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Abstract. — We prove that there exists a rank 1 perturbation of a unitary operator on a
complex separable infinite dimensional Hilbert space which is hypercyclic.

1. Introduction

We are interested in this note in the construction of some special hypercyclic operators on
Hilbert spaces. Our work fits into the framework of linear dynamics, which is the study
of the properties of the iterates Tn, n ≥ 0, of a bounded linear operator T acting on an
infinite dimensional separable Banach space X. It is of particular interest to study the
behavior of the orbits Orb(x, T ) = {Tnx ; n ≥ 0} of vectors x of X under the action of
T . For instance when Orb(x, T ) is dense in X, the vector x is said to be hypercyclic. The
operator T itself is hypercyclic when there exists an x ∈ X such that x is hypercyclic for T .
It is not completely trivial to exhibit hypercyclic operators: the first example of such an
operator was given by Rolewicz [11], who proved that if B denotes the standard backward
weighted shift on `2(N), λB is hypercyclic for any complex number λ with |λ| > 1. Many
more examples of hypercyclic operators on “classical” spaces can be found in the book
[4]. It is a non-trivial result of Ansari [1] and Bernal-Gonzalez [6], relying on previous
work of Salas [12] that any (real or complex) separable infinite-dimensional Banach space
X supports a hypercyclic operator. Such a general operator has necessarily the form
T = I + N , where N is a nuclear operator on X, so that a nuclear perturbation of the
identity operator can indeed be hypercyclic. Obviously a finite rank perturbation of the
identity operator can never be hypercyclic.

In [14] Shkarin investigated the following question: can a finite rank perturbation of a
unitary operator on a complex separable infinite-dimensional Hilbert space be hypercyclic?
This question came from the work of Salas [13] on supercyclicity of weighted shifts: T is
said to be supercyclic (a weaker requirement than hypercyclicity) if there exists a vector
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x ∈ X such that {λTnx ; n ≥ 0, λ ∈ C} is dense in X. It is known ([7], see also [9]
and [10]) that no hyponormal operator on a Hilbert space can be supercyclic. Salas thus
proposed the following question: can a finite rank perturbation of a hyponormal operator
on a Hilbert space be supercyclic? Shkarin answered in [14] this question in the affirmative,
and proved: there exists a unitary operator V and an operator R of rank at most 2 acting
on a Hilbert space H such that V + R is hypercyclic on H. This yields an example of a
contraction A and a rank 1 operator S on H such that A+S is hypercyclic. But a natural
question remained open in [14]:

Question 1.1. — Does there exist a rank 1 perturbation of a unitary operator on a Hilbert
space which is hypercyclic?

Our aim in this paper is to answer Question 1.1 in the affirmative:

Theorem 1.2. — There exists a unitary operator U and a rank 1 operator R on the
complex Hilbert space `2(N) such that the operator T = U + R is hypercyclic on `2(N).

Our method of proof is rather different from the one employed in [14], the only common
point being the criterion for hypercyclicity which we use: it is based on the properties of
eigenvectors associated to eigenvalues of T which are of modulus 1, and was first introduced
in [2]. We use here a recent refinement of this criterion which comes from [8], see Section
2 of this paper. The operators which we construct are intrinsically different from the ones
of [14]: in [14] the operators live on the function space L2(T), and the operator V + R

(V unitary, R of rank 2) which is constructed is an operator induced by V ′ + R′ on an
invariant subspace of V ′ + R′, where V ′ is the multiplication operator by z on L2(T) and
R′ is a rank one operator on L2(T). One of the key tools in the proof of [14] is a result of
Belov [5] concerning the distribution of values of certain functions ϕ : R → C defined as
lacunary trigonometric series.

Our approach here is much more elementary: our unitary operator U is a diagonal operator
on `2(N) with unimodular diagonal coefficients, and these coefficients as well as the two
vectors a and b in `2(N) which define R = b ⊗ a are constructed by induction in such a
way that the eigenvectors associated to eigenvalues of modulus 1 of the operator U + R

can be explicitly written down. The main idea of the proof of Theorem 1.2 is presented in
Section 2, and the inductive construction, which is more technical, is given in Section 3.

