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Abstract. — If (nk)k≥1 is a strictly increasing sequence of integers, a continuous proba-
bility measure σ on the unit circle T is said to be IP-Dirichlet with respect to (nk)k≥1 if
σ̂(

∑
k∈F nk) → 1 as F runs over all non-empty finite subsets F of N and the minimum of

F tends to infinity. IP-Dirichlet measures and their connections with IP-rigid dynamical
systems have been investigated recently by Aaronson, Hosseini and Lemańczyk. We simplify
and generalize some of their results, using an approach involving generalized Riesz products.

1. Introduction

We will be interested in this paper in IP-Dirichlet probability measures on the unit circle

T = {λ ∈ C ; |λ| = 1} with respect to a strictly increasing sequence (nk)k≥1 of positive

integers. Recall that a probability measure µ on T is said to be a Dirichlet measure when

there exists a strictly increasing sequence (pk)k≥1 of integers such that the monomials zpk

tend to 1 on T as k tends to infinity with respect to the norm of Lp(µ), where 1 ≤ p < +∞.

This is equivalent to requiring that the Fourier coefficients µ̂(pk) of the measure µ tend

to 1 as k tends to infinity. If (nk)k≥1 is a (fixed) strictly increasing sequence of integers,

we say that µ is a Dirichlet measure with respect to the sequence (nk)k≥1 if µ̂(nk)→ 1 as

k → +∞. Let F denote the set of all non-empty finite subsets of N. The measure µ is

said to be IP-Dirichlet with respect to the sequence (nk)k≥1 if

µ̂(
∑
k∈F

nk)→ 1 as min(F )→ +∞, F ∈ F .

In other words: for all ε > 0 there exists a k0 ≥ 0 such that whenever F is a finite subset

of {k0, k0 + 1, . . .},
|µ̂(
∑
k∈F

nk)− 1| ≤ ε.

Our starting point for this paper is the work [1] by Aaronson, Hosseini and Lemańczyk,

where IP-Dirichlet measures are studied in connection with rigidity phenomena for dy-

namical systems. Let (X,B,m) denote a standard non-atomic probability space and let
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T be a measure-preserving transformation of (X,B,m). Let again (nk)k≥1 be a strictly

increasing sequence of integers.

Definition 1.1. — The transformation T is said to be rigid with respect to (nk)k≥1 if

m(T−nkA4A) → 0 as nk → +∞ for all sets A ∈ B, or, equivalently, if for all functions

f ∈ L2(X,B,m), ||f ◦ Tnk − f ||L2(X,B,m) → 0 as k → +∞.

Denote by σT the restricted spectral type of T , i.e. the spectral type of the Koopman

operator UT of T restricted to the space L2
0(X,B,m) of functions of L2(X,B,m) of mean

zero (recall that UT f = f ◦ T for every f ∈ L2(X,B,m)). Then it is not difficult to see

that T is rigid with respect to (nk)k≥1 if and only if σT is a Dirichlet measure with respect

to the sequence (nk)k≥1.

Rigidity phenomena for weakly mixing transformations have been investigated recently

in the papers [3] and [5], where in particular the following question was considered: given

a sequence (nk)k≥1 of integers, when is it true that there exists a weakly mixing trans-

formation T of some probability space (X,B,m) which is rigid with respect to (nk)k≥1?

When this is true, we say that (nk)k≥1 is a rigidity sequence. It was proved in [3] and

[5] that (nk)k≥1 is a rigidity sequence if and only if there exists a continuous probability

measure σ on T which is Dirichlet with respect to (nk)k≥1.

It is then natural to consider IP-rigidity for (weakly mixing) dynamical systems. This

study was initiated in [3] and continued in [1].

Definition 1.2. — The system (X,B,m;T ) is said to be IP-rigid with respect to the

sequence (nk)k≥1 if for every A ∈ B,

m(T
∑
k∈F nkA4A)→ 0 as min(F )→ +∞, F ∈ F .

Just as with the notion of rigidity, T is IP-rigid with respect to (nk)k≥1 if and only if

σT is an IP-Dirichlet measure with respect to (nk)k≥1. Moreover, if we say that (nk)k≥1 is

an IP-rigidity sequence when there exists a weakly mixing dynamical system (X,B,m;T )

which is IP-rigid with respect to (nk)k≥1, then IP-rigidity sequences can be characterized

in a similar fashion as rigidity sequences ([1, Prop. 1.2]): (nk)k≥1 is an IP-rigidity sequence

if and only if there exists a continuous probability measure σ on T which is IP-Dirichlet

with respect to (nk)k≥1.

IP-Dirichlet measures are studied in detail in the paper [1], and one of the important

features which is highlighted there is the connection between the existence of a measure

which is IP-Dirichlet with respect to a certain sequence (nk)k≥1 of integers, and the prop-

erties of the subgroups Gp((nk)) of the unit circle associated to (nk)k≥1: for 1 ≤ p < +∞,

Gp((nk)) = {λ ∈ T ;
∑
k≥1

|λnk − 1|p < +∞}

and for p = +∞

G∞((nk)) = {λ ∈ T ; |λnk − 1| → 0 as k → +∞}.

The main result of [1] runs as follows:
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Theorem 1.3. — [1, Th. 2] Let (nk)k≥1 be a strictly increasing sequence of integers.

If µ is a probability measure on T which is IP-Dirichlet with respect to (nk)k≥1, then

µ(G2((nk))) = 1.

The converse of Theorem 1.3 is false [1, Ex. 4.2], as one can construct a sequence (nk)k≥1

and a probability measure µ on T which is continuous, supported on G2((nk)) (which is

uncountable), and not IP-Dirichlet with respect to (nk)k≥1. On the other hand, if µ is

a continuous probability measure such that µ(G1((nk))) = 1, then µ is IP-Dirichlet with

respect to (nk)k≥1 [1, Prop. 1]. Again, this is not a necessary and sufficient condition for

being IP-Dirichlet with respect to (nk)k≥1 [1]: if (nk)k≥1 is the sequence of integers defined

by n1 = 1 and nk+1 = knk + 1 for each k ≥ 1, then there exists a continuous probability

measure σ on T which is IP-Dirichlet with respect to (nk)k≥1, although G1((nk)) = {1}.
Numerous examples of sequences (nk)k≥1 with respect to which there exist IP-Dirichlet

continuous probability measures are given in [1] as well. For instance, such sequences are

characterized among sequences (nk)k≥1 such that nk divides nk+1 for each k, and among

sequences which are denominators of the best rational approximants pk
qk

of an irrational

number α ∈ (0, 1), obtained via the continued fraction expansion. It is also proved in

[1] that sequences (nk)k≥1 such that the series
∑

k≥1(nk/nk+1)2 is convergent admit a

continuous IP-Dirichlet probability measure.

