{max}}(\mathsf{K}) := \sup\{r > 0 :$$

 $\exists (d-1) \text{-dimensional ball } B_{d-1}(x,r) \subset \mathsf{K}\}$

If
$$(d = 2)$$
 or
if $(d \ge 3 \text{ and } \mathbb{P}[\rho_{\max}(\mathbf{K}) \le \varepsilon^{d-2}] = O(\varepsilon)$ when $\varepsilon \to 0$),
then
 $\log \mathbb{P}[\mathcal{V} \ge r] = \log \mathbb{P}[V(u) \ge r] + d(d-1)\log(r) + O(1).$

Remark. Non-asymptotic upper and lower bounds in dimension two

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

Proof: connection with random coverings of the sphere

Each obstacle creates a shadow on the sphere of radius *r*:

 $\mathbb{P}[\mathcal{V} \ge r] =$ probability that the sphere of radius r is not covered

Proof: covering probability of \mathbb{S}^{d-1}

▶ n i.i.d. random geodesic balls in the unit-sphere S^{d-1} with uniformly distributed centers and ν-distributed random (normalised) radii

・ コット ふぼう ふ ほう ・ コッ

500

(where ν is a probability measure on [0, 1/2]).

▶ Probability to cover S^{d-1} ?

Proof: asymptotic estimation of the covering probability

$$\mathbb{P}[u_0 \text{ not covered}] = \left(1 - \int \varphi_d(z) \mathrm{d}\nu(z)\right)^n (u_0 \in \mathbb{S}^{d-1} \text{ fixed})$$

where $\varphi_d(t) = \frac{s_{d-1}}{s_d} \int_0^{\pi t} \sin^{d-2}(\theta) \mathrm{d}\theta, 0 \le t \le 1 \text{ and } s_d \text{ is the area of } \mathbb{S}^{d-1}.$

If
$$\nu([0, \varepsilon]) = O(\varepsilon)$$
 when $\varepsilon \to 0$, then
 $\log \mathbb{P}[\mathbb{S}^{d-1} \text{ uncovered}] = \log \mathbb{P}[u_0 \text{ uncovered}] + (d-1)\log(n) + O(1).$

The expansion only depends on the mean $\varphi_d^{-1} \left(\int \varphi_d(z) d\nu(z) \right)$.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○ ○

Continuum percolation:

if the vacant set has an unbounded component with probability > 0*Percolation in visibility*:

if the visibility is not finite with probability > 0

Roy (1990), Meester & Roy (1994), Sarkar (1997) In \mathbb{R}^2 with balls, $\exists 0 < \lambda_c < \infty$ s.t. with probability 1

λ	$\#$ unbounded c.c. of ${\cal O}$	$\#$ unbounded c.c. of $\mathbb{H}^2 \setminus \mathcal{O}$
$[0, \lambda_c)$	0	1
λ_c	0	0
(λ_c,∞)	1	0

But there is no percolation in visibility in \mathbb{R}^d !

Convergence with small obstacles

W

Context: deterministic radii all equal to $R \rightarrow 0$. Question: behaviour of the associated visibility \mathcal{V}_R ?

$$\mathcal{V}_R = -c_d^{(1)} \frac{\log(R)}{R^{d-1}} + c_d^{(2)} \frac{\log|\log(R)|}{R^{d-1}} + \frac{c_d^{(3)} + c_d^{(4)} \xi_R}{R^{d-1}}$$

where ξ_R converges in distribution to the Gumbel law when $R \to 0$.

Proof. $\mathbb{P}[\mathcal{V}_R \ge f(R)] =$ probability to cover the unit-sphere with a large number of small spherical caps.

Janson (1986): Poisson number of mean Λ of spherical caps with radius εU (U bounded variable). If

$$K_1 \varepsilon^{d-1} \Lambda + (d-1) \log(\varepsilon) - (d-1) \log(-\log(\varepsilon)) + K_2 \underset{\varepsilon \to 0}{\longrightarrow} u,$$

then the covering probability goes to $\exp(-e^{-u})$.

してい 「「」 (山下・山下・山下・山下

Visibility to infinity in the Euclidean space

Shrinking obstacles when the distance to the origin increases:

$$\mathcal{O}_{\beta} := \bigcup_{x \in \mathbf{X}} B(x, \|x\|^{\beta})$$

Visibility to infinity with probability > 0 iff $\beta < -1/(d-1)$

Rarefaction of the Boolean model at large distances:

 $\mathbf{Y}_{\alpha} :=$ Poisson point process of intensity measure $||x||^{\alpha-d} dx$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Visibility to infinity with probability > 0 iff $\alpha < 1$

Visibility in the vacancy of the Boolean model in \mathbb{R}^d

Visibility in a hyperbolic Boolean model

Poincaré disc model Boolean model in the hyperbolic plane Continuum percolation vs. visibility percolation in \mathbb{H}^2 Visibility in one direction in \mathbb{H}^2 Distribution tail of the maximal visibility in \mathbb{H}^2 Proof: second moment method Further results