2. Main ingredients of the proof of Theorem 1.2

2.1. A criterion for hypercyclicity. — The criterion for hypercyclicity which we are
going to use in the proof of Theorem 1.2 is stated in terms of eigenvectors associated to
eigenvalues of modulus 1 of the operator. Roughly speaking, if T is a bounded linear
operator on a complex separable Banach space X which has “plenty” of such eigenvectors,
then T is hypercyclic. Here is the precise definition:

Definition 2.1. — We say that T ∈ B(X) has a perfectly spanning set of eigenvectors
associated to unimodular eigenvalues if there exists a continuous probability measure σ on
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the unit circle T such that for any σ-measurable subset B of T with σ(B) = 1, we have
sp[ker(T − λ) ; λ ∈ B] = X.

When T has a perfectly spanning set of eigenvectors associated to unimodular eigenvalues,
it is automatically hypercyclic. This is proved in [2]. The easiest way to check this
spanning property of the eigenvectors is to exhibit a family (Ki)i≥1 of compact perfect
subsets of T and a family (Ei)i≥1 of eigenvector fields Ei : Ki → X which are continuous
on Ki and such that the vectors Ei(λ), i ≥ 1, λ ∈ Ki, span a dense subspace of X. This
can be done rather easily by using the following theorem, which was proved in [8]:

Theorem 2.2. — Let X be a complex separable infinite-dimensional Banach space, and
let T be a bounded operator on X. Suppose that there exists a sequence (ui)i≥1 of vectors
of X having the following properties:

(i) for each i ≥ 1, ui is an eigenvector of T associated to an eigenvalue µi of T , with
|µi| = 1 and the µi’s all distinct;

(ii) sp[ui ; i ≥ 1] is dense in X;
(iii) for any i ≥ 1 and any ε > 0, there exists an n 6= i such that ||un − ui|| < ε.
Then there exists a family (Ki)i≥1 of subsets of T which are homeomorphic to the Cantor
set 2ω and a family (Ei)i≥1 of eigenvector fields Ei : Ki → X which are continuous on Ki

for each i and which span X: sp[Ei(λ) ; i ≥ 1, λ ∈ Ki] is dense in X. So T has a perfectly
spanning set of eigenvectors associated to unimodular eigenvalues, and in particular T is
hypercyclic.

Theorem 2.2 actually yields a stronger conclusion, as it is known that if T has a perfectly
spanning set of eigenvectors associated to unimodular eigenvalues, then it is frequently
hypercyclic. See [3] for the definition of frequent hypercyclicity and for a proof of this
statement in the Hilbert space setting, and [8] for a proof in the Banach space case. When
the eigenvalues µi which appear in the assumption of Theorem 2.2 are N th roots of 1,
N ≥ 1, then the operator is not only hypercyclic but chaotic (it is hypercyclic and has a
dense set of periodic vectors). We will in the proof of Theorem 1.2 construct the operator
T so that the assumptions of Theorem 2.2 are satisfied. It will become clear in the course
of the proof that we can choose the µi’s to be N th roots of 1, and thus the operator of
Theorem 1.2 can be made chaotic and frequently hypercyclic.

2.2. Eigenvectors of rank one perturbations of diagonal operators. — We are
looking for a hypercyclic operator T on the space `2(N) endowed with the canonical basis
(en)n≥1 of the form T = U + R, where U is a unitary operator and R is an operator of
rank 1. The unitary operator which we construct is a diagonal operator D defined by
Den = λnen, n ≥ 1, where λn is for each n ≥ 1 a complex number of modulus 1 with
the λn’s all distinct. The operator R has the form R = b⊗ a, where a =

∑
n≥1 anen and

b =
∑

n≥1 bnen are two elements of `2(N): Rx = 〈x, b〉a for any x ∈ `2(N). Our aim is
to define the coefficients λn and the numbers an and bn in such a way that the operator
T = D + R satisfies the assumptions of Theorem 2.2.

