Visibility estimates in Euclidean and hyperbolic

 germ-grain models and line tessellations
Pierre Calka

Lille, Stochastic Geometry Workshop, 30 March 2011

Outline

Visibility in the vacancy of the Boolean model in \mathbb{R}^{d}

Visibility in a hyperbolic Boolean model

Visibility in a Poisson line tessellation

Collaborators: Julien Michel (Poitiers), Sylvain Porret-Blanc (Lyon) and Johan Tykesson (Weizmann Institute, Rehovot)

Outline

Visibility in the vacancy of the Boolean model in \mathbb{R}^{d}
Boolean model in \mathbb{R}^{d}
Visibility star and maximal visibility
Visibility in one direction and spherical contact length
Distribution tail of the maximal visibility
Proof: connection with random coverings of the sphere
Proof: covering probability of \mathbb{S}^{d-1}
Proof: asymptotic estimation of the covering probability Continuum percolation vs. visibility percolation in \mathbb{R}^{d}
Convergence with small obstacles
Visibility to infinity in the Euclidean space

Visibility in a hyperbolic Boolean model

Boolean model in \mathbb{R}^{d}

- $\mathbf{X}_{\lambda}:=$ homogeneous Poisson point process of intensity λ in \mathbb{R}^{d}
- $\mathbf{K}:=$ random convex compact set containing the origin and with an a.s. bounded diameter
- $K_{x}, x \in \mathbf{X}:=$ collection of i.i.d. random convex grains distributed as \mathbf{K}
- $\mathcal{O}:=\bigcup_{x \in \mathbf{X}}\left(x \oplus K_{x}\right)$ occupied phase
- Process conditioned on the event $A=\{O \notin \mathcal{O}\}$, $\mathbb{P}[A]=\exp \left(-\lambda \mathbb{E}\left[V_{d}(\mathbf{K})\right]\right)$
- $O:=$ observer at the origin

Visibility star and maximal visibility

Visibility star and maximal visibility

$\mathcal{V}:=$ maximal visibility, i.e. distance to the furthest visible point

Visibility in one direction and spherical contact length

Visibility in direction $u \in \mathbb{S}^{d-1}$ $V(u):=\sup \left\{r>0:[0, r] u \subset \mathcal{O}^{c}\right\}$
$\mathbb{P}[V(u) \geq r]=$
$\exp \left(-\lambda \frac{s_{d-1}}{(d-1) s_{d}} \mathbb{E}\left[V_{d-1}(\mathbf{K})\right] r\right)$
Spherical contact length

$$
\mathcal{S}:=\inf _{u \in \mathbb{S}^{d-1}} V(u)
$$

$$
\begin{aligned}
& \mathbb{P}[\mathcal{S} \geq r]= \\
& \exp \left(-\lambda \mathbb{E}\left[V_{d}(B(0, r) \oplus \mathbf{K})-V_{d}(\mathbf{K})\right]\right)
\end{aligned}
$$

Distribution tail of the maximal visibility

$$
\begin{aligned}
\rho_{\max }(\mathbf{K}):=\sup \{r & >0: \\
& \left.\exists(d-1) \text {-dimensional ball } B_{d-1}(x, r) \subset \mathbf{K}\right\}
\end{aligned}
$$

If $(d=2)$ or
if $\left(d \geq 3\right.$ and $\mathbb{P}\left[\rho_{\max }(\mathbf{K}) \leq \varepsilon^{d-2}\right]=O(\varepsilon)$ when $\left.\varepsilon \rightarrow 0\right)$, then

$$
\log \mathbb{P}[\mathcal{V} \geq r]=\log \mathbb{P}[V(u) \geq r]+d(d-1) \log (r)+O(1)
$$

Remark. Non-asymptotic upper and lower bounds in dimension two

Proof: connection with random coverings of the sphere

Each obstacle creates a shadow on the sphere of radius r :

$\mathbb{P}[\mathcal{V} \geq r]=$ probability that the sphere of radius r is not covered

Proof: covering probability of \mathbb{S}^{d-1}

- n i.i.d. random geodesic balls in the unit-sphere \mathbb{S}^{d-1} with uniformly distributed centers and ν-distributed random (normalised) radii (where ν is a probability measure on $[0,1 / 2]$).
- Probability to cover \mathbb{S}^{d-1} ?

