Properties of the homology of algebraic n-fold loop spaces

Birgit Richter

Lille, October 2012

The operad of little n-cubes

The rational case

Structure in characteristic two

Little n-cubes

We had: C_{n}, the operad of little n-cubes.

Little n-cubes

We had: C_{n}, the operad of little n-cubes. $C_{n}(r), r \geq 0$.

Little n-cubes

We had: C_{n}, the operad of little n-cubes. $C_{n}(r), r \geq 0$. We can shrink the inner cubes to their centers. This gives a homotopy equivalence between $C_{n}(r)$ and the ordered configuration space of r points in \mathbb{R}^{n} :

Little n-cubes

We had: C_{n}, the operad of little n-cubes. $C_{n}(r), r \geq 0$. We can shrink the inner cubes to their centers. This gives a homotopy equivalence between $C_{n}(r)$ and the ordered configuration space of r points in \mathbb{R}^{n} :

Little n-cubes

We had: C_{n}, the operad of little n-cubes. $C_{n}(r), r \geq 0$. We can shrink the inner cubes to their centers. This gives a homotopy equivalence between $C_{n}(r)$ and the ordered configuration space of r points in \mathbb{R}^{n} :

This equivalence is Σ_{r}-equivariant.

Some history

If $X=\Omega^{n} Y$ and $n \geq 2$, then the homology of X carries a very rich structure.

Some history

If $X=\Omega^{n} Y$ and $n \geq 2$, then the homology of X carries a very rich structure.
Araki-Kudo (1956): Pontrjagin rings $H_{*}\left(\Omega^{N} \mathbb{S}^{m} ; \mathbb{F}_{2}\right), 0<N<m$, definition of H_{n}-spaces, and some homology operations

$$
Q_{i}: H_{q}\left(X ; \mathbb{F}_{2}\right) \rightarrow H_{2 q+i}\left(X ; \mathbb{F}_{2}\right)
$$

for X an H_{n}-space and $0 \leq i \leq n$.

Some history

If $X=\Omega^{n} Y$ and $n \geq 2$, then the homology of X carries a very rich structure.
Araki-Kudo (1956): Pontrjagin rings $H_{*}\left(\Omega^{N} \mathbb{S}^{m} ; \mathbb{F}_{2}\right), 0<N<m$, definition of H_{n}-spaces, and some homology operations

$$
Q_{i}: H_{q}\left(X ; \mathbb{F}_{2}\right) \rightarrow H_{2 q+i}\left(X ; \mathbb{F}_{2}\right)
$$

for X an H_{n}-space and $0 \leq i \leq n$.
Browder (1960): Description of $H_{*}\left(\Omega^{n} \sum^{n} Z ; \mathbb{F}_{2}\right)$ as an algebra in terms of $H_{*}\left(Z ; \mathbb{F}_{2}\right)$. Construction of a new operation (Browder operation).

Some history - continued

Dyer-Lashof (1962): Extension of (some of) the Q_{i} 's to odd primes. Partial results about $H_{*}\left(\Omega^{n} \Sigma^{n} Z ; \mathbb{F}_{p}\right)$.

Some history - continued

Dyer-Lashof (1962): Extension of (some of) the Q_{i} 's to odd primes. Partial results about $H_{*}\left(\Omega^{n} \Sigma^{n} Z ; \mathbb{F}_{p}\right)$.
Milgram (1966): $H_{*}\left(\Omega^{n} \Sigma^{n} Z ; \mathbb{F}_{p}\right)$ as an algebra, depending only on the homology of Z and n.

Some history - continued

Dyer-Lashof (1962): Extension of (some of) the Q_{i} 's to odd primes. Partial results about $H_{*}\left(\Omega^{n} \Sigma^{n} Z ; \mathbb{F}_{p}\right)$.
Milgram (1966): $H_{*}\left(\Omega^{n} \Sigma^{n} Z ; \mathbb{F}_{p}\right)$ as an algebra, depending only on the homology of Z and n.
Cohen (1976): Complete description of the homology operations on iterated loop spaces, and of $H_{*}\left(\Omega^{n} \Sigma^{n} Z ; k\right)$ for $k=\mathbb{Q}$ and $k=\mathbb{F}_{p}$.