Let λ ∈ T be a complex number of modulus 1. Then with the notation above, λ is an
eigenvalue of the operator T = D + R with associated eigenvector u ∈ `2(N) \ {0} if and
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only if (D+R)u = λu, i.e. Du+ 〈u, b〉a = λu, i.e. (λ−D)u = 〈u, b〉a. If λ 6∈ {λn ; n ≥ 1},
λ−D is injective, and thus the equation above admits a non-zero solution u if and only if
a ∈ Ran(λ−D), a = (λ−D)a′ where a′ ∈ `2(N) is unique and 〈a′, b〉 = 1. If a =

∑
n≥1 anen,

then necessarily
a′ =

∑
n≥1

an

λ− λn
en,

and 〈a′, b〉 = 1 means that ∑
n≥1

anbn

λ− λn
= 1.

We can reformulate this observation as:

Lemma 2.3. — If λ ∈ T \ {λn ; n ≥ 1}, then λ is an eigenvalue of D + R if and only if∑
n≥1

∣∣∣∣ an

λ− λn

∣∣∣∣2 < +∞ and
∑
n≥1

anbn

λ− λn
= 1.

In this case an associated eigenvector u is given by

u =
∑
n≥1

an

λ− λn
en.

2.3. Strategy of the proof of Theorem 1.2. — Let j : {1, 2, . . .} −→ {1, 2, . . .} be a
function having the following properties:
• j(1) = 1;
• j(n) < n for every n ≥ 2;
• for any k ≥ 1 the set {n ≥ 2 ; j(n) = k} is infinite, i.e. j takes every value k ≥ 1
infinitely often.

The proof of Theorem 1.2 will be carried out via an induction argument. As Step n,
n ≥ 1, we define two unimodular numbers λn and µn, a complex number an and an n-
tuple b(n) = (b(n)

1 , . . . , b
(n)
n ) of complex numbers such that the following properties hold

true:
(1) if Dn denotes the diagonal operator on Cn with diagonal coefficients λ1, . . . , λn, with

λn 6∈ {λ1, . . . , λn−1}, and Rn denotes the rank 1 operator b(n) ⊗ a(n) on Cn, i.e.
Rnx = 〈x, b(n)〉a(n) for any x ∈ Cn, where a(n) =

∑n
j=1 ajej and b(n) =

∑n
j=1 b

(n)
j ej ,

then the operator Tn = Dn+Rn acting on Cn has n distinct eigenvalues which are the
unimodular numbers µ1, . . . , µn. Moreover µn does not belong to the set of distinct
numbers {λ1, . . . , λn, µ1, . . . , µn−1}, and the vector

u
(n)
i =

n∑
j=1

aj

µi − λj
ej

is an eigenvector of Tn associated to the eigenvalue µi. Additionally for any n ≥ 1,
sp[u(n)

i ; i = 1, . . . , n] = sp[e1, . . . , en]. Thus there exists a positive constant Cn such
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that for any x ∈ Cn with x =
∑n

j=1 xjej =
∑n

i=1 αiu
(n)
i , we have

n∑
i=1

|αi| ≤ Cn

 n∑
j=1

|xj |2
 1

2

(2) Cn > Cn−1 and Cn > 2
(3) 0 < |an| < 2−n

(4) |b(n)
n | < 2−n

(5) we have (
n−1∑
i=1

|b(n)
i − b

(n−1)
i |2

) 1
2

< 2−n

(6) for any i = 1, . . . , n− 1,

||u(n)
i − u

(n−1)
i || < 2−n

Cn−1

(7) ||u(n)
j(n) − u

(n)
n || < 2−n

(8) for any k = 1, . . . , n− 1 and any i = 1, . . . , k, ||Tnu
(k)
i − µiu

(k)
i || < 3 . 2−(k−1).

Suppose that the construction of the sequences (λn)n≥1, (µn)n≥1, (an)n≥1 and (b(n))n≥1

has been carried out in such a way that properties (1)-(8) are satisfied. By (2) the vector
a =

∑
n≥1 anen belongs to `2(N). By (4) and (5), we have

(9’) ||b(n) − b(n−1)|| = ||
∑n−1

i=1 (b(n)
i − b

(n−1)
i )ei + b

(n)
n en|| < 2.2−n = 2−(n−1)

so that the sequence (b(n))n≥1 converges in `2(N) to a certain vector b =
∑

n≥1 bnen, with

(10’) ||b(n) − b|| ≤
∑

j≥n ||b(j+1) − b(j)|| ≤
∑

j≥n 2−j < 2−(n−1).

