DIFFERENTIABILITY OF THE POISSON-BOOLEAN PERCOLATION PROBABILITY by Mathew Penrose

Consider a Boolean model consisting of balls of radius distribution F centred on Poisson points of intensity λ in \mathbb{R}^d , with $d \ge 2$ fixed. Denote by θ the covered volume fraction of the infinite cluster, also known as the percolation probability. We discuss the differentiability of θ as a function of λ , or more generally as a function of the measure λF , in the supercritical phase. We also describe a result stating that $\theta(\lambda)$ grows at least linearly just above the critical value of λ . An interesting feature of the proof is that it uses the continuum Reimer inequality. We shall also discuss similar results for the *capacity functional* of the infinite cluster; this is the set function mapping each $A \subset \mathbb{R}^d$ to the probability that A intersects with the infinite cluster. This is joint work with Günter Last and Sergei Zuyev.