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Abstract. — We study recurrence and non-recurrence sets for dynamical systems on com-
pact spaces, in particular for products of rotations on the unit circle T. A set of integers is
called r-Bohr if it is recurrent for all products of r rotations on T, and Bohr if it is recurrent
for all products of rotations on T. It is a result due to Katznelson that for each r ≥ 1 there
exist sets of integers which are r-Bohr but not (r + 1)-Bohr. We present new examples of
r-Bohr sets which are not Bohr, thanks to a construction which is both flexible and com-
pletely explicit. Our results are related to an old combinatorial problem of Veech concerning
syndetic sets and the Bohr topology on Z, and its reformulation in terms of recurrence sets
which is due to Glasner and Weiss.

1. Introduction

The general topic of this paper is the study of recurrence and non-recurrence sets for

dynamical systems. In the topological setting, recurrence sets are defined as follows: a

dynamical system is a pair (X, d, f), where (X, d) is a compact metric space for the distance

d and f is a continuous map of (X, d) into itself. If (nk)k≥0 is a strictly increasing sequence,

we say that {nk} is a recurrence set (or a Birkhoff set) if for any dynamical system (X, f)

and any ε > 0 there exists a point x ∈ X and a k ≥ 0 such that d(fnk(x), x) < ε, where

fn = f ◦ . . . ◦ f (n times) denotes the nth iterate of f . In the measure theoretic setting

recurrence sets, which are often called Poincaré sets in this context, are defined in this

way: {nk} is a recurrence set if for any probability space (X,B,m) and any measure-

preserving transformation T of X, there exists for any set A ∈ B with m(A) > 0 a k ≥ 0

such that m(TnkA ∩A) > 0.

It is not difficult to see that any Poincaré set is a Birkhoff set: indeed if {nk} is not a

Birkhoff set, let (X, d, f) be a dynamical system such that for some ε > 0, d(fnk(x), x) ≥ ε
for any k ≥ 0 and any x ∈ X. Without loss of generality, (X, d, f) can be supposed to be

a minimal system, and hence there exists a probability measure m on X whose support
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is X and which is invariant by f . There exists then a non-empty open set U in X such

that fnk(U) ∩ U = ∅ for any k ≥ 0. As m(U) > 0, it follows that {nk} is not a Poincaré

set. The converse assertion is not true: there are Birkhoff sets which are not Poincaré sets

[18], see also [24].

Recurrence is a central topic in the study of dynamical systems, and we refer the reader

to one of the classical books [23] or [20] for the basic facts, and to the works [10], [9], [13]

or [14] for a deeper study of various recurrence properties, as well as their applications to

number theory and combinatorics.

In the rest of the paper, we say that {nk} is a recurrence set for the dynamical system

(X, d, f) if for all ε > 0 there exists k ≥ 0 and x ∈ X such that d(fnk(x), x) < ε, and that

it is a recurrence set in the ergodic sense for (X,m, T ) if for any A ∈ B with m(A) > 0

there exists a k ≥ 0 such that m(TnkA ∩A) > 0.

Standard examples of recurrence sets (besides the obvious example of the set {k})
are the set of squares {k2}, or more generally the sets of the form {p(k)} where p is a

polynomial taking integer values on integers with p(0) = 0, difference sets D−D where D

is any infinite set in N, thick sets (i.e. sets containing arbitrarily long intervals), the sets

P − 1 and P + 1, where P denotes the set of primes, or more generally the so called van

der Corput (vdC) sets. See, for instance [21, p. 109] or [4] for more information on vdC

sets. Some generalized polynomials also yield recurrence sets, see [3].

The starting point of this paper is an old problem in combinatorial number theory which

is to know whether any difference set S − S, where S is a subset of Z with bounded gaps,

must contain a Bohr neighborhood of zero. It is known by a result of Veech [22] that this

is true up to a set of density zero, but it is not known whether this set can be dispensed

with. It is shown by Glasner in [11] and Boshernitzan and Glasner in [6] (see also the

papers [14] by Glasner and Weiss and [24] by Weiss) that this problem is equivalent to

the following question concerning recurrence sets:

Question 1.1. — [11], [14], [6], [24] If {nk} is a recurrence set for all finite products of

circle rotations, is it a recurrence set?

Question 1.1 was studied in several papers, for instance in [11], [24], [6], [19] and [17]

(where an equivalent formulation in terms of Cayley numbers of graphs is given). Sets

which are recurrent for all finite products of circle rotations are called Bohr sets. If r is

a positive integer, a set which is recurrent for all products of r rotations on Tr is called

r-Bohr. In view of Question 1.1, it comes as a natural problem to ask whether an r-Bohr

set is necessarily a Bohr set. It was shown by Katznelson in [17] that it is not the case.

More precisely, the following result was proved in [17]:

Theorem 1.2. — [17] Let r ≥ 1. For each (r + 1)-tuple (λ1, . . . , λr+1) of elements of T,

λj = e2iπθj , θj ∈ [0, 1) with (θ1, . . . , θr+1) Q-independent, and for each δ ∈ (0, 1), the set

Dδ
λ1,...,λr+1

= {n ≥ 0 ; min
j=1,...,r+1

|λnj + 1| < δ}

is an r-Bohr set which is not (r + 1)-Bohr.
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The sets Dδ
λ1,...,λr+1

are “large” sets in the sense that they have positive density. It is

possible to obtain from Theorem 1.2 many Bohr sets: given a sequence (δr)r≥1 of numbers

in (0, 1) and families ((λ1,r, . . . , λr+1,r))r≥1, the set D =
⋃
r≥1D

δr
λ1,r,...,λr+1,r

is obviously a

Bohr set. However, it is clear that the set D is a Poincaré set: for each r ≥ 1, the (r+ 1)-

tuple (λ1,r, λ
2
2,r . . . , λ

r+1
r+1,r) is Q-independent in the sense of Theorem 1.2, and thus the set

Dδr
λ1,r,...,λr+1,r

contains, for some q ≥ 1, the integers q, 2q, . . . , (r+1)q. This implies that for

any measure-preserving transformation T of a probability space (X,B,m), any set A ∈ B
which is such that m(TnA ∩ A) = 0 for each n ∈ Dδr

λ1,r,...,λr+1,r
is such that m(A) < 1

r .

The appearance of such sequences (q, 2q, . . . , (r+ 1)q) comes from the particular structure

of the sets Dδr
λ1,r,...,λr+1,r

, and it is natural to wonder whether it is possible to construct

other kinds of r-Bohr sets which are not Bohr, which would have a different arithmetical

structure and come closer to a potential counterexample to Question 1.1. It is the aim of

this paper to provide an alternative construction of r-Bohr sets which are not Bohr, which

has the advantage over the construction of [17] to be both flexible and explicit. Our main

result can be stated as follows:

Theorem 1.3. — For each r ≥ 1 there exist sets {n(r)
k } of integers of density zero which

are r-Bohr but not (2r−1 + 1)-Bohr, and which have the following structure:

{n(r)
k } = {n(r)

k,0} ∪
⋃

A⊆{1,...,r−1}

{n(r)
k,A}

where

{n(r)
k,0} =

⋃
N≥1

B
(r)
N,0 and {n(r)

k,A} =
⋃
N≥1

B
(r)
N,A, A ⊆ {1, . . . , r − 1}

and

B
(r)
N,0 = B

(r)

ε
(r)
N ,0

= {HNq + 1 ; 1 ≤ q ≤ Q(r)
N }

B
(r)
N,∅ = B

(r)

ε
(r)
N ,∅

= {HN∆
(r)
N,∅}

B
(r)
N,A = B

(r)

ε
(r)
N ,A

= {HN∆
(r)
N,A(LN j + 1) ; 1 ≤ j ≤ Θ

(r)
N },

where (LN )n≥1 is a rapidly growing sequence of integers, (∆
(r)
N,A)N≥1, (Θ

(r)
N )N≥1 and

(Q
(r)
N )N≥1 are sequences of integers depending from (LN )N≥1, and (HN )N≥1 is a very

rapidly increasing sequence of integers independent from all the other parameters.