Our aim in this paper is to simplify and generalize some of the results and examples

of [1]. We first present an alternative proof of Theorem 1.3 above, which is completely

elementary and much simpler than the proof of [1] which involves Mackey ranges over the

dyadic adding machine. We then present a rather general way to construct IP-Dirichlet

measures via generalized Riesz products. The argument which we use is inspired by results

from [10] and [8, Section 4.2], where generalized Riesz products concentrated on some H2-

subgroups of the unit circle are constructed. Proposition 3.1 gives a bound from below on

the Fourier coefficients of these Riesz products, and this enables us to obtain in Proposition

4.1 a sufficient condition on sets {nk} of the form

(1) {nk} =
⋃
k≥1

{pk, q1 k pk, . . . , qrk, k pk},

where the qj,k, j = 1, . . . rk, are positive integers and the sequence (pk)k≥1 is such that

pk+1 > qrk,kpk for each k ≥ 1, for the existence of an associated continuous generalized

Riesz product which is IP-Dirichlet with respect to (nk)k≥1. This condition is best possible

(Proposition 4.2). As a consequence of Proposition 4.1, we retrieve and improve a result

of [1] which runs as follows: if (nk)k≥1 is such that there exists an infinite subset S of N
such that ∑

k∈S

nk
nk+1

< +∞ and nk|nk+1 for each k 6∈ S,

then there exists a continuous probability measure σ on T which is IP-Dirichlet with

respect to (nk)k≥1. This result is proved in [1] by constructing a rank-one weakly mixing

system which is IP-rigid with respect to (nk)k≥1. Here we get a direct proof of this

statement, where the condition
∑

k∈S(nk/nk+1) < +∞ is replaced by the weaker condition∑
k∈S(nk/nk+1)2 < +∞.
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Theorem 1.4. — Let (nk)k≥1 be a strictly increasing sequence of integers for which there

exists an infinite subset S of N such that∑
k∈S

( nk
nk+1

)2
< +∞ and nk|nk+1 for each k 6∈ S.

Then there exists a continuous generalized Riesz product σ on T which is IP-Dirichlet with

respect to (nk)k≥1.

Using again sets of the form (1), we then show that the converse of Theorem 1.3 is false

in the strongest possible sense, thus strengthening Example 4.2 of [1]:

Theorem 1.5. — There exists a strictly increasing sequence (nk)k≥1 of integers such that

G2((nk)) is uncountable, but no continuous probability measure is IP-Dirichlet with respect

to (nk)k≥1.

The last section of the paper gathers some observations concerning the Erdös-Taylor

sequence (nk)k≥1 defined by n1 = 1 and nk+1 = knk+1, which is of interest in this context,

as well as a generalization of Proposition 3.1 which shows that under the assumptions on

the sequence (nk)k≥1 of either Corollary 3.2 or Theorem 1.4, there exist uncountably

many dynamical systems which are weakly mixing and IP-rigid with respect to (nk)k≥1,

and which have pairwise disjoint restricted maximal spectral types (Corollary 6.2).

Notation: In the whole paper, we will denote by {x} the distance of the real number

x to the nearest integer, by bxe the integer which is closest to x (if there are two such

integers, we take the smallest one), and by 〈x〉 the quantity x−bxe. Lastly, we denote by

[x] the integer part of x.

Acknowledgements: I am grateful to the referee for suggesting the statement of

Corollary 6.2, and to Pascal Lefèvre for pointing out several inaccuracies and misprints in

a first version of this paper.

2. An alternative proof of Theorem 1.3

Let (nk)k≥1 be a strictly increasing sequence of integers. Suppose that the measure µ

on T is IP-Dirichlet with respect to (nk)k≥1. For every ε > 0 there exists an integer k0

such that for all sets F ∈ F with min(F ) ≥ k0,
∣∣µ̂ (∑k∈F nk

)
− 1
∣∣ ≤ ε. For every integer

N ≥ k0, consider the quantities

N∏
k=k0

1

2
(1 + λnk) = 2−(N−k0+1)

∑
F⊆{k0,...,N}

λ
∑
k∈F nk .

The notation on the righthand side of this display means that the sum is taken over all

(possibly empty) finite subsets F of {k0, . . . , N}. Integrating with respect to µ yields that∫
T

N∏
k=k0

1

2
(1 + λnk) dµ(λ) = 2−(N−k0+1)

∑
F⊆{k0,...,N}

µ̂
(∑
k∈F

nk
)
,
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so that

(2)
∣∣∣∫

T

N∏
k=k0

1

2
(1 + λnk) dµ(λ)− 1

∣∣∣ ≤ 2−(N−k0+1)
∑

F⊆{k0,...,N}

∣∣∣µ̂(∑
k∈F

nk
)
− 1
∣∣∣ ≤ ε.

Let now

C =
{
λ ∈ T ; the infinite product

+∞∏
k=1

1

2
|1 + λnk | converges to a non-zero limit

}
.

Observe that the set C does not depend on ε nor on k0. For every λ ∈ T \C, the quantity∏N
k=k0

1
2 |1 + λnk | tends to 0 as N → +∞, and so by the dominated convergence theorem

we get that ∫
T\C

N∏
k=k0

1

2
(1 + λnk) dµ(λ)→ 0 as N → +∞.

It then follows from (2) that

lim sup
N→+∞

∣∣∣∫
C

N∏
k=k0

1

2
(1 + λnk) dµ(λ)− 1

∣∣∣ ≤ ε
so that

lim inf
N→+∞

∣∣∣∫
C

N∏
k=k0

1

2
(1 + λnk) dµ(λ)

∣∣∣ ≥ 1− ε.

But ∣∣∣∫
C

N∏
k=k0

1

2
(1 + λnk) dµ(λ)

∣∣∣ ≤ µ(C),

hence µ(C) ≥ 1 − ε. This being true for any choice of ε in (0, 1), µ(C) = 1, and so the

product
∏
k≥1

1
2 |1 + λnk | converges to a non-zero limit almost everywhere with respect to

the measure µ. If we now write elements λ ∈ C as λ = e2iπθ, θ ∈ [0, 1), we have∏
k≥1

1

2
|1 + λnk | =

∏
k≥1

| cos(πθnk)|.

Since 0 < | cos(πθnk)| ≤ 1 for all k ≥ 1, this means that the series
∑

k≥1 1−| cos(πθnk)| is
convergent. In particular {θnk} → 0 as k → +∞. As the quantities 1 − | cos(πθnk)| and
π2

2 {θnk}
2 are equivalent as k → +∞, we obtain that the series

∑
k≥1{θnk}2 is convergent.

But ∣∣1− λnk ∣∣2 =
∣∣1− e2iπθnk

∣∣2 ≤ 4π2{θnk}2,
and it follows from this that the series

∑
k≥1

∣∣1− λnk ∣∣2 is convergent as soon as λ belongs

to C. This proves our claim.
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3. IP-Dirichlet generalized Riesz products

Our aim is now to give conditions on the sequence (nk)k≥1 which imply the existence of

a generalized Riesz product which is continuous and IP-Dirichlet with respect to (nk)k≥1.

For information about classical and generalized Riesz products, we refer for instance the

reader to the papers [10] and [8] and to the books [7] and [12].

Proposition 3.1. — Let (nk)k≥1 be a strictly increasing sequence of integers. Suppose

that there exists a sequence (mk)k≥1 of integers with m1 ≥ 3 such that

(3) nk+1 − 2
k∑
j=1

mjnj ≥ 1 for each k ≥ 1,

and

(4) nk+1 − 2
k∑
j=1

mjnj −→ +∞ as k −→ +∞.