So it makes sense to define the rank one operator R = b ⊗ a on `2(N). Let D be the
diagonal operator D = diag(λn ; n ≥ 1) on `2(N). We are going to show, using Theorem
2.2, that D + R is then hypercyclic, which will prove Theorem 1.2.

Proof of Theorem 1.2 modulo the inductive construction. — For any n ≥ 1, let Pn denote
the canonical projection of `2(N) onto sp[e1, . . . , en]. For any x =

∑
j≥1 xjej ∈ `2(N), we

have

TnPnx = Tn

 n∑
j=1

xjej

 =
n∑

j=1

λjxjej + 〈x, b(n)〉a(n).

Since a(n) → a, b(n) → b and supn≥1 ||b(n)|| is finite, ||TnPnx−(D+R)x|| tends to zero as n

tends to infinity. Applying this to x = u
(k)
i yields that for any k ≥ 1 and any i = 1, . . . , k,

||Tu
(k)
i − µiu

(k)
i || ≤ 3 . 2−(k−1) by (8), as TnPnu

(k)
i = Tnu

(k)
i for any n ≥ k. By (6) the

sequence (u(n)
i )n≥i converges as n tends to infinity to a certain vector ui ∈ `2(N), which is

nothing but

ui =
+∞∑
j=1

aj

µi − λj
ej .
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It is a non zero vector, and making k tend to infinity in the inequalities above shows that
Tui = µiui, so that ui is an eigenvector of T associated to the eigenvalue µi.

Let us now prove that the sequence (ui)i≥1 satisfies the assumptions of Theorem 2.2:
assertion (i) is true by construction, as the µi’s are all distinct. As for assertion (ii),
let us consider a vector x =

∑r
j=1 xjej with finite support and ||x|| ≤ 1. Writing x as

x =
∑r

i=1 αiu
(r)
i , we have by (1)

||x−
r∑

i=1

αiui|| ≤

(
r∑

i=1

|αi|

)
sup

i=1,...,r
||ui − u

(r)
i ||

≤ Cr ||x|| sup
i=1,...,r

∑
k≥r+1

||u(k)
i − u

(k−1)
i ||

≤ Cr

∑
k≥r+1

2−k

Ck−1
≤ 2−r

by (6). Hence for any ε > 0 there exists a vector y ∈ sp[uj ; j ≥ 1] such that ||x− y|| < ε,
and this proves assertion (ii). Assertion (iii) is a consequence of (7): for any k ≥ 1 let Ak

be the set Ak = {n ≥ 2 ; j(n) = k}. Observe that if n ∈ Ak, n ≥ k + 1. For any n ∈ Ak

we have ||u(n)
k − u

(n)
n || < 2−n by (7). Let us estimate ||un − uk||:

||un − uk|| ≤ ||un − u(n)
n ||+ ||u(n)

n − u
(n)
k ||+ ||u(n)

k − uk||

≤
∑

m≥n+1

||u(m)
n − u(m−1)

n ||+ 2−n +
∑

m≥n+1

||u(m)
k − u

(m−1)
k ||

≤ 2
∑

m≥n+1

2−m + 2−n = 5.2−n.

Thus if ε is any positive number, since Ak is infinite there exists an n ∈ Ak such that
||un − uk|| < ε, and assertion (iii) of Theorem 2.2 is satisfied too. We have thus proved
that T is hypercyclic, which proves Theorem 1.2 modulo the construction of λn, µn, an

and b(n) for each n ≥ 1.

3. The induction step

In order to complete the proof of Theorem 1.2, we now have to carry out the induction
step. Before starting, let us reformulate the first half of condition (1) in a more convenient
way: saying that the operator Tn = Dn + Rn acting on Cn has n distinct eigenvalues
µ1, . . . , µn exactly means that we have

(E)
n∑

j=1

ajb
(n)
j

µi − λj
= 1 for any i = 1, . . . , n.