The arithmetic structure of these sets {n(r)
k } is very explicit, and one can construct

from them many examples of Bohr sets. But contrary to the sets from [17], it is for most

choices of parameters in the construction not clear whether these sets are recurrent sets

or not. So our construction does not solve Question 1.1, but highlights how delicate this

question is.

The paper is organized as follows: Section 2 is devoted to the proof of Theorem 1.3 in

the case where r = 1 (here it is completely elementary). The proof of Theorem 1.3 for

general r is the object of Sections 3 and 4. Lastly, we construct in Section 6 some Bohr

sets obtained from Theorem 1.3, and present some final comments and remarks.
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In the whole paper we will denote by Rλ the rotation on T associated to λ ∈ T.

2. Proof of Theorem 1.3 for r = 1

Let us begin by recalling what we want to prove: we are looking for a set {nk} of the

form given in Theorem 1.3 which is recurrent for all circle rotations, i.e. such that

for any λ ∈ T, any ε > 0, there exists a k such that |λnk − 1| < ε

but which is not recurrent for all products of two circle rotations, i.e. for which there exist

µ0, µ1 ∈ T and δ > 0 such that

for any k ≥ 0, max(|µnk0 − 1|, |µnk1 − 1|) > δ.

We will use the following notation

M1 = inf
{θ}6=0

|e2iπθ − 1|
{θ}

and M2 = sup
{θ}6=0

|e2iπθ − 1|
{θ}

·

We will denote by bθc the integer part of the real number θ, and by {θ} its distance to Z.

We will also need the following simple fact:

Lemma 2.1. — There exist two universal constants C,C ′ ≥ 1 such that for any γ > 0

and ε > 0, for any µ ∈ T, the following holds true:

if γ < |µ− 1| < ε, then for any ν ∈ T there exists an integer p with 1 ≤ p ≤ bC′γ c such

that |µp − ν| ≤ Cε.

Proof of Lemma 2.1. — Write µ as µ = e2iπθ, |θ| ≤ 1
2 . Without loss of generality, we can

suppose that θ > 0. We have M1θ ≤ |e2iπθ − 1| ≤ M2θ, and thus γ
M2

< θ < ε
M1

. Let

κ = bM2
γ c. Since {θ} > 1

κ , the fractional parts of the κ numbers θ, 2θ, . . . , κθ form a θ-net

of (0, 1): for any α ∈ R there exists a p with 1 ≤ p ≤ κ such that {pθ − α} ≤ θ < ε
M1

.

Hence

|e2iπpθ − e2iπα| ≤M2
ε

M1
,

and this proves Lemma 2.1 with C = M2
M1

and C ′ = M2.

The key lemma for the proof of Theorem 1.3 in the 1-dimensional case is the following:

Lemma 2.2. — For any ε > 0 there exist two positive integers Σ,Θ ≥ 1 such that for

any λ ∈ T, any integers L ≥ 1 and H ≥ 1, and any S ∈ Z, one of the following two

assertions is true: either

|λHΣL − 1| < ε(1)

or

there exists a j ∈ {1, . . . ,Θ} such that |λHLj+S − 1| < ε.(2)

We will apply Lemma 2.2 with two values of S only: S = 1 and S = H. In the first

case the set of integers appearing in (2) is simply a shifted arithmetic progression of step

HL, and in the second case the set we get a multiple of a shifted arithmetic progression

of step L.
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Proof of Lemma 2.2. — The idea of the proof can be summarized as follows: define an

integer κ as κ = b4πCC′

ε c. If λHLl is not too close to 1 for some l ∈ {1, . . . , κ}, then by

Lemma 2.1 any µ ∈ T (in particular λ−S) can be ε-approximated by a power of λHL which

is not too large, and (2) is true. If λHLl is too close to 1 for each l ∈ {1, . . . , κ}, then (1)

holds true. Let us now be more precise, and consider the quantity γ = minl=1,...,κ |λHLl−1|.
By the Dirichlet principle, we know that γ ≤ M2

κ < ε
C since M2 = C ′. There are two cases

to consider.

Case 1: we have γ < ε
4πC

1
κ! ·

This means that there exists an l ∈ {1, . . . , κ} such that |λHLl − 1| < ε
4πC

1
κ! . Since

1 ≤ l ≤ κ, l divides κ!, and so it makes sense to write

|(λHLl)
κ!
l − 1| = |λHLκ! − 1| < κ!

l

ε

4πC

1

κ!
≤ ε

4πC
·

So (1) is true with Σ = κ!.

Case 2: we have γ ≥ ε
4πC

1
κ! ·

This implies that there exists an l ∈ {1, . . . , κ} such that

ε

4πC

1

κ!
≤ |λHLl − 1| ≤ γ < ε

C
.

By Lemma 2.1, there exists an integer p ∈ {1, . . . , b4πCC′

ε κ!c} such that

|λHLlp − λ−S | = |λHLlp+S − 1| < ε.

Since 1 ≤ lp ≤ κb4πCC′

ε κ!c we get, setting Θ = κb4πCC′

ε κ!c, a j ∈ {1, . . . ,Θ} such that

|λHLj+S − 1| < ε

and (2) is true. Lemma 2.2 is proved.

Remark 2.3. — Let us record here for further use the expression of Σ and Θ which we

obtained in the proof of Lemma 2.2:

Σ = (b4πCC
′

ε
c)! and Θ = b4πCC

′

ε
cb4πCC

′

ε
(b4πCC

′

ε
c)!c.

Observe that Θ is much larger than Σ and that given any integer A ≥ 1, one can ensure

by taking ε sufficiently small that A divides Σ.

We are now ready for the proof of Theorem 1.3 for r = 1.

Proof of Theorem 1.3 for r = 1. — We construct two sets {nk,0} and {nk,1} by induction

on N and by blocks, applying repeatedly Lemma 2.2. We start by taking at the first step

ε1 = 2−1. Lemma 2.2 gives us a Θ1 and a Σ1, then we choose L1 = 1, S1 = 1, a large even

number H1, and we take for the first Θ1 elements of the set {nk,0} the numbers

H1 + 1, 2H1 + 1, . . . ,H1Θ1 + 1

which are all odd. For the first element of the set {nk,1} we take the number H1Σ1, which

is even. Then we take ε2 = 2−2, obtain Θ2 and Σ2, then take L2 = 1, S2 = 1 and H2 very

large and even (much larger than H1Θ1 in particular). We continue the set {nk,0} with

the numbers

H2 + 1, 2H2 + 1, . . . ,H2Θ2 + 1,
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and we take for the second element of the set {nk,1} the number H2Σ2. We continue in

this fashion:

{nk,0} =
⋃
p≥1

{Hp + 1, 2Hp + 1, . . . ,HpΘp + 1}

and

{nk,1} = {HpΣp ; p ≥ 1}
where Σp and Θp result from the application of Lemma 2.2 to εp = 2−p, where Lp = 1,

Sp = 1, and the sequence (Hp) consists of even numbers and increases very rapidly.