Where do the operations come from?

Let k be a field (for simplicity).
Clear: $\Omega^{n} Y$ is an H-space, so $H_{*}\left(\Omega^{n} Y ; k\right)$ is a k-algebra (a Hopf algebra).

Where do the operations come from?

Let k be a field (for simplicity).
Clear: $\Omega^{n} Y$ is an H-space, so $H_{*}\left(\Omega^{n} Y ; k\right)$ is a k-algebra (a Hopf algebra).
We also get operations

$$
H_{*}\left(C_{n}(r) ; k\right) \otimes_{k\left[\Sigma_{r}\right]} H_{*}\left(\Omega^{n} Y ; k\right)^{\otimes r} \rightarrow H_{*}\left(\Omega^{n} Y ; k\right)
$$

via the Künneth map.

Where do the operations come from?

Let k be a field (for simplicity).
Clear: $\Omega^{n} Y$ is an H-space, so $H_{*}\left(\Omega^{n} Y ; k\right)$ is a k-algebra (a Hopf algebra).
We also get operations

$$
H_{*}\left(C_{n}(r) ; k\right) \otimes_{k\left[\Sigma_{r}\right]} H_{*}\left(\Omega^{n} Y ; k\right)^{\otimes r} \rightarrow H_{*}\left(\Omega^{n} Y ; k\right)
$$

via the Künneth map.
So the homology of the spaces $C_{n}(r)$ parametrizes operations on the homology of every n-fold loop space.

Where do the operations come from?

Let k be a field (for simplicity).
Clear: $\Omega^{n} Y$ is an H-space, so $H_{*}\left(\Omega^{n} Y ; k\right)$ is a k-algebra (a Hopf algebra).
We also get operations

$$
H_{*}\left(C_{n}(r) ; k\right) \otimes_{k\left[\Sigma_{r}\right]} H_{*}\left(\Omega^{n} Y ; k\right)^{\otimes r} \rightarrow H_{*}\left(\Omega^{n} Y ; k\right)
$$

via the Künneth map.
So the homology of the spaces $C_{n}(r)$ parametrizes operations on the homology of every n-fold loop space.
$H_{*}\left(C_{n}, k\right)$ is an operad in k-vector spaces, the operad that codifies
($n-1$)-Gerstenhaber algebras.

Where do the operations come from?

Let k be a field (for simplicity).
Clear: $\Omega^{n} Y$ is an H-space, so $H_{*}\left(\Omega^{n} Y ; k\right)$ is a k-algebra (a Hopf algebra).
We also get operations

$$
H_{*}\left(C_{n}(r) ; k\right) \otimes_{k\left[\Sigma_{r}\right]} H_{*}\left(\Omega^{n} Y ; k\right)^{\otimes r} \rightarrow H_{*}\left(\Omega^{n} Y ; k\right)
$$

via the Künneth map.
So the homology of the spaces $C_{n}(r)$ parametrizes operations on the homology of every n-fold loop space.
$H_{*}\left(C_{n}, k\right)$ is an operad in k-vector spaces, the operad that codifies
($n-1$)-Gerstenhaber algebras.
But in general there is more, unless we have $k=\mathbb{Q}$...

n-Gerstenhaber algebras

Definition An n-Gerstenhaber algebra over \mathbb{Q} is a (non-negatively) graded \mathbb{Q}-vector space G_{*} with

1. a map $[-,-]: G_{*} \otimes G_{*} \rightarrow G_{*}$ that raises degree by n,
2. a graded commutative multiplication of degree zero on G_{*},

n-Gerstenhaber algebras

Definition An n-Gerstenhaber algebra over \mathbb{Q} is a (non-negatively) graded \mathbb{Q}-vector space G_{*} with