Let Mn ∈ Mn(C) be the matrix Mn = (mij)1≤i,j≤n with mij = 1
µi−λj

. These coefficients
are well-defined, as we choose at each step k λk 6∈ {µ1, . . . , µk} and µk 6∈ {λ1, . . . , λk}.
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Then equations (E) can be rewritten as the matrix equation
1

µ1 − λ1
. . .

1
µ1 − λn

...
...

1
µn − λ1

. . .
1

µn − λn

 .


a1b

(n)
1

a2b
(n)
2
...

anb
(n)
n

 =


1
1
...
1

 , i.e. Mn


a1b

(n)
1

a2b
(n)
2
...

anb
(n)
n

 =


1
1
...
1

 .

We are now ready to begin the construction.

• We start by taking λ1 = 1 and a1 = 4−1 for instance. Then we take µ1 ∈ T with µ1 6= λ1

and |µ1 − λ1| so small (with |µ1 − λ1| < 1 in particular) that if we set

b
(1)
1 =

µ1 − λ1

a1
,

then |b(1)
1 | < 2−1. Of course Te1 = µ1e1.

• Suppose now that the construction has been carried out until Step n − 1. We have to
construct λn ∈ T, µn ∈ T, an ∈ C and b(n) ∈ Cn such that properties (1)-(8) hold true.
First of all, let ε > 0 be a positive number which is so small that:

0 < ε < 4−(n+1)(a)

n∏
j=1

(1 + 2−j)

n−1∑
j=1

1
|µj(n) − λj |2

 1
2

ε < 4−(n+1)(b)

1
minj=1,...,n−1 |aj |

1 +

n−1∑
j=1

|aj |2
 1

2

 n∏
j=1

(1 + 2−j) ε < 2−n.(c)

We first construct the nth diagonal coefficient λn of Dn: it is chosen very close to µj(n).
More precisely: by the induction assumption µj(n) is an eigenvalue of the matrix Mn−1,
so that

n−1∑
j=1

ajb
(n−1)
j

µj(n) − λj
= 1.

It follows that there exists δ > 0 such that for any λ ∈ T\{λ1, . . . , λn−1} with |λ−µj(n)| <
δ, we have

•

∣∣∣∣∣∣1−
n−1∑
j=1

ajb
(n−1)
j

λ− λj

∣∣∣∣∣∣ < ε

•
n∏

j=1

(1 + 2−j)

n−1∑
j=1

1
|λ− λj |2

 1
2

ε < 4−(n+1)

•

n−1∑
j=1

|aj |2 .

∣∣∣∣ 1
µj(n) − λj

− 1
λ− λj

∣∣∣∣2
 1

2

< ε.
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We choose λn ∈ T \ {λ1, . . . , λn−1, µ1, . . . , µn−1} such that |λn−µj(n)| < δ. We then have:∣∣∣∣∣∣1−
n−1∑
j=1

ajb
(n−1)
j

λn − λj

∣∣∣∣∣∣ < ε(d)

n∏
j=1

(1 + 2−j)

n−1∑
j=1

1
|λn − λj |2

 1
2

ε < 4−(n+1)(e)

n−1∑
j=1

|aj |2 .

∣∣∣∣ 1
µj(n) − λj

− 1
λn − λj

∣∣∣∣2
 1

2

< ε.(f)

Once λn is chosen, the next step is to choose µn. We take µn ∈ T\{λ1, . . . , λn, µ1, . . . , µn−1}
with |µn − λn| so small that∣∣∣∣∣∣1−

n−1∑
j=1

ajb
(n−1)
j

µn − λj

∣∣∣∣∣∣ < ε(g)

n∏
j=1

(1 + 2−j)

n−1∑
j=1

1
|µn − λj |2

 1
2

ε < 4−(n+1)(h)

n−1∑
j=1

|aj |2 .