For each k ≥ 1, let qk ≥ 1 be an integer such that qkπ
√

2 ≤ mk + 2. There exists a

continuous generalized Riesz product σ on T such that for every finite subset F ∈ F and

every integers jk in {1, . . . , qk}, k ∈ F , one has

σ̂
(∑
k∈F

jknk
)
≥
∏
k∈F

(
1− 2π2

( qk
mk + 2

)2)
(5)

and

σ̂
(∑
k∈F

nk
)

=
∏
k∈F

cos
( π

mk + 2

)
.(6)

Proof. — For any integer k ≥ 1, consider the polynomial Pk defined on T by

Pk(e
2iπt) =

2

mk + 2

∣∣∣mk+1∑
j=1

sin
( jπ

mk + 2

)
e2iπjt

∣∣∣2, t ∈ [0, 1].

Each Pk is a nonnegative trigonometric polynomial. Its spectrum is the set {−mk, . . . ,mk}
and a straightforward computation shows that P̂k(0) = 1. Condition (3), which is a

dissociation condition, implies that the probability measures
∏N
k=1 Pk

(
e2iπnkt

)
dλ(t) (where

λ denotes here the normalized Lebesgue measure on T) converge in the w∗ topology as

N → +∞ to a probability measure σ on T, and that for each F ∈ F and each integers

jk ∈ {−mk, . . . ,mk}, k ∈ F ,

σ̂
(∑
k∈F

jknk

)
=
∏
k∈F

P̂k(jk),

while σ̂(n) = 0 when n is not of this form. In particular

σ̂
(∑
k∈F

nk

)
=
∏
k∈F

P̂k(1).
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Before getting into precise computation of these Fourier coefficients, let us prove that σ is

a continuous measure: this follows from condition (4). If

k∑
j=1

mjnj < n < nk+1 −
k∑
j=1

mjnj ,

then σ̂(n) = 0. So the Fourier transform of σ vanishes on successive intervals Ik of length

lk = nk+1 − 2
∑k

j=1mjnj − 1. Since lk tends to infinity with k by (4), it follows from the

Wiener theorem that σ is continuous.

Let us now go back to the computation of the Fourier coefficients σ̂
(∑

k∈F jknk

)
. For

each q ∈ {1, . . . ,mk}, we have

(7) P̂k(q) =
2

mk + 2

mk+1−q∑
j=1

sin
((j + q)π

mk + 2

)
sin
( jπ

mk + 2

)
.

Standard computations yield the following expression for P̂k(q):

P̂k(q) =
1

mk + 2

(
(mk + 2− q) cos

( qπ

mk + 2

)
+ sin

( qπ

mk + 2

)
·

cos
(

π
mk+2

)
sin
(

π
mk+2

) )(8)

=
1

mk + 2

(
(mk + 2− q) cos

( qπ

mk + 2

)
+ cos

((q − 1)π

mk + 2

)
· cos

( π

mk + 2

)
+ sin

((q − 1)π

mk + 2

)
·

cos2
(

π
mk+2

)
sin
(

π
mk+2

)
= · · · = 1

mk + 2

(
(mk + 2− q) cos

( qπ

mk + 2

)
+

q∑
j=1

cos
((q − j)π
mk + 2

)
cosj

( π

mk + 2

))
.

Observe now that for every x ∈ [0, 1], cosx ≥ 1 − x2 ≥ 0. For each k ≥ 1, qk ≥ 1 is an

integer such that qkπ
√

2 ≤ mk+2, and q belongs to the set {1, . . . , qk}. So (q−j)π ≤ mk+2

for every j ∈ {0, . . . , q − 1}. Thus

cos
( qπ

mk + 2

)
≥ 1− π2 q2

(mk + 2)2
and cos

((q − j)π
mk + 2

)
≥ 1− π2 (q − j)2

(mk + 2)2
·

Moreover, cosj x ≥ (1− x2)j ≥ 1− jx2 for every x ∈ [0, 1] and every j ≥ 1, so that

cosj
( π

mk + 2

)
≥ 1− π2 j

(mk + 2)2
·

Putting things together, we obtain the estimate

P̂k(q) ≥
1

mk + 2

(
(mk + 2− q)

(
1− π2 q2

(mk + 2)2

)
+

q∑
j=1

(
1− π2 (q − j)2

(mk + 2)2

)(
1− π2 j

(mk + 2)2

))
·
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Now, for every j ∈ {1, . . . , q − 1},(
1− π2 (q − j)2

(mk + 2)2

)(
1− π2 j

(mk + 2)2

)
= 1− π2 (q − j)2 + j

(mk + 2)2
+ π4 j(q − j)2

(mk + 2)4

≥ 1− π2 (q − j)2 + j

(mk + 2)2
≥ 1− 2π2 q2

(mk + 2)2
·

Summing over j and putting together terms, we eventually obtain that

P̂k(q) ≥
1

mk + 2

(
(mk + 2− q)

(
1− π2 q2

(mk + 2)2

)
+ q − 2π2 q3

(mk + 2)2

)
≥ 1− 1

mk + 2
(mk + 2− q)π2

( q

mk + 2

)2
− 2π2

( q

mk + 2

)3
,

i.e. that

P̂k(q) ≥ 1− π2
( q

mk + 2

)2
− π2

( q

mk + 2

)3

≥ 1− π2
( qk
mk + 2

)2
− π2

( qk
mk + 2

)3
for each q ∈ {1, . . . , qk}

≥ 1− 2π2
( qk
mk + 2

)2
≥ 0

since qkπ
√

2 ≤ mk + 2. Assertion (5) follows directly from the fact that σ̂
(∑

k∈F jknk
)

=∏
k∈F P̂k(jk). Assertion (6) is straightforward: the expression in the first line of the

display (8) applied to q = 1 yields that P̂k(1) = cos(π/(mk + 2)). This finishes the proof

of Proposition 3.1.

Proposition 3.1 may appear a bit technical at first sight, but it turns out to be quite

easy to apply. As a first example, we use it to obtain another proof of a result of [1, Prop.

3.2]:

Corollary 3.2. — Let (nk)k≥1 be a strictly increasing sequence of integers such that the

series
∑

k≥1(nk/nk+1)2 is convergent. There exists a continuous generalized Riesz product

σ on T which is IP-Dirichlet with respect to (nk)k≥1.

Proof. — Without loss of generality we can assume that
∑

k≥1(nk/nk+1)2 < 1/200. Let

(εk)k≥1 be a sequence of real numbers with 0 < εk < 1/2 for each k ≥ 2, with ε1 = 0,

going to zero as k tends to infinity, and such that∑
k≥1

( 1

εk+1

nk
nk+1

)2
<

1

50
·

Then εk+1nk+1/nk > 7 > 6 + εk, so that if we define mk = [(εk+1nk+1 − εknk)/2nk] for

each k ≥ 1, each mk is greater or equal to 3. Moreover

nk+1 − 2
k∑
j=1

mjnj ≥ nk+1 − (εk+1nk+1 − ε1n1) = (1− εk+1)nk+1

which tends to infinity as k tends to infinity, and is always greater than 1 because εk+1 <

1/2 and nk+1 ≥ 2 for each k ≥ 1. Proposition 3.1 applies with this choice of the sequence
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(mk)k≥1 and yields a continuous generalized Riesz product σ which satisfies

σ̂
(∑
k∈F

nk

)
=
∏
k∈F

cos
( π

mk + 2

)
for each F ∈ F .