1. a map $[-,-]: G_{*} \otimes G_{*} \rightarrow G_{*}$ that raises degree by n,
2. a graded commutative multiplication of degree zero on G_{*}, such that $[-,-]$ satisfies a graded version of the Jacobi relation and graded antisymmetry (i.e., $[x, y]=-(-1)^{q r}[y, x]$ for $x \in G_{q-n}$ and $y \in G_{r-n}$). In addition there is a Poisson relation

$$
[x, y z]=[x, y] z+(-1)^{q(r-n)} y[x, z]
$$

n-Gerstenhaber algebras

Definition An n-Gerstenhaber algebra over \mathbb{Q} is a (non-negatively) graded \mathbb{Q}-vector space G_{*} with

1. a map $[-,-]: G_{*} \otimes G_{*} \rightarrow G_{*}$ that raises degree by n,
2. a graded commutative multiplication of degree zero on G_{*}, such that $[-,-]$ satisfies a graded version of the Jacobi relation and graded antisymmetry (i.e., $[x, y]=-(-1)^{q r}[y, x]$ for $x \in G_{q-n}$ and $y \in G_{r-n}$). In addition there is a Poisson relation

$$
[x, y z]=[x, y] z+(-1)^{q(r-n)} y[x, z]
$$

Cohen showed that the rational homology of any space $X=\Omega^{n+1} Y$ is an n-Gerstenhaber algebra and that

$$
H_{*}\left(C_{n+1} Z ; \mathbb{Q}\right) \cong n G\left(\bar{H}_{*}(Z ; \mathbb{Q})\right)
$$

for any space Z.

An example over \mathbb{F}_{2}

A Browder operation and a restriction:

An example over \mathbb{F}_{2}

A Browder operation and a restriction:
Note that $C_{2}(2) \simeq \mathbb{S}^{1}$ as a Σ_{2}-space and consider

$$
\Sigma_{2} \rightarrow \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}=\mathbb{R} P^{1}
$$

An example over \mathbb{F}_{2}

A Browder operation and a restriction:
Note that $C_{2}(2) \simeq \mathbb{S}^{1}$ as a Σ_{2}-space and consider

$$
\Sigma_{2} \rightarrow \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}=\mathbb{R} P^{1}
$$

We get two operations: The fundamental class of \mathbb{S}^{1} corresponds to a Lie bracket of degree one, λ, on $H_{*}\left(\Omega^{2} X ; \mathbb{F}_{2}\right)$ and the class of $\mathbb{R} P^{1} \sim \mathbb{S}^{1}$ gives rise to an operation

$$
\xi: H_{m}\left(\Omega^{2} X ; \mathbb{F}_{2}\right) \rightarrow H_{2 m+1}\left(\Omega^{2} X ; \mathbb{F}_{2}\right)
$$

An example over \mathbb{F}_{2}

A Browder operation and a restriction:
Note that $C_{2}(2) \simeq \mathbb{S}^{1}$ as a Σ_{2}-space and consider

$$
\Sigma_{2} \rightarrow \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}=\mathbb{R} P^{1}
$$

We get two operations: The fundamental class of \mathbb{S}^{1} corresponds to a Lie bracket of degree one, λ, on $H_{*}\left(\Omega^{2} X ; \mathbb{F}_{2}\right)$ and the class of $\mathbb{R} P^{1} \sim \mathbb{S}^{1}$ gives rise to an operation

$$
\xi: H_{m}\left(\Omega^{2} X ; \mathbb{F}_{2}\right) \rightarrow H_{2 m+1}\left(\Omega^{2} X ; \mathbb{F}_{2}\right)
$$

For this note, that $x \otimes x$ is invariant under the Σ_{2}-action, thus we have

$$
x \mapsto \kappa\left(\left[\mathbb{R} P^{1}\right] \otimes(x \otimes x)\right)
$$

An example over \mathbb{F}_{2}

A Browder operation and a restriction:
Note that $C_{2}(2) \simeq \mathbb{S}^{1}$ as a Σ_{2}-space and consider

$$
\Sigma_{2} \rightarrow \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}=\mathbb{R} P^{1}
$$

We get two operations: The fundamental class of \mathbb{S}^{1} corresponds to a Lie bracket of degree one, λ, on $H_{*}\left(\Omega^{2} X ; \mathbb{F}_{2}\right)$ and the class of $\mathbb{R} P^{1} \sim \mathbb{S}^{1}$ gives rise to an operation

$$
\xi: H_{m}\left(\Omega^{2} X ; \mathbb{F}_{2}\right) \rightarrow H_{2 m+1}\left(\Omega^{2} X ; \mathbb{F}_{2}\right)
$$

For this note, that $x \otimes x$ is invariant under the Σ_{2}-action, thus we have

$$
x \mapsto \kappa\left(\left[\mathbb{R} P^{1}\right] \otimes(x \otimes x)\right)
$$

Think of this as being 'half the circle' giving rise to 'half the Lie bracket $[x, x]$ ', aka the restriction on x.