∣∣∣∣ 1
µj(n) − λj

− 1
µn − λj

∣∣∣∣2
 1

2

< ε(i)

and
|µn − λn|
|µi − λn|

<
2−n

Cn−1
for any i = 1, . . . , n− 1(j)

||M−1
n || ≤ (1 + 2−n) ||M−1

n−1||.(k)

It is easy to see that conditions (g), (h), (i) and (j) can be fullfilled if |µn − λn| is small
enough. That condition (k) can be made to hold too is not so immediate, but not too
hard either: first of all for any ε′ > 0 there exists a δ′ > 0 such that if |µn−λn| < δ′, then∣∣∣∣ det Mn−1

(µn − λn) detMn
− 1
∣∣∣∣ < ε′.

Indeed (µn − λn) detMn = det M̃n, where M̃n is the matrix obtained from Mn by multi-
plying its last line by (µn − λn). If |µn − λn| is extremely small, the coefficients (M̃n)nj ,
j = 1, . . . , n − 1, are almost equal to zero, while (M̃n)nn = 1. Thus det M̃n can be made
as close as we wish to detMn−1, and it is possible to ensure that∣∣∣∣ 1

(µn − λn) detMn
− 1

det Mn−1

∣∣∣∣ < ε′

|det Mn−1|
,

from which it follows that ∣∣∣∣ det Mn−1

(µn − λn) detMn
− 1
∣∣∣∣ < ε′.
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Notice that ∣∣∣∣ 1
det Mn

− µn − λn

det Mn−1

∣∣∣∣ < ε′
|µn − λn|
|det Mn−1|

·

Then the formula M−1
n = 1

det Mn

tcomMn yields that:
– the coefficients (n, j) and (i, n) of M−1

n , i, j = 1, . . . , n, can be made arbitrarily small if
|µn − λn| is small enough, as (tcomMn)nj and (tcomMn)in do not depend on |µn − λn|,
while det Mn can be made arbitrarily small with |µn − λn|;
– the coefficients (i, j), i, j = 1, . . . , n − 1 can be made very close to the coefficients
(M−1

n−1)ij . Indeed the dominant term in the computation of (tcomMn)ij is the one involving
1

µn−λn
, that is 1

µn−λn
(tcomMn−1)ij . So (M−1

n )ij can be made as close as we wish to

1
(µn − λn) detMn

(tcomMn−1)ij =
det Mn−1

(µn − λn) detMn
(M−1

n−1)ij .

Hence M−1
n is very close to the matrix An for the operator norm on Mn(C), where

(An)ij = (M−1
n−1)ij for i, j = 1, . . . , n − 1 and (An)in = (An)nj = 0 for i, j = 1, . . . , n.

Hence there exists γ > 0 such that ||M−1
n || ≤ (1 + 2−n)||M−1

n−1|| if |µn − λn| < γ, and
property (k) is satisfied if µn is sufficiently close to λn.

Now that λn and µn are constructed, it remains to fix an and b(n). We take first

an = 2−(n+1)|µn − λn|.

There is now not much room for the choice of b(n): we must have

Mn


a1b

(n)
1
...

anb
(n)
n

 =

1
...
1

 i.e.


a1b

(n)
1
...

anb
(n)
n

 = M−1
n

1
...
1

 .

The numbers b
(n)
j are completely determined by these equations, and so we set

b
(n)
i =

1
ai

n∑
j=1

(M−1
n )ij .

It now remains to check that with this construction, properties (1)-(8) are satisfied:

• property (1) is true by construction, since

Mn


a1b

(n)
1
...

anb
(n)
n

 =

1
...
1

 .

• property (2) is trivially true if Cn is sufficiently large.

• as an = 2−(n+1)|µn − λn|, 0 < |an| < 2−n, so (3) is true.

• let us now check property (5). We have

Mn−1


a1b

(n−1)
1
...

an−1b
(n−1)
n−1

 =

1
...
1

 .
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Hence

Mn


a1b

(n−1)
1
...

an−1b
(n−1)
n−1

0

 =


1
...
1
cn

 where cn =
n−1∑
j=1

ajb
(n−1)
j

µn − λj
·

By (g) we have |1− cn| < ε, so that∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
Mn


a1(b

(n)
1 − b

(n−1)
1 )

...

an−1(b
(n)
n−1 − b

(n−1)
n−1 )

anb
(n)
n


∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
= |1− cn| < ε.