Observe that these two sets are disjoint, since all the elements in the first set are odd

while all elements in the second set are even, and that Σp is much smaller than Θp by

Remark 2.3, so that the set {nk} = {nk,0} ∪ {nk,1} looks like this:

{nk} =
⋃
p≥1

{Hp + 1, 2Hp + 1, . . . ,Hp(Σp − 1) + 1, HpΣp, HpΣp + 1, . . . ,HpΘp + 1}.

Now by Lemma 2.2, it is clear that for all λ ∈ T and all p ≥ 1 there exists a k such that

|λnk − 1| < 2−p, so {nk} is a recurrence set for any rotation of T.

It remains to find µ0, µ1 ∈ T such that {nk} is not recurrent for Rµ0 ×Rµ1 , and this is

not difficult thanks to the particular structure of the set {nk}. We will need the following

lemma, which is implicit in [1]:

Lemma 2.4. — There exists a positive constant M such that if (mk)k≥1 is any sequence

of integers such that
mk+1

mk
> 2 for all k ≥ 1, there exist uncountably many λ ∈ T such that

for all k ≥ 1,

|λmk − 1| ≤M mk

mk+1
·

Moreover, the set of such λ’s is 6π
m1

-dense in T. In particular if
mk+1

mk
→ +∞, there exists

an element λ ∈ T with |λ+ 1| ≤ 6π
m1

such that λmk tends to 1 at the rate mk
mk+1

.

For completeness’s sake we provide a short proof of Lemma 2.4.

Proof of Lemma 2.4. — For any k ≥ 1, let Ek be the set

Ek =

{
λ = e2iπθ ∈ T ; {mkθ} ∈

[
0, 2

mk

mk+1

]}
.

The set Ek is the union of a collection of disjoint closed sub-arcs of T of length 8π
mk+1

.

We write this collection as {I(k)
j }. The distance between two consecutive such sub-arcs is

equal to 2π
mk
− 8π

mk+1
. So any arc I of T of length greater than 4π

mk
+ 8π

mk+1
contains two arcs

of the collection {I(k)
j }. Now observe that 8π

mk+1
> 4π

mk+1
+ 8π

mk+2
, because mk+2 > 2mk+1.

It follows that any arc I
(k)
j contains two disjoint arcs of the collection {I(k+1)

j′ }, and in

this way we construct a Cantor-type subset K of (0, 1) such that for all k and all θ ∈ K,

{mkθ} ≤ 2 mk
mk+1

. So any λ = e2iπθ with θ ∈ K satisfies

|λmk − 1| ≤ 2M2
mk

mk+1
for any k ≥ 1.

Since any subarc of the set E1 contains a λ = e2iπθ with θ ∈ K, the set of such λ’s is

( 2π
m1

+ 8π
m2

)-dense in T, so it is 6π
m1

-dense in T. Lemma 2.4 is proved with M = 2M2.
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Let us now go back to the proof. The crucial observation is that the sequence (Hp)p≥1

may be chosen as rapidly growing as we want to. Let µ0 ∈ T, given by Lemma 2.4, be

such that |µ0 + 1| ≤ 6π
H1

and for all p ≥ 1,

|µHp0 − 1| ≤M Hp

Hp+1
·

Then for any j = 1, . . . ,Θp we have

|µHpj0 − 1| ≤MΘp
Hp

Hp+1
·

If H1 ≥ 6π and Hp+1 is sufficiently large with respect to Θp and Hp, we can ensure that

|µHpj0 − 1| ≤ 2−p for all p ≥ 1 and j = 1, . . . ,Θp, i.e. that |µHpj+1
0 − µ0| ≤ 2−p. Now

|µHpj+1
0 − 1| ≥ |µ0 − 1| − 2−p ≥ 2− 6π

H1
− 2−p ≥ 1

2 . Hence we get that |µnk,00 − 1| ≥ 1
2 for

all k. The argument for the construction of µ1 is exactly similar: Lemma 2.4 gives us a

µ1 such that |µ1 + 1| ≤ 6π
H1

and

|µHpΣp−1
1 − 1| < 2−p

for all p ≥ 1, and so |µHpΣp
1 − µ1| < 2−p. Hence |µnk,11 − 1| ≥ 1

2 for all k. Putting things

together we get that for all k,

max(|µnk0 − 1|, |µnk1 − 1|) ≥ 1

2
,

which is exactly what we wanted to prove. An easy modification of the proof shows that we

can replace the bound 1
2 above by any δ ∈ (0, 2) as close as we want to 2 (it suffices to take

H1 extremely large and to replace the quantities 2−p in the estimates above by a−p, where

a is some suitably large integer): for any δ ∈ (0, 2) there exists a set {nk} which is recurrent

for all rotations, but such that there exist µ0, µ1 ∈ T such that max(|µnk0 −1|, |µn1
1 −1|) > δ

for all k.

Remark 2.5. — We did not use the parameter L nor the parameter S of Lemma 2.2 in

this construction, but they will be necessary later on in the proof of Theorem 1.3. Lemma

2.2 also gives us other examples of sequences which are recurrent for all rotations, but not

recurrent for some product of two rotations. For instance the proof would work as well if

we considered for {nk,0} and {nk,1} the sets

{nk,0} =
⋃
p≥1

{Hp, 3Hp, . . . ,Hp(2Θp + 1)} and {nk,1} = {2HpΣp ; p ≥ 1}

(Sp = Hp and Lp = 2) or

{nk,0} =
⋃
p≥1

{Hp(Lpj + 1) ; 1 ≤ j ≤ Θp} and {nk,1} = {HpΣpLp ; p ≥ 1}

where (Lp) is a rapidly increasing sequence.

The proof of Theorem 1.3 uses induction on r ≥ 2 and the same kind of ideas, but

becomes more involved as the dimension grows. In order to make the underlying ideas of

the induction clear, we will present the 2-dimensional case first.
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3. The 2-dimensional case of Theorem 1.3

The first difficulty one encounters when trying to go from the 1-dimensional to the

2-dimensional case is that one needs a multi-dimensional analogue of the following fact,

which is the crux of the proof of Lemma 2.2: if θ ∈ (0, 1), then the numbers

e2iπθ, (e2iπθ)2, . . . , (e2iπθ)p

where p = b1
θc form a 2πθ-net of the unit circle, and an important point is the dependence

of p from θ. In the multi-dimensional case, we will use a weak form of the following result

of Kannan and Lovasz [16]:

Theorem 3.1. — Let (α1, . . . , αr) be an r-tuple of real numbers, and ε > 0. Suppose that

Q is an integer such that for any r-tuple (a1, . . . , ar) of elements of Z, which are not all

zero, the following inequality holds

Q

{
r∑
i=1

aiαi

}
+ ε

r∑
i=1

|ai| ≥ c0r
2(3)

where c0 is some positive universal constant. Then for all (β1, . . . , βr) ∈ Rr there exist

(p1, . . . , pr) ∈ Zr and q ∈ Z with |q| ≤ Q such that

|qαi − pi − βi| ≤ ε for each i = 1, . . . , r.