Now mk is equivalent as k tends to infinity to the quantity εk+1nk+1/2nk, so that the

series
∑

k≥1 1/(mk + 2)2 is convergent. Hence the infinite product
∏
k≥1 cos

(
π/(mk + 2)

)
is convergent. For any ε > 0, let k0 be such that

∏
k≥k0 cos

(
π/(mk +2)

)
≥ 1−ε. If F ∈ F

is such that min(F ) ≥ k0,

σ̂
(∑
k∈F

nk

)
=
∏
k∈F

cos
( π

mk + 2

)
≥
∏
k≥k0

cos
( π

mk + 2

)
≥ 1− ε,

and this proves that σ is IP-Dirichlet with respect to (nk)k≥1.

4. An application to a special class of sets {nk}

Proposition 3.1 applies especially well to a particular class of sequences (nk)k≥1, which

we now proceed to investigate.

Proposition 4.1. — Let (pl)l≥1 be a strictly increasing sequence of integers. For each

l ≥ 1, let (qj,l)j=0,...,rl be a strictly increasing finite sequence of integers with q0,l = 1, and

set ql = q0,l + q1,l + · · · + qrl,l. Suppose that pl+1 > qrl,l pl for each l ≥ 1, and that the

series ∑
l≥1

(
ql pl
pl+1

)2

is convergent. Let (nk)k≥1 be the strictly increasing sequence defined by

{nk} =
⋃
l≥1

{pl, q1,l pl, . . . , qrl,l pl}

There exists a continuous generalized Riesz product σ on T which is IP-Dirichlet with

respect to the sequence (nk)k≥1.

Proof. — As in the proof of Corollary 3.2, we can suppose that
∑

k≥1(qlpl/pl+1)2 < 1/400,

and consider a sequence (εl)l≥1 going to zero as l tends to infinity with ε1 = 0 and

0 < εl < 1/2 for each l ≥ 2, such that∑
l≥1

( 1

εl+1

qlpl
pl+1

)2
<

1

100
·

The same argument as in the proof of Corollary 3.2 shows that for l ≥ 1 the integers

ml = [(εl+1pl+1 − εlpl)/(2pl)] are greater or equal to 3, and that assumptions (3) and (4)

of Proposition 3.1 are satisfied. As ml is equivalent as l tends to infinity to (εl+1pl+1)/(2pl),

we have that ql/(ml + 2) is equivalent to (2qlpl)/(εl+1pl+1). Our assumption implies then

that the series

(9)
∑
l≥1

( ql
ml + 2

)2
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is convergent. Moreover, qlπ
√

2 < 5ql <
1
2
εl+1pl+1

pl
. But

εl+1pl+1

2pl
− εl

2 ≤ ml + 1, so that
εl+1pl+1

pl
≤ 2(ml + 2). Hence qlπ

√
2 < ml + 2 for each l ≥ 2. Applying Proposition 3.1 to

the sequence (pl)l≥1, we get a continuous generalized Riesz product σ, and the estimates

(5) yield that

σ̂
(∑
l∈F

(∑
j∈Gl

qj, l

)
pl

)
≥
∏
l∈F

(
1− 2π2

( ql
ml + 2

)2)
for each set F ∈ F and each subsets Gl of {0, . . . , rl}, l ∈ F . In order to show that the

measure σ is IP-Dirichlet with respect to (nk)k≥1, it remains to observe that the product

on the right-hand side is convergent by (9). We then conclude as in the proof of Corollary

3.2.

The proof of Theorem 1.4 is now a straightforward corollary of Proposition 4.1. Recall

that we wish to prove that if (nk)k≥1 is a sequence of integers for which there exists an

infinite subset S of N such that∑
k∈S

( nk
nk+1

)2
< +∞ and nk|nk+1 for each k 6∈ S,

then there exists a continuous generalized Riesz product σ on T which is IP-Dirichlet with

respect to (nk)k≥1.

Proof of Theorem 1.4. — Let Φ : N → N be a strictly increasing function such that S =

{Φ(l), l ≥ 1}. Set pl = nΦ(l)+1 for l ≥ 1 and write for each k ∈ {Φ(l) + 1, . . . ,Φ(l + 1)}

nk = s0,l s1,l . . . sk−(Φ(l)+1),l pl,

with s0,l = 1 and sj,l ≥ 2 for each j = 1, . . . ,Φ(l + 1) − (Φ(l) + 1). With the notation of

Proposition 4.1 we have rl = Φ(l + 1)− (Φ(l) + 1) and

qk−(Φ(l)+1),l = s0,l s1,l . . . sk−(Φ(l)+1),l

Hence ql = q0,l + · · ·+ qrl,l = s0,l + s0,l s1,l + · · ·+ s0,l s1,l . . . srl,l. We have

ql
s0,l s1,l . . . srl,l

= 1 +
1

srl,l
+

1

srl−1,l srl,l
+ · · ·+ 1

s2,l . . . srl,l
+

1

s1,l . . . srl,l

≤ 1 +
1

2
+

1

4
+ · · ·+ 1

2rl
since sj,l ≥ 2 for each j = 1, . . . , rl

≤ 2.

This yields that ql ≤ 2s0,ls1,l . . . srl,l = 2qrl,l for each l ≥ 1. Our assumption that the

series
∑

k∈S(nk/nk+1)2 is convergent means that the series
∑

l≥1(qrl,l pl/pl+1)2 is conver-

gent. Hence the series
∑

l≥1(ql pl/pl+1)2 is convergent and the conclusion follows from

Proposition 4.1.

Our next result shows the optimality of the assumption of Proposition 4.1 that the

series
∑

l≥1(qlpl/pl+1)2 is convergent.

Proposition 4.2. — Let (γl)l≥1 be any sequence of positive real numbers, going to zero

as l goes to infinity, such that the series
∑

l≥1 γ
2
l is divergent, with 0 < γl < 1 for each

l ≥ 2. Let (rl)l≥1 be a sequence of integers growing to infinity so slowly that the series∑
l≥1 γ

2
l /rl is divergent, with rl ≥ 2 for each l ≥ 1. Define a sequence (pl)l≥1 of integers
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by setting p1 = 1 and pl+1 = [r2
l /γl] pl + 1. For each l ≥ 1, we have pl+1 > rl pl. Define a

strictly increasing sequence (nk)k≥1 of integers by setting

{nk} =
⋃
l≥1

{pl, 2 pl, . . . , rl pl}.

Then no continuous measure σ on the unit circle can be IP-Dirichlet with respect to the

sequence (nk)k≥1.

Proof. — We are going to show that G2((nk)) = {1}. It will then follow from Theorem

1.3 that no continuous probability measure on T can be IP-Dirichlet with respect to the

sequence (nk)k≥1. Suppose that λ ∈ T \ {1} is such that

(10)
∑
k≥1

|λnk − 1|2 =
∑
l≥1

rl∑
j=1

|λjpl − 1|2 < +∞.

Let C be a positive constant such that for each θ ∈ R, 1
C {θ} ≥ |e

2iπθ−1| ≥ C{θ}. Writing

λ as λ = e2iπθ, θ ∈ [0, 1), we have that

(11) |λjpl − 1| ≥ C{jplθ} for each l ≥ 1 and j = 1, . . . , rl.