Dyer-Lashof operations

Let p be 2 (for simplicity) and let X be a C_{n+1}-space. Then there are operations

$$
Q^{s}: H_{q}\left(X ; \mathbb{F}_{2}\right) \rightarrow H_{q+s}\left(X ; \mathbb{F}_{2}\right), s \geq 0
$$

Dyer-Lashof operations

Let p be 2 (for simplicity) and let X be a C_{n+1}-space. Then there are operations

$$
Q^{s}: H_{q}\left(X ; \mathbb{F}_{2}\right) \rightarrow H_{q+s}\left(X ; \mathbb{F}_{2}\right), s \geq 0
$$

These are natural wrt maps of C_{n+1}-spaces.

Dyer-Lashof operations

Let p be 2 (for simplicity) and let X be a C_{n+1}-space. Then there are operations

$$
Q^{s}: H_{q}\left(X ; \mathbb{F}_{2}\right) \rightarrow H_{q+s}\left(X ; \mathbb{F}_{2}\right), s \geq 0
$$

These are natural wrt maps of C_{n+1}-spaces. $Q^{s}(x)=0$ if $s<|x|$,

Dyer-Lashof operations

Let p be 2 (for simplicity) and let X be a C_{n+1}-space. Then there are operations

$$
Q^{s}: H_{q}\left(X ; \mathbb{F}_{2}\right) \rightarrow H_{q+s}\left(X ; \mathbb{F}_{2}\right), s \geq 0
$$

These are natural wrt maps of C_{n+1}-spaces.
$Q^{s}(x)=0$ if $s<|x|$, $Q^{|x|}(x)=x^{2}$,

Dyer-Lashof operations

Let p be 2 (for simplicity) and let X be a C_{n+1}-space. Then there are operations

$$
Q^{s}: H_{q}\left(X ; \mathbb{F}_{2}\right) \rightarrow H_{q+s}\left(X ; \mathbb{F}_{2}\right), s \geq 0
$$

These are natural wrt maps of C_{n+1}-spaces.
$Q^{s}(x)=0$ if $s<|x|$,
$Q^{|x|}(x)=x^{2}$,
$Q^{s}(1)=0$ for $s>0\left(\right.$ here, $\left.1 \in H_{0}\left(X ; \mathbb{F}_{2}\right)\right)$,

Dyer-Lashof operations

Let p be 2 (for simplicity) and let X be a C_{n+1}-space. Then there are operations

$$
Q^{s}: H_{q}\left(X ; \mathbb{F}_{2}\right) \rightarrow H_{q+s}\left(X ; \mathbb{F}_{2}\right), s \geq 0
$$

These are natural wrt maps of C_{n+1}-spaces.
$Q^{s}(x)=0$ if $s<|x|$,
$Q^{|x|}(x)=x^{2}$,
$Q^{s}(1)=0$ for $s>0\left(\right.$ here, $\left.1 \in H_{0}\left(X ; \mathbb{F}_{2}\right)\right)$,
There are Cartan formulas and Adem relations. For instance

$$
Q^{s}(x y)=\sum_{i+j=s} Q^{i}(x) Q^{j}(y) .
$$

Dyer-Lashof operations

Let p be 2 (for simplicity) and let X be a C_{n+1}-space. Then there are operations

$$
Q^{s}: H_{q}\left(X ; \mathbb{F}_{2}\right) \rightarrow H_{q+s}\left(X ; \mathbb{F}_{2}\right), s \geq 0
$$

These are natural wrt maps of C_{n+1}-spaces.
$Q^{s}(x)=0$ if $s<|x|$,
$Q^{|x|}(x)=x^{2}$,
$Q^{s}(1)=0$ for $s>0\left(\right.$ here, $\left.1 \in H_{0}\left(X ; \mathbb{F}_{2}\right)\right)$,
There are Cartan formulas and Adem relations. For instance

$$
Q^{s}(x y)=\sum_{i+j=s} Q^{i}(x) Q^{j}(y)
$$

There are also relations between the Q^{i} 's and the action of the duals of the $S q^{j}$'s (Nishida relations).