Visibility in a Poisson line tessellation

Poincaré disc model

 \blacktriangleright Model Unit disc $\mathbb{D}=\mathbb{H}^2$ equipped with the hyperbolic metric

$$ds^{2} = 4 \frac{dx^{2} + dy^{2}}{(1 - (x^{2} + y^{2}))^{2}}$$

• Length
$$L(\gamma) = 2 \int_0^1 \frac{|\gamma'(t)|}{1 - |\gamma(t)|^2} dt$$

► Isometries Aut(\mathbb{D}) = { $z \mapsto \frac{az + \overline{c}}{cz + \overline{a}} : |a|^2 - |c|^2 = 1$ }

Area

$$\mu_{\mathbb{H}}(dr,d\theta) = \frac{4r}{(1-r^2)^2} \mathbf{1}_{]0,1[}(r) dr d\theta$$

▶ Balls $R > 0, \overline{R} := \tanh(R/2)$

$$B_{\mathbb{H}}(z,R)=B_{\mathbb{R}^2}(zrac{1-\overline{R}^2}{1-|z|^2\overline{R}^2},\overline{R}rac{1-|z|^2}{1-|z|^2\overline{R}^2})$$

Boolean model in the hyperbolic plane

$$\begin{split} \mathbf{X}_{\lambda} &:= \text{Poisson point process of intensity measure } \lambda \mu_{\mathbb{H}}(\mathrm{d}r) \\ \mathcal{O} &:= \bigcup_{z \in \mathbf{X}_{\lambda}} B_{\mathbb{H}}(z, R_z) = \bigcup_{z \in \mathbf{X}_{\lambda}} B_{\mathbb{R}^2}(z \frac{1 - \overline{R_z}^2}{1 - |z|^2 \overline{R_z}^2}, \overline{R_z} \frac{1 - |z|^2}{1 - |z|^2 \overline{R_z}^2}) \\ \text{where } R_{\mathbf{x}_1} \ x \in \mathbf{X}_{\lambda} \text{, bounded i.i.d. r.v.} \end{split}$$

・ロト ・四ト ・ヨト ・ ヨ

Sac

Tykesson (2005) $\exists 0 < \lambda_o < \lambda_v < \infty$ s.t. with probability 1

λ	$\#$ unbounded c.c. of ${\cal O}$	$\#$ unbounded c.c. of $\mathbb{H}^2 \setminus \mathcal{O}$
$[0, \lambda_o]$	0	1
(λ_o, λ_v)	∞	∞
$[\lambda_v,\infty)$	1	0

Benjamini, Jonasson, Schramm, Tykesson (2009) (deterministic *R*)

- Visibility to infinity with probability > 0 iff $2\lambda \sinh(R) < 1$
- ▶ Visibility to infinity with probability > 0 inside balls iff $\lambda > \lambda'_c$

Deterministic R Benjamini, Jonasson, Schramm, Tykesson (2009) $V(u) := \sup\{r > 0 : [0, ru] \subset \mathbb{H}^2 \setminus \mathcal{O}\}$

 $\mathbb{P}[V(u) \ge r] = \Theta(e^{-\alpha r})$ where $\alpha = 2\lambda \sinh(R)$

Proof.

▶ Positive correlations $\mathbb{E}[\varphi(\mathcal{O})\psi(\mathcal{O})] \ge \mathbb{E}[\varphi(\mathcal{O})]\mathbb{E}[\psi(\mathcal{O})]$ for all bounded, increasing and measurable functions φ and ψ

 $\mathbb{P}[V(u) \ge r + s] \ge \mathbb{P}[V(u) \ge r]\mathbb{P}[V(u) \ge s], \quad r, s > 0$ $\blacktriangleright \text{ Calculation of } \mu_{\mathbb{H}^2}(\{z \in \mathbb{H}^2 : d_{\mathbb{H}^2}(z, [0, ru]) < R\})$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Random R: if $\mathbb{E}(e^R) < \infty$, $\alpha = 2\lambda \mathbb{E}[\sinh(R)]$

$$\mathcal{V} := \sup\{r > 0 : \exists u \in \mathbb{S}^1 \text{ s.t. } ru \in \mathbb{H}^2 \setminus \mathcal{O}\}$$

$$\mathbb{P}[\mathcal{V} \ge r] = \begin{cases} \Omega(1)e^{-(\alpha-1)r} & \text{if } \alpha > 1\\ \Omega(1)\frac{1}{r} & \text{if } \alpha = 1\\ C+o(1) & \text{if } \alpha < 1 \end{cases}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- ▶ Different behaviours of \mathcal{V} and V(u)
- Polynomial decay in the critical case