Condition (3) quantifies “how independent” the reals (α1, . . . , αr) are, and the size of

the bound Q depends from ε and from this rate of independence. Recall that {x} denotes

the distance of the real number x to Z.

Theorem 3.1 has the following consequence (we disregard the particular expression of

the bound c0r
2, which is actually an important issue in [16]):

Corollary 3.2. — For each r ≥ 1 there exists a positive constant cr such that the follo-

wing statement holds true for any (λ1, . . . , λr) ∈ Tr: if ε > 0 and Q ≥ 1, with Q an

integer, are such that for any (a1, . . . , ar) ∈ Zr \ {(0, . . . , 0)}

Q|λa1
1 λ

a2
2 . . . λarr − 1|+ ε

r∑
i=1

|ai| ≥ cr,(4)

then for any (µ1, . . . , µr) ∈ Tr there exists a q ∈ N with 1 ≤ q ≤ Q such that

|λqi − µi| < ε for each i = 1, . . . , r.

This is the multi-dimensional extension of Lemma 2.1 which will be needed in the rest

of the proof. Let us now go back to the 2-dimensional case.

Proof of Theorem 1.3 for r = 2. — As in the proof of the 1-dimensional case, we will con-

struct our set {nk} as a union of three sets: {nk} = {nk,0} ∪ {nk,1} ∪ {nk,2}. These sets

will be constructed by blocks, and they will depend from a parameter HN , as in the 1-

dimensional case, but also from a parameter LN which will at each step N be chosen very

large: LN � HN � LN+1 � HN+1, where the sign � means that the quantity on the

right-hand side is much larger than the quantity on the left-hand side.
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The main step in the proof is to obtain an analog of Lemma 2.2. In its statement, we

will use the superscript (2) so as to indicate that we are working with the 2-dimensional

approximation. This will simplify notation in the proof of the general multi-dimensional

approximation.

Lemma 3.3. — Let ε(2) be a positive real number. There exist three integers Γ(2), Σ(2)

and Θ(2) such that if L ≥ 1 is any integer, there exists an integer Q(2) ≥ 1 such that for

any pair (λ1, λ2) ∈ T2 and any integer H ≥ 1, there exists an integer n such that

|λn1 − 1| < ε(2) and |λn2 − 1| < ε(2)(5)

and either

n ∈ {Hq + 1 ; 1 ≤ q ≤ Q(2)}(6)

or

n = HΣ(2)L(7)

or

n ∈ {HΓ(2)(Lj + 1) ; 1 ≤ j ≤ Θ(2)}.(8)

Proof of Lemma 3.3. — Let E
(2)

ε(2) be the set of integers

E
(2)

ε(2) =
{

(a1, a2) ∈ Z2 \ {(0, 0)} ; |a1|+ |a2| <
c2

ε(2)

}
·

It is clear that if (a1, a2) does not belong to E
(2)

ε(2) , then for any (λ1, λ2) ∈ T2 and any

choice of Q(2), condition (4) in Corollary 3.2 is automatically satisfied for ε(2).

Set

Γ(2) = ((b c2

ε(2)
c+ 1)!)2.

This number has the property that for any element (a1, a2) ∈ E(2)

ε(2) , it is divisible by a1,

a2 and a1a2, provided these numbers are non-zero. Let ε(1) and δ(2) be two very small

positive numbers, which will be chosen during the proof, depending from ε(2). Now fix

(λ1, λ2) ∈ T2. As in the proof of Lemma 2.2, we have several cases to consider, depending

from whether |λHa1
1 λHa2

2 − 1| ≤ δ(2) for some (a1, a2) ∈ E(2)

ε(2) or not.

Case 1: there exists (a1, a2) ∈ E(2)

ε(2) with a1a2 6= 0 such that |λHa1
1 λHa2

2 − 1| ≤ δ(2).

Equivalently, replacing a2 by −a2, we assume that there exists (a1, a2) ∈ E
(2)

ε(2) with

a1a2 6= 0 such that

|λHa1
1 − λHa2

2 | ≤ δ(2).

Lemma 2.2 applied to ε(1) gives us two integers Σ(1) and Θ(1) such that for all λ ∈ T and

all H̃ ≥ 1, either

|λH̃Σ(1)L − 1| < ε(1)

or

|λH̃(Lj+1) − 1| < ε(1) for some j ∈ {1, . . . ,Θ(1)}.
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In particular, since a1a2 6= 0 and a1a2|Γ(2), we can apply this to the integer H̃ defined by

H̃ = H Γ(2)

a1a2
and to λ = λa1

1 : either

|λ
Ha1

Γ(2)

a1a2
Σ(1)L

1 − 1| < ε(1)

or

|λ
Ha1

Γ(2)

a1a2
(Lj+1)

1 − 1| < ε(1) for some j ∈ {1, . . . ,Θ(1)}.

Case 1a: we have |λ
H Γ(2)

a2
Σ(1)L

1 − 1| < ε(1).

Then

|λHΓ(2)Σ(1)L
1 − 1| < ε(1)|a2| ≤ ε(1)Γ(2).

Moreover, since |λHa1
1 − λHa2

2 | ≤ δ(2), we have

|λ
Ha2

Γ(2)

a1a2
Σ(1)L

2 − 1| < ε(1) + δ(2)Γ(2)Σ(1)L

and hence

|λHΓ(2)Σ(1)L
2 − 1| < (ε(1) + δ(2)Γ(2)Σ(1)L)Γ(2).

Setting Σ(2) = Γ(2)Σ(1) we get that

|λHΣ(2)L
1 − 1| < ε(2) and |λHΣ(2)L

2 − 1| < ε(2)

provided ε(1) is chosen first, very small with respect to ε(2) (but independent from L), and

then δ(2) is chosen very small with respect to ε(2) and L. So (5) and (7) are satisfied.

Case 1b: there exists a j ∈ {1, . . . ,Θ(1)} such that

|λ
H Γ(2)

a2
(Lj+1)

1 − 1| < ε(1).

Then

|λHΓ(2)(Lj+1)
1 − 1| < ε(1)Γ(2).(9)

Using again that |λHa1
1 − λHa2

2 | ≤ δ(2), we obtain that

|λ
Ha1

Γ(2)

a1a2
(Lj+1)

1 − λ
Ha2

Γ(2)

a1a2
(Lj+1)

2 | < δ(2)Γ(2)(LΘ(1) + 1).

Hence

|λ
H Γ(2)

a1
(Lj+1)

2 − 1| < ε(1) + δ(2)Γ(2)(LΘ(1) + 1),

and so

|λHΓ(2)(Lj+1) − 1| < (ε(1) + δ(2)Γ(2)(LΘ(1) + 1))Γ(2).(10)

Taking first ε(1) and then δ(2) very small, we get from (9) and (10) that

|λHΓ(2)(Lj+1)
1 − 1| < ε(2) and |λHΓ(2)(Lj+1)

2 − 1| < ε(2)

for some j ∈ {1, . . . ,Θ(2)} where Θ(2) = Θ(1). So (5) and (8) are satisfied. Notice that

Θ(2) does not depend from L.

Case 2 is very similar to Case 1: the assumptions are the same, except that we consider

now the case where a1a2 = 0.
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Case 2: there exists (a1, a2) ∈ E(2)

ε(2) with a1a2 = 0 such that |λHa1
1 λHa2

2 − 1| ≤ δ(2).