Construction of the Q^{i} 's

The Q^{i} 's are constructed as restrictions of Dyer-Lashof operations for infinite loop spaces.

Construction of the Q^{i} 's

The Q^{i} 's are constructed as restrictions of Dyer-Lashof operations for infinite loop spaces.
There: The normalized singular chains on $C_{\infty}(2), C_{*}\left(C_{\infty}(2) ; \mathbb{F}_{2}\right)$, are a Σ_{2}-free resolution of \mathbb{F}_{2}.

Construction of the Q^{i} 's

The Q^{i} 's are constructed as restrictions of Dyer-Lashof operations for infinite loop spaces.
There: The normalized singular chains on $C_{\infty}(2), C_{*}\left(C_{\infty}(2) ; \mathbb{F}_{2}\right)$, are a Σ_{2}-free resolution of \mathbb{F}_{2}.
Take the standard resolution of $\Sigma_{2}=\mathbb{Z} / 2 \mathbb{Z}, W_{*}$, and compose

$$
\begin{gathered}
\theta_{*}: W_{*} \otimes C_{*}\left(X ; \mathbb{F}_{2}\right)^{\otimes 2} \rightarrow C_{*}\left(C_{\infty}(2) ; \mathbb{F}_{2}\right) \otimes C_{*}\left(X ; \mathbb{F}_{2}\right)^{\otimes 2} \\
\rightarrow C_{*}\left(C_{\infty}(2) \times X^{2} ; \mathbb{F}_{2}\right) \rightarrow C_{*}\left(X ; \mathbb{F}_{2}\right) .
\end{gathered}
$$

Construction of the Q^{i} 's

The Q^{i} 's are constructed as restrictions of Dyer-Lashof operations for infinite loop spaces.
There: The normalized singular chains on $C_{\infty}(2), C_{*}\left(C_{\infty}(2) ; \mathbb{F}_{2}\right)$, are a Σ_{2}-free resolution of \mathbb{F}_{2}.
Take the standard resolution of $\Sigma_{2}=\mathbb{Z} / 2 \mathbb{Z}, W_{*}$, and compose

$$
\begin{gathered}
\theta_{*}: W_{*} \otimes C_{*}\left(X ; \mathbb{F}_{2}\right)^{\otimes 2} \rightarrow C_{*}\left(C_{\infty}(2) ; \mathbb{F}_{2}\right) \otimes C_{*}\left(X ; \mathbb{F}_{2}\right)^{\otimes 2} \\
\rightarrow C_{*}\left(C_{\infty}(2) \times X^{2} ; \mathbb{F}_{2}\right) \rightarrow C_{*}\left(X ; \mathbb{F}_{2}\right) .
\end{gathered}
$$

$Q_{i}(x)=\theta_{*}\left(e_{i} \otimes x \otimes x\right)\left(e_{i} \in W_{i}\right)$ is the induced map on homology and $Q^{s}(x):=Q_{s-|x|}(x)$ if $s-|x| \geq 0$ (0 otherwise).

At odd primes

For any odd prime p we have

$$
Q^{s}: H_{q}\left(X ; \mathbb{F}_{p}\right) \rightarrow H_{q+2 s(p-1)}\left(X ; \mathbb{F}_{p}\right)
$$

At odd primes

For any odd prime p we have

$$
Q^{s}: H_{q}\left(X ; \mathbb{F}_{p}\right) \rightarrow H_{q+2 s(p-1)}\left(X ; \mathbb{F}_{p}\right)
$$

Take W_{*} to be the standard resolution of the group algebra for $\mathbb{Z} / p \mathbb{Z}$ over \mathbb{F}_{p}. Then the construction is similar to the one for the Q^{i} at 2.