Now {θpl} < 1/rl for sufficiently large l. Else the set {{jθpl}, j = 1, . . . , rl} would form

a {θpl}-dense net of [0, 1], and this would contradict the fact, implied by (10) and (11),

that the quantity
∑rl

j=1{jθpl}2 tends to zero as l tends to infinity. Hence, for sufficiently

large l, {jθpl} = j{θpl} for every j = 1, . . . , rl, and thus the series
∑

l≥1

∑rl
j=1 j

2|λpl − 1|2
is convergent. As rl tends to infinity with l, this means that the series

(12)
∑
l≥1

r3
l |λpl − 1|2

is convergent.

Let now (δl)l≥1 be a sequence of real numbers going to zero so slowly that the series∑
l≥1

1
rl
γ2
l δ

2
l is divergent. Suppose that |λpl − 1| < γl

r2l
δl for infinitely many l. Then,

∣∣λ[ r2lγl ] pl − 1
∣∣ < δl for all these l,

and by definition of pl+1, |λpl+1 − λ| < δl. Letting l tend to infinity along this set of

integers, and remembering that |λpl+1 − 1| → 0 as l tends to infinity, we get that λ = 1,

which is contrary to our assumption. Hence |λpl − 1| ≥ γl
r2l
δl for all integers l sufficiently

large. Combining this with (12), this implies that the series∑
l≥1

r3
l

γ2
l

r4
l

δ2
l =

∑
l≥1

1

rl
γ2
l δ

2
l

is convergent, which is again a contradiction. So G2((nk)) = {1} and we are done.

Consider the sets {nk} given by Proposition 4.2. With the notation of Proposition 4.1,

ql is equivalent to r2
l /2 as k tends to infinity, and the series

∑
l≥1(qlpl/pl+1)2 is divergent

because (qlpl/pl+1)2 is equivalent to γ2
l /4. This shows the optimality of the condition

given in Proposition 4.1.
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Looking at the construction of Proposition 4.2 from a different angle yields an example

of a sequence (nk)k≥1 such that G2((nk)) is uncountable, but still no continuous probability

measure on T can be IP-Dirichlet with respect to (nk)k≥1. This is Theorem 1.5.

5. Proof of Theorem 1.5

Recall that we aim to construct a strictly increasing sequence (nk)k≥1 of integers such

that G2((nk)) is uncountable, but no continuous probability measure on T is IP-Dirichlet

with respect to the sequence (nk)k≥1. This sequence (nk)k≥1 will be of the kind considered

in the previous section. Consider first the sequence (pl)l≥1 defined by p1 = 1 and pl+1 =
l2(l2+1)

2 pl for all l ≥ 1. We then define the sequence (nk)k≥1 by setting

{nk ; k ≥ 1} =
⋃
l≥2

{pl, 2pl, . . . , l2pl}.

As l2pl < pl+1 for all l ≥ 2, the sets {pl, 2pl, . . . , l2pl} are consecutive sets of inte-

gers. Let (Ml)l≥1 be the unique sequence of integers such that {nMl−1+1, . . . , nMl
} =

{pl, 2pl, . . . , l2pl} for each l ≥ 2. We now know (see for instance [2] or [5] for a proof) that

there exists a perfect uncountable subset K of T (which is actually a generalized Cantor

set) such that

|λpl − 1| ≤ C pl
pl+1

for all λ ∈ K and l ≥ 2,

where C is a positive universal constant. Hence for λ ∈ K, l ≥ 2 and j ∈ {1, . . . , l2} we

have

|λjpl − 1| ≤ C j pl
pl+1

≤ 2C l2
1

l4
=

2C

l2
·

Thus
l2∑
j=1

|λjpl − 1|2 ≤ l2 4C2

l4
=

4C2

l2
·

Hence the series
∑

l≥2

∑l2

j=1 |λjpl − 1|2 is convergent for all λ ∈ K, that is the series∑
k≥1 |λnk − 1|2 is convergent for all λ ∈ K. We have thus proved the first part of our

statement, namely that G2((nk)) is uncountable.

Let now σ be a continuous probability measure on T. The proof that σ cannot be

IP-Dirichlet with respect to the sequence (nk)k≥1 relies on the following lemma:

Lemma 5.1. — For all l ≥ 2 and all s ≥ 1, spl belongs to the set{∑
k∈F

nk ; F ∈ F , min(F ) ≥Ml−1 + 1
}
.

Proof of Lemma 5.1. — It is clear that for all n ≥ 1,

{
∑
j∈F

j ; F ⊆ {1, . . . , n}, F 6= ∅} = {1, . . . , n(n+ 1)

2
}.

Hence

{
∑
j∈F

jpl ; F ⊆ {1, . . . , l2}, F 6= ∅} = {pl, 2pl . . . ,
l2(l2 + 1)

2
pl},
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i.e.

{
∑
k∈F

nk ; F ⊆ {Ml−1 + 1, . . . ,Ml}, F 6= ∅} = {pl, 2pl . . . , pl+1}.

This proves Lemma 5.1 for s ∈ {1, . . . , l
2(l2+1)

2 }. Then since

{
∑
k∈F

nk ; F ⊆ {Ml + 1, . . . ,Ml+1}, F 6= ∅} = {pl+1, 2pl+1 . . . ,
(l + 1)2((l + 1)2 + 1)

2
pl+1},

we get that

{
∑
k∈F

nk ; F ⊆ {Ml−1 + 1, . . . ,Ml+1}, F 6= ∅}

= {pl, 2pl, . . . , pl+1, pl+1 + pl, pl+1 + 2pl, . . . , 2pl+1, . . .

(l + 1)2((l + 1)2 + 1)

2
pl+1, . . . ,

(l + 1)2((l + 1)2 + 1)

2
pl+1 + pl+1}

= {pl, 2pl, . . . ,
l2(l2 + 1)

2
·
((l + 1)2((l + 1)2 + 1)

2
+ 1
)
pl}.

In particular {
∑

k∈F nk ; F ⊆ {Ml−1 + 1, . . . ,Ml+1}, F 6= ∅} contains the set

{pl, 2pl, . . . ,
l2(l2 + 1)

2
· (l + 1)2((l + 1)2 + 1)

2
pl}.

Continuing in this fashion we obtain that for all q ≥ 1,

{
∑
k∈F

nk ; F ⊆ {Ml−1 + 1, . . . ,Ml+q}, F 6= ∅}

contains the set

{pl, 2pl, . . . ,
q∏
j=0

(l + j)2((l + j)2 + 1)

2
pl}.

The conclusion of Lemma 5.1 follows from this.

Suppose now that σ is IP-Dirichlet with respect to (nk)k≥1. Let l0 ≥ 2 be such that for

every F ∈ F with min(F ) ≥ Ml0−1 + 1, |σ̂(
∑

k∈F nk)| ≥ 1/2. Then Lemma 5.1 implies

that for all s ≥ 1, |σ̂(spl0)| ≥ 1/2. This contradicts the continuity of the measure σ.