For instance suppose that a2 = 0 and a1 6= 0. Our assumption is then that

|λHa1
1 − 1| ≤ δ(2).(11)

We apply the dichotomy of the 1-dimensional case to λ2, with ε(1) a very small positive

number and H̃ = H Γ(2)

a1
.

Case 2a: we have |λ
H Γ(2)

a1
Σ(1)L

2 − 1| < ε(1).

Since Σ(2) = Γ(2)Σ(1) we have |λHΣ(2)L
2 − 1| < ε(1)Γ(2). Moreover since a1 divides Γ(2),

(11) implies that |λHΓ(2)

1 − 1| ≤ δ(2)Γ(2) and hence

|λHΓ(2)Σ(1)L
1 − 1| ≤ δ(2)Γ(2)Σ(1)L.

If ε(1) and δ(2) are sufficiently small,

|λHΣ(2)L
1 − 1| < ε(2) and |λHΣ(2)L

2 − 1| < ε(2)

and (5) and (7) are true. Again, Σ(2) and Θ(2) do not depend from L.

Case 2b: there exists a j ∈ {1, . . . ,Θ(1)} such that |λ
H Γ(2)

a1
(Lj+1)

2 − 1| < ε(1).

Then

|λHΓ(2)(Lj+1)
2 − 1| < ε(1)Γ(2).

Moreover from (11) we have

|λ
Ha1

Γ(2)

a1
(Lj+1)

1 − 1| < δ(2)Γ(2)(LΘ(1) + 1)

and hence for ε(1) and δ(2) small enough

|λHΓ(2)(Lj+1)
1 − 1| < ε(2) and |λHΓ(2)(Lj+1)

2 − 1| < ε(2)

and (5) and (8) are true.

At the end of these two cases, we see that it suffices to choose ε(1) = ε(2)

2Γ(2) . Then the

quantity δ(2) is fixed small enough, depending from ε(2) and L but neither from (λ1, λ2)

nor from H, so that all the inequalities above are true.

The last case, Case 3, is the simplest one, where Corollary 3.2 applies directly. In this

last case we determine Q(2), which is the last quantity in the statement of Lemma 3.3 not

yet fixed.

Case 3: for each (a1, a2) ∈ E(2)

ε(2) , |λHa1
1 λHa2

2 − 1| > δ(2).

Let Q(2) be an integer such that

Q(2) >
c2

δ(2)
·

By Corollary 3.2, there exists for all (µ1, µ2) ∈ T2 a q with 1 ≤ q ≤ Q(2) such that

|λHq1 − µ1| < ε(2) and |λHq2 − µ2| < ε(2). Applying this with µ1 = λ1 and µ2 = λ2 gives

|λHq+1
1 − 1| < ε(2) and |λHq+1

2 − 1| < ε(2),

i.e. that (5) and (6) are satisfied.
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Lemma 3.3 is proved. Let us summarize a bit more precisely for further use what we

just proved:

Corollary 3.4. — With the notation of Lemma 3.3, there exists a positive number δ(2)

depending from ε(2) and L such that for all (λ1, λ2) ∈ T2 we have:

– if |λHa1
1 λHa2

2 −1| ≤ δ(2) for some (a1, a2) ∈ E(2)

ε(2), then (5) holds true for some integer

n ∈ B(2)

ε(2),1
∪B(2)

ε(2),2
, where

B
(2)

ε(2),1
= {HΣ(2)L} := HC

(2)

ε(2),1

and

B
(2)

ε(2),2
= {HΓ(2)(Lj + 1) ; 1 ≤ j ≤ Θ(2)} := HC

(2)

ε(2),2
;

– if |λHa1
1 λHa2

2 − 1| > δ(2) for each (a1, a2) ∈ E(2)

ε(2), then (5) holds true for some integer

n ∈ B(2)

ε(2),0
, where

B
(2)

ε(2),0
= {Hq + 1 ; 1 ≤ q ≤ Q(2)}.

Remark 3.5. — Observe that the sets

C
(2)

ε(2),1
= {Σ(2)L} and C

(2)

ε(2),2
= {Γ(2)(Lj + 1) ; 1 ≤ j ≤ Θ(2)}

do not depend from H.

As a corollary of Lemma 3.3, we obtain:

Corollary 3.6. — Let (ε
(2)
N ) be a sequence of positive numbers going to zero as N goes

to infinity. There exist three sequences of integers (Γ
(2)
N ), (Σ

(2)
N ) and (Θ

(2)
N ) such that if

(LN ) is any sequence of integers, there exists a sequence (Q
(2)
N ) of integers such that for

any sequence of integers (HN ), the union {n(2)
k } of the three sets

{n(2)
k,0} =

⋃
N≥1

B
(2)
N,0 {n(2)

k,1} =
⋃
N≥1

B
(2)
N,1 {n(2)

k,2} =
⋃
N≥1

B
(2)
N,2

where

B
(2)
N,0 = B

(2)

ε
(2)
N ,0

= {HNq + 1 ; 1 ≤ q ≤ Q(2)
N }

B
(2)
N,1 = B

(2)

ε
(2)
N ,1

= {HNΣ
(2)
N LN}

B
(2)
N,2 = B

(2)

ε
(2)
N ,2

= {HNΓ
(2)
N (LN j + 1) ; 1 ≤ j ≤ Θ

(2)
N }

is a 2-Bohr set.

In order to finish the proof, it remains to show that if the two sequences (LN ) and (HN )

are well-chosen, there exist µ0, µ1, µ2 ∈ T such that for all k

|µ
n

(2)
k,0

0 − 1| > 1

2
, |µ

n
(2)
k,1

1 − 1| > 1

2
and |µ

n
(2)
k,2

2 − 1| > 1

2
·

The construction of µ0 is done exactly as in the proof of the 1-dimensional case, using the

fact that HN+1 can be chosen much larger than HNQ
(2)
N . The construction of µ1 is also the
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same: whatever the choices of the integers LN , we can get µ1 ∈ T with |µHNΣ
(2)
N LN

1 −1| > 1
2

for all N if the sequence (HN ) grows sufficiently fast. In order to construct µ2, we apply

Lemma 2.4 to the sequence (mN ) defined by m2N = HNΓ
(2)
N −1 and m2N+1 = HNΓ

(2)
N LN :

if we start from H1 very large there exists µ2 ∈ T very close to −1, such that for all N

|µHNΓ
(2)
N −1

2 − 1| ≤M
HNΓ

(2)
N − 1

HNΓ
(2)
N LN

< M
1

LN
< 2−(N+1)

if LN is sufficiently large, and

|µHNΓ
(2)
N LN

2 − 1| ≤M
HNΓ

(2)
N LN

HN+1
·

Then for all j with 1 ≤ j ≤ Θ
(2)
N , we have

|µHNΓ
(2)
N LN j

2 − 1| ≤M
HNΓ

(2)
N LNΘ

(2)
N

HN+1
< 2−(N+1)

if HN+1 is large enough. Hence |µHNΓ
(2)
N (LN j+1)

2 − µ2| ≤ 2−N and

|µHNΓ
(2)
N (LN j+1)

2 − 1| ≥ |µ2 − 1| − 2−N ≥ 1

2
·

So the set {n(2)
k } is non-recurrent for the product of rotations Rµ0 × Rµ1 × Rµ2 , and

Theorem 1.3 is proved in the 2-dimensional case.