Proof: asymptotic estimation of the covering probability

$$
\begin{aligned}
& \mathbb{P}\left[u_{0} \text { not covered }\right]=\left(1-\int \varphi_{d}(z) \mathrm{d} \nu(z)\right)^{n}\left(u_{0} \in \mathbb{S}^{d-1} \text { fixed }\right) \\
& \text { where } \varphi_{d}(t)=\frac{s_{d-1}}{s_{d}} \int_{0}^{\pi t} \sin ^{d-2}(\theta) \mathrm{d} \theta, 0 \leq t \leq 1 \text { and } s_{d} \text { is the area of } \mathbb{S}^{d-1} . \\
& \text { If } \nu([0, \varepsilon])=O(\varepsilon) \text { when } \varepsilon \rightarrow 0 \text {, then } \\
& \log \mathbb{P}\left[\mathbb{S}^{d-1} \text { uncovered }\right]=\log \mathbb{P}\left[u_{0} \text { uncovered }\right]+(d-1) \log (n)+O(1) .
\end{aligned}
$$

The expansion only depends on the mean $\varphi_{d}^{-1}\left(\int \varphi_{d}(z) \mathrm{d} \nu(z)\right)$.

Percolation in visibility vs. continuum percolation

Continuum percolation:
if the vacant set has an unbounded component with probability >0
Percolation in visibility:
if the visibility is not finite with probability >0
Roy (1990), Meester \& Roy (1994), Sarkar (1997)
In \mathbb{R}^{2} with balls, $\exists 0<\lambda_{c}<\infty$ s.t. with probability 1

λ	\# unbounded c.c. of \mathcal{O}	\# unbounded c.c. of $\mathbb{H}^{2} \backslash \mathcal{O}$
$\left[0, \lambda_{c}\right)$	0	1
λ_{c}	0	0
$\left(\lambda_{c}, \infty\right)$	1	0

But there is no percolation in visibility in \mathbb{R}^{d} !

Convergence with small obstacles

Context: deterministic radii all equal to $R \rightarrow 0$.
Question: behaviour of the associated visibility \mathcal{V}_{R} ?

$$
\mathcal{V}_{R}=-c_{d}^{(1)} \frac{\log (R)}{R^{d-1}}+c_{d}^{(2)} \frac{\log |\log (R)|}{R^{d-1}}+\frac{c_{d}^{(3)}+c_{d}^{(4)} \xi_{R}}{R^{d-1}}
$$

where ξ_{R} converges in distribution to the Gumbel law when $R \rightarrow 0$.

Proof. $\mathbb{P}\left[\mathcal{V}_{R} \geq f(R)\right]=$ probability to cover the unit-sphere with a large number of small spherical caps.

Janson (1986): Poisson number of mean Λ of spherical caps with radius εU (U bounded variable). If

$$
K_{1} \varepsilon^{d-1} \Lambda+(d-1) \log (\varepsilon)-(d-1) \log (-\log (\varepsilon))+K_{2} \underset{\varepsilon \rightarrow 0}{\longrightarrow} u
$$

then the covering probability goes to $\exp \left(-e^{-u}\right)$.

Visibility to infinity in the Euclidean space

Shrinking obstacles when the distance to the origin increases:

$$
\mathcal{O}_{\beta}:=\bigcup_{x \in \mathbf{X}} B\left(x,\|x\|^{\beta}\right)
$$

Visibility to infinity with probability >0 iff $\beta<-1 /(d-1)$

Rarefaction of the Boolean model at large distances:
$\mathbf{Y}_{\alpha}:=$ Poisson point process of intensity measure $\|x\|^{\alpha-d} \mathrm{~d} x$
Visibility to infinity with probability >0 iff $\alpha<1$

Outline

Visibility in the vacancy of the Boolean model in \mathbb{R}^{d}

Visibility in a hyperbolic Boolean model Poincaré disc model Boolean model in the hyperbolic plane Continuum percolation vs. visibility percolation in \mathbb{H}^{2} Visibility in one direction in \mathbb{H}^{2}
Distribution tail of the maximal visibility in \mathbb{H}^{2}
Proof: second moment method
Further results

Visibility in a Poisson line tessellation

Poincaré disc model

- Model Unit disc $\mathbb{D}=\mathbb{H}^{2}$ equipped with the hyperbolic metric

$$
d s^{2}=4 \frac{d x^{2}+d y^{2}}{\left(1-\left(x^{2}+y^{2}\right)\right)^{2}}
$$

- Length $L(\gamma)=2 \int_{0}^{1} \frac{\left|\gamma^{\prime}(t)\right|}{1-|\gamma(t)|^{2}} d t$
- Isometries $\operatorname{Aut}(\mathbb{D})=\left\{z \longmapsto \frac{a z+\bar{c}}{c z+\bar{a}}:|a|^{2}-|c|^{2}=1\right\}$
- Area

$$
\mu_{\mathbb{H}}(d r, d \theta)=\frac{4 r}{\left(1-r^{2}\right)^{2}} \mathbf{1}_{] 0,1[}(r) d r d \theta
$$