6. Additional results and comments

6.1. A remark about the Erdös-Taylor sequence. — Let (nk)k≥1 be the sequence

of integers defined by n1 = 1 and nk+1 = knk + 1 for every k ≥ 1. This sequence is

interesting in our context because G1((nk)) = {1} while G2((nk)) is uncountable ([6], see

also [1]): if λ ∈ T \ {1}, there exists a positive constant ε such that |λnk − 1| ≥ ε
k for all

k ≥ 1. Indeed, if for some k we have |λnk−1| ≤ ε
k with ε = 1

2 |λ−1|, then |λknk−1| ≤ ε, so

that |λnk+1 −1| ≥ |λ−1|− ε ≥ 1
2 |λ−1| > 0. Hence if λ ∈ T\{1} the series

∑
k≥1 |λnk −1|

is divergent. On the other hand, since the series
∑

k≥1(nk/nk+1)2 is convergent, G2((nk))

is uncountable. It is proved in [1] that there exists a continuous probability measure σ

on T which is IP-Dirichlet with respect to (nk)k≥1. This statement can also be seen as
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a consequence of Theorem 2.2 of [9]: it is shown there that there exists a continuous

generalized Riesz product σ on T and a δ > 0 such that

|σ̂(
∑
k∈F

nk)| ≥ δ

for every F ∈ F such that min(F ) > 4. It is not difficult to see that this measure σ is in

fact IP-Dirichlet with respect to (nk)k≥1. We briefly give the argument below. It can be

generalized to all sequences (nk)k≥1 such that the series
∑

k≥1(nk/nk+1)2 is convergent,

thus yielding another proof of Corollary 3.2.

The measure σ of [9] is constructed in the following way: let ∆ be the function defined

for t ∈ R by ∆(t) = max(1− 6|t|, 0). If K is the function R given by the expression

K(t) =
1

2π

(
sin t

2
t
2

)2

, t ∈ R

and Kα is defined for each α > 0 by Kα(t) = αK(αt), t ∈ R, then ∆(x) = K̂ 1
6
(x) for every

x ∈ R. The function ∆ ∗ ∆ is a C2 function on R which is supported on [−1
3 ,

1
3 ], takes

positive values on ]− 1
3 ,

1
3 [, and attains its maximum at the point 0. Hence its derivative

vanishes at the point 0. Let a > 0 be such that the function ϕ = a∆∗∆ satisfies ϕ(0) = 1.

We have also ϕ′(0) = 0, and so there exists a constant c ≥ 0 and a γ ∈ (0, 1
3) such

that for all x with |x| < γ, ϕ(x) ≥ 1 − cx2. Lastly, recall that ϕ(x) = aK̂2
1
6

(x) for all

x ∈ R. Consider now the sequence (Pj)j≥1 of trigonometric polynomials defined on T in

the following way: for j ≥ 1 and t ∈ R,

Pj(e
it) =

∑
s∈Z

ϕ(
s

j
)eist.

This is indeed a polynomial of degree at most b j3c, since ϕ( sj ) = 0 as soon as s
j ≥

1
3 . We now

claim that Pj takes only nonnegative values on T: indeed, consider for each j ≥ 1 and t ∈ R
the function Φj,t defined by Φj,t(x) = jK2

1
6

(j(x+ t)), x ∈ R. Its Fourier transform is then

given by Φ̂j,t(ξ) = eiξtK̂2
1
6

( ξj ) = eiξt∆ ∗ ∆( ξj ). Thus Pj(e
it) = a

∑
s∈Z Φ̂j,t(s). Applying

the Poisson formula to the function Φj,t, we get that Pj(e
it) = 2πa

∑
s∈Z Φj,t(2πs) =

2πa
∑

s∈Z jK
2
1
6

(j(2πs + t)) ≥ 0. Hence Pj(e
it) is nonnegative for all t ∈ R, P̂j(0) = 1 and

P̂j(1) = ϕ(1
j ) ≥ 1 − c

j2
as soon as j ≥ j0, where j0 = b 1

γ c + 1. Consider then for m ≥ j0
the nonnegative polynomials Qm defined by

Qm(eit) =

m∏
j=j0

Pj(e
injt), t ∈ R.

Since the degree of Pj is less than b j3c and nj+1 >
jnj
3 , Q̂m(0) = 1 for each m ≥ 1 and the

polynomials Qm converge in the w∗-topology to a generalized Riesz product σ on T which

is continuous and such that for every set F ∈ F with min(F ) ≥ j0,

σ̂(
∑
k∈F

nk) ≥
∏
k∈F

(1− c

k2
)·

It follows that σ is an IP-Dirichlet measure with respect to the sequence (nk)k≥1.
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6.2. A sequence (nk)k≥1 with respect to which there exists a continuous Dirich-

let measure, but such that G∞((nk)) = {1}. — The examples of sequences (nk)k≥1

given in [3] and [5] for which there exists a continuous probability measure σ on T
such that σ̂(nk) → 1 as k → +∞ all share the property that |λnk − 1| → 0 for some

λ ∈ T \ {1}. One may thus wonder whether there exists a sequence (nk)k≥1 with re-

spect to which there exists a continuous Dirichlet probability measure σ, and such that

G∞((nk)) = {λ ∈ T ; |λnk − 1| → 0} = {1}. The answer is yes, and an ad hoc sequence

(nk)k≥1 can be constructed from the Erdös-Taylor sequence above. Changing notations,

let us denote by (pk)k≥1 this sequence defined by p1 = 1 and pk+1 = kpk + 1 for each

k ≥ 1. For each integer q ≥ 1, consider the finite set

Pq = {
∑
k∈F

pk ; F 6= ∅, F ⊆ {2q + 1, . . . , 2q+1}}.

The set
⋃
q≥1 Pq can be written as {nk ; k ≥ 1}, where (nk)k≥1 is a strictly increasing

sequence of integers. Let now σ be a continuous probability measure which is IP-Dirichlet

with respect to the Erdös-Taylor sequence (pk)k≥1:

σ̂(
∑
k∈F

pk)→ 1 as min(F )→ +∞, F ∈ F .

This implies that σ̂(nk) → 1 as k → +∞. Indeed, let ε > 0 and k0 be such that

|σ̂(
∑

k∈F pk)− 1| < ε for all F ∈ F with min(F ) ≥ k0. Let q0 be such that 2q0 + 1 ≥ k0.

Then |σ̂(nk) − 1| < ε for all k such that nk belongs to the union
⋃
q≥q0 Pq. Since all the

sets Pq are finite, |σ̂(nk)− 1| < ε for all but finitely many k.

It remains to prove that G∞((nk)) = {1}, and the argument for this is very close to

one employed in [1]. Let ε ∈ (0, 1/16) for instance, and suppose that λ ∈ T is such that

|λnk−1| < ε for all k larger than some k0. We claim then that if q0 is such that 2q0 +1 ≥ k0,

then we have for all q larger than q0

(13)

2q+1∑
k=2q+1

|λpk − 1| < 2C2ε,

where C > 0 is a constant such that {t}/C ≤ |e2iπt − 1| ≤ C{t} for all t ∈ R. Indeed, our

assumption that |λnk − 1| < ε for all k ≥ k0 implies that for all q ≥ q0 and all disjoint

finite subsets F and G of the set Pq,

{
∑
k∈F

pkθ} < Cε, {
∑
k∈G

pkθ} < Cε and {
∑

k∈FtG
pkθ} < Cε

where λ = e2iπθ with θ ∈ [0, 1) and F t G denotes the disjoint union of F and G. Now

the same argument as in [1, Prop. 1.1] yields that

〈
∑

k∈FtG
pkθ〉 = 〈

∑
k∈F

pkθ〉+ 〈
∑
k∈G

pkθ〉.