4. The general multi-dimensional case

Our aim now is to prove Theorem 1.3 in the general case by induction on r ≥ 3. We

are first going to prove the following analog of Lemma 3.3 above, which will give explicitly

the form of the sets {n(r)
k }:

Lemma 4.1. — Let r ≥ 3 be an integer. For any ε(r) > 0 and any integer L ≥ 1, there

exist 2r−1 integers ∆
(r)
A ≥ 1, where A ⊆ {1, . . . , r − 1}, and two integers Θ(r), Q(r) such

that the following holds true: for any integer H ≥ 1, for any r-tuple (λ1, . . . , λr) ∈ Tr,
there exists an n belonging to one of the sets

B
(r)

ε(r),A
= {H∆

(r)
A (Lj + 1) ; 1 ≤ j ≤ Θ(r)}, A ⊆ {1, . . . , r − 1}, A 6= ∅(12)

B
(r)

ε(r),∅ = {H∆
(r)
∅ }(13)

and

B
(r)

ε(r),0
= {Hq + 1 ; 1 ≤ q ≤ Q(r)}(14)

such that

max
i=1,...,r

|λni − 1| < ε(r).

We shall write B
(r)

ε(r),A
as B

(r)

ε(r),A
= HC

(r)

ε(r),A
where the sets C

(r)

ε(r),A
do not depend from H.
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Remark 4.2. — The quantities ∆
(r)
A and Θ(r) (and Q(r) of course) depend from ε(r) and

L (but not from H). This is a difference with the 2-dimensional case, where the quantities

Γ(2), Σ(2) and Θ(2) do not depend from L. Lemma 4.1 holds true for r = 2 as well, with

∆
(2)
∅ = Σ(2)L and ∆

(2)
{1} = Γ(2).

Proof of Lemma 4.1. — Fix ε(r) > 0 and consider the set

E
(r)

ε(r)
= {(a1, . . . , ar) ∈ Zr \ {(0, . . . , 0)} ;

r∑
i=1

|ai| <
cr

ε(r)
},

where cr is the constant appearing in Corollary 3.2. Here is the statement which we want

to prove by induction on r ≥ 3:

Lemma 4.3. — For any ε(r) > 0 and any integer L ≥ 1, there exist 2r−1 integers ∆
(r)
A ,

A ⊆ {1, . . . , r− 1}, an integer Θ(r) ≥ 1 and a positive number δ(r) such that the following

holds true: there exists an integer Q(r) ≥ 1 such that for any integer H ≥ 1 and any

(λ1, . . . , λr) ∈ Tr, we have the following alternative:

– if there exists (a1, . . . , ar) ∈ E(r)

ε(r)
such that

|λHa1
1 λHa2

2 . . . λHarr − 1| ≤ δ(r),

then there exists n ∈
⋃
A⊆{1,...,r−1}B

(r)

ε(r),A
such that

max
i=1,...,r

|λni − 1| < ε(r);

– if for all (a1, . . . , ar) ∈ E(r)

ε(r)
we have

|λHa1
1 λHa2

2 . . . λHarr − 1| > δ(r),

then there exists n ∈ B(r)

ε(r),0
such that

max
i=1,...,r

|λni − 1| < ε(r).

Proof of Lemma 4.3. — We prove Lemma 4.3 by induction on r ≥ 2. First, it follows from

Corollary 3.4 that Lemma 4.3 holds true for r = 2, with ∆
(r)
∅ = Σ(2)L and ∆

(r)
{1} = Γ(2).

To carry out the induction step, let r ≥ 3, ε(r) > 0 and L ≥ 1. Let ε(r−1) and ε(2) be

two positive numbers, and let δ(r−1) and δ(2) be the two positive numbers associated to

ε(r−1) and L, and ε(2), respectively, given by Lemma 4.3 for r− 1 and by Lemma 3.3. The

numbers ε(r−1) and ε(2) will be fixed during the proof, as well as the number δ(r) > 0. The

quantity ε(r−1) will be determined first, much smaller than ε(r). This choice will determine

δ(r−1). Then ε(2) will be chosen much smaller than ε(r−1), δ(r−1) and ε(r) (and this will

determine δ(2)), and only after this will the choice of δ(r) be made, with δ(r) much smaller

than any of the quantities considered before.

Fix (λ1, . . . , λr) ∈ Tr. We consider again separately two cases, depending from whether

|λHa1
1 λHa2

2 . . . λHarr − 1| ≤ δ(r) for some (a1, . . . , ar) ∈ E(r)

ε(r)
or not.

Case 1: There exists (a1, . . . , ar) ∈ E(r)

ε(r)
such that

|λHa1
1 λHa2

2 . . . λHarr − 1| ≤ δ(r).(15)
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Without loss of generality we suppose that (a2, . . . , ar) 6= (0, . . . , 0). Then, replacing a1

by −a1, (15) is equivalent to

|λHa1
1 − λHa2

2 . . . λHarr | ≤ δ(r)(16)

for some (a1, . . . , ar) ∈ E(r)

ε(r)
. Set ν1 = λ1 and ν2 = λa2

2 . . . λarr . We have |νHa1
1 −νH2 | ≤ δ(r),

i.e.

|νHã1
1 − νHã2

2 | ≤ δ(r)

with (ã1, ã2) = (a1, 1) ∈ Z2 \ {(0, 0)}. We have |a1| + 1 ≤ 2|a1| < 2 cr
ε(r)

< c2
ε(2) if ε(2) is

small enough. So we get that (ã1, ã2) belongs to E
(2)

ε(2) . If δ(r) is chosen so that δ(r) < δ(2),

(16) implies that

|λHa1
1 − λHa2

2 . . . λHarr | ≤ δ(2).

We can now apply Corollary 3.4 to ε(2) and L: we get that there exists n(2) ∈ B(2)

ε(2),1
∪B(2)

ε(2),2

such that

|νn(2)

1 − 1| < ε(2) and |νn(2)

2 − 1| < ε(2).(17)

The integer n(2) is either equal to HΣ(2)L or has the form n(2) = HΓ(2)(Lj + 1) for some

1 ≤ j ≤ Θ(2). In particular n(2) is a multiple of H, and we write n(2) = Hp(2) with

p(2) ∈ C(2)

ε(2),1
∪ C(2)

ε(2),2
. So we have

|λHp
(2)

1 − 1| < ε(2) and |λHp
(2)a2

2 . . . λHp
(2)ar

r − 1| < ε(2).

The (r − 1)-tuple (a2, . . . , ar) satisfies |a2| + . . . |ar| < cr
ε(r)

< cr−1

ε(r−1) if ε(r−1) is chosen

sufficiently small. Moreover (a2, . . . , ar) 6= (0, . . . , 0), and so (a2, . . . , ar) belongs to E
(r−1)

ε(r−1) .

If additionally ε(2) is so small that ε(2) < δ(r−1), the induction assumption applied at rank

r − 1 to the (r − 1)-tuple (λ2, . . . , λr−1) and the integers L and H̃ = Hp(2) gives us an

integer n(r−1) belonging to the set
⋃
A′⊆{1,...,r−2} H̃C

(r−1)

ε(r−1),A′
such that

max
i=2,...,r

|λn(r−1)

i − 1| < ε(r−1).

Notice that we can choose ε(r−1), and so, by Corollary 3.4, determine C
(r−1)

ε(r−1),A′
, before we

fix ε(2). Writing n(r−1) = H̃p(r−1), we have n(r−1) = Hp(2)p(r−1). Thus

max
i=2,...,r

|λHp
(2)p(r−1)

i − 1| < ε(r−1).