- Balls $\quad R>0, \bar{R}:=\tanh (R / 2)$

$$
B_{\mathbb{H}}(z, R)=B_{\mathbb{R}^{2}}\left(z \frac{1-\bar{R}^{2}}{1-|z|^{2} \bar{R}^{2}}, \bar{R} \frac{1-|z|^{2}}{1-|z|^{2} \bar{R}^{2}}\right)
$$

Boolean model in the hyperbolic plane

$\mathbf{X}_{\lambda}:=$ Poisson point process of intensity measure $\lambda \mu_{\mathbb{H}}(\mathrm{d} r)$
$\mathcal{O}:=\bigcup_{z \in \mathbf{X}_{\lambda}} B_{\mathbb{H}}\left(z, R_{z}\right)=\bigcup_{z \in \mathbf{X}_{\lambda}} B_{\mathbb{R}^{2}}\left(z \frac{1-\overline{R_{z}}}{1-|z|^{2}} \overline{R_{z}^{2}}, \overline{R_{z}} \frac{1-|z|^{2}}{1-|z|^{2} \overline{R_{z}^{2}}}\right)$
where $R_{x}, x \in \mathbf{X}_{\lambda}$, bounded i.i.d. r.v.

Continuum percolation and visibility percolation in \mathbb{H}^{2}

Tykesson (2005)
$\exists 0<\lambda_{0}<\lambda_{v}<\infty$ s.t. with probability 1

λ	\# unbounded c.c. of \mathcal{O}	\# unbounded c.c. of $\mathbb{H}^{2} \backslash \mathcal{O}$
$\left[0, \lambda_{o}\right]$	0	1
$\left(\lambda_{0}, \lambda_{v}\right)$	∞	∞
$\left[\lambda_{v}, \infty\right)$	1	0

Benjamini, Jonasson, Schramm, Tykesson (2009) (deterministic R)

- Visibility to infinity with probability >0 iff $2 \lambda \sinh (R)<1$
- Visibility to infinity with probability >0 inside balls iff $\lambda>\lambda_{c}^{\prime}$

Visibility in one direction in \mathbb{H}^{2}

Deterministic R
Benjamini, Jonasson, Schramm, Tykesson (2009)

$$
\begin{aligned}
V(u):= & \sup \left\{r>0:[0, r u] \subset \mathbb{H}^{2} \backslash \mathcal{O}\right\} \\
& \mathbb{P}[V(u) \geq r]=\Theta\left(e^{-\alpha r}\right) \quad \text { where } \alpha=2 \lambda \sinh (R)
\end{aligned}
$$

Proof.

- Positive correlations $\mathbb{E}[\varphi(\mathcal{O}) \psi(\mathcal{O})] \geq \mathbb{E}[\varphi(\mathcal{O})] \mathbb{E}[\psi(\mathcal{O})]$ for all bounded, increasing and measurable functions φ and ψ

$$
\mathbb{P}[V(u) \geq r+s] \geq \mathbb{P}[V(u) \geq r] \mathbb{P}[V(u) \geq s], \quad r, s>0
$$

- Calculation of $\mu_{\mathbb{H}^{2}}\left(\left\{z \in \mathbb{H}^{2}: d_{\mathbb{H}^{2}}(z,[0, r u])<R\right\}\right)$

Random R : if $\mathbb{E}\left(e^{R}\right)<\infty, \alpha=2 \lambda \mathbb{E}[\sinh (R)]$

Distribution tail of the maximal visibility in \mathbb{H}^{2}

$$
\begin{aligned}
& \mathcal{V}:=\sup \left\{r>0: \exists u \in \mathbb{S}^{1} \text { s.t. } r u \in \mathbb{H}^{2} \backslash \mathcal{O}\right\} \\
& \qquad \mathbb{P}[\mathcal{V} \geq r]= \begin{cases}\Omega(1) e^{-(\alpha-1) r} & \text { if } \alpha>1 \\
\Omega(1) \frac{1}{r} & \text { if } \alpha=1 \\
C+o(1) & \text { if } \alpha<1\end{cases}
\end{aligned}
$$

- Different behaviours of \mathcal{V} and $V(u)$
- Polynomial decay in the critical case

Proof: second moment method

$u_{0} \in \mathbb{S}^{1}$ fixed
$Y_{r}=Y_{r}(\varepsilon):=\left\{u \in \mathbb{S}^{1}:\left\langle u, u_{0}\right\rangle \in[0, \varepsilon)\right.$ and $\left.[0, r u] \subset \mathbb{H}^{2} \backslash \mathcal{O}\right\}$
$y_{r}=y_{r}(\varepsilon):=\int_{Y_{r}(\varepsilon)} d \theta$

$$
\frac{\mathbb{E}\left[y_{r}\right]^{2}}{\mathbb{E}\left[y_{r}^{2}\right]} \leq \mathbb{P}\left[Y_{r} \neq \emptyset\right]=\mathbb{P}[\mathcal{V}(\varepsilon) \geq r] \leq 4 \frac{\mathbb{E}\left[y_{r}\right]^{2}}{\mathbb{E}\left[y_{r}^{2}\right]}
$$

where
$\mathbb{E}\left[y_{r}(\varepsilon)\right]=\varepsilon \mathbb{P}\left[u_{0} \in Y_{r}(\varepsilon)\right]$
$\mathbb{E}\left[y_{r}(\varepsilon)^{2}\right]=\Theta\left(\varepsilon \int_{0}^{\varepsilon} \mathbb{P}\left[u_{0}, u_{\theta} \in Y_{r}(\varepsilon)\right] d \theta\right)$