At odd primes

For any odd prime p we have

$$
Q^{s}: H_{q}\left(X ; \mathbb{F}_{p}\right) \rightarrow H_{q+2 s(p-1)}\left(X ; \mathbb{F}_{p}\right)
$$

Take W_{*} to be the standard resolution of the group algebra for $\mathbb{Z} / p \mathbb{Z}$ over \mathbb{F}_{p}. Then the construction is similar to the one for the Q^{i} at 2.
We get additional relations wrt the mod-p Bockstein.

Homology of $\Omega^{n+1} \Sigma^{n+1} Z$

Cohen: Complete descriptions of $H_{*}\left(C_{n+1} Z ; \mathbb{F}_{p}\right)$ and $H_{*}\left(\Omega^{n+1} \Sigma^{n+1} Z ; \mathbb{F}_{p}\right)$ as free objects built out of the reduced homology of Z.

Homology of $\Omega^{n+1} \Sigma^{n+1} Z$

Cohen: Complete descriptions of $H_{*}\left(C_{n+1} Z ; \mathbb{F}_{p}\right)$ and $H_{*}\left(\Omega^{n+1} \Sigma^{n+1} Z ; \mathbb{F}_{p}\right)$ as free objects built out of the reduced homology of Z.
The free constructions involve

- A restricted n-Gerstenhaber structure,
- allowable modules and algebras over the Dyer-Lashof algebra,
- a compatible coalgebra structure.

Homology of $\Omega^{n+1} \Sigma^{n+1} Z$

Cohen: Complete descriptions of $H_{*}\left(C_{n+1} Z ; \mathbb{F}_{p}\right)$ and $H_{*}\left(\Omega^{n+1} \Sigma^{n+1} Z ; \mathbb{F}_{p}\right)$ as free objects built out of the reduced homology of Z.
The free constructions involve

- A restricted n-Gerstenhaber structure,
- allowable modules and algebras over the Dyer-Lashof algebra,
- a compatible coalgebra structure.

We get a Hopf algebra with a compatible Dyer-Lashof action and a restricted n-Lie algebra structure.

On chain level

In the next talk we will consider the homology of E_{n}-algebra, where E_{n} is a cofibrant model of the normalized singular chains on the operad C_{n}.
The homology of these algebras inherits the rich structure from topology.

On chain level

In the next talk we will consider the homology of E_{n}-algebra, where E_{n} is a cofibrant model of the normalized singular chains on the operad C_{n}.
The homology of these algebras inherits the rich structure from topology.
We will focus on the cases
$k=\mathbb{Q}$ and arbitrary n and $k=\mathbb{F}_{2}$ and E_{2}.

On chain level

In the next talk we will consider the homology of E_{n}-algebra, where E_{n} is a cofibrant model of the normalized singular chains on the operad C_{n}.
The homology of these algebras inherits the rich structure from topology.
We will focus on the cases
$k=\mathbb{Q}$ and arbitrary n and $k=\mathbb{F}_{2}$ and E_{2}.
Lemma
a) Over the rationals we have for every non-negatively graded chain complex C_{*}

$$
H_{*}\left(E_{n+1}\left(C_{*}\right)\right) \cong n G\left(H_{*} C_{*}\right)
$$

On chain level

In the next talk we will consider the homology of E_{n}-algebra, where E_{n} is a cofibrant model of the normalized singular chains on the operad C_{n}.
The homology of these algebras inherits the rich structure from topology.
We will focus on the cases
$k=\mathbb{Q}$ and arbitrary n and $k=\mathbb{F}_{2}$ and E_{2}.
Lemma
a) Over the rationals we have for every non-negatively graded chain complex C_{*}

$$
H_{*}\left(E_{n+1}\left(C_{*}\right)\right) \cong n G\left(H_{*} C_{*}\right)
$$

b) Over \mathbb{F}_{2} :

$$
H_{*}\left(E_{2}\left(C_{*}\right)\right) \cong 1 r G\left(H_{*} C_{*}\right) .
$$