Moreover we have by (17) that

|λHp
(2)

1 − 1| < ε(2), and so |λHp
(2)p(r−1)

1 − 1| < ε(2)p(r−1)·

Now

p(r−1) ≤ max
A′⊆{1,...,r−2}

∆
(r−1)
A′ (LΘ(r−1) + 1).

Hence if we first fix ε(r−1) very small, we can then take ε(2) so small that (in addition

to the other conditions) ε(2)p(r−1) < ε(r−1) for any p(r−1) ∈
⋃
A′⊆{1,...,r−2}C

(r−1)

ε(r−1),A′
. We

obtain then that

max
i=1,...,r

|λHp
(2)p(r−1)

i − 1| < ε(r−1),
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and if we have taken at the beginning ε(r−1) < ε(r) we get what we need, namely that

max
i=1,...,r

|λHp
(2)p(r−1)

i − 1| < ε(r).

It remains to check that the numbers Hp(2)p(r−1) belong to a set of the form B
(r)

ε(r),A
.

We know that such a number belongs to a set of the form

HC
(2)

ε(2),θ
.C

(r−1)

ε(r−1),A′

for some A′ ⊆ {1, . . . , r − 2} and θ ∈ {1, 2}. If θ = 1 such a set has the form

{HΣ(2)L∆
(r−1)
A′ (Ljr−1 + 1) ; 1 ≤ jr−1 ≤ Θ(r−1)}(18)

if A′ 6= ∅ and

{HΣ(2)L∆
(r−1)
∅ }(19)

if A′ = ∅. If θ = 2 such a set has the form

{HΓ(2)∆
(r−1)
A′ (Lj2 + 1)(Ljr−1 + 1) ; 1 ≤ j2 ≤ Θ(2), 1 ≤ jr−1 ≤ Θ(r−1)}(20)

if A′ 6= ∅ and

{HΓ(2)∆
(r−1)
∅ (Lj2 + 1) ; 1 ≤ j2 ≤ Θ(2)}(21)

if A′ = ∅. Observing that the set in (20) is contained in

{HΓ(2)∆
(r−1)
A′ (Lj + 1) ; 1 ≤ j ≤ Θ(2)Θ(r−1)},

we see that these four sets have the required form: if we set Θ(r) = max(Θ(2),Θ(r−1)), we

have

HC
(2)

ε(2),1
.C

(r−1)

ε(r−1),A′
⊆ B(r)

ε(r),A

with A = A′ ⊂ {1, . . . , r− 1} and ∆
(r)
A = Σ(2)L∆

(r−1)
A′ (observe that with this definition of

∆
(r)
A we have ∆

(r)
A = ∆

(2)
∅ ∆

(r−1)
A′ ), and

HC
(2)

ε(2),2
.C

(r−1)

ε(r−1),A′
⊆ B(r)

ε(r),A

with A = A′ ∪ {r − 1} ⊆ {1, . . . , r − 1} and ∆
(r)
A = Γ(2)∆

(r−1)
A′ (observe that in this case

∆
(r)
A = ∆

(2)
{1}∆

(r−1)
A′ ).

At the end of this case, the quantities ∆
(r)
A , Θ(r) and δ(r) are fixed. They depend from

ε(r) and L, but not from H. It remains to determine Q(r).

Case 2: For all (a1, . . . , ar) ∈ E(r)

ε(r)
,

|λHa1
1 λHa2

2 . . . λHarr − 1| > δ(r).

Let Q(r) be an integer such that Q(r) > cr
δ(r) . By Corollary 3.2, there exists an integer q with

1 ≤ q ≤ Q(r) such that maxi=1,...,r |λHq+1
i − 1| < ε(r), and so maxi=1,...,r |λni − 1| < ε(r)for

some n ∈ B(r)

ε(r),0
.

We have thus proved Lemma 4.3 at rank r, and the principle of induction completes

the proof.

A direct corollary of Lemma 4.1 is:
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Corollary 4.4. — Let r ≥ 3, let (ε
(r)
N ) be a sequence of positive numbers going to zero

as N goes to infinity and (LN ) be any sequence of integers. There exist 2r−1 sequences of

integers (∆
(r)
N,A), A ⊆ {1, . . . , r − 1}, and two sequences (Θ

(r)
N ) and (Q

(r)
N ) of integers such

that for any sequence of integers (HN ), the union {n(r)
k } of the sets

{n(r)
k,0} =

⋃
N≥1

B
(r)
N,0 and {n(r)

k,A} =
⋃
N≥1

B
(r)
N,A, A ⊆ {1, . . . , r − 1}

where

B
(r)
N,0 = B

(r)

ε
(r)
N ,0

= {HNq + 1 ; 1 ≤ q ≤ Q(r)
N }

B
(r)
N,∅ = B

(r)

ε
(r)
N ,∅

= {HN∆
(r)
N,∅}

B
(r)
N,A = B

(r)

ε
(r)
N ,A

= {HN∆
(r)
N,A(LNj + 1) ; 1 ≤ j ≤ Θ

(r)
N }

is an r-Bohr set.

The quantities ∆
(r)
N,A, Θ

(r)
N and Q

(r)
N are obtained by applying Lemma 4.1 to the numbers

ε
(r)
N and LN . In order to finish the proof of Theorem 1.3, it remains to prove that {n(r)

k }
is not a recurrence set for some product of 2r−1 + 1 rotations if the sequences (LN ) and

(HN ) grow sufficiently fast.

Proposition 4.5. — Let r ≥ 3. If the sequences (LN ) and (HN ) grow sufficiently fast,

with LN � HN � LN+1, then there exist 2r−1 + 1 elements µ0 and µA of T such that for

any k and any A ⊆ {1, . . . , r − 1},

|µ
n

(r)
k,0

0 − 1| > 1

2
and |µ

n
(r)
k,A

A − 1| > 1

2
·(22)

Proof of Proposition 4.5. — We obtain µ0 in exactly the same way as in the proof of

Theorem 1.3. The construction of µ∅ is also similar: whatever the choice of LN , we can

ensure that for some µ∅ ∈ T with |µ∅ + 1| < 1,

|µ
HN∆

(r)
N,∅−1

∅ − 1| < 2−N

for all N ≥ 1, provided the sequence (HN ) grows sufficiently fast. This shows that

|µ
HN∆

(r)
N,∅

∅ − 1| ≥ 1

2

for all N ≥ 1. Let now A ⊆ {1, . . . , r−1}, A 6= ∅, and consider the sequence (mN ) defined

by m2N = HN∆
(r)
N,A− 1 and m2N+1 = HN∆

(r)
N,ALN . The argument is again the same as in

the proof of the 2-dimensional case (the fact that ∆
(r)
N,A depends from LN does not play a

role here). By Lemma 3.3 again, if H1 is very large we can find µA very close to −1 such

that for all N ≥ 1,

|µ
HN∆

(r)
N,A−1

A − 1| ≤M
HN∆

(r)
N,A − 1

HN∆
(r)
N,ALN

and |µ
HN∆

(r)
N,ALN

A − 1| ≤M
HN∆

(r)
N,ALN

HN+1
·
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Thus

|µ
HN∆

(r)
N,ALN j

A − 1| ≤MΘ
(r)
N

HN∆
(r)
N,ALN

HN+1

for all 1 ≤ j ≤ Θ
(r)
N . It follows that for all N ≥ 1 and all 1 ≤ j ≤ Θ

(r)
N ,

|µ
HN∆

(r)
N,A(LN j+1)

A − µA| ≤
M

LN
+MΘ

(r)
N

HN∆
(r)
N,ALN

HN+1
·

If for each N ≥ 1 we take LN very large, and then choose HN+1 very large with respect

to LN and HN , we can ensure for instance that

|µ
HN∆

(r)
N,A(LN j+1)

A − µA| ≤ 2−N , so that |µ
HN∆

(r)
N,A(LN j+1)

A − 1| ≥ |µA − 1| − 2−N >
1

2

if |µA−1| > 1. This proves that |µ
n

(r)
k,A

A −1| > 1
2 for all k, and Proposition 4.5 is proved.