Proof

Upper bound of the second moment method

$$
\begin{aligned}
\mathbb{P}\left[Y_{r} \neq \emptyset\right] & =\frac{\mathbb{E}\left[y_{r}\right]}{\mathbb{E}\left[y_{r} \mid Y_{r} \neq \emptyset\right]} \\
& \leq 2 \frac{\mathbb{E}\left[y_{r}\right]}{\mathbb{E}\left[y_{r} \mid u_{0} \in Y_{r}\right]}=\frac{2 E\left[y_{r}\right]^{2}}{\varepsilon \int_{0}^{\varepsilon} \mathbb{P}\left[u_{0}, u_{\theta} \in Y_{r}\right] d \theta}
\end{aligned}
$$

\leq : discretization and sort of 'Markovianity' of $\mathbf{1}_{Y_{r}}\left(u_{\theta}\right)$
Calculation of $\mathbb{P}\left[u_{0}, u_{\theta} \in Y_{r}\right]$
Measure of the union of two hyperbolic cylinders Use of FKG inequality

Further results

Near criticality: critical exponents

$$
\begin{aligned}
& \mathcal{E}:=\left\{z \in \mathbb{H}^{2}:[0, z] \in \mathbb{H}^{2} \backslash \mathcal{O}\right\} \\
& \text { When } \lambda \searrow \lambda_{c}=(2 \mathbb{E}[\sinh (R)])^{-1}, \\
& \mathbb{E}\left[\mu_{\mathbb{H}^{2}}(\mathcal{E})\right]=\Theta\left(\frac{1}{\alpha-1}\right) \text { and } \mathbb{E}[\mathcal{V}]=\Theta\left(\frac{1}{\alpha-1}\right)
\end{aligned}
$$

Rarefaction of the Boolean model
When $\lambda \searrow 0, \mathbb{P}[\mathcal{V}=\infty] \rightarrow 1$

Intensity as a functional of the radius

$$
\begin{aligned}
& R \text { deterministic } \\
& \text { For } r>0 \text { and } p \in(0,1), \exists \text { explicit } \lambda(R) \text { s.t. } \lim _{R \rightarrow 0} \mathbb{P}[\mathcal{V} \leq r]=p .
\end{aligned}
$$

Outline

Visibility in the vacancy of the Boolean model in \mathbb{R}^{d}

Visibility in a hyperbolic Boolean model

Visibility in a Poisson line tessellation
Poisson line tessellation
Visibility in the Poisson line tessellation

Poisson line tessellation

$\mathcal{P}_{\lambda}:=$ Poisson point process in \mathbb{H}^{2} of intensity measure

$$
\nu_{\lambda}(d r, d \theta)=2 \lambda \frac{1+r^{2}}{\left(1-r^{2}\right)^{2}} d r d \theta
$$

$\mathcal{L}:=\bigcup_{x \in \mathcal{P}_{\lambda}} G_{x} \quad$ invariant by $\operatorname{Aut}(\mathbb{D})$
where $G_{x}:=$ hyperbolic line containing x and orthogonal to $[0, x]$

Visibility in the Poisson line tessellation

$$
\mathcal{V}:=\sup \left\{r>0: \exists u \in \mathbb{S}^{1} \text { s.t. } r u \cap \mathcal{L}=\emptyset\right\}
$$

\mathcal{V} circumscribed radius of the zero-cell from the tessellation

$$
\mathbb{P}[\mathcal{V} \geq r]= \begin{cases}\Omega(1) e^{-(2 \lambda-1) r} & \text { if } \lambda>1 / 2 \\ \Omega(1) \frac{1}{r} & \text { if } \lambda=1 / 2 \\ C+o(1) & \text { if } \lambda<1 / 2\end{cases}
$$

Euclidean case

No visibility percolation, explicit distribution in dimension two (2002)

Prospects

- Visibility star, study of its radius-vector function
- Number of visible obstacles
- Extension to other covering models with hard spheres
- Behaviour of the visibility near the criticality
- Calculation of a Hausdorff dimension
- Visibility inside balls

Thank you for your attention!