Proof: second moment method

 $\mathit{u}_0 \in \mathbb{S}^1$ fixed

$$\begin{split} Y_r &= Y_r(\varepsilon) := \{ u \in \mathbb{S}^1 : \langle u, u_0 \rangle \in [0, \varepsilon) \text{ and } [0, ru] \subset \mathbb{H}^2 \setminus \mathcal{O} \} \\ y_r &= y_r(\varepsilon) := \int_{Y_r(\varepsilon)} d\theta \end{split}$$

$$\frac{\mathbb{E}[y_r]^2}{\mathbb{E}[y_r^2]} \leq \mathbb{P}[Y_r \neq \emptyset] = \mathbb{P}[\mathcal{V}(\varepsilon) \geq r] \leq 4\frac{\mathbb{E}[y_r]^2}{\mathbb{E}[y_r^2]}$$

◆□ > ◆□ > ◆ □ > ● □ >

where

$$\mathbb{E}[y_r(\varepsilon)] = \varepsilon \mathbb{P}[u_0 \in Y_r(\varepsilon)]$$
$$\mathbb{E}[y_r(\varepsilon)^2] = \Theta\left(\varepsilon \int_0^\varepsilon \mathbb{P}[u_0, u_\theta \in Y_r(\varepsilon)]d\theta\right)$$

Proof

Upper bound of the second moment method

$$\mathbb{P}[Y_r \neq \emptyset] = \frac{\mathbb{E}[y_r]}{\mathbb{E}[y_r | Y_r \neq \emptyset]}$$

$$\leq 2\frac{\mathbb{E}[y_r]}{\mathbb{E}[y_r | u_0 \in Y_r]} = \frac{2E[y_r]^2}{\varepsilon \int_0^\varepsilon \mathbb{P}[u_0, u_\theta \in Y_r] d\theta}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

 \leq : discretization and sort of 'Markovianity' of $\mathbf{1}_{Y_r}(u_{ heta})$

Calculation of $\mathbb{P}[u_0, u_{\theta} \in Y_r]$

Measure of the union of two hyperbolic cylinders Use of FKG inequality Near criticality: critical exponents $\mathcal{E} := \{ z \in \mathbb{H}^2 : [0, z] \in \mathbb{H}^2 \setminus \mathcal{O} \}$ When $\lambda \geq \lambda = -(2\mathbb{P}[\operatorname{sigh}(\mathcal{P})])^{-1}$

$$\mathbb{E}[\mu_{\mathbb{H}^2}(\mathcal{E})] = \Theta\left(\frac{1}{\alpha-1}\right) \text{ and } \mathbb{E}[\mathcal{V}] = \Theta\left(\frac{1}{\alpha-1}\right)$$

Rarefaction of the Boolean model When $\lambda \searrow 0$, $\mathbb{P}[\mathcal{V} = \infty] \rightarrow 1$

Intensity as a functional of the radius

R deterministic For r > 0 and $p \in (0, 1)$, \exists explicit $\lambda(R)$ s.t. $\lim_{R \to 0} \mathbb{P}[\mathcal{V} \leq r] = p$.

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Visibility in the vacancy of the Boolean model in \mathbb{R}^d

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへで

Visibility in a hyperbolic Boolean model

Visibility in a Poisson line tessellation Poisson line tessellation Visibility in the Poisson line tessellation

Poisson line tessellation

 $\mathcal{P}_{\lambda}:=\mathsf{Poisson}$ point process in \mathbb{H}^2 of intensity measure

$$u_{\lambda}(dr, d\theta) = 2\lambda \frac{1+r^2}{(1-r^2)^2} dr d\theta$$

 $\mathcal{L} := \bigcup_{x \in \mathcal{P}_{\lambda}} G_x$ invariant by Aut(\mathbb{D})

where $G_x :=$ hyperbolic line containing x and orthogonal to [0, x]

$$\mathcal{V} := \sup\{r > 0 : \exists \ u \in \mathbb{S}^1 \text{ s.t. } ru \cap \mathcal{L} = \emptyset\}$$

 $\ensuremath{\mathcal{V}}$ circumscribed radius of the zero-cell from the tessellation

$$\mathbb{P}[\mathcal{V} \ge r] = \begin{cases} \Omega(1)e^{-(2\lambda-1)r} & \text{if } \lambda > 1/2\\ \Omega(1)\frac{1}{r} & \text{if } \lambda = 1/2\\ C+o(1) & \text{if } \lambda < 1/2 \end{cases}$$

Euclidean case No visibility percolation, explicit distribution in dimension two (2002)

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへで

► Visibility star, study of its radius-vector function

- Number of visible obstacles
- ▶ Extension to other covering models with hard spheres

- Behaviour of the visibility near the criticality
- ► Calculation of a Hausdorff dimension
- Visibility inside balls

Thank you for your attention!

<ロト < 回 ト < 三 ト < 三 ト 三 の < ()</p>