Hence∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣


a1(b

(n)
1 − b

(n−1)
1 )

...

an−1(b
(n)
n−1 − b

(n−1)
n−1 )

anb
(n)
n


∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
< ε ||M−1

n || ≤ ε (1 + 2−n) ||M−1
n−1|| ≤ . . . ≤ ε

n∏
j=1

(1 + 2−j)

by (k) and the fact that ||M−1
1 || = |µ1 − λ1| < 1, that isn−1∑

j=1

|aj |2 |b(n)
j − b

(n−1)
j |2 + |anb(n)

n |2
 1

2

< ε

n∏
j=1

(1 + 2−j).

In particular n−1∑
j=1

|aj |2 |b(n)
j − b

(n−1)
j |2

 1
2

< ε

n∏
j=1

(1 + 2−j)(l)

so that

min
j=1,...,n−1

|aj |

n−1∑
j=1

|b(n)
j − b

(n−1)
j |2

 1
2

< ε
n∏

j=1

(1 + 2−j).

By (c) we get that n−1∑
j=1

|b(n)
j − b

(n−1)
j |2

 1
2

< 2−n,

which is property (5).

• property (4) is a consequence of the equations
n∑

j=1

ajb
(n)
j

µn − λj
= 1, i.e.

n−1∑
j=1

ajb
(n)
j

µn − λj
+

anb
(n)
n

µn − λn
= 1
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and
n−1∑
j=1

ajb
(n−1)
j

µj(n) − λj
= 1.

We have

anb
(n)
n = (µn − λn)

1−
n−1∑
j=1

ajb
(n)
j

µn − λj

 = (µn − λn)

n−1∑
j=1

 ajb
(n−1)
j

µj(n) − λj
−

ajb
(n)
j

µn − λj


= (µn − λn)

n−1∑
j=1

aj

(
1

µj(n) − λj
− 1

µn − λj

)
b
(n−1)
j

+
n−1∑
j=1

aj

µn − λj
(b(n−1)

j − b
(n)
j )

 .

Thus

|anb
(n)
n | ≤ |µn − λn|

n−1∑
j=1

|aj |2
∣∣∣∣ 1
µj(n) − λj

− 1
µn − λj

∣∣∣∣2
 1

2
n−1∑

j=1

|b(n−1)
j |2

 1
2

+ |µn − λn|

n−1∑
j=1

|aj |2|b(n−1)
j − b

(n)
j |2

 1
2
n−1∑

j=1

1
|µn − λj |2

 1
2

.

Now by (i) and (l), we have

|anb
(n)
n | ≤ |µn − λn|

ε ||b(n−1)||+ ε
n∏

j=1

(1 + 2−j)

n−1∑
j=1

1
|µn − λj |2

 1
2

 .

We have seen in Section 2.3 that properties (4) and (5) at Step j ≤ n − 1 imply that
||b(j) − b(j−1)|| ≤ 2−(j−1) (this is assertion (9’)), so that ||b(n−1)|| ≤

∑n−1
j=2 2−(j−1) ≤ 1.

Combining this with property (h), we obtain that

|anb
(n)
n | < |µn − λn|(ε + 4−(n+1)).

Since ε < 4−(n+1) by (a),

|b(n)
n | < 2 . 4−(n+1) |µn − λn|

|an|
·

As an = 2−(n+1)|µn − λn|, this yields that |b(n)
n | < 2−n, and (4) holds true.

• property (6) is easy: for i = 1, . . . , n− 1,

||u(n−1)
i − u

(n)
i || =

|an|
|µi − λn|

= 2−(n+1) |µn − λn|
|µi − λn|

< 2−n

by (j). So (6) is true.
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• in order to prove property (7), we have to estimate

||u(n)
j(n) − u(n)

n || =

∣∣∣∣∣∣
∣∣∣∣∣∣

n∑
j=1

aj

µj(n) − λj
ej −

n∑
j=1

aj

µn − λj
ej

∣∣∣∣∣∣
∣∣∣∣∣∣

=

n−1∑
j=1

|aj |2
∣∣∣∣ 1
µj(n) − λj

− 1
µn − λj

∣∣∣∣2
 1

2

+ |an|
∣∣∣∣ 1
µj(n) − λn

− 1
µn − λn

∣∣∣∣
< ε + |an|

|µn − µj(n)|
|µj(n) − λn| . |µn − λn|

·

by (i). Now as an = 2−(n+1)|µn − λn|,

|an|
|µn − µj(n)|

|µj(n) − λn| . |µn − λn|
≤ 2−(n+1) |µn − λn|+ |λn − µj(n)|

|µj(n) − λn|

≤ 2−(n+1)