We have thus exhibited a product of 2r−1+1 rotations for which {n(r)
k } is not a recurrence

set. Theorem 1.3 is proved.

Remark 4.6. — Inspection of the proof of Theorem 1.3 shows that the same phenomenon

appears for general r as for r = 1: the sets B
(r)
N,A, B

(r)
N,0 are by construction intertwined,

and they cannot be forced far away one from another. Indeed, for any ε > 0, let us write

Γ(2), Σ(2) and Θ(2) as Γ
(2)
ε , Σ

(2)
ε and Θ

(2)
ε in order to indicate their dependence on ε. It

follows from the proofs of Lemma 2.2 and 3.3 that Γ
(2)
ε divides Σ

(2)
ε , that Θ

(2)
ε is much

larger than Σ
(2)
ε , and that if ε′ is much smaller than ε, Σ

(2)
ε divides Σ

(2)
ε′ . Also, the proof

of Lemma 2.2 yields that Σ
(2)
ε = Γ

(2)
ε Σ

(1)

ε(1) , where ε(1) is much smaller than ε. So if M ≥ 1

is an integer, and if we take ε(1) small enough, it follows from Remark 2.3 that we can

ensure that Σ
(1)

ε(1) is divisible with M . Looking more closely at the expressions of ∆
(r)
A in

the proof of Lemma 4.3, we see that

∆
(r)

ε(r),A′
= Σ

(2)

ε(2)L∆
(r−1)

ε(r−1),A′
= Γ

(2)

ε(2)Σ
(1)

ε(1)L∆
(r−1)

ε(r−1),A′
and ∆

(r)

ε(r),A′∪{r−1} = Γ
(2)

ε(2)∆
(r−1)

ε(r−1),A′

for A′ ⊆ {1, . . . , r − 2}, where ε(2) is extremely small. Now ε(r−1) is small, but only com-

pared to ε(r), and if we take ε(2) small enough we can ensure that Σ
(2)

ε(2) is divisible with

any of the numbers Γ
(2)

ε(2)∆
(r−1)

ε(r−1),A′
, where A′ runs over all subsets of {1, . . . , r − 2}. It

follows from this observation that given two distinct subsets A1 and A2 of {1, . . . , r − 1},
one of the two integers ∆

(r)

ε(r),A1
and ∆

(r)

ε(r),A2
is always divisible with the other. As

Θ
(r)

ε(r)
is very large compared to all the numbers ∆

(r)

ε(r),A
, the two arithmetic progressions

{H∆
(r)

ε(r),A1
(Lj + 1) ; 1 ≤ j ≤ Θ

(r)

ε(r)
} and {H∆

(r)

ε(r),A2
(Lj + 1) ; 1 ≤ j ≤ Θ

(r)

ε(r)
} are neces-

sarily intertwined. Lastly, since Q(r) is much larger than any integer ∆
(r)

ε(r),A
LΘ

(r)

ε(r)
, these

arithmetic progressions are also intertwined with the set B
(r)

ε(r),0
.
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5. Final remarks

5.1. Back to Question 1.1. — Let (Nr)r≥1 be an increasing sequence of integers, and

(εr)r≥1 a sequence of positive real numbers going to 0 as r goes to infinity. Consider the

set {nk} defined by {nk} =
⋃
r≥1{n

(r)
k ; k ∈ INr} where {n(r)

k ; k ∈ INr} is the part of the

set {n(r)
k } constructed at step Nr, with suitable integers LNr and HNr :

{n(r)
k ; k ∈ INr} = {HNrq + 1 ; 1 ≤ q ≤ Q(r)

Nr
} ∪ {HNr∆

(r)
Nr,∅}

∪
⋃

A⊆{1,...,r−1},A 6=∅

{HNr∆
(r)
Nr,A

(LNrj + 1) ; 1 ≤ j ≤ Θ
(r)
Nr
}.

All the sets {n(r)
k ; k ∈ INr} are disjoint, and very far away one from another. For all r ≥ 1

and (λ1, λ2, . . . , λr) ∈ Tr, we can consider for s ≥ r the s-tuple (λ1, . . . , λr, 1, . . . , 1) ∈ Ts.
We know from Theorem 4.1 that there exists a k ∈ INs such that

max
i=1,...,r

|λn
(s)
k
i − 1| < εs,

and so we see that the set {nk} is a Bohr set. Moreover it is not difficult to see from the

construction that if (Π
(r)
Nr

)r≥1 is any sequence of integers, the sets

{n(r)
k ; k ∈ INr} = {HNrq + 1 ; 1 ≤ q ≤ Q(r)

Nr
} ∪ {HNr∆

(r)
Nr,∅}

∪
⋃

A⊆{1,...,r−1},A 6=∅

{HNr∆
(r)
Nr,A

(LNrj + 1) ; Π
(r)
Nr
≤ j ≤ Θ

(r)
Nr
}.

are also r-Bohr provided Θ
(r)
Nr

is sufficiently large for each r ≥ 1. Hence {n(r)
k ; k ∈ INr}

is a Bohr set as well in this case.

All these sets {nk} are “small” (in particular they have density zero), and, more impor-

tantly, they have a very explicit arithmetical structure. We do not know whether {nk} can

be non-recurrent for some suitable choice of the parameters in the construction, but we

do know that, for some particular choices, {nk} is a recurrence set, and even a Poincaré

set. This leaves the following question open to further investigation:

Question 5.1. — Is it possible to choose the parameters in the construction of the set

{nk} above in such a way that {nk} is not a recurrence set?

5.2. Other classes of non-recurrent systems for {n(r)
k }. — We have seen that

each one of the sets {n(r)
k } constructed in the proof of Theorem 1.3 is not recurrent for

some product of 2r−1 + 1 rotations. These are very specific dynamical systems, and

one can wonder whether there are other “natural” dynamical systems which would be

non-recurrent with respect to {n(r)
k }. In particular in a recent work [2] Bergelson, Del

Junco, Lemańczyk and Rosenblatt initiated the study of sets which are non-recurrent

in the measure-theoretic sense for weakly mixing dynamical systems. Thus the question

naturally arises: is it possible to find an r-Bohr set which would be non-recurrent (in

the measure-theoretic sense) for some weakly mixing dynamical system? Such r-Bohr sets

would necessarily have density zero, so that the examples of [17] cannot have this property.

It is possible to show that for each r ≥ 1, each one of the sets {n(r)
k } obtained in Theorem
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1.3 is non-recurrent for some weakly mixing dynamical system. This is developed in the

paper [15].
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