Setting

Aq,+ = {k ∈ {2q + 1, . . . 2q+1} ; 〈pkθ〉 ≥ 0}
and

Aq,− = {k ∈ {2q + 1, . . . 2q+1} ; 〈pkθ〉 < 0},
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this implies that ∑
k∈Aq,+

{pkθ} < Cε and
∑

k∈Aq,−

{pkθ} < Cε.

Hence

2q+1∑
k=2q+1

{pkθ} < 2Cε so that
2q+1∑

k=2q+1

|λpk − 1| < 2C2ε for all q ≥ q0.

Suppose now that λ 6= 1, and set ε = |λ − 1|/(4C2). Then (13) above implies that there

exists an infinite subset E of N such that |λpk − 1| ≤ (2C2ε)/k for all k ∈ E. If it were

not the case, we would have |λpk − 1| > (2C2ε)/k for all k large enough, so that

(14)
2q+1∑

k=2q+1

|λpk − 1| > 2C2ε
2q+1∑

k=2q+1

1

k
≥ 2C2ε

2q+1 − 2q

2q
≥ 2C2ε

for all q large enough, which is a contradiction with (13). This proves the existence of the

set E. Now for all k ∈ E

|λpk+1 − 1| ≥ |λ− 1| − |λkpk − 1| ≥ |λ− 1| − k|λpk − 1| ≥ 4C2ε− 2C2ε = 2C2ε.

But this stands again in contradiction with (13), and we infer from this that λ is necessarily

equal to 1. Thus G∞((nk)) = {1}, and we are done.

6.3. IP-Dirichlet systems with disjoint spectral measures. — We gave in Propo-

sition 3.1 a condition on a sequence (nk)k≥1 implying the existence of a generalized Riesz

product on T which is IP-Dirichlet with respect to (nk)k≥1. Actually, the flexibility of

the construction allows us to show that there are uncountably many disjoint such Riesz

products. Recall that two probability measures σ and σ′ on T are said to be disjoint if

there exist two disjoint Borel subsets A and B of T such that σ(A) = σ′(B) = 1 and

σ(B) = σ′(A) = 0. When this is the case, we write σ ⊥ σ′.

Proposition 6.1. — Let (nk)k≥1 be a strictly increasing sequence of integers. Suppose

that there exists a sequence (mk)k≥1 of integers with m1 ≥ 3 such that

(15) nk+1 − 4

k∑
j=1

mjnj ≥ 1 for each k ≥ 1,

and

(16) nk+1 − 4
k∑
j=1

mjnj −→ +∞ as k −→ +∞.

Let Θ be the set of all sequences (θk)k≥1 of real numbers such that θk ∈ {1,
√
π} for each

k ≥ 1.

For each k ≥ 1, let qk ≥ 1 be an integer such that qkπ
√

2 ≤ mk + 2. For each sequence

θ ∈ Θ, the continuous generalized Riesz product

σθ = w∗ − lim
N→+∞

N∏
k=1

2

[θkmk] + 2

∣∣∣[θkmk]+1∑
j=1

sin
( jπ

[θkmk] + 2

)
e2iπjnkt

∣∣∣2dλ(t)
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is such that for every finite subset F ∈ F and every integers jk in {1, . . . , qk}, k ∈ F , one

has

σ̂θ

(∑
k∈F

jknk
)
≥
∏
k∈F

(
1− 2π2

( qk
[θkmk] + 2

)2)
(17)

and

σ̂θ

(∑
k∈F

nk
)

=
∏
k∈F

cos
( π

[θkmk] + 2

)
.(18)

Moreover, if θ and θ′ are two elements of Θ such that θk 6= θ′k for infinitely many integers

k ≥ 1, then for all integers n, p ≥ 1 the two measures σ∗nθ and σ∗pθ′ are disjoint.

As a consequence of Proposition 6.1, we obtain:

Corollary 6.2. — If the sequence (nk)k≥1 satisfies the assumptions of either Corollary

3.2, Proposition 4.1 or Theorem 1.4, there exist uncountably many dynamical systems

which are weakly mixing and IP-rigid with respect to (nk)k≥1, and which have reduced

maximal spectral types which are pairwise disjoint.

Proof. — Let σθ, θ ∈ Θ, be one of the measures associated to the sequence (nk)k≥1

obtained in the proof of Proposition 6.1. Observe that σθ is a continuous symmetric

measure. Following the proof of [1, Prop. 1.2], let (Xθ,Bθ,mθ, Tθ) be the Gauss dynamical

system with spectral measure σθ. This system is weakly mixing and IP-rigid with respect

to (nk)k≥1. It is well-known (see for instance [4, Ch. 14, Sec. 3, Th. 1]) that the reduced

maximal spectral type of this system (i.e. the maximal spectral type of the Koopman

operator UTθ acting on the set L2
0(Xθ,Bθ,mθ) of functions of L2(Xθ,Bθ,mθ) of mean 0) is

equal to

τθ =
1

e− 1

∑
n≥1

σ∗nθ
n!
·

We claim that if θ and θ′ are two elements of Θ with infinitely many distinct coordinates,

then the two measures τθ and τθ′ are disjoint.

For each n, p ≥ 1, there exist by Proposition 6.1 two disjoint Borel subsets Aθ,n,p and

Aθ′,n,p of T such that σ∗nθ (Aθ,n,p) = 1, σ∗pθ′ (Aθ,n,p) = 0, σ∗pθ′ (Aθ′,n,p) = 1 and σ∗nθ (Aθ′,n,p) =

0. For each n ≥ 1, let Bθ,n = ∩s≥1Aθ,n,s and Bθ′,p = ∩r≥1Aθ′,r,p. For each n, p ≥ 1, the

sets Bθ,n and Bθ′,p are disjoint since Aθ,n,p ∩Aθ′,n,p = ∅. Also σ∗pθ′ (Bθ,n) = σ∗nθ (Bθ′,p) = 0

while σ∗nθ (Bθ,n) = σ∗pθ′ (Bθ′,p) = 1. Set Eθ =
⋃
n≥1Bθ,n and Eθ′ =

⋃
p≥1Bθ′,p. The two

sets Eθ and Eθ′ are disjoint. Also

τθ(Eθ) =
1

e− 1

∑
n≥1

σ∗nθ (Eθ)

n!
≥ 1

e− 1

∑
n≥1

σ∗nθ (Bθ,n)

n!
=

1

e− 1

∑
n≥1

1

n!
= 1.

Hence τθ(Eθ) = 1. Moreover,

τθ′(Eθ) =
1

e− 1

∑
p≥1

σ∗pθ′ (Eθ)

p!
= 0 since σ∗pθ′ (Bθ,n) = 0 for each n ≥ 1.