(
1 +

|µn − λn|
|µj(n) − λn|

)
< 2−(n+1) (1 + 2−n)

by (j). It follows then from (a) that

||u(n)
j(n) − u(n)

n || ≤ ε + 2−(n+1) (1 + 2−n) < 2−n,

so (7) is true.

• lastly, we have to estimate the quantities ||Tnu
(k)
i − µiu

(k)
i || for k = 1, . . . , n − 1 and

i = 1, . . . , k: since Tku
(k)
i = µiu

(k)
i , we have

||Tnu
(k)
i − µiu

(k)
i || = ||

n∑
p=k+1

(Tp − Tp−1)u
(k)
i || ≤

n∑
p=k+1

||(Tp − Tp−1)u
(k)
i ||.

Since u
(k)
i belongs to sp[e1, . . . , ek], we have Tpu

(k)
i = Dku

(k)
i + Rpu

(k)
i for p ≥ k, so that

(Tp − Tp−1)u
(k)
i = (Rp −Rp−1)u

(k)
i = 〈u(k)

i , b(p) − b(p−1)〉a(p)

for p ≥ k + 1. Thus

||(Tp − Tp−1)u
(k)
i || ≤ ||b(p) − b(p−1)|| . ||u(k)

i || . ||a(p)||.

By the induction assumption and (5) which we have already proved for p = n, we know
that (9’) holds true for any p ≤ n: ||b(p) − b(p−1)|| ≤ 2−(p−1) for k + 1 ≤ p ≤ n. Moreover
for k + 1 ≤ p ≤ n, ||a(p)|| ≤ 1 by (3) which is true until step n, and so it remains to prove
that ||u(k)

i || ≤ 3 for any k = 1, . . . , n − 1. By the induction assumption and (6), we have
||u(j)

i − u
(j−1)
i || ≤ 2−j for i + 1 ≤ j ≤ n− 1. Hence

||u(k)
i − u

(i)
i || ≤

k∑
j=i+1

||u(j)
i − u

(j−1)
i || ≤

k∑
j=i+1

2−j ≤ 2−i



A HYPERCYCLIC RANK ONE PERTURBATION OF A UNITARY OPERATOR 13

for any 1 ≤ k ≤ n− 1. So ||u(k)
i || ≤ 2−i + ||u(i)

i ||. Now for any i ≤ n− 1, we have by (7) of
the induction assumption that ||u(i)

j(i) − u
(i)
i || ≤ 2−i so that ||u(k)

i || ≤ 2.2−i + ||u(i)
j(i)||. Then

since i ≤ n− 1 and j(i) < i we can again estimate

||u(i)
j(i)|| ≤ ||u(j(i))

j(i) ||+ 2−j(i) < 2.2−j(i) + ||u(j(i))
j(j(i))||.

Since j(m) < m for every m ≥ 2, there exists for each i ≤ n − 1 an integer si such that
j[si−1](i) > j[si](i) and j[si](i) = 1, where j[s](i) denotes for each s ≥ 1 the sth iterate of
the function j. Thus

||u(k)
i || ≤ 2(2−i + 2−j(i) + 2−j(j(i)) + . . . + 2−j[si−1](i) + 2−1) + ||u(1)

1 || ≤ 3.

So ||(Tp − Tp−1)u
(k)
i || ≤ 3 . 2−(p−1) for any k + 1 ≤ p ≤ n. This yields that

||Tnu
(k)
i − µiu

(k)
i || < 3

n∑
p=k+1

2−(p−1) ≤ 3 . 2−(k−1)

and this estimate proves (8).
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