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The operad of little n-cubes

The rational case

Structure in characteristic two



Little n-cubes

We had: Cn, the operad of little n-cubes.

Cn(r), r ≥ 0. We can
shrink the inner cubes to their centers. This gives a homotopy
equivalence between Cn(r) and the ordered configuration space of
r points in Rn:

2
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• 2

• 1

• 3

This equivalence is Σr -equivariant.
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Some history

If X = ΩnY and n ≥ 2, then the homology of X carries a very rich
structure.

Araki-Kudo (1956): Pontrjagin rings H∗(Ω
NSm; F2), 0 < N < m,

definition of Hn-spaces, and some homology operations

Qi : Hq(X ; F2) → H2q+i (X ; F2)

for X an Hn-space and 0 ≤ i ≤ n.
Browder (1960): Description of H∗(Ω

nΣnZ ; F2) as an algebra in
terms of H∗(Z ; F2). Construction of a new operation (Browder
operation).
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Some history – continued

Dyer-Lashof (1962): Extension of (some of) the Qi ’s to odd
primes. Partial results about H∗(Ω

nΣnZ ; Fp).

Milgram (1966): H∗(Ω
nΣnZ ; Fp) as an algebra, depending only on

the homology of Z and n.
Cohen (1976): Complete description of the homology operations on
iterated loop spaces, and of H∗(Ω

nΣnZ ; k) for k = Q and k = Fp.
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Where do the operations come from?

Let k be a field (for simplicity).
Clear: ΩnY is an H-space, so H∗(Ω

nY ; k) is a k-algebra (a Hopf
algebra).

We also get operations

H∗(Cn(r); k)⊗k[Σr ] H∗(Ω
nY ; k)⊗r → H∗(Ω

nY ; k)

via the Künneth map.
So the homology of the spaces Cn(r) parametrizes operations on
the homology of every n-fold loop space.
H∗(Cn, k) is an operad in k-vector spaces, the operad that codifies
(n − 1)-Gerstenhaber algebras.
But in general there is more, unless we have k = Q...
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n-Gerstenhaber algebras

Definition An n-Gerstenhaber algebra over Q is a (non-negatively)
graded Q-vector space G∗ with
1. a map [−,−] : G∗ ⊗ G∗ → G∗ that raises degree by n,
2. a graded commutative multiplication of degree zero on G∗,

such that [−,−] satisfies a graded version of the Jacobi relation
and graded antisymmetry (i.e., [x , y ] = −(−1)qr [y , x ] for x ∈ Gq−n

and y ∈ Gr−n). In addition there is a Poisson relation

[x , yz ] = [x , y ]z + (−1)q(r−n)y [x , z ].

Cohen showed that the rational homology of any space
X = Ωn+1Y is an n-Gerstenhaber algebra and that

H∗(Cn+1Z ; Q) ∼= nG (H̄∗(Z ; Q))

for any space Z .
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An example over F2

A Browder operation and a restriction:

Note that C2(2) ' S1 as a Σ2-space and consider

Σ2 → S1 → S1 = RP1.

We get two operations: The fundamental class of S1 corresponds
to a Lie bracket of degree one, λ, on H∗(Ω

2X ; F2) and the class of
RP1 ∼ S1 gives rise to an operation

ξ : Hm(Ω2X ; F2) → H2m+1(Ω
2X ; F2).

For this note, that x ⊗ x is invariant under the Σ2-action, thus we
have

x 7→ κ([RP1]⊗ (x ⊗ x)).

Think of this as being ’half the circle’ giving rise to ’half the Lie
bracket [x , x ]’, aka the restriction on x .
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Dyer-Lashof operations

Let p be 2 (for simplicity) and let X be a Cn+1-space. Then there
are operations

Qs : Hq(X ; F2) → Hq+s(X ; F2), s ≥ 0.

These are natural wrt maps of Cn+1-spaces.
Qs(x) = 0 if s < |x |,
Q |x |(x) = x2,
Qs(1) = 0 for s > 0 (here, 1 ∈ H0(X ; F2)),
There are Cartan formulas and Adem relations. For instance

Qs(xy) =
∑

i+j=s

Q i (x)Q j(y).

There are also relations between the Q i ’s and the action of the
duals of the Sqj ’s (Nishida relations).
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Construction of the Q i ’s

The Q i ’s are constructed as restrictions of Dyer-Lashof operations
for infinite loop spaces.

There: The normalized singular chains on C∞(2), C∗(C∞(2); F2),
are a Σ2-free resolution of F2.
Take the standard resolution of Σ2 = Z/2Z, W∗, and compose

θ∗ : W∗ ⊗ C∗(X ; F2)
⊗2 → C∗(C∞(2); F2)⊗ C∗(X ; F2)

⊗2

→ C∗(C∞(2)× X 2; F2) → C∗(X ; F2).

Qi (x) = θ∗(ei ⊗ x ⊗ x) (ei ∈ Wi ) is the induced map on homology
and Qs(x) := Qs−|x |(x) if s − |x | ≥ 0 (0 otherwise).
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At odd primes

For any odd prime p we have

Qs : Hq(X ; Fp) → Hq+2s(p−1)(X ; Fp)

Take W∗ to be the standard resolution of the group algebra for
Z/pZ over Fp. Then the construction is similar to the one for the
Q i at 2.
We get additional relations wrt the mod-p Bockstein.
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Homology of Ωn+1Σn+1Z

Cohen: Complete descriptions of H∗(Cn+1Z ; Fp) and
H∗(Ω

n+1Σn+1Z ; Fp) as free objects built out of the reduced
homology of Z .

The free constructions involve

I A restricted n-Gerstenhaber structure,

I allowable modules and algebras over the Dyer-Lashof algebra,

I a compatible coalgebra structure.

We get a Hopf algebra with a compatible Dyer-Lashof action and a
restricted n-Lie algebra structure.
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On chain level

In the next talk we will consider the homology of En-algebra, where
En is a cofibrant model of the normalized singular chains on the
operad Cn.
The homology of these algebras inherits the rich structure from
topology.

We will focus on the cases
k = Q and arbitrary n and k = F2 and E2.
Lemma
a) Over the rationals we have for every non-negatively graded
chain complex C∗

H∗(En+1(C∗)) ∼= nG (H∗C∗)

b) Over F2:
H∗(E2(C∗)) ∼= 1rG (H∗C∗).
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