In the same way we prove that τθ′(Eθ′) = 1 while τθ(Eθ′) = 0. We have thus proved that

τθ and τθ′ are disjoint measures, and this yields Corollary 6.2.
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Proof of Proposition 6.1. — Let θ ∈ Θ. Since [θjmj ] ≤ θjmj + 1 ≤
√
πmj + 1 ≤ (

√
π +

1/3)mj < 4mj for every j ≥ 1, conditions (15) and (16) of Proposition 6.1 imply that

conditions (3) and (4) of Proposition 3.1 are true for the sequence ([θkmk])k≥1. So all

of Proposition 6.1 but the last statement follows from Proposition 3.1. Denote for each

θ ∈ Θ by Pθ,k the polynomial on T defined by

Pθ,k(e
2iπt) =

2

[θkmk] + 2

∣∣∣[θkmk]+1∑
j=1

sin
( jπ

[θkmk] + 2

)
e2iπjt

∣∣∣2.
Let θ and θ′ be two elements of Θ which have infinitely many distinct coordinates. Without

loss of generality we can suppose that there is an infinite subset I of the integers such that

θk =
√
π and θ′k = 1 for each k ∈ I. Let n, p ≥ 1 be two integers. The following lemma,

whose proof essentially follows from that of Th. 1.2 in the paper [11] of Peyrière (see also

[7]), gives a criterion for the two measures σ∗nθ and σ∗pθ′ to be disjoint:

Lemma 6.3. — Let θ, θ′ ∈ Θ and n, p ≥ 1. Suppose that there exists a sequence (jk)k≥1

of integers with |jk| ≤ mk for each k ≥ 1 such that

(19)
∑
k≥1

∣∣∣P̂θ,k(jk)n − P̂θ′,k(jk)p∣∣∣2 = +∞.

Then the measures σ∗nθ and σ∗pθ′ are disjoint.

We postpone the proof for the moment, and show that the assumption of Lemma 6.3

is satisfied.

Let (jk)k≥1 be a sequence of integers such that jk = o(mk) as k tends to infinity. Then

P̂θ,k(jk) = 1− π2

2

j2
k

θ2
km

2
k

+O(
j3
k

m3
k

) as k → +∞.

Indeed we have from (8) that

P̂θ,k(jk) =
(

1− jk
[θkmk] + 2

)
cos
( jkπ

[θkmk] + 2

)
+

1

[θkmk] + 2

jk∑
j=1

cos
( (jk − j)π

[θkmk] + 2

)
cosj

( π

[θkmk] + 2

)
=
(

1− jk
[θkmk] + 2

)(
1− π2

2

j2
k

([θkmk] + 2)2
+ o(

j2
k

m2
k

)
)

+
1

[θkmk] + 2

jk∑
j=1

(
1− π2

2

(jk − j)2

([θkmk] + 2)2
+ o(

j2
k

m2
k

)
)(

1− π2

2

j

([θkmk] + 2)2
+ o(

j2
k

m2
k

)
)

= 1− jk
[θkmk] + 2

− π2

2

j2
k

([θkmk] + 2)2
+O(

j3
k

m3
k

)

+
jk

[θkmk] + 2
− π2

2

1

([θkmk] + 2)3

jk∑
j=1

((jk − j)2 + j) +O(
j3
k

m3
k

).
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Now
∑jk

j=1 j = 1
2jk(jk + 1) while

∑jk
j=1(jk − j)2 = 1

6(jk − 1)jk(2jk − 1). It follows that

P̂θ,k(jk) = 1− π2

2

j2
k

([θkmk] + 2)2
+O(

j3
k

m3
k

) = 1− π2

2

j2
k

θ2
km

2
k

+O(
j3
k

m3
k

).

In the same way

P̂θ′,k(jk) = 1− π2

2

j2
k

θ
′2
k m

2
k

+O(
j3
k

m3
k

) as k → +∞.

It follows that∣∣∣P̂θ,k(jk)n − P̂θ′,k(jk)p∣∣∣ =
∣∣∣nπ2

2

j2
k

θ2
km

2
k

− pπ2

2

j2
k

θ
′2
k m

2
k

∣∣∣+O(
j3
k

m3
k

)

=
π2

2

j2
k

m2
k

∣∣∣ n
θ2
k

− p

θ
′2
k

∣∣∣+O(
j3
k

m3
k

)·

Remember now that for each k ∈ I, θk =
√
π and θ′k = 1, and that I is an infinite set.

Hence for every k ∈ I, ∣∣∣ n
θ2
k

− p

θ
′2
k

∣∣∣ =
∣∣∣n
π
− p
∣∣∣ > 0.

So ∣∣∣P̂θ,k(jk)n − P̂θ′,k(jk)p∣∣∣2 ∼ π4

4

∣∣∣n
π
− p
∣∣∣2( jk

mk

)4
as k → +∞, k ∈ I.

If the sequence (jk)k≥1 is chosen in such a way that jk = o(mk) as k tends to infinity and∑
k∈I(

jk
mk

)4 = +∞, condition (19) is satisfied for all integers n, p ≥ 1. The conclusion

then follows from Lemma 6.3.

Proof of Lemma 6.3. — As mentioned already above, this proof is extremely close to that

of [11, Th. 1.2], but we include it for completeness’s sake. Denote by µθ the measure σ∗nθ ,

and by µθ′ the measure σ∗pθ′ . For every k 6= l we have µ̂θ(jknk) = P̂θ,k(jk)
n, µ̂θ(jlnl) =

P̂θ,l(jl)
n and

µ̂θ(jknk − jlnl) = P̂θ,k(jk)
nP̂θ,l(jl)

n = µ̂θ(jknk)µ̂θ(jlnl).

Also µ̂θ′(jknk) = P̂θ′,k(jk)
p, µ̂θ′(jlnl) = P̂θ′,l(jl)

p and

µ̂θ′(jknk − jlnl) = P̂θ′,k(jk)
pP̂θ′,l(jl)

p = µ̂θ′(jknk)µ̂θ′(jlnl).

All the Fourier coefficients of the measures µθ and µθ′ are real. Consider the functions fθ,k
and fθ′,k defined on T by fθ,k(e

2iπt) = e2iπjknkt − µ̂θ(jknk) and fθ′,k(e
2iπt) = e2iπjknkt −

µ̂θ′(jknk), t ∈ [0, 1). Then the functions (fθ,k)k≥1 form an orthogonal family in L2(µθ),

and ||fθ,k||2L2(µθ) = 1− |µ̂θ(jknk)|2 ≤ 1. It follows that if (bk)k≥1 is any square-summable

sequence of complex numbers, the series
∑

k≥1 bkfθ,k converges in L2(µθ). In the same

way, the series
∑

k≥1 bkfθ′,k converges in L2(µθ′). Suppose that µθ and µθ′ are not disjoint.

Then we can write µθ = µθ,a+µθ,s, where µθ,a is absolutely continuous with respect to µθ′

and µθ,s and µθ′ are disjoint. Write dµθ,a = ϕdµθ′ , where ϕ ∈ L1(µθ′). Let ε > 0 and let

A be a Borel subset of T such that µθ′(A) > 0 and ϕ > ε on A. Consider the measure ν
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on T defined by dν = ε1Adµθ′ . Then ν ≤ µθ′ and ν ≤ µθ, and the two series
∑

k≥1 bkfθ,k
and

∑
k≥1 bkfθ′,k converge in L2(ν). Hence the series∑

k≥1

bk(fθ,k − fθ′,k) =
∑
k≥1

bk(µ̂θ(jknk)− µ̂θ′(jknk)) =
∑
k≥1

bk(P̂θ,k(jk)
n − P̂θ′,k(jk)p)

is convergent. This being true for any square-summable sequence (bk)k≥1, it follows that

the series ∑
k≥1

∣∣∣P̂θ,k(jk)n − P̂θ′,k(jk)p∣∣∣2
is convergent, which contradicts our assumption (19). The two measures µθ and µθ′ are

hence disjoint.
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